Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb-2.6
[linux-2.6] / drivers / misc / sgi-xp / xpc_sn2.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
7  */
8
9 /*
10  * Cross Partition Communication (XPC) sn2-based functions.
11  *
12  *     Architecture specific implementation of common functions.
13  *
14  */
15
16 #include <linux/delay.h>
17 #include <asm/uncached.h>
18 #include <asm/sn/mspec.h>
19 #include <asm/sn/sn_sal.h>
20 #include "xpc.h"
21
22 /*
23  * Define the number of u64s required to represent all the C-brick nasids
24  * as a bitmap.  The cross-partition kernel modules deal only with
25  * C-brick nasids, thus the need for bitmaps which don't account for
26  * odd-numbered (non C-brick) nasids.
27  */
28 #define XPC_MAX_PHYSNODES_SN2   (MAX_NUMALINK_NODES / 2)
29 #define XP_NASID_MASK_BYTES_SN2 ((XPC_MAX_PHYSNODES_SN2 + 7) / 8)
30 #define XP_NASID_MASK_WORDS_SN2 ((XPC_MAX_PHYSNODES_SN2 + 63) / 64)
31
32 /*
33  * Memory for XPC's amo variables is allocated by the MSPEC driver. These
34  * pages are located in the lowest granule. The lowest granule uses 4k pages
35  * for cached references and an alternate TLB handler to never provide a
36  * cacheable mapping for the entire region. This will prevent speculative
37  * reading of cached copies of our lines from being issued which will cause
38  * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64
39  * amo variables (based on XP_MAX_NPARTITIONS_SN2) to identify the senders of
40  * NOTIFY IRQs, 128 amo variables (based on XP_NASID_MASK_WORDS_SN2) to identify
41  * the senders of ACTIVATE IRQs, 1 amo variable to identify which remote
42  * partitions (i.e., XPCs) consider themselves currently engaged with the
43  * local XPC and 1 amo variable to request partition deactivation.
44  */
45 #define XPC_NOTIFY_IRQ_AMOS_SN2         0
46 #define XPC_ACTIVATE_IRQ_AMOS_SN2       (XPC_NOTIFY_IRQ_AMOS_SN2 + \
47                                          XP_MAX_NPARTITIONS_SN2)
48 #define XPC_ENGAGED_PARTITIONS_AMO_SN2  (XPC_ACTIVATE_IRQ_AMOS_SN2 + \
49                                          XP_NASID_MASK_WORDS_SN2)
50 #define XPC_DEACTIVATE_REQUEST_AMO_SN2  (XPC_ENGAGED_PARTITIONS_AMO_SN2 + 1)
51
52 /*
53  * Buffer used to store a local copy of portions of a remote partition's
54  * reserved page (either its header and part_nasids mask, or its vars).
55  */
56 static void *xpc_remote_copy_buffer_base_sn2;
57 static char *xpc_remote_copy_buffer_sn2;
58
59 static struct xpc_vars_sn2 *xpc_vars_sn2;
60 static struct xpc_vars_part_sn2 *xpc_vars_part_sn2;
61
62 static int
63 xpc_setup_partitions_sn_sn2(void)
64 {
65         /* nothing needs to be done */
66         return 0;
67 }
68
69 /* SH_IPI_ACCESS shub register value on startup */
70 static u64 xpc_sh1_IPI_access_sn2;
71 static u64 xpc_sh2_IPI_access0_sn2;
72 static u64 xpc_sh2_IPI_access1_sn2;
73 static u64 xpc_sh2_IPI_access2_sn2;
74 static u64 xpc_sh2_IPI_access3_sn2;
75
76 /*
77  * Change protections to allow IPI operations.
78  */
79 static void
80 xpc_allow_IPI_ops_sn2(void)
81 {
82         int node;
83         int nasid;
84
85         /* !!! The following should get moved into SAL. */
86         if (is_shub2()) {
87                 xpc_sh2_IPI_access0_sn2 =
88                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0));
89                 xpc_sh2_IPI_access1_sn2 =
90                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1));
91                 xpc_sh2_IPI_access2_sn2 =
92                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2));
93                 xpc_sh2_IPI_access3_sn2 =
94                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3));
95
96                 for_each_online_node(node) {
97                         nasid = cnodeid_to_nasid(node);
98                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
99                               -1UL);
100                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
101                               -1UL);
102                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
103                               -1UL);
104                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
105                               -1UL);
106                 }
107         } else {
108                 xpc_sh1_IPI_access_sn2 =
109                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS));
110
111                 for_each_online_node(node) {
112                         nasid = cnodeid_to_nasid(node);
113                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
114                               -1UL);
115                 }
116         }
117 }
118
119 /*
120  * Restrict protections to disallow IPI operations.
121  */
122 static void
123 xpc_disallow_IPI_ops_sn2(void)
124 {
125         int node;
126         int nasid;
127
128         /* !!! The following should get moved into SAL. */
129         if (is_shub2()) {
130                 for_each_online_node(node) {
131                         nasid = cnodeid_to_nasid(node);
132                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
133                               xpc_sh2_IPI_access0_sn2);
134                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
135                               xpc_sh2_IPI_access1_sn2);
136                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
137                               xpc_sh2_IPI_access2_sn2);
138                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
139                               xpc_sh2_IPI_access3_sn2);
140                 }
141         } else {
142                 for_each_online_node(node) {
143                         nasid = cnodeid_to_nasid(node);
144                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
145                               xpc_sh1_IPI_access_sn2);
146                 }
147         }
148 }
149
150 /*
151  * The following set of functions are used for the sending and receiving of
152  * IRQs (also known as IPIs). There are two flavors of IRQs, one that is
153  * associated with partition activity (SGI_XPC_ACTIVATE) and the other that
154  * is associated with channel activity (SGI_XPC_NOTIFY).
155  */
156
157 static u64
158 xpc_receive_IRQ_amo_sn2(struct amo *amo)
159 {
160         return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR);
161 }
162
163 static enum xp_retval
164 xpc_send_IRQ_sn2(struct amo *amo, u64 flag, int nasid, int phys_cpuid,
165                  int vector)
166 {
167         int ret = 0;
168         unsigned long irq_flags;
169
170         local_irq_save(irq_flags);
171
172         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag);
173         sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
174
175         /*
176          * We must always use the nofault function regardless of whether we
177          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
178          * didn't, we'd never know that the other partition is down and would
179          * keep sending IRQs and amos to it until the heartbeat times out.
180          */
181         ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
182                                                      xp_nofault_PIOR_target));
183
184         local_irq_restore(irq_flags);
185
186         return (ret == 0) ? xpSuccess : xpPioReadError;
187 }
188
189 static struct amo *
190 xpc_init_IRQ_amo_sn2(int index)
191 {
192         struct amo *amo = xpc_vars_sn2->amos_page + index;
193
194         (void)xpc_receive_IRQ_amo_sn2(amo);     /* clear amo variable */
195         return amo;
196 }
197
198 /*
199  * Functions associated with SGI_XPC_ACTIVATE IRQ.
200  */
201
202 /*
203  * Notify the heartbeat check thread that an activate IRQ has been received.
204  */
205 static irqreturn_t
206 xpc_handle_activate_IRQ_sn2(int irq, void *dev_id)
207 {
208         unsigned long irq_flags;
209
210         spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
211         xpc_activate_IRQ_rcvd++;
212         spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
213
214         wake_up_interruptible(&xpc_activate_IRQ_wq);
215         return IRQ_HANDLED;
216 }
217
218 /*
219  * Flag the appropriate amo variable and send an IRQ to the specified node.
220  */
221 static void
222 xpc_send_activate_IRQ_sn2(unsigned long amos_page_pa, int from_nasid,
223                           int to_nasid, int to_phys_cpuid)
224 {
225         struct amo *amos = (struct amo *)__va(amos_page_pa +
226                                               (XPC_ACTIVATE_IRQ_AMOS_SN2 *
227                                               sizeof(struct amo)));
228
229         (void)xpc_send_IRQ_sn2(&amos[BIT_WORD(from_nasid / 2)],
230                                BIT_MASK(from_nasid / 2), to_nasid,
231                                to_phys_cpuid, SGI_XPC_ACTIVATE);
232 }
233
234 static void
235 xpc_send_local_activate_IRQ_sn2(int from_nasid)
236 {
237         unsigned long irq_flags;
238         struct amo *amos = (struct amo *)__va(xpc_vars_sn2->amos_page_pa +
239                                               (XPC_ACTIVATE_IRQ_AMOS_SN2 *
240                                               sizeof(struct amo)));
241
242         /* fake the sending and receipt of an activate IRQ from remote nasid */
243         FETCHOP_STORE_OP(TO_AMO((u64)&amos[BIT_WORD(from_nasid / 2)].variable),
244                          FETCHOP_OR, BIT_MASK(from_nasid / 2));
245
246         spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
247         xpc_activate_IRQ_rcvd++;
248         spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
249
250         wake_up_interruptible(&xpc_activate_IRQ_wq);
251 }
252
253 /*
254  * Functions associated with SGI_XPC_NOTIFY IRQ.
255  */
256
257 /*
258  * Check to see if any chctl flags were sent from the specified partition.
259  */
260 static void
261 xpc_check_for_sent_chctl_flags_sn2(struct xpc_partition *part)
262 {
263         union xpc_channel_ctl_flags chctl;
264         unsigned long irq_flags;
265
266         chctl.all_flags = xpc_receive_IRQ_amo_sn2(part->sn.sn2.
267                                                   local_chctl_amo_va);
268         if (chctl.all_flags == 0)
269                 return;
270
271         spin_lock_irqsave(&part->chctl_lock, irq_flags);
272         part->chctl.all_flags |= chctl.all_flags;
273         spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
274
275         dev_dbg(xpc_chan, "received notify IRQ from partid=%d, chctl.all_flags="
276                 "0x%lx\n", XPC_PARTID(part), chctl.all_flags);
277
278         xpc_wakeup_channel_mgr(part);
279 }
280
281 /*
282  * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified
283  * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more
284  * than one partition, we use an amo structure per partition to indicate
285  * whether a partition has sent an IRQ or not.  If it has, then wake up the
286  * associated kthread to handle it.
287  *
288  * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IRQs sent by XPC
289  * running on other partitions.
290  *
291  * Noteworthy Arguments:
292  *
293  *      irq - Interrupt ReQuest number. NOT USED.
294  *
295  *      dev_id - partid of IRQ's potential sender.
296  */
297 static irqreturn_t
298 xpc_handle_notify_IRQ_sn2(int irq, void *dev_id)
299 {
300         short partid = (short)(u64)dev_id;
301         struct xpc_partition *part = &xpc_partitions[partid];
302
303         DBUG_ON(partid < 0 || partid >= XP_MAX_NPARTITIONS_SN2);
304
305         if (xpc_part_ref(part)) {
306                 xpc_check_for_sent_chctl_flags_sn2(part);
307
308                 xpc_part_deref(part);
309         }
310         return IRQ_HANDLED;
311 }
312
313 /*
314  * Check to see if xpc_handle_notify_IRQ_sn2() dropped any IRQs on the floor
315  * because the write to their associated amo variable completed after the IRQ
316  * was received.
317  */
318 static void
319 xpc_check_for_dropped_notify_IRQ_sn2(struct xpc_partition *part)
320 {
321         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
322
323         if (xpc_part_ref(part)) {
324                 xpc_check_for_sent_chctl_flags_sn2(part);
325
326                 part_sn2->dropped_notify_IRQ_timer.expires = jiffies +
327                     XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
328                 add_timer(&part_sn2->dropped_notify_IRQ_timer);
329                 xpc_part_deref(part);
330         }
331 }
332
333 /*
334  * Send a notify IRQ to the remote partition that is associated with the
335  * specified channel.
336  */
337 static void
338 xpc_send_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
339                         char *chctl_flag_string, unsigned long *irq_flags)
340 {
341         struct xpc_partition *part = &xpc_partitions[ch->partid];
342         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
343         union xpc_channel_ctl_flags chctl = { 0 };
344         enum xp_retval ret;
345
346         if (likely(part->act_state != XPC_P_AS_DEACTIVATING)) {
347                 chctl.flags[ch->number] = chctl_flag;
348                 ret = xpc_send_IRQ_sn2(part_sn2->remote_chctl_amo_va,
349                                        chctl.all_flags,
350                                        part_sn2->notify_IRQ_nasid,
351                                        part_sn2->notify_IRQ_phys_cpuid,
352                                        SGI_XPC_NOTIFY);
353                 dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
354                         chctl_flag_string, ch->partid, ch->number, ret);
355                 if (unlikely(ret != xpSuccess)) {
356                         if (irq_flags != NULL)
357                                 spin_unlock_irqrestore(&ch->lock, *irq_flags);
358                         XPC_DEACTIVATE_PARTITION(part, ret);
359                         if (irq_flags != NULL)
360                                 spin_lock_irqsave(&ch->lock, *irq_flags);
361                 }
362         }
363 }
364
365 #define XPC_SEND_NOTIFY_IRQ_SN2(_ch, _ipi_f, _irq_f) \
366                 xpc_send_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f, _irq_f)
367
368 /*
369  * Make it look like the remote partition, which is associated with the
370  * specified channel, sent us a notify IRQ. This faked IRQ will be handled
371  * by xpc_check_for_dropped_notify_IRQ_sn2().
372  */
373 static void
374 xpc_send_local_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
375                               char *chctl_flag_string)
376 {
377         struct xpc_partition *part = &xpc_partitions[ch->partid];
378         union xpc_channel_ctl_flags chctl = { 0 };
379
380         chctl.flags[ch->number] = chctl_flag;
381         FETCHOP_STORE_OP(TO_AMO((u64)&part->sn.sn2.local_chctl_amo_va->
382                                 variable), FETCHOP_OR, chctl.all_flags);
383         dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
384                 chctl_flag_string, ch->partid, ch->number);
385 }
386
387 #define XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(_ch, _ipi_f) \
388                 xpc_send_local_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f)
389
390 static void
391 xpc_send_chctl_closerequest_sn2(struct xpc_channel *ch,
392                                 unsigned long *irq_flags)
393 {
394         struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
395
396         args->reason = ch->reason;
397         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREQUEST, irq_flags);
398 }
399
400 static void
401 xpc_send_chctl_closereply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
402 {
403         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREPLY, irq_flags);
404 }
405
406 static void
407 xpc_send_chctl_openrequest_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
408 {
409         struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
410
411         args->entry_size = ch->entry_size;
412         args->local_nentries = ch->local_nentries;
413         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREQUEST, irq_flags);
414 }
415
416 static void
417 xpc_send_chctl_openreply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
418 {
419         struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
420
421         args->remote_nentries = ch->remote_nentries;
422         args->local_nentries = ch->local_nentries;
423         args->local_msgqueue_pa = xp_pa(ch->sn.sn2.local_msgqueue);
424         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREPLY, irq_flags);
425 }
426
427 static void
428 xpc_send_chctl_msgrequest_sn2(struct xpc_channel *ch)
429 {
430         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST, NULL);
431 }
432
433 static void
434 xpc_send_chctl_local_msgrequest_sn2(struct xpc_channel *ch)
435 {
436         XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST);
437 }
438
439 static void
440 xpc_save_remote_msgqueue_pa_sn2(struct xpc_channel *ch,
441                                 unsigned long msgqueue_pa)
442 {
443         ch->sn.sn2.remote_msgqueue_pa = msgqueue_pa;
444 }
445
446 /*
447  * This next set of functions are used to keep track of when a partition is
448  * potentially engaged in accessing memory belonging to another partition.
449  */
450
451 static void
452 xpc_indicate_partition_engaged_sn2(struct xpc_partition *part)
453 {
454         unsigned long irq_flags;
455         struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
456                                              (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
457                                              sizeof(struct amo)));
458
459         local_irq_save(irq_flags);
460
461         /* set bit corresponding to our partid in remote partition's amo */
462         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
463                          BIT(sn_partition_id));
464
465         /*
466          * We must always use the nofault function regardless of whether we
467          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
468          * didn't, we'd never know that the other partition is down and would
469          * keep sending IRQs and amos to it until the heartbeat times out.
470          */
471         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
472                                                                variable),
473                                                      xp_nofault_PIOR_target));
474
475         local_irq_restore(irq_flags);
476 }
477
478 static void
479 xpc_indicate_partition_disengaged_sn2(struct xpc_partition *part)
480 {
481         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
482         unsigned long irq_flags;
483         struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
484                                              (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
485                                              sizeof(struct amo)));
486
487         local_irq_save(irq_flags);
488
489         /* clear bit corresponding to our partid in remote partition's amo */
490         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
491                          ~BIT(sn_partition_id));
492
493         /*
494          * We must always use the nofault function regardless of whether we
495          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
496          * didn't, we'd never know that the other partition is down and would
497          * keep sending IRQs and amos to it until the heartbeat times out.
498          */
499         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
500                                                                variable),
501                                                      xp_nofault_PIOR_target));
502
503         local_irq_restore(irq_flags);
504
505         /*
506          * Send activate IRQ to get other side to see that we've cleared our
507          * bit in their engaged partitions amo.
508          */
509         xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
510                                   cnodeid_to_nasid(0),
511                                   part_sn2->activate_IRQ_nasid,
512                                   part_sn2->activate_IRQ_phys_cpuid);
513 }
514
515 static void
516 xpc_assume_partition_disengaged_sn2(short partid)
517 {
518         struct amo *amo = xpc_vars_sn2->amos_page +
519                           XPC_ENGAGED_PARTITIONS_AMO_SN2;
520
521         /* clear bit(s) based on partid mask in our partition's amo */
522         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
523                          ~BIT(partid));
524 }
525
526 static int
527 xpc_partition_engaged_sn2(short partid)
528 {
529         struct amo *amo = xpc_vars_sn2->amos_page +
530                           XPC_ENGAGED_PARTITIONS_AMO_SN2;
531
532         /* our partition's amo variable ANDed with partid mask */
533         return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
534                 BIT(partid)) != 0;
535 }
536
537 static int
538 xpc_any_partition_engaged_sn2(void)
539 {
540         struct amo *amo = xpc_vars_sn2->amos_page +
541                           XPC_ENGAGED_PARTITIONS_AMO_SN2;
542
543         /* our partition's amo variable */
544         return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) != 0;
545 }
546
547 /* original protection values for each node */
548 static u64 xpc_prot_vec_sn2[MAX_NUMNODES];
549
550 /*
551  * Change protections to allow amo operations on non-Shub 1.1 systems.
552  */
553 static enum xp_retval
554 xpc_allow_amo_ops_sn2(struct amo *amos_page)
555 {
556         u64 nasid_array = 0;
557         int ret;
558
559         /*
560          * On SHUB 1.1, we cannot call sn_change_memprotect() since the BIST
561          * collides with memory operations. On those systems we call
562          * xpc_allow_amo_ops_shub_wars_1_1_sn2() instead.
563          */
564         if (!enable_shub_wars_1_1()) {
565                 ret = sn_change_memprotect(ia64_tpa((u64)amos_page), PAGE_SIZE,
566                                            SN_MEMPROT_ACCESS_CLASS_1,
567                                            &nasid_array);
568                 if (ret != 0)
569                         return xpSalError;
570         }
571         return xpSuccess;
572 }
573
574 /*
575  * Change protections to allow amo operations on Shub 1.1 systems.
576  */
577 static void
578 xpc_allow_amo_ops_shub_wars_1_1_sn2(void)
579 {
580         int node;
581         int nasid;
582
583         if (!enable_shub_wars_1_1())
584                 return;
585
586         for_each_online_node(node) {
587                 nasid = cnodeid_to_nasid(node);
588                 /* save current protection values */
589                 xpc_prot_vec_sn2[node] =
590                     (u64)HUB_L((u64 *)GLOBAL_MMR_ADDR(nasid,
591                                                   SH1_MD_DQLP_MMR_DIR_PRIVEC0));
592                 /* open up everything */
593                 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
594                                              SH1_MD_DQLP_MMR_DIR_PRIVEC0),
595                       -1UL);
596                 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
597                                              SH1_MD_DQRP_MMR_DIR_PRIVEC0),
598                       -1UL);
599         }
600 }
601
602 static enum xp_retval
603 xpc_get_partition_rsvd_page_pa_sn2(void *buf, u64 *cookie, unsigned long *rp_pa,
604                                    size_t *len)
605 {
606         s64 status;
607         enum xp_retval ret;
608
609         status = sn_partition_reserved_page_pa((u64)buf, cookie, rp_pa, len);
610         if (status == SALRET_OK)
611                 ret = xpSuccess;
612         else if (status == SALRET_MORE_PASSES)
613                 ret = xpNeedMoreInfo;
614         else
615                 ret = xpSalError;
616
617         return ret;
618 }
619
620
621 static int
622 xpc_setup_rsvd_page_sn_sn2(struct xpc_rsvd_page *rp)
623 {
624         struct amo *amos_page;
625         int i;
626         int ret;
627
628         xpc_vars_sn2 = XPC_RP_VARS(rp);
629
630         rp->sn.vars_pa = xp_pa(xpc_vars_sn2);
631
632         /* vars_part array follows immediately after vars */
633         xpc_vars_part_sn2 = (struct xpc_vars_part_sn2 *)((u8 *)XPC_RP_VARS(rp) +
634                                                          XPC_RP_VARS_SIZE);
635
636         /*
637          * Before clearing xpc_vars_sn2, see if a page of amos had been
638          * previously allocated. If not we'll need to allocate one and set
639          * permissions so that cross-partition amos are allowed.
640          *
641          * The allocated amo page needs MCA reporting to remain disabled after
642          * XPC has unloaded.  To make this work, we keep a copy of the pointer
643          * to this page (i.e., amos_page) in the struct xpc_vars_sn2 structure,
644          * which is pointed to by the reserved page, and re-use that saved copy
645          * on subsequent loads of XPC. This amo page is never freed, and its
646          * memory protections are never restricted.
647          */
648         amos_page = xpc_vars_sn2->amos_page;
649         if (amos_page == NULL) {
650                 amos_page = (struct amo *)TO_AMO(uncached_alloc_page(0, 1));
651                 if (amos_page == NULL) {
652                         dev_err(xpc_part, "can't allocate page of amos\n");
653                         return -ENOMEM;
654                 }
655
656                 /*
657                  * Open up amo-R/W to cpu.  This is done on Shub 1.1 systems
658                  * when xpc_allow_amo_ops_shub_wars_1_1_sn2() is called.
659                  */
660                 ret = xpc_allow_amo_ops_sn2(amos_page);
661                 if (ret != xpSuccess) {
662                         dev_err(xpc_part, "can't allow amo operations\n");
663                         uncached_free_page(__IA64_UNCACHED_OFFSET |
664                                            TO_PHYS((u64)amos_page), 1);
665                         return -EPERM;
666                 }
667         }
668
669         /* clear xpc_vars_sn2 */
670         memset(xpc_vars_sn2, 0, sizeof(struct xpc_vars_sn2));
671
672         xpc_vars_sn2->version = XPC_V_VERSION;
673         xpc_vars_sn2->activate_IRQ_nasid = cpuid_to_nasid(0);
674         xpc_vars_sn2->activate_IRQ_phys_cpuid = cpu_physical_id(0);
675         xpc_vars_sn2->vars_part_pa = xp_pa(xpc_vars_part_sn2);
676         xpc_vars_sn2->amos_page_pa = ia64_tpa((u64)amos_page);
677         xpc_vars_sn2->amos_page = amos_page;    /* save for next load of XPC */
678
679         /* clear xpc_vars_part_sn2 */
680         memset((u64 *)xpc_vars_part_sn2, 0, sizeof(struct xpc_vars_part_sn2) *
681                XP_MAX_NPARTITIONS_SN2);
682
683         /* initialize the activate IRQ related amo variables */
684         for (i = 0; i < xpc_nasid_mask_nlongs; i++)
685                 (void)xpc_init_IRQ_amo_sn2(XPC_ACTIVATE_IRQ_AMOS_SN2 + i);
686
687         /* initialize the engaged remote partitions related amo variables */
688         (void)xpc_init_IRQ_amo_sn2(XPC_ENGAGED_PARTITIONS_AMO_SN2);
689         (void)xpc_init_IRQ_amo_sn2(XPC_DEACTIVATE_REQUEST_AMO_SN2);
690
691         return 0;
692 }
693
694 static void
695 xpc_increment_heartbeat_sn2(void)
696 {
697         xpc_vars_sn2->heartbeat++;
698 }
699
700 static void
701 xpc_offline_heartbeat_sn2(void)
702 {
703         xpc_increment_heartbeat_sn2();
704         xpc_vars_sn2->heartbeat_offline = 1;
705 }
706
707 static void
708 xpc_online_heartbeat_sn2(void)
709 {
710         xpc_increment_heartbeat_sn2();
711         xpc_vars_sn2->heartbeat_offline = 0;
712 }
713
714 static void
715 xpc_heartbeat_init_sn2(void)
716 {
717         DBUG_ON(xpc_vars_sn2 == NULL);
718
719         bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, XP_MAX_NPARTITIONS_SN2);
720         xpc_heartbeating_to_mask = &xpc_vars_sn2->heartbeating_to_mask[0];
721         xpc_online_heartbeat_sn2();
722 }
723
724 static void
725 xpc_heartbeat_exit_sn2(void)
726 {
727         xpc_offline_heartbeat_sn2();
728 }
729
730 static enum xp_retval
731 xpc_get_remote_heartbeat_sn2(struct xpc_partition *part)
732 {
733         struct xpc_vars_sn2 *remote_vars;
734         enum xp_retval ret;
735
736         remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
737
738         /* pull the remote vars structure that contains the heartbeat */
739         ret = xp_remote_memcpy(xp_pa(remote_vars),
740                                part->sn.sn2.remote_vars_pa,
741                                XPC_RP_VARS_SIZE);
742         if (ret != xpSuccess)
743                 return ret;
744
745         dev_dbg(xpc_part, "partid=%d, heartbeat=%ld, last_heartbeat=%ld, "
746                 "heartbeat_offline=%ld, HB_mask[0]=0x%lx\n", XPC_PARTID(part),
747                 remote_vars->heartbeat, part->last_heartbeat,
748                 remote_vars->heartbeat_offline,
749                 remote_vars->heartbeating_to_mask[0]);
750
751         if ((remote_vars->heartbeat == part->last_heartbeat &&
752             remote_vars->heartbeat_offline == 0) ||
753             !xpc_hb_allowed(sn_partition_id,
754                             &remote_vars->heartbeating_to_mask)) {
755                 ret = xpNoHeartbeat;
756         } else {
757                 part->last_heartbeat = remote_vars->heartbeat;
758         }
759
760         return ret;
761 }
762
763 /*
764  * Get a copy of the remote partition's XPC variables from the reserved page.
765  *
766  * remote_vars points to a buffer that is cacheline aligned for BTE copies and
767  * assumed to be of size XPC_RP_VARS_SIZE.
768  */
769 static enum xp_retval
770 xpc_get_remote_vars_sn2(unsigned long remote_vars_pa,
771                         struct xpc_vars_sn2 *remote_vars)
772 {
773         enum xp_retval ret;
774
775         if (remote_vars_pa == 0)
776                 return xpVarsNotSet;
777
778         /* pull over the cross partition variables */
779         ret = xp_remote_memcpy(xp_pa(remote_vars), remote_vars_pa,
780                                XPC_RP_VARS_SIZE);
781         if (ret != xpSuccess)
782                 return ret;
783
784         if (XPC_VERSION_MAJOR(remote_vars->version) !=
785             XPC_VERSION_MAJOR(XPC_V_VERSION)) {
786                 return xpBadVersion;
787         }
788
789         return xpSuccess;
790 }
791
792 static void
793 xpc_request_partition_activation_sn2(struct xpc_rsvd_page *remote_rp,
794                                      unsigned long remote_rp_pa, int nasid)
795 {
796         xpc_send_local_activate_IRQ_sn2(nasid);
797 }
798
799 static void
800 xpc_request_partition_reactivation_sn2(struct xpc_partition *part)
801 {
802         xpc_send_local_activate_IRQ_sn2(part->sn.sn2.activate_IRQ_nasid);
803 }
804
805 static void
806 xpc_request_partition_deactivation_sn2(struct xpc_partition *part)
807 {
808         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
809         unsigned long irq_flags;
810         struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
811                                              (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
812                                              sizeof(struct amo)));
813
814         local_irq_save(irq_flags);
815
816         /* set bit corresponding to our partid in remote partition's amo */
817         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
818                          BIT(sn_partition_id));
819
820         /*
821          * We must always use the nofault function regardless of whether we
822          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
823          * didn't, we'd never know that the other partition is down and would
824          * keep sending IRQs and amos to it until the heartbeat times out.
825          */
826         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
827                                                                variable),
828                                                      xp_nofault_PIOR_target));
829
830         local_irq_restore(irq_flags);
831
832         /*
833          * Send activate IRQ to get other side to see that we've set our
834          * bit in their deactivate request amo.
835          */
836         xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
837                                   cnodeid_to_nasid(0),
838                                   part_sn2->activate_IRQ_nasid,
839                                   part_sn2->activate_IRQ_phys_cpuid);
840 }
841
842 static void
843 xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition *part)
844 {
845         unsigned long irq_flags;
846         struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
847                                              (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
848                                              sizeof(struct amo)));
849
850         local_irq_save(irq_flags);
851
852         /* clear bit corresponding to our partid in remote partition's amo */
853         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
854                          ~BIT(sn_partition_id));
855
856         /*
857          * We must always use the nofault function regardless of whether we
858          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
859          * didn't, we'd never know that the other partition is down and would
860          * keep sending IRQs and amos to it until the heartbeat times out.
861          */
862         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
863                                                                variable),
864                                                      xp_nofault_PIOR_target));
865
866         local_irq_restore(irq_flags);
867 }
868
869 static int
870 xpc_partition_deactivation_requested_sn2(short partid)
871 {
872         struct amo *amo = xpc_vars_sn2->amos_page +
873                           XPC_DEACTIVATE_REQUEST_AMO_SN2;
874
875         /* our partition's amo variable ANDed with partid mask */
876         return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
877                 BIT(partid)) != 0;
878 }
879
880 /*
881  * Update the remote partition's info.
882  */
883 static void
884 xpc_update_partition_info_sn2(struct xpc_partition *part, u8 remote_rp_version,
885                               unsigned long *remote_rp_ts_jiffies,
886                               unsigned long remote_rp_pa,
887                               unsigned long remote_vars_pa,
888                               struct xpc_vars_sn2 *remote_vars)
889 {
890         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
891
892         part->remote_rp_version = remote_rp_version;
893         dev_dbg(xpc_part, "  remote_rp_version = 0x%016x\n",
894                 part->remote_rp_version);
895
896         part->remote_rp_ts_jiffies = *remote_rp_ts_jiffies;
897         dev_dbg(xpc_part, "  remote_rp_ts_jiffies = 0x%016lx\n",
898                 part->remote_rp_ts_jiffies);
899
900         part->remote_rp_pa = remote_rp_pa;
901         dev_dbg(xpc_part, "  remote_rp_pa = 0x%016lx\n", part->remote_rp_pa);
902
903         part_sn2->remote_vars_pa = remote_vars_pa;
904         dev_dbg(xpc_part, "  remote_vars_pa = 0x%016lx\n",
905                 part_sn2->remote_vars_pa);
906
907         part->last_heartbeat = remote_vars->heartbeat;
908         dev_dbg(xpc_part, "  last_heartbeat = 0x%016lx\n",
909                 part->last_heartbeat);
910
911         part_sn2->remote_vars_part_pa = remote_vars->vars_part_pa;
912         dev_dbg(xpc_part, "  remote_vars_part_pa = 0x%016lx\n",
913                 part_sn2->remote_vars_part_pa);
914
915         part_sn2->activate_IRQ_nasid = remote_vars->activate_IRQ_nasid;
916         dev_dbg(xpc_part, "  activate_IRQ_nasid = 0x%x\n",
917                 part_sn2->activate_IRQ_nasid);
918
919         part_sn2->activate_IRQ_phys_cpuid =
920             remote_vars->activate_IRQ_phys_cpuid;
921         dev_dbg(xpc_part, "  activate_IRQ_phys_cpuid = 0x%x\n",
922                 part_sn2->activate_IRQ_phys_cpuid);
923
924         part_sn2->remote_amos_page_pa = remote_vars->amos_page_pa;
925         dev_dbg(xpc_part, "  remote_amos_page_pa = 0x%lx\n",
926                 part_sn2->remote_amos_page_pa);
927
928         part_sn2->remote_vars_version = remote_vars->version;
929         dev_dbg(xpc_part, "  remote_vars_version = 0x%x\n",
930                 part_sn2->remote_vars_version);
931 }
932
933 /*
934  * Prior code has determined the nasid which generated a activate IRQ.
935  * Inspect that nasid to determine if its partition needs to be activated
936  * or deactivated.
937  *
938  * A partition is considered "awaiting activation" if our partition
939  * flags indicate it is not active and it has a heartbeat.  A
940  * partition is considered "awaiting deactivation" if our partition
941  * flags indicate it is active but it has no heartbeat or it is not
942  * sending its heartbeat to us.
943  *
944  * To determine the heartbeat, the remote nasid must have a properly
945  * initialized reserved page.
946  */
947 static void
948 xpc_identify_activate_IRQ_req_sn2(int nasid)
949 {
950         struct xpc_rsvd_page *remote_rp;
951         struct xpc_vars_sn2 *remote_vars;
952         unsigned long remote_rp_pa;
953         unsigned long remote_vars_pa;
954         int remote_rp_version;
955         int reactivate = 0;
956         unsigned long remote_rp_ts_jiffies = 0;
957         short partid;
958         struct xpc_partition *part;
959         struct xpc_partition_sn2 *part_sn2;
960         enum xp_retval ret;
961
962         /* pull over the reserved page structure */
963
964         remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer_sn2;
965
966         ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa);
967         if (ret != xpSuccess) {
968                 dev_warn(xpc_part, "unable to get reserved page from nasid %d, "
969                          "which sent interrupt, reason=%d\n", nasid, ret);
970                 return;
971         }
972
973         remote_vars_pa = remote_rp->sn.vars_pa;
974         remote_rp_version = remote_rp->version;
975         remote_rp_ts_jiffies = remote_rp->ts_jiffies;
976
977         partid = remote_rp->SAL_partid;
978         part = &xpc_partitions[partid];
979         part_sn2 = &part->sn.sn2;
980
981         /* pull over the cross partition variables */
982
983         remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
984
985         ret = xpc_get_remote_vars_sn2(remote_vars_pa, remote_vars);
986         if (ret != xpSuccess) {
987                 dev_warn(xpc_part, "unable to get XPC variables from nasid %d, "
988                          "which sent interrupt, reason=%d\n", nasid, ret);
989
990                 XPC_DEACTIVATE_PARTITION(part, ret);
991                 return;
992         }
993
994         part->activate_IRQ_rcvd++;
995
996         dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = "
997                 "%ld:0x%lx\n", (int)nasid, (int)partid, part->activate_IRQ_rcvd,
998                 remote_vars->heartbeat, remote_vars->heartbeating_to_mask[0]);
999
1000         if (xpc_partition_disengaged(part) &&
1001             part->act_state == XPC_P_AS_INACTIVE) {
1002
1003                 xpc_update_partition_info_sn2(part, remote_rp_version,
1004                                               &remote_rp_ts_jiffies,
1005                                               remote_rp_pa, remote_vars_pa,
1006                                               remote_vars);
1007
1008                 if (xpc_partition_deactivation_requested_sn2(partid)) {
1009                         /*
1010                          * Other side is waiting on us to deactivate even though
1011                          * we already have.
1012                          */
1013                         return;
1014                 }
1015
1016                 xpc_activate_partition(part);
1017                 return;
1018         }
1019
1020         DBUG_ON(part->remote_rp_version == 0);
1021         DBUG_ON(part_sn2->remote_vars_version == 0);
1022
1023         if (remote_rp_ts_jiffies != part->remote_rp_ts_jiffies) {
1024
1025                 /* the other side rebooted */
1026
1027                 DBUG_ON(xpc_partition_engaged_sn2(partid));
1028                 DBUG_ON(xpc_partition_deactivation_requested_sn2(partid));
1029
1030                 xpc_update_partition_info_sn2(part, remote_rp_version,
1031                                               &remote_rp_ts_jiffies,
1032                                               remote_rp_pa, remote_vars_pa,
1033                                               remote_vars);
1034                 reactivate = 1;
1035         }
1036
1037         if (part->disengage_timeout > 0 && !xpc_partition_disengaged(part)) {
1038                 /* still waiting on other side to disengage from us */
1039                 return;
1040         }
1041
1042         if (reactivate)
1043                 XPC_DEACTIVATE_PARTITION(part, xpReactivating);
1044         else if (xpc_partition_deactivation_requested_sn2(partid))
1045                 XPC_DEACTIVATE_PARTITION(part, xpOtherGoingDown);
1046 }
1047
1048 /*
1049  * Loop through the activation amo variables and process any bits
1050  * which are set.  Each bit indicates a nasid sending a partition
1051  * activation or deactivation request.
1052  *
1053  * Return #of IRQs detected.
1054  */
1055 int
1056 xpc_identify_activate_IRQ_sender_sn2(void)
1057 {
1058         int l;
1059         int b;
1060         unsigned long nasid_mask_long;
1061         u64 nasid;              /* remote nasid */
1062         int n_IRQs_detected = 0;
1063         struct amo *act_amos;
1064
1065         act_amos = xpc_vars_sn2->amos_page + XPC_ACTIVATE_IRQ_AMOS_SN2;
1066
1067         /* scan through activate amo variables looking for non-zero entries */
1068         for (l = 0; l < xpc_nasid_mask_nlongs; l++) {
1069
1070                 if (xpc_exiting)
1071                         break;
1072
1073                 nasid_mask_long = xpc_receive_IRQ_amo_sn2(&act_amos[l]);
1074
1075                 b = find_first_bit(&nasid_mask_long, BITS_PER_LONG);
1076                 if (b >= BITS_PER_LONG) {
1077                         /* no IRQs from nasids in this amo variable */
1078                         continue;
1079                 }
1080
1081                 dev_dbg(xpc_part, "amo[%d] gave back 0x%lx\n", l,
1082                         nasid_mask_long);
1083
1084                 /*
1085                  * If this nasid has been added to the machine since
1086                  * our partition was reset, this will retain the
1087                  * remote nasid in our reserved pages machine mask.
1088                  * This is used in the event of module reload.
1089                  */
1090                 xpc_mach_nasids[l] |= nasid_mask_long;
1091
1092                 /* locate the nasid(s) which sent interrupts */
1093
1094                 do {
1095                         n_IRQs_detected++;
1096                         nasid = (l * BITS_PER_LONG + b) * 2;
1097                         dev_dbg(xpc_part, "interrupt from nasid %ld\n", nasid);
1098                         xpc_identify_activate_IRQ_req_sn2(nasid);
1099
1100                         b = find_next_bit(&nasid_mask_long, BITS_PER_LONG,
1101                                           b + 1);
1102                 } while (b < BITS_PER_LONG);
1103         }
1104         return n_IRQs_detected;
1105 }
1106
1107 static void
1108 xpc_process_activate_IRQ_rcvd_sn2(void)
1109 {
1110         unsigned long irq_flags;
1111         int n_IRQs_expected;
1112         int n_IRQs_detected;
1113
1114         DBUG_ON(xpc_activate_IRQ_rcvd == 0);
1115
1116         spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
1117         n_IRQs_expected = xpc_activate_IRQ_rcvd;
1118         xpc_activate_IRQ_rcvd = 0;
1119         spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
1120
1121         n_IRQs_detected = xpc_identify_activate_IRQ_sender_sn2();
1122         if (n_IRQs_detected < n_IRQs_expected) {
1123                 /* retry once to help avoid missing amo */
1124                 (void)xpc_identify_activate_IRQ_sender_sn2();
1125         }
1126 }
1127
1128 /*
1129  * Setup the channel structures that are sn2 specific.
1130  */
1131 static enum xp_retval
1132 xpc_setup_ch_structures_sn_sn2(struct xpc_partition *part)
1133 {
1134         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1135         struct xpc_channel_sn2 *ch_sn2;
1136         enum xp_retval retval;
1137         int ret;
1138         int cpuid;
1139         int ch_number;
1140         struct timer_list *timer;
1141         short partid = XPC_PARTID(part);
1142
1143         /* allocate all the required GET/PUT values */
1144
1145         part_sn2->local_GPs =
1146             xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL,
1147                                           &part_sn2->local_GPs_base);
1148         if (part_sn2->local_GPs == NULL) {
1149                 dev_err(xpc_chan, "can't get memory for local get/put "
1150                         "values\n");
1151                 return xpNoMemory;
1152         }
1153
1154         part_sn2->remote_GPs =
1155             xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL,
1156                                           &part_sn2->remote_GPs_base);
1157         if (part_sn2->remote_GPs == NULL) {
1158                 dev_err(xpc_chan, "can't get memory for remote get/put "
1159                         "values\n");
1160                 retval = xpNoMemory;
1161                 goto out_1;
1162         }
1163
1164         part_sn2->remote_GPs_pa = 0;
1165
1166         /* allocate all the required open and close args */
1167
1168         part_sn2->local_openclose_args =
1169             xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
1170                                           GFP_KERNEL, &part_sn2->
1171                                           local_openclose_args_base);
1172         if (part_sn2->local_openclose_args == NULL) {
1173                 dev_err(xpc_chan, "can't get memory for local connect args\n");
1174                 retval = xpNoMemory;
1175                 goto out_2;
1176         }
1177
1178         part_sn2->remote_openclose_args_pa = 0;
1179
1180         part_sn2->local_chctl_amo_va = xpc_init_IRQ_amo_sn2(partid);
1181
1182         part_sn2->notify_IRQ_nasid = 0;
1183         part_sn2->notify_IRQ_phys_cpuid = 0;
1184         part_sn2->remote_chctl_amo_va = NULL;
1185
1186         sprintf(part_sn2->notify_IRQ_owner, "xpc%02d", partid);
1187         ret = request_irq(SGI_XPC_NOTIFY, xpc_handle_notify_IRQ_sn2,
1188                           IRQF_SHARED, part_sn2->notify_IRQ_owner,
1189                           (void *)(u64)partid);
1190         if (ret != 0) {
1191                 dev_err(xpc_chan, "can't register NOTIFY IRQ handler, "
1192                         "errno=%d\n", -ret);
1193                 retval = xpLackOfResources;
1194                 goto out_3;
1195         }
1196
1197         /* Setup a timer to check for dropped notify IRQs */
1198         timer = &part_sn2->dropped_notify_IRQ_timer;
1199         init_timer(timer);
1200         timer->function =
1201             (void (*)(unsigned long))xpc_check_for_dropped_notify_IRQ_sn2;
1202         timer->data = (unsigned long)part;
1203         timer->expires = jiffies + XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
1204         add_timer(timer);
1205
1206         for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
1207                 ch_sn2 = &part->channels[ch_number].sn.sn2;
1208
1209                 ch_sn2->local_GP = &part_sn2->local_GPs[ch_number];
1210                 ch_sn2->local_openclose_args =
1211                     &part_sn2->local_openclose_args[ch_number];
1212
1213                 mutex_init(&ch_sn2->msg_to_pull_mutex);
1214         }
1215
1216         /*
1217          * Setup the per partition specific variables required by the
1218          * remote partition to establish channel connections with us.
1219          *
1220          * The setting of the magic # indicates that these per partition
1221          * specific variables are ready to be used.
1222          */
1223         xpc_vars_part_sn2[partid].GPs_pa = xp_pa(part_sn2->local_GPs);
1224         xpc_vars_part_sn2[partid].openclose_args_pa =
1225             xp_pa(part_sn2->local_openclose_args);
1226         xpc_vars_part_sn2[partid].chctl_amo_pa =
1227             xp_pa(part_sn2->local_chctl_amo_va);
1228         cpuid = raw_smp_processor_id(); /* any CPU in this partition will do */
1229         xpc_vars_part_sn2[partid].notify_IRQ_nasid = cpuid_to_nasid(cpuid);
1230         xpc_vars_part_sn2[partid].notify_IRQ_phys_cpuid =
1231             cpu_physical_id(cpuid);
1232         xpc_vars_part_sn2[partid].nchannels = part->nchannels;
1233         xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC1_SN2;
1234
1235         return xpSuccess;
1236
1237         /* setup of ch structures failed */
1238 out_3:
1239         kfree(part_sn2->local_openclose_args_base);
1240         part_sn2->local_openclose_args = NULL;
1241 out_2:
1242         kfree(part_sn2->remote_GPs_base);
1243         part_sn2->remote_GPs = NULL;
1244 out_1:
1245         kfree(part_sn2->local_GPs_base);
1246         part_sn2->local_GPs = NULL;
1247         return retval;
1248 }
1249
1250 /*
1251  * Teardown the channel structures that are sn2 specific.
1252  */
1253 static void
1254 xpc_teardown_ch_structures_sn_sn2(struct xpc_partition *part)
1255 {
1256         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1257         short partid = XPC_PARTID(part);
1258
1259         /*
1260          * Indicate that the variables specific to the remote partition are no
1261          * longer available for its use.
1262          */
1263         xpc_vars_part_sn2[partid].magic = 0;
1264
1265         /* in case we've still got outstanding timers registered... */
1266         del_timer_sync(&part_sn2->dropped_notify_IRQ_timer);
1267         free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid);
1268
1269         kfree(part_sn2->local_openclose_args_base);
1270         part_sn2->local_openclose_args = NULL;
1271         kfree(part_sn2->remote_GPs_base);
1272         part_sn2->remote_GPs = NULL;
1273         kfree(part_sn2->local_GPs_base);
1274         part_sn2->local_GPs = NULL;
1275         part_sn2->local_chctl_amo_va = NULL;
1276 }
1277
1278 /*
1279  * Create a wrapper that hides the underlying mechanism for pulling a cacheline
1280  * (or multiple cachelines) from a remote partition.
1281  *
1282  * src_pa must be a cacheline aligned physical address on the remote partition.
1283  * dst must be a cacheline aligned virtual address on this partition.
1284  * cnt must be cacheline sized
1285  */
1286 /* ??? Replace this function by call to xp_remote_memcpy() or bte_copy()? */
1287 static enum xp_retval
1288 xpc_pull_remote_cachelines_sn2(struct xpc_partition *part, void *dst,
1289                                const unsigned long src_pa, size_t cnt)
1290 {
1291         enum xp_retval ret;
1292
1293         DBUG_ON(src_pa != L1_CACHE_ALIGN(src_pa));
1294         DBUG_ON((unsigned long)dst != L1_CACHE_ALIGN((unsigned long)dst));
1295         DBUG_ON(cnt != L1_CACHE_ALIGN(cnt));
1296
1297         if (part->act_state == XPC_P_AS_DEACTIVATING)
1298                 return part->reason;
1299
1300         ret = xp_remote_memcpy(xp_pa(dst), src_pa, cnt);
1301         if (ret != xpSuccess) {
1302                 dev_dbg(xpc_chan, "xp_remote_memcpy() from partition %d failed,"
1303                         " ret=%d\n", XPC_PARTID(part), ret);
1304         }
1305         return ret;
1306 }
1307
1308 /*
1309  * Pull the remote per partition specific variables from the specified
1310  * partition.
1311  */
1312 static enum xp_retval
1313 xpc_pull_remote_vars_part_sn2(struct xpc_partition *part)
1314 {
1315         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1316         u8 buffer[L1_CACHE_BYTES * 2];
1317         struct xpc_vars_part_sn2 *pulled_entry_cacheline =
1318             (struct xpc_vars_part_sn2 *)L1_CACHE_ALIGN((u64)buffer);
1319         struct xpc_vars_part_sn2 *pulled_entry;
1320         unsigned long remote_entry_cacheline_pa;
1321         unsigned long remote_entry_pa;
1322         short partid = XPC_PARTID(part);
1323         enum xp_retval ret;
1324
1325         /* pull the cacheline that contains the variables we're interested in */
1326
1327         DBUG_ON(part_sn2->remote_vars_part_pa !=
1328                 L1_CACHE_ALIGN(part_sn2->remote_vars_part_pa));
1329         DBUG_ON(sizeof(struct xpc_vars_part_sn2) != L1_CACHE_BYTES / 2);
1330
1331         remote_entry_pa = part_sn2->remote_vars_part_pa +
1332             sn_partition_id * sizeof(struct xpc_vars_part_sn2);
1333
1334         remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1));
1335
1336         pulled_entry = (struct xpc_vars_part_sn2 *)((u64)pulled_entry_cacheline
1337                                                     + (remote_entry_pa &
1338                                                     (L1_CACHE_BYTES - 1)));
1339
1340         ret = xpc_pull_remote_cachelines_sn2(part, pulled_entry_cacheline,
1341                                              remote_entry_cacheline_pa,
1342                                              L1_CACHE_BYTES);
1343         if (ret != xpSuccess) {
1344                 dev_dbg(xpc_chan, "failed to pull XPC vars_part from "
1345                         "partition %d, ret=%d\n", partid, ret);
1346                 return ret;
1347         }
1348
1349         /* see if they've been set up yet */
1350
1351         if (pulled_entry->magic != XPC_VP_MAGIC1_SN2 &&
1352             pulled_entry->magic != XPC_VP_MAGIC2_SN2) {
1353
1354                 if (pulled_entry->magic != 0) {
1355                         dev_dbg(xpc_chan, "partition %d's XPC vars_part for "
1356                                 "partition %d has bad magic value (=0x%lx)\n",
1357                                 partid, sn_partition_id, pulled_entry->magic);
1358                         return xpBadMagic;
1359                 }
1360
1361                 /* they've not been initialized yet */
1362                 return xpRetry;
1363         }
1364
1365         if (xpc_vars_part_sn2[partid].magic == XPC_VP_MAGIC1_SN2) {
1366
1367                 /* validate the variables */
1368
1369                 if (pulled_entry->GPs_pa == 0 ||
1370                     pulled_entry->openclose_args_pa == 0 ||
1371                     pulled_entry->chctl_amo_pa == 0) {
1372
1373                         dev_err(xpc_chan, "partition %d's XPC vars_part for "
1374                                 "partition %d are not valid\n", partid,
1375                                 sn_partition_id);
1376                         return xpInvalidAddress;
1377                 }
1378
1379                 /* the variables we imported look to be valid */
1380
1381                 part_sn2->remote_GPs_pa = pulled_entry->GPs_pa;
1382                 part_sn2->remote_openclose_args_pa =
1383                     pulled_entry->openclose_args_pa;
1384                 part_sn2->remote_chctl_amo_va =
1385                     (struct amo *)__va(pulled_entry->chctl_amo_pa);
1386                 part_sn2->notify_IRQ_nasid = pulled_entry->notify_IRQ_nasid;
1387                 part_sn2->notify_IRQ_phys_cpuid =
1388                     pulled_entry->notify_IRQ_phys_cpuid;
1389
1390                 if (part->nchannels > pulled_entry->nchannels)
1391                         part->nchannels = pulled_entry->nchannels;
1392
1393                 /* let the other side know that we've pulled their variables */
1394
1395                 xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC2_SN2;
1396         }
1397
1398         if (pulled_entry->magic == XPC_VP_MAGIC1_SN2)
1399                 return xpRetry;
1400
1401         return xpSuccess;
1402 }
1403
1404 /*
1405  * Establish first contact with the remote partititon. This involves pulling
1406  * the XPC per partition variables from the remote partition and waiting for
1407  * the remote partition to pull ours.
1408  */
1409 static enum xp_retval
1410 xpc_make_first_contact_sn2(struct xpc_partition *part)
1411 {
1412         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1413         enum xp_retval ret;
1414
1415         /*
1416          * Register the remote partition's amos with SAL so it can handle
1417          * and cleanup errors within that address range should the remote
1418          * partition go down. We don't unregister this range because it is
1419          * difficult to tell when outstanding writes to the remote partition
1420          * are finished and thus when it is safe to unregister. This should
1421          * not result in wasted space in the SAL xp_addr_region table because
1422          * we should get the same page for remote_amos_page_pa after module
1423          * reloads and system reboots.
1424          */
1425         if (sn_register_xp_addr_region(part_sn2->remote_amos_page_pa,
1426                                        PAGE_SIZE, 1) < 0) {
1427                 dev_warn(xpc_part, "xpc_activating(%d) failed to register "
1428                          "xp_addr region\n", XPC_PARTID(part));
1429
1430                 ret = xpPhysAddrRegFailed;
1431                 XPC_DEACTIVATE_PARTITION(part, ret);
1432                 return ret;
1433         }
1434
1435         /*
1436          * Send activate IRQ to get other side to activate if they've not
1437          * already begun to do so.
1438          */
1439         xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
1440                                   cnodeid_to_nasid(0),
1441                                   part_sn2->activate_IRQ_nasid,
1442                                   part_sn2->activate_IRQ_phys_cpuid);
1443
1444         while ((ret = xpc_pull_remote_vars_part_sn2(part)) != xpSuccess) {
1445                 if (ret != xpRetry) {
1446                         XPC_DEACTIVATE_PARTITION(part, ret);
1447                         return ret;
1448                 }
1449
1450                 dev_dbg(xpc_part, "waiting to make first contact with "
1451                         "partition %d\n", XPC_PARTID(part));
1452
1453                 /* wait a 1/4 of a second or so */
1454                 (void)msleep_interruptible(250);
1455
1456                 if (part->act_state == XPC_P_AS_DEACTIVATING)
1457                         return part->reason;
1458         }
1459
1460         return xpSuccess;
1461 }
1462
1463 /*
1464  * Get the chctl flags and pull the openclose args and/or remote GPs as needed.
1465  */
1466 static u64
1467 xpc_get_chctl_all_flags_sn2(struct xpc_partition *part)
1468 {
1469         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1470         unsigned long irq_flags;
1471         union xpc_channel_ctl_flags chctl;
1472         enum xp_retval ret;
1473
1474         /*
1475          * See if there are any chctl flags to be handled.
1476          */
1477
1478         spin_lock_irqsave(&part->chctl_lock, irq_flags);
1479         chctl = part->chctl;
1480         if (chctl.all_flags != 0)
1481                 part->chctl.all_flags = 0;
1482
1483         spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
1484
1485         if (xpc_any_openclose_chctl_flags_set(&chctl)) {
1486                 ret = xpc_pull_remote_cachelines_sn2(part, part->
1487                                                      remote_openclose_args,
1488                                                      part_sn2->
1489                                                      remote_openclose_args_pa,
1490                                                      XPC_OPENCLOSE_ARGS_SIZE);
1491                 if (ret != xpSuccess) {
1492                         XPC_DEACTIVATE_PARTITION(part, ret);
1493
1494                         dev_dbg(xpc_chan, "failed to pull openclose args from "
1495                                 "partition %d, ret=%d\n", XPC_PARTID(part),
1496                                 ret);
1497
1498                         /* don't bother processing chctl flags anymore */
1499                         chctl.all_flags = 0;
1500                 }
1501         }
1502
1503         if (xpc_any_msg_chctl_flags_set(&chctl)) {
1504                 ret = xpc_pull_remote_cachelines_sn2(part, part_sn2->remote_GPs,
1505                                                      part_sn2->remote_GPs_pa,
1506                                                      XPC_GP_SIZE);
1507                 if (ret != xpSuccess) {
1508                         XPC_DEACTIVATE_PARTITION(part, ret);
1509
1510                         dev_dbg(xpc_chan, "failed to pull GPs from partition "
1511                                 "%d, ret=%d\n", XPC_PARTID(part), ret);
1512
1513                         /* don't bother processing chctl flags anymore */
1514                         chctl.all_flags = 0;
1515                 }
1516         }
1517
1518         return chctl.all_flags;
1519 }
1520
1521 /*
1522  * Allocate the local message queue and the notify queue.
1523  */
1524 static enum xp_retval
1525 xpc_allocate_local_msgqueue_sn2(struct xpc_channel *ch)
1526 {
1527         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1528         unsigned long irq_flags;
1529         int nentries;
1530         size_t nbytes;
1531
1532         for (nentries = ch->local_nentries; nentries > 0; nentries--) {
1533
1534                 nbytes = nentries * ch->entry_size;
1535                 ch_sn2->local_msgqueue =
1536                     xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL,
1537                                                   &ch_sn2->local_msgqueue_base);
1538                 if (ch_sn2->local_msgqueue == NULL)
1539                         continue;
1540
1541                 nbytes = nentries * sizeof(struct xpc_notify_sn2);
1542                 ch_sn2->notify_queue = kzalloc(nbytes, GFP_KERNEL);
1543                 if (ch_sn2->notify_queue == NULL) {
1544                         kfree(ch_sn2->local_msgqueue_base);
1545                         ch_sn2->local_msgqueue = NULL;
1546                         continue;
1547                 }
1548
1549                 spin_lock_irqsave(&ch->lock, irq_flags);
1550                 if (nentries < ch->local_nentries) {
1551                         dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, "
1552                                 "partid=%d, channel=%d\n", nentries,
1553                                 ch->local_nentries, ch->partid, ch->number);
1554
1555                         ch->local_nentries = nentries;
1556                 }
1557                 spin_unlock_irqrestore(&ch->lock, irq_flags);
1558                 return xpSuccess;
1559         }
1560
1561         dev_dbg(xpc_chan, "can't get memory for local message queue and notify "
1562                 "queue, partid=%d, channel=%d\n", ch->partid, ch->number);
1563         return xpNoMemory;
1564 }
1565
1566 /*
1567  * Allocate the cached remote message queue.
1568  */
1569 static enum xp_retval
1570 xpc_allocate_remote_msgqueue_sn2(struct xpc_channel *ch)
1571 {
1572         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1573         unsigned long irq_flags;
1574         int nentries;
1575         size_t nbytes;
1576
1577         DBUG_ON(ch->remote_nentries <= 0);
1578
1579         for (nentries = ch->remote_nentries; nentries > 0; nentries--) {
1580
1581                 nbytes = nentries * ch->entry_size;
1582                 ch_sn2->remote_msgqueue =
1583                     xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL, &ch_sn2->
1584                                                   remote_msgqueue_base);
1585                 if (ch_sn2->remote_msgqueue == NULL)
1586                         continue;
1587
1588                 spin_lock_irqsave(&ch->lock, irq_flags);
1589                 if (nentries < ch->remote_nentries) {
1590                         dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, "
1591                                 "partid=%d, channel=%d\n", nentries,
1592                                 ch->remote_nentries, ch->partid, ch->number);
1593
1594                         ch->remote_nentries = nentries;
1595                 }
1596                 spin_unlock_irqrestore(&ch->lock, irq_flags);
1597                 return xpSuccess;
1598         }
1599
1600         dev_dbg(xpc_chan, "can't get memory for cached remote message queue, "
1601                 "partid=%d, channel=%d\n", ch->partid, ch->number);
1602         return xpNoMemory;
1603 }
1604
1605 /*
1606  * Allocate message queues and other stuff associated with a channel.
1607  *
1608  * Note: Assumes all of the channel sizes are filled in.
1609  */
1610 static enum xp_retval
1611 xpc_setup_msg_structures_sn2(struct xpc_channel *ch)
1612 {
1613         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1614         enum xp_retval ret;
1615
1616         DBUG_ON(ch->flags & XPC_C_SETUP);
1617
1618         ret = xpc_allocate_local_msgqueue_sn2(ch);
1619         if (ret == xpSuccess) {
1620
1621                 ret = xpc_allocate_remote_msgqueue_sn2(ch);
1622                 if (ret != xpSuccess) {
1623                         kfree(ch_sn2->local_msgqueue_base);
1624                         ch_sn2->local_msgqueue = NULL;
1625                         kfree(ch_sn2->notify_queue);
1626                         ch_sn2->notify_queue = NULL;
1627                 }
1628         }
1629         return ret;
1630 }
1631
1632 /*
1633  * Free up message queues and other stuff that were allocated for the specified
1634  * channel.
1635  */
1636 static void
1637 xpc_teardown_msg_structures_sn2(struct xpc_channel *ch)
1638 {
1639         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1640
1641         DBUG_ON(!spin_is_locked(&ch->lock));
1642
1643         ch_sn2->remote_msgqueue_pa = 0;
1644
1645         ch_sn2->local_GP->get = 0;
1646         ch_sn2->local_GP->put = 0;
1647         ch_sn2->remote_GP.get = 0;
1648         ch_sn2->remote_GP.put = 0;
1649         ch_sn2->w_local_GP.get = 0;
1650         ch_sn2->w_local_GP.put = 0;
1651         ch_sn2->w_remote_GP.get = 0;
1652         ch_sn2->w_remote_GP.put = 0;
1653         ch_sn2->next_msg_to_pull = 0;
1654
1655         if (ch->flags & XPC_C_SETUP) {
1656                 dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n",
1657                         ch->flags, ch->partid, ch->number);
1658
1659                 kfree(ch_sn2->local_msgqueue_base);
1660                 ch_sn2->local_msgqueue = NULL;
1661                 kfree(ch_sn2->remote_msgqueue_base);
1662                 ch_sn2->remote_msgqueue = NULL;
1663                 kfree(ch_sn2->notify_queue);
1664                 ch_sn2->notify_queue = NULL;
1665         }
1666 }
1667
1668 /*
1669  * Notify those who wanted to be notified upon delivery of their message.
1670  */
1671 static void
1672 xpc_notify_senders_sn2(struct xpc_channel *ch, enum xp_retval reason, s64 put)
1673 {
1674         struct xpc_notify_sn2 *notify;
1675         u8 notify_type;
1676         s64 get = ch->sn.sn2.w_remote_GP.get - 1;
1677
1678         while (++get < put && atomic_read(&ch->n_to_notify) > 0) {
1679
1680                 notify = &ch->sn.sn2.notify_queue[get % ch->local_nentries];
1681
1682                 /*
1683                  * See if the notify entry indicates it was associated with
1684                  * a message who's sender wants to be notified. It is possible
1685                  * that it is, but someone else is doing or has done the
1686                  * notification.
1687                  */
1688                 notify_type = notify->type;
1689                 if (notify_type == 0 ||
1690                     cmpxchg(&notify->type, notify_type, 0) != notify_type) {
1691                         continue;
1692                 }
1693
1694                 DBUG_ON(notify_type != XPC_N_CALL);
1695
1696                 atomic_dec(&ch->n_to_notify);
1697
1698                 if (notify->func != NULL) {
1699                         dev_dbg(xpc_chan, "notify->func() called, notify=0x%p "
1700                                 "msg_number=%ld partid=%d channel=%d\n",
1701                                 (void *)notify, get, ch->partid, ch->number);
1702
1703                         notify->func(reason, ch->partid, ch->number,
1704                                      notify->key);
1705
1706                         dev_dbg(xpc_chan, "notify->func() returned, notify=0x%p"
1707                                 " msg_number=%ld partid=%d channel=%d\n",
1708                                 (void *)notify, get, ch->partid, ch->number);
1709                 }
1710         }
1711 }
1712
1713 static void
1714 xpc_notify_senders_of_disconnect_sn2(struct xpc_channel *ch)
1715 {
1716         xpc_notify_senders_sn2(ch, ch->reason, ch->sn.sn2.w_local_GP.put);
1717 }
1718
1719 /*
1720  * Clear some of the msg flags in the local message queue.
1721  */
1722 static inline void
1723 xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel *ch)
1724 {
1725         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1726         struct xpc_msg_sn2 *msg;
1727         s64 get;
1728
1729         get = ch_sn2->w_remote_GP.get;
1730         do {
1731                 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue +
1732                                              (get % ch->local_nentries) *
1733                                              ch->entry_size);
1734                 msg->flags = 0;
1735         } while (++get < ch_sn2->remote_GP.get);
1736 }
1737
1738 /*
1739  * Clear some of the msg flags in the remote message queue.
1740  */
1741 static inline void
1742 xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel *ch)
1743 {
1744         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1745         struct xpc_msg_sn2 *msg;
1746         s64 put;
1747
1748         put = ch_sn2->w_remote_GP.put;
1749         do {
1750                 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue +
1751                                              (put % ch->remote_nentries) *
1752                                              ch->entry_size);
1753                 msg->flags = 0;
1754         } while (++put < ch_sn2->remote_GP.put);
1755 }
1756
1757 static int
1758 xpc_n_of_deliverable_payloads_sn2(struct xpc_channel *ch)
1759 {
1760         return ch->sn.sn2.w_remote_GP.put - ch->sn.sn2.w_local_GP.get;
1761 }
1762
1763 static void
1764 xpc_process_msg_chctl_flags_sn2(struct xpc_partition *part, int ch_number)
1765 {
1766         struct xpc_channel *ch = &part->channels[ch_number];
1767         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1768         int npayloads_sent;
1769
1770         ch_sn2->remote_GP = part->sn.sn2.remote_GPs[ch_number];
1771
1772         /* See what, if anything, has changed for each connected channel */
1773
1774         xpc_msgqueue_ref(ch);
1775
1776         if (ch_sn2->w_remote_GP.get == ch_sn2->remote_GP.get &&
1777             ch_sn2->w_remote_GP.put == ch_sn2->remote_GP.put) {
1778                 /* nothing changed since GPs were last pulled */
1779                 xpc_msgqueue_deref(ch);
1780                 return;
1781         }
1782
1783         if (!(ch->flags & XPC_C_CONNECTED)) {
1784                 xpc_msgqueue_deref(ch);
1785                 return;
1786         }
1787
1788         /*
1789          * First check to see if messages recently sent by us have been
1790          * received by the other side. (The remote GET value will have
1791          * changed since we last looked at it.)
1792          */
1793
1794         if (ch_sn2->w_remote_GP.get != ch_sn2->remote_GP.get) {
1795
1796                 /*
1797                  * We need to notify any senders that want to be notified
1798                  * that their sent messages have been received by their
1799                  * intended recipients. We need to do this before updating
1800                  * w_remote_GP.get so that we don't allocate the same message
1801                  * queue entries prematurely (see xpc_allocate_msg()).
1802                  */
1803                 if (atomic_read(&ch->n_to_notify) > 0) {
1804                         /*
1805                          * Notify senders that messages sent have been
1806                          * received and delivered by the other side.
1807                          */
1808                         xpc_notify_senders_sn2(ch, xpMsgDelivered,
1809                                                ch_sn2->remote_GP.get);
1810                 }
1811
1812                 /*
1813                  * Clear msg->flags in previously sent messages, so that
1814                  * they're ready for xpc_allocate_msg().
1815                  */
1816                 xpc_clear_local_msgqueue_flags_sn2(ch);
1817
1818                 ch_sn2->w_remote_GP.get = ch_sn2->remote_GP.get;
1819
1820                 dev_dbg(xpc_chan, "w_remote_GP.get changed to %ld, partid=%d, "
1821                         "channel=%d\n", ch_sn2->w_remote_GP.get, ch->partid,
1822                         ch->number);
1823
1824                 /*
1825                  * If anyone was waiting for message queue entries to become
1826                  * available, wake them up.
1827                  */
1828                 if (atomic_read(&ch->n_on_msg_allocate_wq) > 0)
1829                         wake_up(&ch->msg_allocate_wq);
1830         }
1831
1832         /*
1833          * Now check for newly sent messages by the other side. (The remote
1834          * PUT value will have changed since we last looked at it.)
1835          */
1836
1837         if (ch_sn2->w_remote_GP.put != ch_sn2->remote_GP.put) {
1838                 /*
1839                  * Clear msg->flags in previously received messages, so that
1840                  * they're ready for xpc_get_deliverable_payload_sn2().
1841                  */
1842                 xpc_clear_remote_msgqueue_flags_sn2(ch);
1843
1844                 ch_sn2->w_remote_GP.put = ch_sn2->remote_GP.put;
1845
1846                 dev_dbg(xpc_chan, "w_remote_GP.put changed to %ld, partid=%d, "
1847                         "channel=%d\n", ch_sn2->w_remote_GP.put, ch->partid,
1848                         ch->number);
1849
1850                 npayloads_sent = xpc_n_of_deliverable_payloads_sn2(ch);
1851                 if (npayloads_sent > 0) {
1852                         dev_dbg(xpc_chan, "msgs waiting to be copied and "
1853                                 "delivered=%d, partid=%d, channel=%d\n",
1854                                 npayloads_sent, ch->partid, ch->number);
1855
1856                         if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE)
1857                                 xpc_activate_kthreads(ch, npayloads_sent);
1858                 }
1859         }
1860
1861         xpc_msgqueue_deref(ch);
1862 }
1863
1864 static struct xpc_msg_sn2 *
1865 xpc_pull_remote_msg_sn2(struct xpc_channel *ch, s64 get)
1866 {
1867         struct xpc_partition *part = &xpc_partitions[ch->partid];
1868         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1869         unsigned long remote_msg_pa;
1870         struct xpc_msg_sn2 *msg;
1871         u32 msg_index;
1872         u32 nmsgs;
1873         u64 msg_offset;
1874         enum xp_retval ret;
1875
1876         if (mutex_lock_interruptible(&ch_sn2->msg_to_pull_mutex) != 0) {
1877                 /* we were interrupted by a signal */
1878                 return NULL;
1879         }
1880
1881         while (get >= ch_sn2->next_msg_to_pull) {
1882
1883                 /* pull as many messages as are ready and able to be pulled */
1884
1885                 msg_index = ch_sn2->next_msg_to_pull % ch->remote_nentries;
1886
1887                 DBUG_ON(ch_sn2->next_msg_to_pull >= ch_sn2->w_remote_GP.put);
1888                 nmsgs = ch_sn2->w_remote_GP.put - ch_sn2->next_msg_to_pull;
1889                 if (msg_index + nmsgs > ch->remote_nentries) {
1890                         /* ignore the ones that wrap the msg queue for now */
1891                         nmsgs = ch->remote_nentries - msg_index;
1892                 }
1893
1894                 msg_offset = msg_index * ch->entry_size;
1895                 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue +
1896                     msg_offset);
1897                 remote_msg_pa = ch_sn2->remote_msgqueue_pa + msg_offset;
1898
1899                 ret = xpc_pull_remote_cachelines_sn2(part, msg, remote_msg_pa,
1900                                                      nmsgs * ch->entry_size);
1901                 if (ret != xpSuccess) {
1902
1903                         dev_dbg(xpc_chan, "failed to pull %d msgs starting with"
1904                                 " msg %ld from partition %d, channel=%d, "
1905                                 "ret=%d\n", nmsgs, ch_sn2->next_msg_to_pull,
1906                                 ch->partid, ch->number, ret);
1907
1908                         XPC_DEACTIVATE_PARTITION(part, ret);
1909
1910                         mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1911                         return NULL;
1912                 }
1913
1914                 ch_sn2->next_msg_to_pull += nmsgs;
1915         }
1916
1917         mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1918
1919         /* return the message we were looking for */
1920         msg_offset = (get % ch->remote_nentries) * ch->entry_size;
1921         msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue + msg_offset);
1922
1923         return msg;
1924 }
1925
1926 /*
1927  * Get the next deliverable message's payload.
1928  */
1929 static void *
1930 xpc_get_deliverable_payload_sn2(struct xpc_channel *ch)
1931 {
1932         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1933         struct xpc_msg_sn2 *msg;
1934         void *payload = NULL;
1935         s64 get;
1936
1937         do {
1938                 if (ch->flags & XPC_C_DISCONNECTING)
1939                         break;
1940
1941                 get = ch_sn2->w_local_GP.get;
1942                 rmb();  /* guarantee that .get loads before .put */
1943                 if (get == ch_sn2->w_remote_GP.put)
1944                         break;
1945
1946                 /* There are messages waiting to be pulled and delivered.
1947                  * We need to try to secure one for ourselves. We'll do this
1948                  * by trying to increment w_local_GP.get and hope that no one
1949                  * else beats us to it. If they do, we'll we'll simply have
1950                  * to try again for the next one.
1951                  */
1952
1953                 if (cmpxchg(&ch_sn2->w_local_GP.get, get, get + 1) == get) {
1954                         /* we got the entry referenced by get */
1955
1956                         dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, "
1957                                 "partid=%d, channel=%d\n", get + 1,
1958                                 ch->partid, ch->number);
1959
1960                         /* pull the message from the remote partition */
1961
1962                         msg = xpc_pull_remote_msg_sn2(ch, get);
1963
1964                         DBUG_ON(msg != NULL && msg->number != get);
1965                         DBUG_ON(msg != NULL && (msg->flags & XPC_M_SN2_DONE));
1966                         DBUG_ON(msg != NULL && !(msg->flags & XPC_M_SN2_READY));
1967
1968                         payload = &msg->payload;
1969                         break;
1970                 }
1971
1972         } while (1);
1973
1974         return payload;
1975 }
1976
1977 /*
1978  * Now we actually send the messages that are ready to be sent by advancing
1979  * the local message queue's Put value and then send a chctl msgrequest to the
1980  * recipient partition.
1981  */
1982 static void
1983 xpc_send_msgs_sn2(struct xpc_channel *ch, s64 initial_put)
1984 {
1985         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1986         struct xpc_msg_sn2 *msg;
1987         s64 put = initial_put + 1;
1988         int send_msgrequest = 0;
1989
1990         while (1) {
1991
1992                 while (1) {
1993                         if (put == ch_sn2->w_local_GP.put)
1994                                 break;
1995
1996                         msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->
1997                                                      local_msgqueue + (put %
1998                                                      ch->local_nentries) *
1999                                                      ch->entry_size);
2000
2001                         if (!(msg->flags & XPC_M_SN2_READY))
2002                                 break;
2003
2004                         put++;
2005                 }
2006
2007                 if (put == initial_put) {
2008                         /* nothing's changed */
2009                         break;
2010                 }
2011
2012                 if (cmpxchg_rel(&ch_sn2->local_GP->put, initial_put, put) !=
2013                     initial_put) {
2014                         /* someone else beat us to it */
2015                         DBUG_ON(ch_sn2->local_GP->put < initial_put);
2016                         break;
2017                 }
2018
2019                 /* we just set the new value of local_GP->put */
2020
2021                 dev_dbg(xpc_chan, "local_GP->put changed to %ld, partid=%d, "
2022                         "channel=%d\n", put, ch->partid, ch->number);
2023
2024                 send_msgrequest = 1;
2025
2026                 /*
2027                  * We need to ensure that the message referenced by
2028                  * local_GP->put is not XPC_M_SN2_READY or that local_GP->put
2029                  * equals w_local_GP.put, so we'll go have a look.
2030                  */
2031                 initial_put = put;
2032         }
2033
2034         if (send_msgrequest)
2035                 xpc_send_chctl_msgrequest_sn2(ch);
2036 }
2037
2038 /*
2039  * Allocate an entry for a message from the message queue associated with the
2040  * specified channel.
2041  */
2042 static enum xp_retval
2043 xpc_allocate_msg_sn2(struct xpc_channel *ch, u32 flags,
2044                      struct xpc_msg_sn2 **address_of_msg)
2045 {
2046         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2047         struct xpc_msg_sn2 *msg;
2048         enum xp_retval ret;
2049         s64 put;
2050
2051         /*
2052          * Get the next available message entry from the local message queue.
2053          * If none are available, we'll make sure that we grab the latest
2054          * GP values.
2055          */
2056         ret = xpTimeout;
2057
2058         while (1) {
2059
2060                 put = ch_sn2->w_local_GP.put;
2061                 rmb();  /* guarantee that .put loads before .get */
2062                 if (put - ch_sn2->w_remote_GP.get < ch->local_nentries) {
2063
2064                         /* There are available message entries. We need to try
2065                          * to secure one for ourselves. We'll do this by trying
2066                          * to increment w_local_GP.put as long as someone else
2067                          * doesn't beat us to it. If they do, we'll have to
2068                          * try again.
2069                          */
2070                         if (cmpxchg(&ch_sn2->w_local_GP.put, put, put + 1) ==
2071                             put) {
2072                                 /* we got the entry referenced by put */
2073                                 break;
2074                         }
2075                         continue;       /* try again */
2076                 }
2077
2078                 /*
2079                  * There aren't any available msg entries at this time.
2080                  *
2081                  * In waiting for a message entry to become available,
2082                  * we set a timeout in case the other side is not sending
2083                  * completion interrupts. This lets us fake a notify IRQ
2084                  * that will cause the notify IRQ handler to fetch the latest
2085                  * GP values as if an interrupt was sent by the other side.
2086                  */
2087                 if (ret == xpTimeout)
2088                         xpc_send_chctl_local_msgrequest_sn2(ch);
2089
2090                 if (flags & XPC_NOWAIT)
2091                         return xpNoWait;
2092
2093                 ret = xpc_allocate_msg_wait(ch);
2094                 if (ret != xpInterrupted && ret != xpTimeout)
2095                         return ret;
2096         }
2097
2098         /* get the message's address and initialize it */
2099         msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue +
2100                                      (put % ch->local_nentries) *
2101                                      ch->entry_size);
2102
2103         DBUG_ON(msg->flags != 0);
2104         msg->number = put;
2105
2106         dev_dbg(xpc_chan, "w_local_GP.put changed to %ld; msg=0x%p, "
2107                 "msg_number=%ld, partid=%d, channel=%d\n", put + 1,
2108                 (void *)msg, msg->number, ch->partid, ch->number);
2109
2110         *address_of_msg = msg;
2111         return xpSuccess;
2112 }
2113
2114 /*
2115  * Common code that does the actual sending of the message by advancing the
2116  * local message queue's Put value and sends a chctl msgrequest to the
2117  * partition the message is being sent to.
2118  */
2119 static enum xp_retval
2120 xpc_send_payload_sn2(struct xpc_channel *ch, u32 flags, void *payload,
2121                      u16 payload_size, u8 notify_type, xpc_notify_func func,
2122                      void *key)
2123 {
2124         enum xp_retval ret = xpSuccess;
2125         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2126         struct xpc_msg_sn2 *msg = msg;
2127         struct xpc_notify_sn2 *notify = notify;
2128         s64 msg_number;
2129         s64 put;
2130
2131         DBUG_ON(notify_type == XPC_N_CALL && func == NULL);
2132
2133         if (XPC_MSG_SIZE(payload_size) > ch->entry_size)
2134                 return xpPayloadTooBig;
2135
2136         xpc_msgqueue_ref(ch);
2137
2138         if (ch->flags & XPC_C_DISCONNECTING) {
2139                 ret = ch->reason;
2140                 goto out_1;
2141         }
2142         if (!(ch->flags & XPC_C_CONNECTED)) {
2143                 ret = xpNotConnected;
2144                 goto out_1;
2145         }
2146
2147         ret = xpc_allocate_msg_sn2(ch, flags, &msg);
2148         if (ret != xpSuccess)
2149                 goto out_1;
2150
2151         msg_number = msg->number;
2152
2153         if (notify_type != 0) {
2154                 /*
2155                  * Tell the remote side to send an ACK interrupt when the
2156                  * message has been delivered.
2157                  */
2158                 msg->flags |= XPC_M_SN2_INTERRUPT;
2159
2160                 atomic_inc(&ch->n_to_notify);
2161
2162                 notify = &ch_sn2->notify_queue[msg_number % ch->local_nentries];
2163                 notify->func = func;
2164                 notify->key = key;
2165                 notify->type = notify_type;
2166
2167                 /* ??? Is a mb() needed here? */
2168
2169                 if (ch->flags & XPC_C_DISCONNECTING) {
2170                         /*
2171                          * An error occurred between our last error check and
2172                          * this one. We will try to clear the type field from
2173                          * the notify entry. If we succeed then
2174                          * xpc_disconnect_channel() didn't already process
2175                          * the notify entry.
2176                          */
2177                         if (cmpxchg(&notify->type, notify_type, 0) ==
2178                             notify_type) {
2179                                 atomic_dec(&ch->n_to_notify);
2180                                 ret = ch->reason;
2181                         }
2182                         goto out_1;
2183                 }
2184         }
2185
2186         memcpy(&msg->payload, payload, payload_size);
2187
2188         msg->flags |= XPC_M_SN2_READY;
2189
2190         /*
2191          * The preceding store of msg->flags must occur before the following
2192          * load of local_GP->put.
2193          */
2194         mb();
2195
2196         /* see if the message is next in line to be sent, if so send it */
2197
2198         put = ch_sn2->local_GP->put;
2199         if (put == msg_number)
2200                 xpc_send_msgs_sn2(ch, put);
2201
2202 out_1:
2203         xpc_msgqueue_deref(ch);
2204         return ret;
2205 }
2206
2207 /*
2208  * Now we actually acknowledge the messages that have been delivered and ack'd
2209  * by advancing the cached remote message queue's Get value and if requested
2210  * send a chctl msgrequest to the message sender's partition.
2211  *
2212  * If a message has XPC_M_SN2_INTERRUPT set, send an interrupt to the partition
2213  * that sent the message.
2214  */
2215 static void
2216 xpc_acknowledge_msgs_sn2(struct xpc_channel *ch, s64 initial_get, u8 msg_flags)
2217 {
2218         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2219         struct xpc_msg_sn2 *msg;
2220         s64 get = initial_get + 1;
2221         int send_msgrequest = 0;
2222
2223         while (1) {
2224
2225                 while (1) {
2226                         if (get == ch_sn2->w_local_GP.get)
2227                                 break;
2228
2229                         msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->
2230                                                      remote_msgqueue + (get %
2231                                                      ch->remote_nentries) *
2232                                                      ch->entry_size);
2233
2234                         if (!(msg->flags & XPC_M_SN2_DONE))
2235                                 break;
2236
2237                         msg_flags |= msg->flags;
2238                         get++;
2239                 }
2240
2241                 if (get == initial_get) {
2242                         /* nothing's changed */
2243                         break;
2244                 }
2245
2246                 if (cmpxchg_rel(&ch_sn2->local_GP->get, initial_get, get) !=
2247                     initial_get) {
2248                         /* someone else beat us to it */
2249                         DBUG_ON(ch_sn2->local_GP->get <= initial_get);
2250                         break;
2251                 }
2252
2253                 /* we just set the new value of local_GP->get */
2254
2255                 dev_dbg(xpc_chan, "local_GP->get changed to %ld, partid=%d, "
2256                         "channel=%d\n", get, ch->partid, ch->number);
2257
2258                 send_msgrequest = (msg_flags & XPC_M_SN2_INTERRUPT);
2259
2260                 /*
2261                  * We need to ensure that the message referenced by
2262                  * local_GP->get is not XPC_M_SN2_DONE or that local_GP->get
2263                  * equals w_local_GP.get, so we'll go have a look.
2264                  */
2265                 initial_get = get;
2266         }
2267
2268         if (send_msgrequest)
2269                 xpc_send_chctl_msgrequest_sn2(ch);
2270 }
2271
2272 static void
2273 xpc_received_payload_sn2(struct xpc_channel *ch, void *payload)
2274 {
2275         struct xpc_msg_sn2 *msg;
2276         s64 msg_number;
2277         s64 get;
2278
2279         msg = container_of(payload, struct xpc_msg_sn2, payload);
2280         msg_number = msg->number;
2281
2282         dev_dbg(xpc_chan, "msg=0x%p, msg_number=%ld, partid=%d, channel=%d\n",
2283                 (void *)msg, msg_number, ch->partid, ch->number);
2284
2285         DBUG_ON((((u64)msg - (u64)ch->remote_msgqueue) / ch->entry_size) !=
2286                 msg_number % ch->remote_nentries);
2287         DBUG_ON(msg->flags & XPC_M_SN2_DONE);
2288
2289         msg->flags |= XPC_M_SN2_DONE;
2290
2291         /*
2292          * The preceding store of msg->flags must occur before the following
2293          * load of local_GP->get.
2294          */
2295         mb();
2296
2297         /*
2298          * See if this message is next in line to be acknowledged as having
2299          * been delivered.
2300          */
2301         get = ch->sn.sn2.local_GP->get;
2302         if (get == msg_number)
2303                 xpc_acknowledge_msgs_sn2(ch, get, msg->flags);
2304 }
2305
2306 int
2307 xpc_init_sn2(void)
2308 {
2309         int ret;
2310         size_t buf_size;
2311
2312         xpc_setup_partitions_sn = xpc_setup_partitions_sn_sn2;
2313         xpc_get_partition_rsvd_page_pa = xpc_get_partition_rsvd_page_pa_sn2;
2314         xpc_setup_rsvd_page_sn = xpc_setup_rsvd_page_sn_sn2;
2315         xpc_increment_heartbeat = xpc_increment_heartbeat_sn2;
2316         xpc_offline_heartbeat = xpc_offline_heartbeat_sn2;
2317         xpc_online_heartbeat = xpc_online_heartbeat_sn2;
2318         xpc_heartbeat_init = xpc_heartbeat_init_sn2;
2319         xpc_heartbeat_exit = xpc_heartbeat_exit_sn2;
2320         xpc_get_remote_heartbeat = xpc_get_remote_heartbeat_sn2;
2321
2322         xpc_request_partition_activation = xpc_request_partition_activation_sn2;
2323         xpc_request_partition_reactivation =
2324             xpc_request_partition_reactivation_sn2;
2325         xpc_request_partition_deactivation =
2326             xpc_request_partition_deactivation_sn2;
2327         xpc_cancel_partition_deactivation_request =
2328             xpc_cancel_partition_deactivation_request_sn2;
2329
2330         xpc_process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_sn2;
2331         xpc_setup_ch_structures_sn = xpc_setup_ch_structures_sn_sn2;
2332         xpc_teardown_ch_structures_sn = xpc_teardown_ch_structures_sn_sn2;
2333         xpc_make_first_contact = xpc_make_first_contact_sn2;
2334
2335         xpc_get_chctl_all_flags = xpc_get_chctl_all_flags_sn2;
2336         xpc_send_chctl_closerequest = xpc_send_chctl_closerequest_sn2;
2337         xpc_send_chctl_closereply = xpc_send_chctl_closereply_sn2;
2338         xpc_send_chctl_openrequest = xpc_send_chctl_openrequest_sn2;
2339         xpc_send_chctl_openreply = xpc_send_chctl_openreply_sn2;
2340
2341         xpc_save_remote_msgqueue_pa = xpc_save_remote_msgqueue_pa_sn2;
2342
2343         xpc_setup_msg_structures = xpc_setup_msg_structures_sn2;
2344         xpc_teardown_msg_structures = xpc_teardown_msg_structures_sn2;
2345
2346         xpc_notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_sn2;
2347         xpc_process_msg_chctl_flags = xpc_process_msg_chctl_flags_sn2;
2348         xpc_n_of_deliverable_payloads = xpc_n_of_deliverable_payloads_sn2;
2349         xpc_get_deliverable_payload = xpc_get_deliverable_payload_sn2;
2350
2351         xpc_indicate_partition_engaged = xpc_indicate_partition_engaged_sn2;
2352         xpc_indicate_partition_disengaged =
2353             xpc_indicate_partition_disengaged_sn2;
2354         xpc_partition_engaged = xpc_partition_engaged_sn2;
2355         xpc_any_partition_engaged = xpc_any_partition_engaged_sn2;
2356         xpc_assume_partition_disengaged = xpc_assume_partition_disengaged_sn2;
2357
2358         xpc_send_payload = xpc_send_payload_sn2;
2359         xpc_received_payload = xpc_received_payload_sn2;
2360
2361         if (offsetof(struct xpc_msg_sn2, payload) > XPC_MSG_HDR_MAX_SIZE) {
2362                 dev_err(xpc_part, "header portion of struct xpc_msg_sn2 is "
2363                         "larger than %d\n", XPC_MSG_HDR_MAX_SIZE);
2364                 return -E2BIG;
2365         }
2366
2367         buf_size = max(XPC_RP_VARS_SIZE,
2368                        XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES_SN2);
2369         xpc_remote_copy_buffer_sn2 = xpc_kmalloc_cacheline_aligned(buf_size,
2370                                                                    GFP_KERNEL,
2371                                               &xpc_remote_copy_buffer_base_sn2);
2372         if (xpc_remote_copy_buffer_sn2 == NULL) {
2373                 dev_err(xpc_part, "can't get memory for remote copy buffer\n");
2374                 return -ENOMEM;
2375         }
2376
2377         /* open up protections for IPI and [potentially] amo operations */
2378         xpc_allow_IPI_ops_sn2();
2379         xpc_allow_amo_ops_shub_wars_1_1_sn2();
2380
2381         /*
2382          * This is safe to do before the xpc_hb_checker thread has started
2383          * because the handler releases a wait queue.  If an interrupt is
2384          * received before the thread is waiting, it will not go to sleep,
2385          * but rather immediately process the interrupt.
2386          */
2387         ret = request_irq(SGI_XPC_ACTIVATE, xpc_handle_activate_IRQ_sn2, 0,
2388                           "xpc hb", NULL);
2389         if (ret != 0) {
2390                 dev_err(xpc_part, "can't register ACTIVATE IRQ handler, "
2391                         "errno=%d\n", -ret);
2392                 xpc_disallow_IPI_ops_sn2();
2393                 kfree(xpc_remote_copy_buffer_base_sn2);
2394         }
2395         return ret;
2396 }
2397
2398 void
2399 xpc_exit_sn2(void)
2400 {
2401         free_irq(SGI_XPC_ACTIVATE, NULL);
2402         xpc_disallow_IPI_ops_sn2();
2403         kfree(xpc_remote_copy_buffer_base_sn2);
2404 }