2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de>
7 * Created by David Woodhouse <dwmw2@infradead.org>
8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
10 * For licensing information, see the file 'LICENCE' in this directory.
12 * $Id: wbuf.c,v 1.100 2005/09/30 13:59:13 dedekind Exp $
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/crc32.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/jiffies.h>
25 /* For testing write failures */
30 static unsigned char *brokenbuf;
33 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
34 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
36 /* max. erase failures before we mark a block bad */
37 #define MAX_ERASE_FAILURES 2
39 struct jffs2_inodirty {
41 struct jffs2_inodirty *next;
44 static struct jffs2_inodirty inodirty_nomem;
46 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
48 struct jffs2_inodirty *this = c->wbuf_inodes;
50 /* If a malloc failed, consider _everything_ dirty */
51 if (this == &inodirty_nomem)
54 /* If ino == 0, _any_ non-GC writes mean 'yes' */
58 /* Look to see if the inode in question is pending in the wbuf */
67 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
69 struct jffs2_inodirty *this;
71 this = c->wbuf_inodes;
73 if (this != &inodirty_nomem) {
75 struct jffs2_inodirty *next = this->next;
80 c->wbuf_inodes = NULL;
83 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
85 struct jffs2_inodirty *new;
87 /* Mark the superblock dirty so that kupdated will flush... */
88 jffs2_erase_pending_trigger(c);
90 if (jffs2_wbuf_pending_for_ino(c, ino))
93 new = kmalloc(sizeof(*new), GFP_KERNEL);
95 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
96 jffs2_clear_wbuf_ino_list(c);
97 c->wbuf_inodes = &inodirty_nomem;
101 new->next = c->wbuf_inodes;
102 c->wbuf_inodes = new;
106 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
108 struct list_head *this, *next;
111 if (list_empty(&c->erasable_pending_wbuf_list))
114 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
115 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
117 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
119 if ((jiffies + (n++)) & 127) {
120 /* Most of the time, we just erase it immediately. Otherwise we
121 spend ages scanning it on mount, etc. */
122 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
123 list_add_tail(&jeb->list, &c->erase_pending_list);
124 c->nr_erasing_blocks++;
125 jffs2_erase_pending_trigger(c);
127 /* Sometimes, however, we leave it elsewhere so it doesn't get
128 immediately reused, and we spread the load a bit. */
129 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
130 list_add_tail(&jeb->list, &c->erasable_list);
135 #define REFILE_NOTEMPTY 0
136 #define REFILE_ANYWAY 1
138 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
140 D1(printk("About to refile bad block at %08x\n", jeb->offset));
142 /* File the existing block on the bad_used_list.... */
143 if (c->nextblock == jeb)
145 else /* Not sure this should ever happen... need more coffee */
146 list_del(&jeb->list);
147 if (jeb->first_node) {
148 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
149 list_add(&jeb->list, &c->bad_used_list);
151 BUG_ON(allow_empty == REFILE_NOTEMPTY);
152 /* It has to have had some nodes or we couldn't be here */
153 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
154 list_add(&jeb->list, &c->erase_pending_list);
155 c->nr_erasing_blocks++;
156 jffs2_erase_pending_trigger(c);
159 if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
160 uint32_t oldfree = jeb->free_size;
162 jffs2_link_node_ref(c, jeb,
163 (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
165 /* convert to wasted */
166 c->wasted_size += oldfree;
167 jeb->wasted_size += oldfree;
168 c->dirty_size -= oldfree;
169 jeb->dirty_size -= oldfree;
172 jffs2_dbg_dump_block_lists_nolock(c);
173 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
174 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
177 static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
178 struct jffs2_inode_info *f,
179 struct jffs2_raw_node_ref *raw,
180 union jffs2_node_union *node)
182 struct jffs2_node_frag *frag;
183 struct jffs2_full_dirent *fd;
185 dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
186 node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
188 BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
189 je16_to_cpu(node->u.magic) != 0);
191 switch (je16_to_cpu(node->u.nodetype)) {
192 case JFFS2_NODETYPE_INODE:
193 if (f->metadata && f->metadata->raw == raw) {
194 dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
195 return &f->metadata->raw;
197 frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
199 /* Find a frag which refers to the full_dnode we want to modify */
200 while (!frag->node || frag->node->raw != raw) {
201 frag = frag_next(frag);
204 dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
205 return &frag->node->raw;
207 case JFFS2_NODETYPE_DIRENT:
208 for (fd = f->dents; fd; fd = fd->next) {
209 if (fd->raw == raw) {
210 dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
217 dbg_noderef("Don't care about replacing raw for nodetype %x\n",
218 je16_to_cpu(node->u.nodetype));
224 /* Recover from failure to write wbuf. Recover the nodes up to the
225 * wbuf, not the one which we were starting to try to write. */
227 static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
229 struct jffs2_eraseblock *jeb, *new_jeb;
230 struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
235 uint32_t start, end, ofs, len;
237 jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
239 spin_lock(&c->erase_completion_lock);
240 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
241 spin_unlock(&c->erase_completion_lock);
243 BUG_ON(!ref_obsolete(jeb->last_node));
245 /* Find the first node to be recovered, by skipping over every
246 node which ends before the wbuf starts, or which is obsolete. */
247 for (next = raw = jeb->first_node; next; raw = next) {
248 next = ref_next(raw);
250 if (ref_obsolete(raw) ||
251 (next && ref_offset(next) <= c->wbuf_ofs)) {
252 dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
253 ref_offset(raw), ref_flags(raw),
254 (ref_offset(raw) + ref_totlen(c, jeb, raw)),
258 dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
259 ref_offset(raw), ref_flags(raw),
260 (ref_offset(raw) + ref_totlen(c, jeb, raw)));
267 /* All nodes were obsolete. Nothing to recover. */
268 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
273 start = ref_offset(first_raw);
274 end = ref_offset(jeb->last_node);
277 /* Count the number of refs which need to be copied */
278 while ((raw = ref_next(raw)) != jeb->last_node)
281 dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
282 start, end, end - start, nr_refile);
285 if (start < c->wbuf_ofs) {
286 /* First affected node was already partially written.
287 * Attempt to reread the old data into our buffer. */
289 buf = kmalloc(end - start, GFP_KERNEL);
291 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
297 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
299 /* ECC recovered ? */
300 if ((ret == -EUCLEAN || ret == -EBADMSG) &&
301 (retlen == c->wbuf_ofs - start))
304 if (ret || retlen != c->wbuf_ofs - start) {
305 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
310 first_raw = ref_next(first_raw);
312 while (first_raw && ref_obsolete(first_raw)) {
313 first_raw = ref_next(first_raw);
317 /* If this was the only node to be recovered, give up */
323 /* It wasn't. Go on and try to recover nodes complete in the wbuf */
324 start = ref_offset(first_raw);
325 dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
326 start, end, end - start, nr_refile);
329 /* Read succeeded. Copy the remaining data from the wbuf */
330 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
333 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
334 Either 'buf' contains the data, or we find it in the wbuf */
336 /* ... and get an allocation of space from a shiny new block instead */
337 ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
339 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
344 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
346 printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
353 if (end-start >= c->wbuf_pagesize) {
354 /* Need to do another write immediately, but it's possible
355 that this is just because the wbuf itself is completely
356 full, and there's nothing earlier read back from the
357 flash. Hence 'buf' isn't necessarily what we're writing
359 unsigned char *rewrite_buf = buf?:c->wbuf;
360 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
362 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
367 if (breakme++ == 20) {
368 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
370 c->mtd->write(c->mtd, ofs, towrite, &retlen,
375 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen,
378 if (ret || retlen != towrite) {
379 /* Argh. We tried. Really we did. */
380 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
384 jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
388 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
390 c->wbuf_len = (end - start) - towrite;
391 c->wbuf_ofs = ofs + towrite;
392 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
393 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */
395 /* OK, now we're left with the dregs in whichever buffer we're using */
397 memcpy(c->wbuf, buf, end-start);
399 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
402 c->wbuf_len = end - start;
405 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
406 new_jeb = &c->blocks[ofs / c->sector_size];
408 spin_lock(&c->erase_completion_lock);
409 for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
410 uint32_t rawlen = ref_totlen(c, jeb, raw);
411 struct jffs2_inode_cache *ic;
412 struct jffs2_raw_node_ref *new_ref;
413 struct jffs2_raw_node_ref **adjust_ref = NULL;
414 struct jffs2_inode_info *f = NULL;
416 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
417 rawlen, ref_offset(raw), ref_flags(raw), ofs));
419 ic = jffs2_raw_ref_to_ic(raw);
421 /* Ick. This XATTR mess should be fixed shortly... */
422 if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
423 struct jffs2_xattr_datum *xd = (void *)ic;
424 BUG_ON(xd->node != raw);
425 adjust_ref = &xd->node;
426 raw->next_in_ino = NULL;
428 } else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
429 struct jffs2_xattr_datum *xr = (void *)ic;
430 BUG_ON(xr->node != raw);
431 adjust_ref = &xr->node;
432 raw->next_in_ino = NULL;
434 } else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
435 struct jffs2_raw_node_ref **p = &ic->nodes;
437 /* Remove the old node from the per-inode list */
438 while (*p && *p != (void *)ic) {
440 (*p) = (raw->next_in_ino);
441 raw->next_in_ino = NULL;
444 p = &((*p)->next_in_ino);
447 if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
448 /* If it's an in-core inode, then we have to adjust any
449 full_dirent or full_dnode structure to point to the
450 new version instead of the old */
451 f = jffs2_gc_fetch_inode(c, ic->ino, ic->nlink);
453 /* Should never happen; it _must_ be present */
454 JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
455 ic->ino, PTR_ERR(f));
458 /* We don't lock f->sem. There's a number of ways we could
459 end up in here with it already being locked, and nobody's
460 going to modify it on us anyway because we hold the
461 alloc_sem. We're only changing one ->raw pointer too,
462 which we can get away with without upsetting readers. */
463 adjust_ref = jffs2_incore_replace_raw(c, f, raw,
464 (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
465 } else if (unlikely(ic->state != INO_STATE_PRESENT &&
466 ic->state != INO_STATE_CHECKEDABSENT &&
467 ic->state != INO_STATE_GC)) {
468 JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
473 new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
476 BUG_ON(*adjust_ref != raw);
477 *adjust_ref = new_ref;
480 jffs2_gc_release_inode(c, f);
482 if (!ref_obsolete(raw)) {
483 jeb->dirty_size += rawlen;
484 jeb->used_size -= rawlen;
485 c->dirty_size += rawlen;
486 c->used_size -= rawlen;
487 raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
488 BUG_ON(raw->next_in_ino);
495 /* Fix up the original jeb now it's on the bad_list */
496 if (first_raw == jeb->first_node) {
497 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
498 list_del(&jeb->list);
499 list_add(&jeb->list, &c->erase_pending_list);
500 c->nr_erasing_blocks++;
501 jffs2_erase_pending_trigger(c);
504 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
505 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
507 jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
508 jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
510 spin_unlock(&c->erase_completion_lock);
512 D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len));
516 /* Meaning of pad argument:
517 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
518 1: Pad, do not adjust nextblock free_size
519 2: Pad, adjust nextblock free_size
522 #define PAD_NOACCOUNT 1
523 #define PAD_ACCOUNTING 2
525 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
527 struct jffs2_eraseblock *wbuf_jeb;
531 /* Nothing to do if not write-buffering the flash. In particular, we shouldn't
532 del_timer() the timer we never initialised. */
533 if (!jffs2_is_writebuffered(c))
536 if (!down_trylock(&c->alloc_sem)) {
538 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
542 if (!c->wbuf_len) /* already checked c->wbuf above */
545 wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
546 if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
549 /* claim remaining space on the page
550 this happens, if we have a change to a new block,
551 or if fsync forces us to flush the writebuffer.
552 if we have a switch to next page, we will not have
553 enough remaining space for this.
556 c->wbuf_len = PAD(c->wbuf_len);
558 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR
559 with 8 byte page size */
560 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
562 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
563 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
564 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
565 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
566 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
567 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
570 /* else jffs2_flash_writev has actually filled in the rest of the
571 buffer for us, and will deal with the node refs etc. later. */
575 if (breakme++ == 20) {
576 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
578 c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
584 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
586 if (ret || retlen != c->wbuf_pagesize) {
588 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
590 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
591 retlen, c->wbuf_pagesize);
595 jffs2_wbuf_recover(c);
600 /* Adjust free size of the block if we padded. */
602 uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
604 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
605 (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset));
607 /* wbuf_pagesize - wbuf_len is the amount of space that's to be
608 padded. If there is less free space in the block than that,
609 something screwed up */
610 if (wbuf_jeb->free_size < waste) {
611 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
612 c->wbuf_ofs, c->wbuf_len, waste);
613 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
614 wbuf_jeb->offset, wbuf_jeb->free_size);
618 spin_lock(&c->erase_completion_lock);
620 jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
621 /* FIXME: that made it count as dirty. Convert to wasted */
622 wbuf_jeb->dirty_size -= waste;
623 c->dirty_size -= waste;
624 wbuf_jeb->wasted_size += waste;
625 c->wasted_size += waste;
627 spin_lock(&c->erase_completion_lock);
629 /* Stick any now-obsoleted blocks on the erase_pending_list */
630 jffs2_refile_wbuf_blocks(c);
631 jffs2_clear_wbuf_ino_list(c);
632 spin_unlock(&c->erase_completion_lock);
634 memset(c->wbuf,0xff,c->wbuf_pagesize);
635 /* adjust write buffer offset, else we get a non contiguous write bug */
636 c->wbuf_ofs += c->wbuf_pagesize;
641 /* Trigger garbage collection to flush the write-buffer.
642 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
643 outstanding. If ino arg non-zero, do it only if a write for the
644 given inode is outstanding. */
645 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
647 uint32_t old_wbuf_ofs;
648 uint32_t old_wbuf_len;
651 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
657 if (!jffs2_wbuf_pending_for_ino(c, ino)) {
658 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
663 old_wbuf_ofs = c->wbuf_ofs;
664 old_wbuf_len = c->wbuf_len;
666 if (c->unchecked_size) {
667 /* GC won't make any progress for a while */
668 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
669 down_write(&c->wbuf_sem);
670 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
671 /* retry flushing wbuf in case jffs2_wbuf_recover
672 left some data in the wbuf */
674 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
675 up_write(&c->wbuf_sem);
676 } else while (old_wbuf_len &&
677 old_wbuf_ofs == c->wbuf_ofs) {
681 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
683 ret = jffs2_garbage_collect_pass(c);
685 /* GC failed. Flush it with padding instead */
687 down_write(&c->wbuf_sem);
688 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
689 /* retry flushing wbuf in case jffs2_wbuf_recover
690 left some data in the wbuf */
692 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
693 up_write(&c->wbuf_sem);
699 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
705 /* Pad write-buffer to end and write it, wasting space. */
706 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
713 down_write(&c->wbuf_sem);
714 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
715 /* retry - maybe wbuf recover left some data in wbuf. */
717 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
718 up_write(&c->wbuf_sem);
723 static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
726 if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
729 if (len > (c->wbuf_pagesize - c->wbuf_len))
730 len = c->wbuf_pagesize - c->wbuf_len;
731 memcpy(c->wbuf + c->wbuf_len, buf, len);
732 c->wbuf_len += (uint32_t) len;
736 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
737 unsigned long count, loff_t to, size_t *retlen,
740 struct jffs2_eraseblock *jeb;
741 size_t wbuf_retlen, donelen = 0;
742 uint32_t outvec_to = to;
745 /* If not writebuffered flash, don't bother */
746 if (!jffs2_is_writebuffered(c))
747 return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
749 down_write(&c->wbuf_sem);
751 /* If wbuf_ofs is not initialized, set it to target address */
752 if (c->wbuf_ofs == 0xFFFFFFFF) {
753 c->wbuf_ofs = PAGE_DIV(to);
754 c->wbuf_len = PAGE_MOD(to);
755 memset(c->wbuf,0xff,c->wbuf_pagesize);
759 * Sanity checks on target address. It's permitted to write
760 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
761 * write at the beginning of a new erase block. Anything else,
762 * and you die. New block starts at xxx000c (0-b = block
765 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
766 /* It's a write to a new block */
768 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx "
769 "causes flush of wbuf at 0x%08x\n",
770 (unsigned long)to, c->wbuf_ofs));
771 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
775 /* set pointer to new block */
776 c->wbuf_ofs = PAGE_DIV(to);
777 c->wbuf_len = PAGE_MOD(to);
780 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
781 /* We're not writing immediately after the writebuffer. Bad. */
782 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write "
783 "to %08lx\n", (unsigned long)to);
785 printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
786 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
790 /* adjust alignment offset */
791 if (c->wbuf_len != PAGE_MOD(to)) {
792 c->wbuf_len = PAGE_MOD(to);
793 /* take care of alignment to next page */
795 c->wbuf_len = c->wbuf_pagesize;
796 ret = __jffs2_flush_wbuf(c, NOPAD);
802 for (invec = 0; invec < count; invec++) {
803 int vlen = invecs[invec].iov_len;
804 uint8_t *v = invecs[invec].iov_base;
806 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
808 if (c->wbuf_len == c->wbuf_pagesize) {
809 ret = __jffs2_flush_wbuf(c, NOPAD);
814 outvec_to += wbuf_retlen;
815 donelen += wbuf_retlen;
818 if (vlen >= c->wbuf_pagesize) {
819 ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen),
821 if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
825 outvec_to += wbuf_retlen;
826 c->wbuf_ofs = outvec_to;
827 donelen += wbuf_retlen;
831 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
832 if (c->wbuf_len == c->wbuf_pagesize) {
833 ret = __jffs2_flush_wbuf(c, NOPAD);
838 outvec_to += wbuf_retlen;
839 donelen += wbuf_retlen;
843 * If there's a remainder in the wbuf and it's a non-GC write,
844 * remember that the wbuf affects this ino
848 if (jffs2_sum_active()) {
849 int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
854 if (c->wbuf_len && ino)
855 jffs2_wbuf_dirties_inode(c, ino);
858 up_write(&c->wbuf_sem);
863 * At this point we have no problem, c->wbuf is empty. However
864 * refile nextblock to avoid writing again to same address.
867 spin_lock(&c->erase_completion_lock);
869 jeb = &c->blocks[outvec_to / c->sector_size];
870 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
872 spin_unlock(&c->erase_completion_lock);
876 up_write(&c->wbuf_sem);
881 * This is the entry for flash write.
882 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
884 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
885 size_t *retlen, const u_char *buf)
889 if (!jffs2_is_writebuffered(c))
890 return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
892 vecs[0].iov_base = (unsigned char *) buf;
893 vecs[0].iov_len = len;
894 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
898 Handle readback from writebuffer and ECC failure return
900 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
902 loff_t orbf = 0, owbf = 0, lwbf = 0;
905 if (!jffs2_is_writebuffered(c))
906 return c->mtd->read(c->mtd, ofs, len, retlen, buf);
909 down_read(&c->wbuf_sem);
910 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
912 if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
914 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)"
915 " returned ECC error\n", len, ofs);
917 * We have the raw data without ECC correction in the buffer,
918 * maybe we are lucky and all data or parts are correct. We
919 * check the node. If data are corrupted node check will sort
920 * it out. We keep this block, it will fail on write or erase
921 * and the we mark it bad. Or should we do that now? But we
922 * should give him a chance. Maybe we had a system crash or
923 * power loss before the ecc write or a erase was completed.
924 * So we return success. :)
929 /* if no writebuffer available or write buffer empty, return */
930 if (!c->wbuf_pagesize || !c->wbuf_len)
933 /* if we read in a different block, return */
934 if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
937 if (ofs >= c->wbuf_ofs) {
938 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */
939 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */
941 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */
945 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */
946 if (orbf > len) /* is write beyond write buffer ? */
948 lwbf = len - orbf; /* number of bytes to copy */
949 if (lwbf > c->wbuf_len)
953 memcpy(buf+orbf,c->wbuf+owbf,lwbf);
956 up_read(&c->wbuf_sem);
960 #define NR_OOB_SCAN_PAGES 4
963 * Check, if the out of band area is empty
965 int jffs2_check_oob_empty(struct jffs2_sb_info *c,
966 struct jffs2_eraseblock *jeb, int mode)
969 int oobsize = c->mtd->oobsize;
970 struct mtd_oob_ops ops;
972 ops.len = NR_OOB_SCAN_PAGES * oobsize;
973 ops.ooblen = oobsize;
974 ops.oobbuf = c->oobbuf;
977 ops.mode = MTD_OOB_PLACE;
979 ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
981 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB "
982 "failed %d for block at %08x\n", ret, jeb->offset));
986 if (ops.retlen < ops.len) {
987 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB "
988 "returned short read (%zd bytes not %d) for block "
989 "at %08x\n", ops.retlen, ops.len, jeb->offset));
993 /* Special check for first page */
994 for(i = 0; i < oobsize ; i++) {
995 /* Yeah, we know about the cleanmarker. */
996 if (mode && i >= c->fsdata_pos &&
997 i < c->fsdata_pos + c->fsdata_len)
1000 if (ops.oobbuf[i] != 0xFF) {
1001 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for "
1002 "%08x\n", ops.oobbuf[i], i, jeb->offset));
1007 /* we know, we are aligned :) */
1008 for (page = oobsize; page < ops.len; page += sizeof(long)) {
1009 long dat = *(long *)(&ops.oobbuf[page]);
1017 * Scan for a valid cleanmarker and for bad blocks
1019 int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c,
1020 struct jffs2_eraseblock *jeb)
1022 struct jffs2_unknown_node n;
1023 struct mtd_oob_ops ops;
1024 int oobsize = c->mtd->oobsize;
1025 unsigned char *p,*b;
1027 size_t offset = jeb->offset;
1029 /* Check first if the block is bad. */
1030 if (c->mtd->block_isbad(c->mtd, offset)) {
1031 D1 (printk(KERN_WARNING "jffs2_check_nand_cleanmarker()"
1032 ": Bad block at %08x\n", jeb->offset));
1037 ops.ooblen = oobsize;
1038 ops.oobbuf = c->oobbuf;
1041 ops.mode = MTD_OOB_PLACE;
1043 ret = c->mtd->read_oob(c->mtd, offset, &ops);
1045 D1 (printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): "
1046 "Read OOB failed %d for block at %08x\n",
1051 if (ops.retlen < ops.len) {
1052 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): "
1053 "Read OOB return short read (%zd bytes not %d) "
1054 "for block at %08x\n", ops.retlen, ops.len,
1059 n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
1060 n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
1061 n.totlen = cpu_to_je32 (8);
1062 p = (unsigned char *) &n;
1063 b = c->oobbuf + c->fsdata_pos;
1065 for (i = c->fsdata_len; i; i--) {
1071 printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): "
1072 "Cleanmarker node not detected in block at %08x\n",
1074 printk(KERN_WARNING "OOB at %08zx was ", offset);
1075 for (i=0; i < oobsize; i++)
1076 printk("%02x ", c->oobbuf[i]);
1082 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
1083 struct jffs2_eraseblock *jeb)
1085 struct jffs2_unknown_node n;
1087 struct mtd_oob_ops ops;
1089 n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1090 n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
1091 n.totlen = cpu_to_je32(8);
1093 ops.len = c->fsdata_len;
1094 ops.ooblen = c->fsdata_len;;
1095 ops.oobbuf = (uint8_t *)&n;
1096 ops.ooboffs = c->fsdata_pos;
1098 ops.mode = MTD_OOB_PLACE;
1100 ret = c->mtd->write_oob(c->mtd, jeb->offset, &ops);
1103 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): "
1104 "Write failed for block at %08x: error %d\n",
1108 if (ops.retlen != ops.len) {
1109 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): "
1110 "Short write for block at %08x: %zd not %d\n",
1111 jeb->offset, ops.retlen, ops.len));
1118 * On NAND we try to mark this block bad. If the block was erased more
1119 * than MAX_ERASE_FAILURES we mark it finaly bad.
1120 * Don't care about failures. This block remains on the erase-pending
1121 * or badblock list as long as nobody manipulates the flash with
1122 * a bootloader or something like that.
1125 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1129 /* if the count is < max, we try to write the counter to the 2nd page oob area */
1130 if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1133 if (!c->mtd->block_markbad)
1134 return 1; // What else can we do?
1136 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset));
1137 ret = c->mtd->block_markbad(c->mtd, bad_offset);
1140 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1146 static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c)
1148 struct nand_ecclayout *oinfo = c->mtd->ecclayout;
1150 /* Do this only, if we have an oob buffer */
1151 if (!c->mtd->oobsize)
1154 /* Cleanmarker is out-of-band, so inline size zero */
1155 c->cleanmarker_size = 0;
1157 /* Should we use autoplacement ? */
1159 D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n"));
1163 D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n"));
1164 /* Get the position of the free bytes */
1165 if (!oinfo->oobfree[0].length) {
1166 printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep."
1167 " Autoplacement selected and no empty space in oob\n");
1170 c->fsdata_pos = oinfo->oobfree[0].offset;
1171 c->fsdata_len = oinfo->oobfree[0].length;
1172 if (c->fsdata_len > 8)
1178 int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1182 /* Initialise write buffer */
1183 init_rwsem(&c->wbuf_sem);
1184 c->wbuf_pagesize = c->mtd->writesize;
1185 c->wbuf_ofs = 0xFFFFFFFF;
1187 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1191 c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->mtd->oobsize, GFP_KERNEL);
1195 res = jffs2_nand_set_oobinfo(c);
1199 brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1204 memset(brokenbuf, 0xdb, c->wbuf_pagesize);
1209 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1215 int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1216 c->cleanmarker_size = 0; /* No cleanmarkers needed */
1218 /* Initialize write buffer */
1219 init_rwsem(&c->wbuf_sem);
1222 c->wbuf_pagesize = c->mtd->erasesize;
1224 /* Find a suitable c->sector_size
1225 * - Not too much sectors
1226 * - Sectors have to be at least 4 K + some bytes
1227 * - All known dataflashes have erase sizes of 528 or 1056
1228 * - we take at least 8 eraseblocks and want to have at least 8K size
1229 * - The concatenation should be a power of 2
1232 c->sector_size = 8 * c->mtd->erasesize;
1234 while (c->sector_size < 8192) {
1235 c->sector_size *= 2;
1238 /* It may be necessary to adjust the flash size */
1239 c->flash_size = c->mtd->size;
1241 if ((c->flash_size % c->sector_size) != 0) {
1242 c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1243 printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
1246 c->wbuf_ofs = 0xFFFFFFFF;
1247 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1251 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
1256 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1260 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
1261 /* Cleanmarker currently occupies whole programming regions,
1262 * either one or 2 for 8Byte STMicro flashes. */
1263 c->cleanmarker_size = max(16u, c->mtd->writesize);
1265 /* Initialize write buffer */
1266 init_rwsem(&c->wbuf_sem);
1267 c->wbuf_pagesize = c->mtd->writesize;
1268 c->wbuf_ofs = 0xFFFFFFFF;
1270 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1277 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {