4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/ptrace.h>
39 #include <linux/mount.h>
40 #include <linux/audit.h>
41 #include <linux/profile.h>
42 #include <linux/rmap.h>
43 #include <linux/acct.h>
45 #include <asm/pgtable.h>
46 #include <asm/pgalloc.h>
47 #include <asm/uaccess.h>
48 #include <asm/mmu_context.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlbflush.h>
53 * Protected counters by write_lock_irq(&tasklist_lock)
55 unsigned long total_forks; /* Handle normal Linux uptimes. */
56 int nr_threads; /* The idle threads do not count.. */
58 int max_threads; /* tunable limit on nr_threads */
60 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
62 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
64 EXPORT_SYMBOL(tasklist_lock);
66 int nr_processes(void)
71 for_each_online_cpu(cpu)
72 total += per_cpu(process_counts, cpu);
77 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
78 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
79 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
80 static kmem_cache_t *task_struct_cachep;
83 /* SLAB cache for signal_struct structures (tsk->signal) */
84 kmem_cache_t *signal_cachep;
86 /* SLAB cache for sighand_struct structures (tsk->sighand) */
87 kmem_cache_t *sighand_cachep;
89 /* SLAB cache for files_struct structures (tsk->files) */
90 kmem_cache_t *files_cachep;
92 /* SLAB cache for fs_struct structures (tsk->fs) */
93 kmem_cache_t *fs_cachep;
95 /* SLAB cache for vm_area_struct structures */
96 kmem_cache_t *vm_area_cachep;
98 /* SLAB cache for mm_struct structures (tsk->mm) */
99 static kmem_cache_t *mm_cachep;
101 void free_task(struct task_struct *tsk)
103 free_thread_info(tsk->thread_info);
104 free_task_struct(tsk);
106 EXPORT_SYMBOL(free_task);
108 void __put_task_struct(struct task_struct *tsk)
110 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
111 WARN_ON(atomic_read(&tsk->usage));
112 WARN_ON(tsk == current);
114 if (unlikely(tsk->audit_context))
116 security_task_free(tsk);
118 put_group_info(tsk->group_info);
120 if (!profile_handoff_task(tsk))
124 void __init fork_init(unsigned long mempages)
126 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
127 #ifndef ARCH_MIN_TASKALIGN
128 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
130 /* create a slab on which task_structs can be allocated */
132 kmem_cache_create("task_struct", sizeof(struct task_struct),
133 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
137 * The default maximum number of threads is set to a safe
138 * value: the thread structures can take up at most half
141 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
144 * we need to allow at least 20 threads to boot a system
149 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
150 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
151 init_task.signal->rlim[RLIMIT_SIGPENDING] =
152 init_task.signal->rlim[RLIMIT_NPROC];
155 static struct task_struct *dup_task_struct(struct task_struct *orig)
157 struct task_struct *tsk;
158 struct thread_info *ti;
160 prepare_to_copy(orig);
162 tsk = alloc_task_struct();
166 ti = alloc_thread_info(tsk);
168 free_task_struct(tsk);
172 *ti = *orig->thread_info;
174 tsk->thread_info = ti;
177 /* One for us, one for whoever does the "release_task()" (usually parent) */
178 atomic_set(&tsk->usage,2);
183 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm)
185 struct vm_area_struct * mpnt, *tmp, **pprev;
186 struct rb_node **rb_link, *rb_parent;
188 unsigned long charge;
189 struct mempolicy *pol;
191 down_write(&oldmm->mmap_sem);
192 flush_cache_mm(current->mm);
195 mm->mmap_cache = NULL;
196 mm->free_area_cache = oldmm->mmap_base;
197 mm->cached_hole_size = ~0UL;
199 set_mm_counter(mm, rss, 0);
200 set_mm_counter(mm, anon_rss, 0);
201 cpus_clear(mm->cpu_vm_mask);
203 rb_link = &mm->mm_rb.rb_node;
207 for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
210 if (mpnt->vm_flags & VM_DONTCOPY) {
211 long pages = vma_pages(mpnt);
212 mm->total_vm -= pages;
213 __vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
218 if (mpnt->vm_flags & VM_ACCOUNT) {
219 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
220 if (security_vm_enough_memory(len))
224 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
228 pol = mpol_copy(vma_policy(mpnt));
229 retval = PTR_ERR(pol);
231 goto fail_nomem_policy;
232 vma_set_policy(tmp, pol);
233 tmp->vm_flags &= ~VM_LOCKED;
239 struct inode *inode = file->f_dentry->d_inode;
241 if (tmp->vm_flags & VM_DENYWRITE)
242 atomic_dec(&inode->i_writecount);
244 /* insert tmp into the share list, just after mpnt */
245 spin_lock(&file->f_mapping->i_mmap_lock);
246 tmp->vm_truncate_count = mpnt->vm_truncate_count;
247 flush_dcache_mmap_lock(file->f_mapping);
248 vma_prio_tree_add(tmp, mpnt);
249 flush_dcache_mmap_unlock(file->f_mapping);
250 spin_unlock(&file->f_mapping->i_mmap_lock);
254 * Link in the new vma and copy the page table entries:
255 * link in first so that swapoff can see swap entries.
256 * Note that, exceptionally, here the vma is inserted
257 * without holding mm->mmap_sem.
259 spin_lock(&mm->page_table_lock);
261 pprev = &tmp->vm_next;
263 __vma_link_rb(mm, tmp, rb_link, rb_parent);
264 rb_link = &tmp->vm_rb.rb_right;
265 rb_parent = &tmp->vm_rb;
268 retval = copy_page_range(mm, current->mm, tmp);
269 spin_unlock(&mm->page_table_lock);
271 if (tmp->vm_ops && tmp->vm_ops->open)
272 tmp->vm_ops->open(tmp);
280 flush_tlb_mm(current->mm);
281 up_write(&oldmm->mmap_sem);
284 kmem_cache_free(vm_area_cachep, tmp);
287 vm_unacct_memory(charge);
291 static inline int mm_alloc_pgd(struct mm_struct * mm)
293 mm->pgd = pgd_alloc(mm);
294 if (unlikely(!mm->pgd))
299 static inline void mm_free_pgd(struct mm_struct * mm)
304 #define dup_mmap(mm, oldmm) (0)
305 #define mm_alloc_pgd(mm) (0)
306 #define mm_free_pgd(mm)
307 #endif /* CONFIG_MMU */
309 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
311 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
312 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
314 #include <linux/init_task.h>
316 static struct mm_struct * mm_init(struct mm_struct * mm)
318 atomic_set(&mm->mm_users, 1);
319 atomic_set(&mm->mm_count, 1);
320 init_rwsem(&mm->mmap_sem);
321 INIT_LIST_HEAD(&mm->mmlist);
322 mm->core_waiters = 0;
324 spin_lock_init(&mm->page_table_lock);
325 rwlock_init(&mm->ioctx_list_lock);
326 mm->ioctx_list = NULL;
327 mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
328 mm->free_area_cache = TASK_UNMAPPED_BASE;
329 mm->cached_hole_size = ~0UL;
331 if (likely(!mm_alloc_pgd(mm))) {
340 * Allocate and initialize an mm_struct.
342 struct mm_struct * mm_alloc(void)
344 struct mm_struct * mm;
348 memset(mm, 0, sizeof(*mm));
355 * Called when the last reference to the mm
356 * is dropped: either by a lazy thread or by
357 * mmput. Free the page directory and the mm.
359 void fastcall __mmdrop(struct mm_struct *mm)
361 BUG_ON(mm == &init_mm);
368 * Decrement the use count and release all resources for an mm.
370 void mmput(struct mm_struct *mm)
372 if (atomic_dec_and_test(&mm->mm_users)) {
375 if (!list_empty(&mm->mmlist)) {
376 spin_lock(&mmlist_lock);
377 list_del(&mm->mmlist);
378 spin_unlock(&mmlist_lock);
384 EXPORT_SYMBOL_GPL(mmput);
387 * get_task_mm - acquire a reference to the task's mm
389 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
390 * this kernel workthread has transiently adopted a user mm with use_mm,
391 * to do its AIO) is not set and if so returns a reference to it, after
392 * bumping up the use count. User must release the mm via mmput()
393 * after use. Typically used by /proc and ptrace.
395 struct mm_struct *get_task_mm(struct task_struct *task)
397 struct mm_struct *mm;
402 if (task->flags & PF_BORROWED_MM)
405 atomic_inc(&mm->mm_users);
410 EXPORT_SYMBOL_GPL(get_task_mm);
412 /* Please note the differences between mmput and mm_release.
413 * mmput is called whenever we stop holding onto a mm_struct,
414 * error success whatever.
416 * mm_release is called after a mm_struct has been removed
417 * from the current process.
419 * This difference is important for error handling, when we
420 * only half set up a mm_struct for a new process and need to restore
421 * the old one. Because we mmput the new mm_struct before
422 * restoring the old one. . .
423 * Eric Biederman 10 January 1998
425 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
427 struct completion *vfork_done = tsk->vfork_done;
429 /* Get rid of any cached register state */
430 deactivate_mm(tsk, mm);
432 /* notify parent sleeping on vfork() */
434 tsk->vfork_done = NULL;
435 complete(vfork_done);
437 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
438 u32 __user * tidptr = tsk->clear_child_tid;
439 tsk->clear_child_tid = NULL;
442 * We don't check the error code - if userspace has
443 * not set up a proper pointer then tough luck.
446 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
450 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
452 struct mm_struct * mm, *oldmm;
455 tsk->min_flt = tsk->maj_flt = 0;
456 tsk->nvcsw = tsk->nivcsw = 0;
459 tsk->active_mm = NULL;
462 * Are we cloning a kernel thread?
464 * We need to steal a active VM for that..
470 if (clone_flags & CLONE_VM) {
471 atomic_inc(&oldmm->mm_users);
474 * There are cases where the PTL is held to ensure no
475 * new threads start up in user mode using an mm, which
476 * allows optimizing out ipis; the tlb_gather_mmu code
479 spin_unlock_wait(&oldmm->page_table_lock);
488 /* Copy the current MM stuff.. */
489 memcpy(mm, oldmm, sizeof(*mm));
493 if (init_new_context(tsk,mm))
496 retval = dup_mmap(mm, oldmm);
500 mm->hiwater_rss = get_mm_counter(mm,rss);
501 mm->hiwater_vm = mm->total_vm;
515 * If init_new_context() failed, we cannot use mmput() to free the mm
516 * because it calls destroy_context()
523 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
525 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
526 /* We don't need to lock fs - think why ;-) */
528 atomic_set(&fs->count, 1);
529 rwlock_init(&fs->lock);
530 fs->umask = old->umask;
531 read_lock(&old->lock);
532 fs->rootmnt = mntget(old->rootmnt);
533 fs->root = dget(old->root);
534 fs->pwdmnt = mntget(old->pwdmnt);
535 fs->pwd = dget(old->pwd);
537 fs->altrootmnt = mntget(old->altrootmnt);
538 fs->altroot = dget(old->altroot);
540 fs->altrootmnt = NULL;
543 read_unlock(&old->lock);
548 struct fs_struct *copy_fs_struct(struct fs_struct *old)
550 return __copy_fs_struct(old);
553 EXPORT_SYMBOL_GPL(copy_fs_struct);
555 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
557 if (clone_flags & CLONE_FS) {
558 atomic_inc(¤t->fs->count);
561 tsk->fs = __copy_fs_struct(current->fs);
567 static int count_open_files(struct files_struct *files, int size)
571 /* Find the last open fd */
572 for (i = size/(8*sizeof(long)); i > 0; ) {
573 if (files->open_fds->fds_bits[--i])
576 i = (i+1) * 8 * sizeof(long);
580 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
582 struct files_struct *oldf, *newf;
583 struct file **old_fds, **new_fds;
584 int open_files, size, i, error = 0, expand;
587 * A background process may not have any files ...
589 oldf = current->files;
593 if (clone_flags & CLONE_FILES) {
594 atomic_inc(&oldf->count);
599 * Note: we may be using current for both targets (See exec.c)
600 * This works because we cache current->files (old) as oldf. Don't
605 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
609 atomic_set(&newf->count, 1);
611 spin_lock_init(&newf->file_lock);
613 newf->max_fds = NR_OPEN_DEFAULT;
614 newf->max_fdset = __FD_SETSIZE;
615 newf->close_on_exec = &newf->close_on_exec_init;
616 newf->open_fds = &newf->open_fds_init;
617 newf->fd = &newf->fd_array[0];
619 spin_lock(&oldf->file_lock);
621 open_files = count_open_files(oldf, oldf->max_fdset);
625 * Check whether we need to allocate a larger fd array or fd set.
626 * Note: we're not a clone task, so the open count won't change.
628 if (open_files > newf->max_fdset) {
632 if (open_files > newf->max_fds) {
637 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
639 spin_unlock(&oldf->file_lock);
640 spin_lock(&newf->file_lock);
641 error = expand_files(newf, open_files-1);
642 spin_unlock(&newf->file_lock);
645 spin_lock(&oldf->file_lock);
651 memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);
652 memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);
654 for (i = open_files; i != 0; i--) {
655 struct file *f = *old_fds++;
660 * The fd may be claimed in the fd bitmap but not yet
661 * instantiated in the files array if a sibling thread
662 * is partway through open(). So make sure that this
663 * fd is available to the new process.
665 FD_CLR(open_files - i, newf->open_fds);
669 spin_unlock(&oldf->file_lock);
671 /* compute the remainder to be cleared */
672 size = (newf->max_fds - open_files) * sizeof(struct file *);
674 /* This is long word aligned thus could use a optimized version */
675 memset(new_fds, 0, size);
677 if (newf->max_fdset > open_files) {
678 int left = (newf->max_fdset-open_files)/8;
679 int start = open_files / (8 * sizeof(unsigned long));
681 memset(&newf->open_fds->fds_bits[start], 0, left);
682 memset(&newf->close_on_exec->fds_bits[start], 0, left);
691 free_fdset (newf->close_on_exec, newf->max_fdset);
692 free_fdset (newf->open_fds, newf->max_fdset);
693 free_fd_array(newf->fd, newf->max_fds);
694 kmem_cache_free(files_cachep, newf);
699 * Helper to unshare the files of the current task.
700 * We don't want to expose copy_files internals to
701 * the exec layer of the kernel.
704 int unshare_files(void)
706 struct files_struct *files = current->files;
712 /* This can race but the race causes us to copy when we don't
713 need to and drop the copy */
714 if(atomic_read(&files->count) == 1)
716 atomic_inc(&files->count);
719 rc = copy_files(0, current);
721 current->files = files;
725 EXPORT_SYMBOL(unshare_files);
727 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
729 struct sighand_struct *sig;
731 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
732 atomic_inc(¤t->sighand->count);
735 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
739 spin_lock_init(&sig->siglock);
740 atomic_set(&sig->count, 1);
741 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
745 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
747 struct signal_struct *sig;
750 if (clone_flags & CLONE_THREAD) {
751 atomic_inc(¤t->signal->count);
752 atomic_inc(¤t->signal->live);
755 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
760 ret = copy_thread_group_keys(tsk);
762 kmem_cache_free(signal_cachep, sig);
766 atomic_set(&sig->count, 1);
767 atomic_set(&sig->live, 1);
768 init_waitqueue_head(&sig->wait_chldexit);
770 sig->group_exit_code = 0;
771 sig->group_exit_task = NULL;
772 sig->group_stop_count = 0;
773 sig->curr_target = NULL;
774 init_sigpending(&sig->shared_pending);
775 INIT_LIST_HEAD(&sig->posix_timers);
777 sig->it_real_value = sig->it_real_incr = 0;
778 sig->real_timer.function = it_real_fn;
779 sig->real_timer.data = (unsigned long) tsk;
780 init_timer(&sig->real_timer);
782 sig->it_virt_expires = cputime_zero;
783 sig->it_virt_incr = cputime_zero;
784 sig->it_prof_expires = cputime_zero;
785 sig->it_prof_incr = cputime_zero;
787 sig->tty = current->signal->tty;
788 sig->pgrp = process_group(current);
789 sig->session = current->signal->session;
790 sig->leader = 0; /* session leadership doesn't inherit */
791 sig->tty_old_pgrp = 0;
793 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
794 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
795 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
797 INIT_LIST_HEAD(&sig->cpu_timers[0]);
798 INIT_LIST_HEAD(&sig->cpu_timers[1]);
799 INIT_LIST_HEAD(&sig->cpu_timers[2]);
801 task_lock(current->group_leader);
802 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
803 task_unlock(current->group_leader);
805 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
807 * New sole thread in the process gets an expiry time
808 * of the whole CPU time limit.
810 tsk->it_prof_expires =
811 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
817 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
819 unsigned long new_flags = p->flags;
821 new_flags &= ~PF_SUPERPRIV;
822 new_flags |= PF_FORKNOEXEC;
823 if (!(clone_flags & CLONE_PTRACE))
825 p->flags = new_flags;
828 asmlinkage long sys_set_tid_address(int __user *tidptr)
830 current->clear_child_tid = tidptr;
836 * This creates a new process as a copy of the old one,
837 * but does not actually start it yet.
839 * It copies the registers, and all the appropriate
840 * parts of the process environment (as per the clone
841 * flags). The actual kick-off is left to the caller.
843 static task_t *copy_process(unsigned long clone_flags,
844 unsigned long stack_start,
845 struct pt_regs *regs,
846 unsigned long stack_size,
847 int __user *parent_tidptr,
848 int __user *child_tidptr,
852 struct task_struct *p = NULL;
854 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
855 return ERR_PTR(-EINVAL);
858 * Thread groups must share signals as well, and detached threads
859 * can only be started up within the thread group.
861 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
862 return ERR_PTR(-EINVAL);
865 * Shared signal handlers imply shared VM. By way of the above,
866 * thread groups also imply shared VM. Blocking this case allows
867 * for various simplifications in other code.
869 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
870 return ERR_PTR(-EINVAL);
872 retval = security_task_create(clone_flags);
877 p = dup_task_struct(current);
882 if (atomic_read(&p->user->processes) >=
883 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
884 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
885 p->user != &root_user)
889 atomic_inc(&p->user->__count);
890 atomic_inc(&p->user->processes);
891 get_group_info(p->group_info);
894 * If multiple threads are within copy_process(), then this check
895 * triggers too late. This doesn't hurt, the check is only there
896 * to stop root fork bombs.
898 if (nr_threads >= max_threads)
899 goto bad_fork_cleanup_count;
901 if (!try_module_get(p->thread_info->exec_domain->module))
902 goto bad_fork_cleanup_count;
904 if (p->binfmt && !try_module_get(p->binfmt->module))
905 goto bad_fork_cleanup_put_domain;
908 copy_flags(clone_flags, p);
911 if (clone_flags & CLONE_PARENT_SETTID)
912 if (put_user(p->pid, parent_tidptr))
913 goto bad_fork_cleanup;
915 p->proc_dentry = NULL;
917 INIT_LIST_HEAD(&p->children);
918 INIT_LIST_HEAD(&p->sibling);
919 p->vfork_done = NULL;
920 spin_lock_init(&p->alloc_lock);
921 spin_lock_init(&p->proc_lock);
923 clear_tsk_thread_flag(p, TIF_SIGPENDING);
924 init_sigpending(&p->pending);
926 p->utime = cputime_zero;
927 p->stime = cputime_zero;
929 p->rchar = 0; /* I/O counter: bytes read */
930 p->wchar = 0; /* I/O counter: bytes written */
931 p->syscr = 0; /* I/O counter: read syscalls */
932 p->syscw = 0; /* I/O counter: write syscalls */
933 acct_clear_integrals(p);
935 p->it_virt_expires = cputime_zero;
936 p->it_prof_expires = cputime_zero;
937 p->it_sched_expires = 0;
938 INIT_LIST_HEAD(&p->cpu_timers[0]);
939 INIT_LIST_HEAD(&p->cpu_timers[1]);
940 INIT_LIST_HEAD(&p->cpu_timers[2]);
942 p->lock_depth = -1; /* -1 = no lock */
943 do_posix_clock_monotonic_gettime(&p->start_time);
945 p->io_context = NULL;
947 p->audit_context = NULL;
949 p->mempolicy = mpol_copy(p->mempolicy);
950 if (IS_ERR(p->mempolicy)) {
951 retval = PTR_ERR(p->mempolicy);
953 goto bad_fork_cleanup;
958 if (clone_flags & CLONE_THREAD)
959 p->tgid = current->tgid;
961 if ((retval = security_task_alloc(p)))
962 goto bad_fork_cleanup_policy;
963 if ((retval = audit_alloc(p)))
964 goto bad_fork_cleanup_security;
965 /* copy all the process information */
966 if ((retval = copy_semundo(clone_flags, p)))
967 goto bad_fork_cleanup_audit;
968 if ((retval = copy_files(clone_flags, p)))
969 goto bad_fork_cleanup_semundo;
970 if ((retval = copy_fs(clone_flags, p)))
971 goto bad_fork_cleanup_files;
972 if ((retval = copy_sighand(clone_flags, p)))
973 goto bad_fork_cleanup_fs;
974 if ((retval = copy_signal(clone_flags, p)))
975 goto bad_fork_cleanup_sighand;
976 if ((retval = copy_mm(clone_flags, p)))
977 goto bad_fork_cleanup_signal;
978 if ((retval = copy_keys(clone_flags, p)))
979 goto bad_fork_cleanup_mm;
980 if ((retval = copy_namespace(clone_flags, p)))
981 goto bad_fork_cleanup_keys;
982 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
984 goto bad_fork_cleanup_namespace;
986 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
988 * Clear TID on mm_release()?
990 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
993 * Syscall tracing should be turned off in the child regardless
996 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
997 #ifdef TIF_SYSCALL_EMU
998 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1001 /* Our parent execution domain becomes current domain
1002 These must match for thread signalling to apply */
1004 p->parent_exec_id = p->self_exec_id;
1006 /* ok, now we should be set up.. */
1007 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1008 p->pdeath_signal = 0;
1012 * Ok, make it visible to the rest of the system.
1013 * We dont wake it up yet.
1015 p->group_leader = p;
1016 INIT_LIST_HEAD(&p->ptrace_children);
1017 INIT_LIST_HEAD(&p->ptrace_list);
1019 /* Perform scheduler related setup. Assign this task to a CPU. */
1020 sched_fork(p, clone_flags);
1022 /* Need tasklist lock for parent etc handling! */
1023 write_lock_irq(&tasklist_lock);
1026 * The task hasn't been attached yet, so its cpus_allowed mask will
1027 * not be changed, nor will its assigned CPU.
1029 * The cpus_allowed mask of the parent may have changed after it was
1030 * copied first time - so re-copy it here, then check the child's CPU
1031 * to ensure it is on a valid CPU (and if not, just force it back to
1032 * parent's CPU). This avoids alot of nasty races.
1034 p->cpus_allowed = current->cpus_allowed;
1035 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed)))
1036 set_task_cpu(p, smp_processor_id());
1039 * Check for pending SIGKILL! The new thread should not be allowed
1040 * to slip out of an OOM kill. (or normal SIGKILL.)
1042 if (sigismember(¤t->pending.signal, SIGKILL)) {
1043 write_unlock_irq(&tasklist_lock);
1045 goto bad_fork_cleanup_namespace;
1048 /* CLONE_PARENT re-uses the old parent */
1049 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1050 p->real_parent = current->real_parent;
1052 p->real_parent = current;
1053 p->parent = p->real_parent;
1055 if (clone_flags & CLONE_THREAD) {
1056 spin_lock(¤t->sighand->siglock);
1058 * Important: if an exit-all has been started then
1059 * do not create this new thread - the whole thread
1060 * group is supposed to exit anyway.
1062 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1063 spin_unlock(¤t->sighand->siglock);
1064 write_unlock_irq(&tasklist_lock);
1066 goto bad_fork_cleanup_namespace;
1068 p->group_leader = current->group_leader;
1070 if (current->signal->group_stop_count > 0) {
1072 * There is an all-stop in progress for the group.
1073 * We ourselves will stop as soon as we check signals.
1074 * Make the new thread part of that group stop too.
1076 current->signal->group_stop_count++;
1077 set_tsk_thread_flag(p, TIF_SIGPENDING);
1080 if (!cputime_eq(current->signal->it_virt_expires,
1082 !cputime_eq(current->signal->it_prof_expires,
1084 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1085 !list_empty(¤t->signal->cpu_timers[0]) ||
1086 !list_empty(¤t->signal->cpu_timers[1]) ||
1087 !list_empty(¤t->signal->cpu_timers[2])) {
1089 * Have child wake up on its first tick to check
1090 * for process CPU timers.
1092 p->it_prof_expires = jiffies_to_cputime(1);
1095 spin_unlock(¤t->sighand->siglock);
1101 p->ioprio = current->ioprio;
1104 if (unlikely(p->ptrace & PT_PTRACED))
1105 __ptrace_link(p, current->parent);
1109 attach_pid(p, PIDTYPE_PID, p->pid);
1110 attach_pid(p, PIDTYPE_TGID, p->tgid);
1111 if (thread_group_leader(p)) {
1112 attach_pid(p, PIDTYPE_PGID, process_group(p));
1113 attach_pid(p, PIDTYPE_SID, p->signal->session);
1115 __get_cpu_var(process_counts)++;
1120 write_unlock_irq(&tasklist_lock);
1125 return ERR_PTR(retval);
1128 bad_fork_cleanup_namespace:
1130 bad_fork_cleanup_keys:
1132 bad_fork_cleanup_mm:
1135 bad_fork_cleanup_signal:
1137 bad_fork_cleanup_sighand:
1139 bad_fork_cleanup_fs:
1140 exit_fs(p); /* blocking */
1141 bad_fork_cleanup_files:
1142 exit_files(p); /* blocking */
1143 bad_fork_cleanup_semundo:
1145 bad_fork_cleanup_audit:
1147 bad_fork_cleanup_security:
1148 security_task_free(p);
1149 bad_fork_cleanup_policy:
1151 mpol_free(p->mempolicy);
1155 module_put(p->binfmt->module);
1156 bad_fork_cleanup_put_domain:
1157 module_put(p->thread_info->exec_domain->module);
1158 bad_fork_cleanup_count:
1159 put_group_info(p->group_info);
1160 atomic_dec(&p->user->processes);
1167 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1169 memset(regs, 0, sizeof(struct pt_regs));
1173 task_t * __devinit fork_idle(int cpu)
1176 struct pt_regs regs;
1178 task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, NULL, 0);
1180 return ERR_PTR(-ENOMEM);
1181 init_idle(task, cpu);
1182 unhash_process(task);
1186 static inline int fork_traceflag (unsigned clone_flags)
1188 if (clone_flags & CLONE_UNTRACED)
1190 else if (clone_flags & CLONE_VFORK) {
1191 if (current->ptrace & PT_TRACE_VFORK)
1192 return PTRACE_EVENT_VFORK;
1193 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1194 if (current->ptrace & PT_TRACE_CLONE)
1195 return PTRACE_EVENT_CLONE;
1196 } else if (current->ptrace & PT_TRACE_FORK)
1197 return PTRACE_EVENT_FORK;
1203 * Ok, this is the main fork-routine.
1205 * It copies the process, and if successful kick-starts
1206 * it and waits for it to finish using the VM if required.
1208 long do_fork(unsigned long clone_flags,
1209 unsigned long stack_start,
1210 struct pt_regs *regs,
1211 unsigned long stack_size,
1212 int __user *parent_tidptr,
1213 int __user *child_tidptr)
1215 struct task_struct *p;
1217 long pid = alloc_pidmap();
1221 if (unlikely(current->ptrace)) {
1222 trace = fork_traceflag (clone_flags);
1224 clone_flags |= CLONE_PTRACE;
1227 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1229 * Do this prior waking up the new thread - the thread pointer
1230 * might get invalid after that point, if the thread exits quickly.
1233 struct completion vfork;
1235 if (clone_flags & CLONE_VFORK) {
1236 p->vfork_done = &vfork;
1237 init_completion(&vfork);
1240 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1242 * We'll start up with an immediate SIGSTOP.
1244 sigaddset(&p->pending.signal, SIGSTOP);
1245 set_tsk_thread_flag(p, TIF_SIGPENDING);
1248 if (!(clone_flags & CLONE_STOPPED))
1249 wake_up_new_task(p, clone_flags);
1251 p->state = TASK_STOPPED;
1253 if (unlikely (trace)) {
1254 current->ptrace_message = pid;
1255 ptrace_notify ((trace << 8) | SIGTRAP);
1258 if (clone_flags & CLONE_VFORK) {
1259 wait_for_completion(&vfork);
1260 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1261 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1270 void __init proc_caches_init(void)
1272 sighand_cachep = kmem_cache_create("sighand_cache",
1273 sizeof(struct sighand_struct), 0,
1274 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1275 signal_cachep = kmem_cache_create("signal_cache",
1276 sizeof(struct signal_struct), 0,
1277 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1278 files_cachep = kmem_cache_create("files_cache",
1279 sizeof(struct files_struct), 0,
1280 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1281 fs_cachep = kmem_cache_create("fs_cache",
1282 sizeof(struct fs_struct), 0,
1283 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1284 vm_area_cachep = kmem_cache_create("vm_area_struct",
1285 sizeof(struct vm_area_struct), 0,
1286 SLAB_PANIC, NULL, NULL);
1287 mm_cachep = kmem_cache_create("mm_struct",
1288 sizeof(struct mm_struct), 0,
1289 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);