Merge git://git.kernel.org/pub/scm/linux/kernel/git/czankel/xtensa-2.6
[linux-2.6] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt61pci
23         Abstract: rt61pci device specific routines.
24         Supported chipsets: RT2561, RT2561s, RT2661.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt61pci.h"
39
40 /*
41  * Allow hardware encryption to be disabled.
42  */
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
47 /*
48  * Register access.
49  * BBP and RF register require indirect register access,
50  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51  * These indirect registers work with busy bits,
52  * and we will try maximal REGISTER_BUSY_COUNT times to access
53  * the register while taking a REGISTER_BUSY_DELAY us delay
54  * between each attampt. When the busy bit is still set at that time,
55  * the access attempt is considered to have failed,
56  * and we will print an error.
57  */
58 #define WAIT_FOR_BBP(__dev, __reg) \
59         rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60 #define WAIT_FOR_RF(__dev, __reg) \
61         rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
62 #define WAIT_FOR_MCU(__dev, __reg) \
63         rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
64                                H2M_MAILBOX_CSR_OWNER, (__reg))
65
66 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
67                               const unsigned int word, const u8 value)
68 {
69         u32 reg;
70
71         mutex_lock(&rt2x00dev->csr_mutex);
72
73         /*
74          * Wait until the BBP becomes available, afterwards we
75          * can safely write the new data into the register.
76          */
77         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
78                 reg = 0;
79                 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
80                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
81                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
82                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
83
84                 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
85         }
86
87         mutex_unlock(&rt2x00dev->csr_mutex);
88 }
89
90 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
91                              const unsigned int word, u8 *value)
92 {
93         u32 reg;
94
95         mutex_lock(&rt2x00dev->csr_mutex);
96
97         /*
98          * Wait until the BBP becomes available, afterwards we
99          * can safely write the read request into the register.
100          * After the data has been written, we wait until hardware
101          * returns the correct value, if at any time the register
102          * doesn't become available in time, reg will be 0xffffffff
103          * which means we return 0xff to the caller.
104          */
105         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106                 reg = 0;
107                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
110
111                 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
112
113                 WAIT_FOR_BBP(rt2x00dev, &reg);
114         }
115
116         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
117
118         mutex_unlock(&rt2x00dev->csr_mutex);
119 }
120
121 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
122                              const unsigned int word, const u32 value)
123 {
124         u32 reg;
125
126         if (!word)
127                 return;
128
129         mutex_lock(&rt2x00dev->csr_mutex);
130
131         /*
132          * Wait until the RF becomes available, afterwards we
133          * can safely write the new data into the register.
134          */
135         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
136                 reg = 0;
137                 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
138                 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
139                 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
140                 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
141
142                 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
143                 rt2x00_rf_write(rt2x00dev, word, value);
144         }
145
146         mutex_unlock(&rt2x00dev->csr_mutex);
147 }
148
149 #ifdef CONFIG_RT2X00_LIB_LEDS
150 /*
151  * This function is only called from rt61pci_led_brightness()
152  * make gcc happy by placing this function inside the
153  * same ifdef statement as the caller.
154  */
155 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
156                                 const u8 command, const u8 token,
157                                 const u8 arg0, const u8 arg1)
158 {
159         u32 reg;
160
161         mutex_lock(&rt2x00dev->csr_mutex);
162
163         /*
164          * Wait until the MCU becomes available, afterwards we
165          * can safely write the new data into the register.
166          */
167         if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
168                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
169                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
170                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
171                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
172                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
173
174                 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
175                 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
176                 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
177                 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
178         }
179
180         mutex_unlock(&rt2x00dev->csr_mutex);
181
182 }
183 #endif /* CONFIG_RT2X00_LIB_LEDS */
184
185 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
186 {
187         struct rt2x00_dev *rt2x00dev = eeprom->data;
188         u32 reg;
189
190         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
191
192         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
193         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
194         eeprom->reg_data_clock =
195             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
196         eeprom->reg_chip_select =
197             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
198 }
199
200 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
201 {
202         struct rt2x00_dev *rt2x00dev = eeprom->data;
203         u32 reg = 0;
204
205         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
206         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
207         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
208                            !!eeprom->reg_data_clock);
209         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
210                            !!eeprom->reg_chip_select);
211
212         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
213 }
214
215 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
216 static const struct rt2x00debug rt61pci_rt2x00debug = {
217         .owner  = THIS_MODULE,
218         .csr    = {
219                 .read           = rt2x00pci_register_read,
220                 .write          = rt2x00pci_register_write,
221                 .flags          = RT2X00DEBUGFS_OFFSET,
222                 .word_base      = CSR_REG_BASE,
223                 .word_size      = sizeof(u32),
224                 .word_count     = CSR_REG_SIZE / sizeof(u32),
225         },
226         .eeprom = {
227                 .read           = rt2x00_eeprom_read,
228                 .write          = rt2x00_eeprom_write,
229                 .word_base      = EEPROM_BASE,
230                 .word_size      = sizeof(u16),
231                 .word_count     = EEPROM_SIZE / sizeof(u16),
232         },
233         .bbp    = {
234                 .read           = rt61pci_bbp_read,
235                 .write          = rt61pci_bbp_write,
236                 .word_base      = BBP_BASE,
237                 .word_size      = sizeof(u8),
238                 .word_count     = BBP_SIZE / sizeof(u8),
239         },
240         .rf     = {
241                 .read           = rt2x00_rf_read,
242                 .write          = rt61pci_rf_write,
243                 .word_base      = RF_BASE,
244                 .word_size      = sizeof(u32),
245                 .word_count     = RF_SIZE / sizeof(u32),
246         },
247 };
248 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
249
250 #ifdef CONFIG_RT2X00_LIB_RFKILL
251 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
252 {
253         u32 reg;
254
255         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
256         return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
257 }
258 #else
259 #define rt61pci_rfkill_poll     NULL
260 #endif /* CONFIG_RT2X00_LIB_RFKILL */
261
262 #ifdef CONFIG_RT2X00_LIB_LEDS
263 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
264                                    enum led_brightness brightness)
265 {
266         struct rt2x00_led *led =
267             container_of(led_cdev, struct rt2x00_led, led_dev);
268         unsigned int enabled = brightness != LED_OFF;
269         unsigned int a_mode =
270             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
271         unsigned int bg_mode =
272             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
273
274         if (led->type == LED_TYPE_RADIO) {
275                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
276                                    MCU_LEDCS_RADIO_STATUS, enabled);
277
278                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
279                                     (led->rt2x00dev->led_mcu_reg & 0xff),
280                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
281         } else if (led->type == LED_TYPE_ASSOC) {
282                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
283                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
284                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
285                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
286
287                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
288                                     (led->rt2x00dev->led_mcu_reg & 0xff),
289                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
290         } else if (led->type == LED_TYPE_QUALITY) {
291                 /*
292                  * The brightness is divided into 6 levels (0 - 5),
293                  * this means we need to convert the brightness
294                  * argument into the matching level within that range.
295                  */
296                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
297                                     brightness / (LED_FULL / 6), 0);
298         }
299 }
300
301 static int rt61pci_blink_set(struct led_classdev *led_cdev,
302                              unsigned long *delay_on,
303                              unsigned long *delay_off)
304 {
305         struct rt2x00_led *led =
306             container_of(led_cdev, struct rt2x00_led, led_dev);
307         u32 reg;
308
309         rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
310         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
311         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
312         rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
313
314         return 0;
315 }
316
317 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
318                              struct rt2x00_led *led,
319                              enum led_type type)
320 {
321         led->rt2x00dev = rt2x00dev;
322         led->type = type;
323         led->led_dev.brightness_set = rt61pci_brightness_set;
324         led->led_dev.blink_set = rt61pci_blink_set;
325         led->flags = LED_INITIALIZED;
326 }
327 #endif /* CONFIG_RT2X00_LIB_LEDS */
328
329 /*
330  * Configuration handlers.
331  */
332 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
333                                      struct rt2x00lib_crypto *crypto,
334                                      struct ieee80211_key_conf *key)
335 {
336         struct hw_key_entry key_entry;
337         struct rt2x00_field32 field;
338         u32 mask;
339         u32 reg;
340
341         if (crypto->cmd == SET_KEY) {
342                 /*
343                  * rt2x00lib can't determine the correct free
344                  * key_idx for shared keys. We have 1 register
345                  * with key valid bits. The goal is simple, read
346                  * the register, if that is full we have no slots
347                  * left.
348                  * Note that each BSS is allowed to have up to 4
349                  * shared keys, so put a mask over the allowed
350                  * entries.
351                  */
352                 mask = (0xf << crypto->bssidx);
353
354                 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
355                 reg &= mask;
356
357                 if (reg && reg == mask)
358                         return -ENOSPC;
359
360                 key->hw_key_idx += reg ? ffz(reg) : 0;
361
362                 /*
363                  * Upload key to hardware
364                  */
365                 memcpy(key_entry.key, crypto->key,
366                        sizeof(key_entry.key));
367                 memcpy(key_entry.tx_mic, crypto->tx_mic,
368                        sizeof(key_entry.tx_mic));
369                 memcpy(key_entry.rx_mic, crypto->rx_mic,
370                        sizeof(key_entry.rx_mic));
371
372                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
373                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
374                                               &key_entry, sizeof(key_entry));
375
376                 /*
377                  * The cipher types are stored over 2 registers.
378                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
379                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
380                  * Using the correct defines correctly will cause overhead,
381                  * so just calculate the correct offset.
382                  */
383                 if (key->hw_key_idx < 8) {
384                         field.bit_offset = (3 * key->hw_key_idx);
385                         field.bit_mask = 0x7 << field.bit_offset;
386
387                         rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
388                         rt2x00_set_field32(&reg, field, crypto->cipher);
389                         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
390                 } else {
391                         field.bit_offset = (3 * (key->hw_key_idx - 8));
392                         field.bit_mask = 0x7 << field.bit_offset;
393
394                         rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
395                         rt2x00_set_field32(&reg, field, crypto->cipher);
396                         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
397                 }
398
399                 /*
400                  * The driver does not support the IV/EIV generation
401                  * in hardware. However it doesn't support the IV/EIV
402                  * inside the ieee80211 frame either, but requires it
403                  * to be provided seperately for the descriptor.
404                  * rt2x00lib will cut the IV/EIV data out of all frames
405                  * given to us by mac80211, but we must tell mac80211
406                  * to generate the IV/EIV data.
407                  */
408                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
409         }
410
411         /*
412          * SEC_CSR0 contains only single-bit fields to indicate
413          * a particular key is valid. Because using the FIELD32()
414          * defines directly will cause a lot of overhead we use
415          * a calculation to determine the correct bit directly.
416          */
417         mask = 1 << key->hw_key_idx;
418
419         rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
420         if (crypto->cmd == SET_KEY)
421                 reg |= mask;
422         else if (crypto->cmd == DISABLE_KEY)
423                 reg &= ~mask;
424         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
425
426         return 0;
427 }
428
429 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
430                                        struct rt2x00lib_crypto *crypto,
431                                        struct ieee80211_key_conf *key)
432 {
433         struct hw_pairwise_ta_entry addr_entry;
434         struct hw_key_entry key_entry;
435         u32 mask;
436         u32 reg;
437
438         if (crypto->cmd == SET_KEY) {
439                 /*
440                  * rt2x00lib can't determine the correct free
441                  * key_idx for pairwise keys. We have 2 registers
442                  * with key valid bits. The goal is simple, read
443                  * the first register, if that is full move to
444                  * the next register.
445                  * When both registers are full, we drop the key,
446                  * otherwise we use the first invalid entry.
447                  */
448                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
449                 if (reg && reg == ~0) {
450                         key->hw_key_idx = 32;
451                         rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
452                         if (reg && reg == ~0)
453                                 return -ENOSPC;
454                 }
455
456                 key->hw_key_idx += reg ? ffz(reg) : 0;
457
458                 /*
459                  * Upload key to hardware
460                  */
461                 memcpy(key_entry.key, crypto->key,
462                        sizeof(key_entry.key));
463                 memcpy(key_entry.tx_mic, crypto->tx_mic,
464                        sizeof(key_entry.tx_mic));
465                 memcpy(key_entry.rx_mic, crypto->rx_mic,
466                        sizeof(key_entry.rx_mic));
467
468                 memset(&addr_entry, 0, sizeof(addr_entry));
469                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
470                 addr_entry.cipher = crypto->cipher;
471
472                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
473                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
474                                               &key_entry, sizeof(key_entry));
475
476                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
477                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
478                                               &addr_entry, sizeof(addr_entry));
479
480                 /*
481                  * Enable pairwise lookup table for given BSS idx,
482                  * without this received frames will not be decrypted
483                  * by the hardware.
484                  */
485                 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
486                 reg |= (1 << crypto->bssidx);
487                 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
488
489                 /*
490                  * The driver does not support the IV/EIV generation
491                  * in hardware. However it doesn't support the IV/EIV
492                  * inside the ieee80211 frame either, but requires it
493                  * to be provided seperately for the descriptor.
494                  * rt2x00lib will cut the IV/EIV data out of all frames
495                  * given to us by mac80211, but we must tell mac80211
496                  * to generate the IV/EIV data.
497                  */
498                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
499         }
500
501         /*
502          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
503          * a particular key is valid. Because using the FIELD32()
504          * defines directly will cause a lot of overhead we use
505          * a calculation to determine the correct bit directly.
506          */
507         if (key->hw_key_idx < 32) {
508                 mask = 1 << key->hw_key_idx;
509
510                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
511                 if (crypto->cmd == SET_KEY)
512                         reg |= mask;
513                 else if (crypto->cmd == DISABLE_KEY)
514                         reg &= ~mask;
515                 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
516         } else {
517                 mask = 1 << (key->hw_key_idx - 32);
518
519                 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
520                 if (crypto->cmd == SET_KEY)
521                         reg |= mask;
522                 else if (crypto->cmd == DISABLE_KEY)
523                         reg &= ~mask;
524                 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
525         }
526
527         return 0;
528 }
529
530 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
531                                   const unsigned int filter_flags)
532 {
533         u32 reg;
534
535         /*
536          * Start configuration steps.
537          * Note that the version error will always be dropped
538          * and broadcast frames will always be accepted since
539          * there is no filter for it at this time.
540          */
541         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
542         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
543                            !(filter_flags & FIF_FCSFAIL));
544         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
545                            !(filter_flags & FIF_PLCPFAIL));
546         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
547                            !(filter_flags & FIF_CONTROL));
548         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
549                            !(filter_flags & FIF_PROMISC_IN_BSS));
550         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
551                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
552                            !rt2x00dev->intf_ap_count);
553         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
554         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
555                            !(filter_flags & FIF_ALLMULTI));
556         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
557         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
558                            !(filter_flags & FIF_CONTROL));
559         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
560 }
561
562 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
563                                 struct rt2x00_intf *intf,
564                                 struct rt2x00intf_conf *conf,
565                                 const unsigned int flags)
566 {
567         unsigned int beacon_base;
568         u32 reg;
569
570         if (flags & CONFIG_UPDATE_TYPE) {
571                 /*
572                  * Clear current synchronisation setup.
573                  * For the Beacon base registers we only need to clear
574                  * the first byte since that byte contains the VALID and OWNER
575                  * bits which (when set to 0) will invalidate the entire beacon.
576                  */
577                 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
578                 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
579
580                 /*
581                  * Enable synchronisation.
582                  */
583                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
584                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
585                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
586                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
587                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
588         }
589
590         if (flags & CONFIG_UPDATE_MAC) {
591                 reg = le32_to_cpu(conf->mac[1]);
592                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
593                 conf->mac[1] = cpu_to_le32(reg);
594
595                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
596                                               conf->mac, sizeof(conf->mac));
597         }
598
599         if (flags & CONFIG_UPDATE_BSSID) {
600                 reg = le32_to_cpu(conf->bssid[1]);
601                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
602                 conf->bssid[1] = cpu_to_le32(reg);
603
604                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
605                                               conf->bssid, sizeof(conf->bssid));
606         }
607 }
608
609 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
610                                struct rt2x00lib_erp *erp)
611 {
612         u32 reg;
613
614         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
615         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
616         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
617
618         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
619         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
620                            !!erp->short_preamble);
621         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
622
623         rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
624
625         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
626         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
627         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
628
629         rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
630         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
631         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
632         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
633         rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
634 }
635
636 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
637                                       struct antenna_setup *ant)
638 {
639         u8 r3;
640         u8 r4;
641         u8 r77;
642
643         rt61pci_bbp_read(rt2x00dev, 3, &r3);
644         rt61pci_bbp_read(rt2x00dev, 4, &r4);
645         rt61pci_bbp_read(rt2x00dev, 77, &r77);
646
647         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
648                           rt2x00_rf(&rt2x00dev->chip, RF5325));
649
650         /*
651          * Configure the RX antenna.
652          */
653         switch (ant->rx) {
654         case ANTENNA_HW_DIVERSITY:
655                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
656                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
657                                   (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
658                 break;
659         case ANTENNA_A:
660                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
661                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
662                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
663                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
664                 else
665                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
666                 break;
667         case ANTENNA_B:
668         default:
669                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
670                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
671                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
672                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
673                 else
674                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
675                 break;
676         }
677
678         rt61pci_bbp_write(rt2x00dev, 77, r77);
679         rt61pci_bbp_write(rt2x00dev, 3, r3);
680         rt61pci_bbp_write(rt2x00dev, 4, r4);
681 }
682
683 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
684                                       struct antenna_setup *ant)
685 {
686         u8 r3;
687         u8 r4;
688         u8 r77;
689
690         rt61pci_bbp_read(rt2x00dev, 3, &r3);
691         rt61pci_bbp_read(rt2x00dev, 4, &r4);
692         rt61pci_bbp_read(rt2x00dev, 77, &r77);
693
694         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
695                           rt2x00_rf(&rt2x00dev->chip, RF2529));
696         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
697                           !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
698
699         /*
700          * Configure the RX antenna.
701          */
702         switch (ant->rx) {
703         case ANTENNA_HW_DIVERSITY:
704                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
705                 break;
706         case ANTENNA_A:
707                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
708                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
709                 break;
710         case ANTENNA_B:
711         default:
712                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
713                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
714                 break;
715         }
716
717         rt61pci_bbp_write(rt2x00dev, 77, r77);
718         rt61pci_bbp_write(rt2x00dev, 3, r3);
719         rt61pci_bbp_write(rt2x00dev, 4, r4);
720 }
721
722 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
723                                            const int p1, const int p2)
724 {
725         u32 reg;
726
727         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
728
729         rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
730         rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
731
732         rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
733         rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
734
735         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
736 }
737
738 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
739                                         struct antenna_setup *ant)
740 {
741         u8 r3;
742         u8 r4;
743         u8 r77;
744
745         rt61pci_bbp_read(rt2x00dev, 3, &r3);
746         rt61pci_bbp_read(rt2x00dev, 4, &r4);
747         rt61pci_bbp_read(rt2x00dev, 77, &r77);
748
749         /*
750          * Configure the RX antenna.
751          */
752         switch (ant->rx) {
753         case ANTENNA_A:
754                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
755                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
756                 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
757                 break;
758         case ANTENNA_HW_DIVERSITY:
759                 /*
760                  * FIXME: Antenna selection for the rf 2529 is very confusing
761                  * in the legacy driver. Just default to antenna B until the
762                  * legacy code can be properly translated into rt2x00 code.
763                  */
764         case ANTENNA_B:
765         default:
766                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
767                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
768                 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
769                 break;
770         }
771
772         rt61pci_bbp_write(rt2x00dev, 77, r77);
773         rt61pci_bbp_write(rt2x00dev, 3, r3);
774         rt61pci_bbp_write(rt2x00dev, 4, r4);
775 }
776
777 struct antenna_sel {
778         u8 word;
779         /*
780          * value[0] -> non-LNA
781          * value[1] -> LNA
782          */
783         u8 value[2];
784 };
785
786 static const struct antenna_sel antenna_sel_a[] = {
787         { 96,  { 0x58, 0x78 } },
788         { 104, { 0x38, 0x48 } },
789         { 75,  { 0xfe, 0x80 } },
790         { 86,  { 0xfe, 0x80 } },
791         { 88,  { 0xfe, 0x80 } },
792         { 35,  { 0x60, 0x60 } },
793         { 97,  { 0x58, 0x58 } },
794         { 98,  { 0x58, 0x58 } },
795 };
796
797 static const struct antenna_sel antenna_sel_bg[] = {
798         { 96,  { 0x48, 0x68 } },
799         { 104, { 0x2c, 0x3c } },
800         { 75,  { 0xfe, 0x80 } },
801         { 86,  { 0xfe, 0x80 } },
802         { 88,  { 0xfe, 0x80 } },
803         { 35,  { 0x50, 0x50 } },
804         { 97,  { 0x48, 0x48 } },
805         { 98,  { 0x48, 0x48 } },
806 };
807
808 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
809                                struct antenna_setup *ant)
810 {
811         const struct antenna_sel *sel;
812         unsigned int lna;
813         unsigned int i;
814         u32 reg;
815
816         /*
817          * We should never come here because rt2x00lib is supposed
818          * to catch this and send us the correct antenna explicitely.
819          */
820         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
821                ant->tx == ANTENNA_SW_DIVERSITY);
822
823         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
824                 sel = antenna_sel_a;
825                 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
826         } else {
827                 sel = antenna_sel_bg;
828                 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
829         }
830
831         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
832                 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
833
834         rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
835
836         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
837                            rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
838         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
839                            rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
840
841         rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
842
843         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
844             rt2x00_rf(&rt2x00dev->chip, RF5325))
845                 rt61pci_config_antenna_5x(rt2x00dev, ant);
846         else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
847                 rt61pci_config_antenna_2x(rt2x00dev, ant);
848         else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
849                 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
850                         rt61pci_config_antenna_2x(rt2x00dev, ant);
851                 else
852                         rt61pci_config_antenna_2529(rt2x00dev, ant);
853         }
854 }
855
856 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
857                                     struct rt2x00lib_conf *libconf)
858 {
859         u16 eeprom;
860         short lna_gain = 0;
861
862         if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
863                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
864                         lna_gain += 14;
865
866                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
867                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
868         } else {
869                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
870                         lna_gain += 14;
871
872                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
873                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
874         }
875
876         rt2x00dev->lna_gain = lna_gain;
877 }
878
879 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
880                                    struct rf_channel *rf, const int txpower)
881 {
882         u8 r3;
883         u8 r94;
884         u8 smart;
885
886         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
887         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
888
889         smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
890                   rt2x00_rf(&rt2x00dev->chip, RF2527));
891
892         rt61pci_bbp_read(rt2x00dev, 3, &r3);
893         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
894         rt61pci_bbp_write(rt2x00dev, 3, r3);
895
896         r94 = 6;
897         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
898                 r94 += txpower - MAX_TXPOWER;
899         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
900                 r94 += txpower;
901         rt61pci_bbp_write(rt2x00dev, 94, r94);
902
903         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
904         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
905         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
906         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
907
908         udelay(200);
909
910         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
911         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
912         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
913         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
914
915         udelay(200);
916
917         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
918         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
919         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
920         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
921
922         msleep(1);
923 }
924
925 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
926                                    const int txpower)
927 {
928         struct rf_channel rf;
929
930         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
931         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
932         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
933         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
934
935         rt61pci_config_channel(rt2x00dev, &rf, txpower);
936 }
937
938 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
939                                     struct rt2x00lib_conf *libconf)
940 {
941         u32 reg;
942
943         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
944         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
945                            libconf->conf->long_frame_max_tx_count);
946         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
947                            libconf->conf->short_frame_max_tx_count);
948         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
949 }
950
951 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
952                                     struct rt2x00lib_conf *libconf)
953 {
954         u32 reg;
955
956         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
957         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
958         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
959
960         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
961         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
962         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
963
964         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
965         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
966                            libconf->conf->beacon_int * 16);
967         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
968 }
969
970 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
971                            struct rt2x00lib_conf *libconf,
972                            const unsigned int flags)
973 {
974         /* Always recalculate LNA gain before changing configuration */
975         rt61pci_config_lna_gain(rt2x00dev, libconf);
976
977         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
978                 rt61pci_config_channel(rt2x00dev, &libconf->rf,
979                                        libconf->conf->power_level);
980         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
981             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
982                 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
983         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
984                 rt61pci_config_retry_limit(rt2x00dev, libconf);
985         if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
986                 rt61pci_config_duration(rt2x00dev, libconf);
987 }
988
989 /*
990  * Link tuning
991  */
992 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
993                                struct link_qual *qual)
994 {
995         u32 reg;
996
997         /*
998          * Update FCS error count from register.
999          */
1000         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1001         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1002
1003         /*
1004          * Update False CCA count from register.
1005          */
1006         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1007         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1008 }
1009
1010 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
1011 {
1012         rt61pci_bbp_write(rt2x00dev, 17, 0x20);
1013         rt2x00dev->link.vgc_level = 0x20;
1014 }
1015
1016 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
1017 {
1018         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
1019         u8 r17;
1020         u8 up_bound;
1021         u8 low_bound;
1022
1023         rt61pci_bbp_read(rt2x00dev, 17, &r17);
1024
1025         /*
1026          * Determine r17 bounds.
1027          */
1028         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1029                 low_bound = 0x28;
1030                 up_bound = 0x48;
1031                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1032                         low_bound += 0x10;
1033                         up_bound += 0x10;
1034                 }
1035         } else {
1036                 low_bound = 0x20;
1037                 up_bound = 0x40;
1038                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1039                         low_bound += 0x10;
1040                         up_bound += 0x10;
1041                 }
1042         }
1043
1044         /*
1045          * If we are not associated, we should go straight to the
1046          * dynamic CCA tuning.
1047          */
1048         if (!rt2x00dev->intf_associated)
1049                 goto dynamic_cca_tune;
1050
1051         /*
1052          * Special big-R17 for very short distance
1053          */
1054         if (rssi >= -35) {
1055                 if (r17 != 0x60)
1056                         rt61pci_bbp_write(rt2x00dev, 17, 0x60);
1057                 return;
1058         }
1059
1060         /*
1061          * Special big-R17 for short distance
1062          */
1063         if (rssi >= -58) {
1064                 if (r17 != up_bound)
1065                         rt61pci_bbp_write(rt2x00dev, 17, up_bound);
1066                 return;
1067         }
1068
1069         /*
1070          * Special big-R17 for middle-short distance
1071          */
1072         if (rssi >= -66) {
1073                 low_bound += 0x10;
1074                 if (r17 != low_bound)
1075                         rt61pci_bbp_write(rt2x00dev, 17, low_bound);
1076                 return;
1077         }
1078
1079         /*
1080          * Special mid-R17 for middle distance
1081          */
1082         if (rssi >= -74) {
1083                 low_bound += 0x08;
1084                 if (r17 != low_bound)
1085                         rt61pci_bbp_write(rt2x00dev, 17, low_bound);
1086                 return;
1087         }
1088
1089         /*
1090          * Special case: Change up_bound based on the rssi.
1091          * Lower up_bound when rssi is weaker then -74 dBm.
1092          */
1093         up_bound -= 2 * (-74 - rssi);
1094         if (low_bound > up_bound)
1095                 up_bound = low_bound;
1096
1097         if (r17 > up_bound) {
1098                 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
1099                 return;
1100         }
1101
1102 dynamic_cca_tune:
1103
1104         /*
1105          * r17 does not yet exceed upper limit, continue and base
1106          * the r17 tuning on the false CCA count.
1107          */
1108         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
1109                 if (++r17 > up_bound)
1110                         r17 = up_bound;
1111                 rt61pci_bbp_write(rt2x00dev, 17, r17);
1112         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
1113                 if (--r17 < low_bound)
1114                         r17 = low_bound;
1115                 rt61pci_bbp_write(rt2x00dev, 17, r17);
1116         }
1117 }
1118
1119 /*
1120  * Firmware functions
1121  */
1122 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1123 {
1124         char *fw_name;
1125
1126         switch (rt2x00dev->chip.rt) {
1127         case RT2561:
1128                 fw_name = FIRMWARE_RT2561;
1129                 break;
1130         case RT2561s:
1131                 fw_name = FIRMWARE_RT2561s;
1132                 break;
1133         case RT2661:
1134                 fw_name = FIRMWARE_RT2661;
1135                 break;
1136         default:
1137                 fw_name = NULL;
1138                 break;
1139         }
1140
1141         return fw_name;
1142 }
1143
1144 static u16 rt61pci_get_firmware_crc(const void *data, const size_t len)
1145 {
1146         u16 crc;
1147
1148         /*
1149          * Use the crc itu-t algorithm.
1150          * The last 2 bytes in the firmware array are the crc checksum itself,
1151          * this means that we should never pass those 2 bytes to the crc
1152          * algorithm.
1153          */
1154         crc = crc_itu_t(0, data, len - 2);
1155         crc = crc_itu_t_byte(crc, 0);
1156         crc = crc_itu_t_byte(crc, 0);
1157
1158         return crc;
1159 }
1160
1161 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
1162                                  const size_t len)
1163 {
1164         int i;
1165         u32 reg;
1166
1167         /*
1168          * Wait for stable hardware.
1169          */
1170         for (i = 0; i < 100; i++) {
1171                 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1172                 if (reg)
1173                         break;
1174                 msleep(1);
1175         }
1176
1177         if (!reg) {
1178                 ERROR(rt2x00dev, "Unstable hardware.\n");
1179                 return -EBUSY;
1180         }
1181
1182         /*
1183          * Prepare MCU and mailbox for firmware loading.
1184          */
1185         reg = 0;
1186         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1187         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1188         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1189         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1190         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1191
1192         /*
1193          * Write firmware to device.
1194          */
1195         reg = 0;
1196         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1197         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1198         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1199
1200         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1201                                       data, len);
1202
1203         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1204         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1205
1206         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1207         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1208
1209         for (i = 0; i < 100; i++) {
1210                 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1211                 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1212                         break;
1213                 msleep(1);
1214         }
1215
1216         if (i == 100) {
1217                 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1218                 return -EBUSY;
1219         }
1220
1221         /*
1222          * Hardware needs another millisecond before it is ready.
1223          */
1224         msleep(1);
1225
1226         /*
1227          * Reset MAC and BBP registers.
1228          */
1229         reg = 0;
1230         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1231         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1232         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1233
1234         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1235         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1236         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1237         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1238
1239         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1240         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1241         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1242
1243         return 0;
1244 }
1245
1246 /*
1247  * Initialization functions.
1248  */
1249 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1250 {
1251         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1252         u32 word;
1253
1254         if (entry->queue->qid == QID_RX) {
1255                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1256
1257                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1258         } else {
1259                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1260
1261                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1262                         rt2x00_get_field32(word, TXD_W0_VALID));
1263         }
1264 }
1265
1266 static void rt61pci_clear_entry(struct queue_entry *entry)
1267 {
1268         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1269         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1270         u32 word;
1271
1272         if (entry->queue->qid == QID_RX) {
1273                 rt2x00_desc_read(entry_priv->desc, 5, &word);
1274                 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1275                                    skbdesc->skb_dma);
1276                 rt2x00_desc_write(entry_priv->desc, 5, word);
1277
1278                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1279                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1280                 rt2x00_desc_write(entry_priv->desc, 0, word);
1281         } else {
1282                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1283                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1284                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1285                 rt2x00_desc_write(entry_priv->desc, 0, word);
1286         }
1287 }
1288
1289 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1290 {
1291         struct queue_entry_priv_pci *entry_priv;
1292         u32 reg;
1293
1294         /*
1295          * Initialize registers.
1296          */
1297         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1298         rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1299                            rt2x00dev->tx[0].limit);
1300         rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1301                            rt2x00dev->tx[1].limit);
1302         rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1303                            rt2x00dev->tx[2].limit);
1304         rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1305                            rt2x00dev->tx[3].limit);
1306         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1307
1308         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1309         rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1310                            rt2x00dev->tx[0].desc_size / 4);
1311         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1312
1313         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1314         rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1315         rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1316                            entry_priv->desc_dma);
1317         rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1318
1319         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1320         rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1321         rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1322                            entry_priv->desc_dma);
1323         rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1324
1325         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1326         rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1327         rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1328                            entry_priv->desc_dma);
1329         rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1330
1331         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1332         rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1333         rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1334                            entry_priv->desc_dma);
1335         rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1336
1337         rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1338         rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1339         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1340                            rt2x00dev->rx->desc_size / 4);
1341         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1342         rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1343
1344         entry_priv = rt2x00dev->rx->entries[0].priv_data;
1345         rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1346         rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1347                            entry_priv->desc_dma);
1348         rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1349
1350         rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1351         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1352         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1353         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1354         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1355         rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1356
1357         rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1358         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1359         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1360         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1361         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1362         rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1363
1364         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1365         rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1366         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1367
1368         return 0;
1369 }
1370
1371 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1372 {
1373         u32 reg;
1374
1375         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1376         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1377         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1378         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1379         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1380
1381         rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1382         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1383         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1384         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1385         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1386         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1387         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1388         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1389         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1390         rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1391
1392         /*
1393          * CCK TXD BBP registers
1394          */
1395         rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1396         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1397         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1398         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1399         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1400         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1401         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1402         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1403         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1404         rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1405
1406         /*
1407          * OFDM TXD BBP registers
1408          */
1409         rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1410         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1411         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1412         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1413         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1414         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1415         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1416         rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1417
1418         rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1419         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1420         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1421         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1422         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1423         rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1424
1425         rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1426         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1427         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1428         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1429         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1430         rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1431
1432         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1433         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1434         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1435         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1436         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1437         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1438         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1439         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1440
1441         rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1442
1443         rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1444
1445         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1446         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1447         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1448
1449         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1450
1451         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1452                 return -EBUSY;
1453
1454         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1455
1456         /*
1457          * Invalidate all Shared Keys (SEC_CSR0),
1458          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1459          */
1460         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1461         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1462         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1463
1464         rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1465         rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1466         rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1467         rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1468
1469         rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1470
1471         rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1472
1473         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1474
1475         /*
1476          * Clear all beacons
1477          * For the Beacon base registers we only need to clear
1478          * the first byte since that byte contains the VALID and OWNER
1479          * bits which (when set to 0) will invalidate the entire beacon.
1480          */
1481         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1482         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1483         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1484         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1485
1486         /*
1487          * We must clear the error counters.
1488          * These registers are cleared on read,
1489          * so we may pass a useless variable to store the value.
1490          */
1491         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1492         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1493         rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1494
1495         /*
1496          * Reset MAC and BBP registers.
1497          */
1498         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1499         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1500         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1501         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1502
1503         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1504         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1505         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1506         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1507
1508         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1509         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1510         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1511
1512         return 0;
1513 }
1514
1515 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1516 {
1517         unsigned int i;
1518         u8 value;
1519
1520         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1521                 rt61pci_bbp_read(rt2x00dev, 0, &value);
1522                 if ((value != 0xff) && (value != 0x00))
1523                         return 0;
1524                 udelay(REGISTER_BUSY_DELAY);
1525         }
1526
1527         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1528         return -EACCES;
1529 }
1530
1531 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1532 {
1533         unsigned int i;
1534         u16 eeprom;
1535         u8 reg_id;
1536         u8 value;
1537
1538         if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1539                 return -EACCES;
1540
1541         rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1542         rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1543         rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1544         rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1545         rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1546         rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1547         rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1548         rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1549         rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1550         rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1551         rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1552         rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1553         rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1554         rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1555         rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1556         rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1557         rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1558         rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1559         rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1560         rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1561         rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1562         rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1563         rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1564         rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1565
1566         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1567                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1568
1569                 if (eeprom != 0xffff && eeprom != 0x0000) {
1570                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1571                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1572                         rt61pci_bbp_write(rt2x00dev, reg_id, value);
1573                 }
1574         }
1575
1576         return 0;
1577 }
1578
1579 /*
1580  * Device state switch handlers.
1581  */
1582 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1583                               enum dev_state state)
1584 {
1585         u32 reg;
1586
1587         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1588         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1589                            (state == STATE_RADIO_RX_OFF) ||
1590                            (state == STATE_RADIO_RX_OFF_LINK));
1591         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1592 }
1593
1594 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1595                                enum dev_state state)
1596 {
1597         int mask = (state == STATE_RADIO_IRQ_OFF);
1598         u32 reg;
1599
1600         /*
1601          * When interrupts are being enabled, the interrupt registers
1602          * should clear the register to assure a clean state.
1603          */
1604         if (state == STATE_RADIO_IRQ_ON) {
1605                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1606                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1607
1608                 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1609                 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1610         }
1611
1612         /*
1613          * Only toggle the interrupts bits we are going to use.
1614          * Non-checked interrupt bits are disabled by default.
1615          */
1616         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1617         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1618         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1619         rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1620         rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1621         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1622
1623         rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1624         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1625         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1626         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1627         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1628         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1629         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1630         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1631         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1632         rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1633 }
1634
1635 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1636 {
1637         u32 reg;
1638
1639         /*
1640          * Initialize all registers.
1641          */
1642         if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1643                      rt61pci_init_registers(rt2x00dev) ||
1644                      rt61pci_init_bbp(rt2x00dev)))
1645                 return -EIO;
1646
1647         /*
1648          * Enable RX.
1649          */
1650         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1651         rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1652         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1653
1654         return 0;
1655 }
1656
1657 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1658 {
1659         u32 reg;
1660
1661         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1662
1663         /*
1664          * Disable synchronisation.
1665          */
1666         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1667
1668         /*
1669          * Cancel RX and TX.
1670          */
1671         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1672         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1673         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1674         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1675         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1676         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1677 }
1678
1679 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1680 {
1681         u32 reg;
1682         unsigned int i;
1683         char put_to_sleep;
1684
1685         put_to_sleep = (state != STATE_AWAKE);
1686
1687         rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1688         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1689         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1690         rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1691
1692         /*
1693          * Device is not guaranteed to be in the requested state yet.
1694          * We must wait until the register indicates that the
1695          * device has entered the correct state.
1696          */
1697         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1698                 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1699                 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1700                 if (state == !put_to_sleep)
1701                         return 0;
1702                 msleep(10);
1703         }
1704
1705         return -EBUSY;
1706 }
1707
1708 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1709                                     enum dev_state state)
1710 {
1711         int retval = 0;
1712
1713         switch (state) {
1714         case STATE_RADIO_ON:
1715                 retval = rt61pci_enable_radio(rt2x00dev);
1716                 break;
1717         case STATE_RADIO_OFF:
1718                 rt61pci_disable_radio(rt2x00dev);
1719                 break;
1720         case STATE_RADIO_RX_ON:
1721         case STATE_RADIO_RX_ON_LINK:
1722         case STATE_RADIO_RX_OFF:
1723         case STATE_RADIO_RX_OFF_LINK:
1724                 rt61pci_toggle_rx(rt2x00dev, state);
1725                 break;
1726         case STATE_RADIO_IRQ_ON:
1727         case STATE_RADIO_IRQ_OFF:
1728                 rt61pci_toggle_irq(rt2x00dev, state);
1729                 break;
1730         case STATE_DEEP_SLEEP:
1731         case STATE_SLEEP:
1732         case STATE_STANDBY:
1733         case STATE_AWAKE:
1734                 retval = rt61pci_set_state(rt2x00dev, state);
1735                 break;
1736         default:
1737                 retval = -ENOTSUPP;
1738                 break;
1739         }
1740
1741         if (unlikely(retval))
1742                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1743                       state, retval);
1744
1745         return retval;
1746 }
1747
1748 /*
1749  * TX descriptor initialization
1750  */
1751 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1752                                   struct sk_buff *skb,
1753                                   struct txentry_desc *txdesc)
1754 {
1755         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1756         __le32 *txd = skbdesc->desc;
1757         u32 word;
1758
1759         /*
1760          * Start writing the descriptor words.
1761          */
1762         rt2x00_desc_read(txd, 1, &word);
1763         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1764         rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1765         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1766         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1767         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1768         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1769                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1770         rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1771         rt2x00_desc_write(txd, 1, word);
1772
1773         rt2x00_desc_read(txd, 2, &word);
1774         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1775         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1776         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1777         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1778         rt2x00_desc_write(txd, 2, word);
1779
1780         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1781                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1782                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1783         }
1784
1785         rt2x00_desc_read(txd, 5, &word);
1786         rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1787         rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1788                            skbdesc->entry->entry_idx);
1789         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1790                            TXPOWER_TO_DEV(rt2x00dev->tx_power));
1791         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1792         rt2x00_desc_write(txd, 5, word);
1793
1794         rt2x00_desc_read(txd, 6, &word);
1795         rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1796                            skbdesc->skb_dma);
1797         rt2x00_desc_write(txd, 6, word);
1798
1799         if (skbdesc->desc_len > TXINFO_SIZE) {
1800                 rt2x00_desc_read(txd, 11, &word);
1801                 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1802                 rt2x00_desc_write(txd, 11, word);
1803         }
1804
1805         rt2x00_desc_read(txd, 0, &word);
1806         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1807         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1808         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1809                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1810         rt2x00_set_field32(&word, TXD_W0_ACK,
1811                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1812         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1813                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1814         rt2x00_set_field32(&word, TXD_W0_OFDM,
1815                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1816         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1817         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1818                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1819         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1820                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1821         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1822                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1823         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1824         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1825         rt2x00_set_field32(&word, TXD_W0_BURST,
1826                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1827         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1828         rt2x00_desc_write(txd, 0, word);
1829 }
1830
1831 /*
1832  * TX data initialization
1833  */
1834 static void rt61pci_write_beacon(struct queue_entry *entry)
1835 {
1836         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1837         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1838         unsigned int beacon_base;
1839         u32 reg;
1840
1841         /*
1842          * Disable beaconing while we are reloading the beacon data,
1843          * otherwise we might be sending out invalid data.
1844          */
1845         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1846         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1847         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1848         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1849         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1850
1851         /*
1852          * Write entire beacon with descriptor to register.
1853          */
1854         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1855         rt2x00pci_register_multiwrite(rt2x00dev,
1856                                       beacon_base,
1857                                       skbdesc->desc, skbdesc->desc_len);
1858         rt2x00pci_register_multiwrite(rt2x00dev,
1859                                       beacon_base + skbdesc->desc_len,
1860                                       entry->skb->data, entry->skb->len);
1861
1862         /*
1863          * Clean up beacon skb.
1864          */
1865         dev_kfree_skb_any(entry->skb);
1866         entry->skb = NULL;
1867 }
1868
1869 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1870                                   const enum data_queue_qid queue)
1871 {
1872         u32 reg;
1873
1874         if (queue == QID_BEACON) {
1875                 /*
1876                  * For Wi-Fi faily generated beacons between participating
1877                  * stations. Set TBTT phase adaptive adjustment step to 8us.
1878                  */
1879                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1880
1881                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1882                 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1883                         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1884                         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1885                         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1886                         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1887                 }
1888                 return;
1889         }
1890
1891         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1892         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1893         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1894         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1895         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1896         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1897 }
1898
1899 /*
1900  * RX control handlers
1901  */
1902 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1903 {
1904         u8 offset = rt2x00dev->lna_gain;
1905         u8 lna;
1906
1907         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1908         switch (lna) {
1909         case 3:
1910                 offset += 90;
1911                 break;
1912         case 2:
1913                 offset += 74;
1914                 break;
1915         case 1:
1916                 offset += 64;
1917                 break;
1918         default:
1919                 return 0;
1920         }
1921
1922         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1923                 if (lna == 3 || lna == 2)
1924                         offset += 10;
1925         }
1926
1927         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1928 }
1929
1930 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1931                                 struct rxdone_entry_desc *rxdesc)
1932 {
1933         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1934         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1935         u32 word0;
1936         u32 word1;
1937
1938         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1939         rt2x00_desc_read(entry_priv->desc, 1, &word1);
1940
1941         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1942                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1943
1944         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1945                 rxdesc->cipher =
1946                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1947                 rxdesc->cipher_status =
1948                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1949         }
1950
1951         if (rxdesc->cipher != CIPHER_NONE) {
1952                 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
1953                 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
1954                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1955
1956                 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
1957                 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1958
1959                 /*
1960                  * Hardware has stripped IV/EIV data from 802.11 frame during
1961                  * decryption. It has provided the data seperately but rt2x00lib
1962                  * should decide if it should be reinserted.
1963                  */
1964                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1965
1966                 /*
1967                  * FIXME: Legacy driver indicates that the frame does
1968                  * contain the Michael Mic. Unfortunately, in rt2x00
1969                  * the MIC seems to be missing completely...
1970                  */
1971                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1972
1973                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1974                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1975                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1976                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1977         }
1978
1979         /*
1980          * Obtain the status about this packet.
1981          * When frame was received with an OFDM bitrate,
1982          * the signal is the PLCP value. If it was received with
1983          * a CCK bitrate the signal is the rate in 100kbit/s.
1984          */
1985         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1986         rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
1987         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1988
1989         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1990                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1991         else
1992                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1993         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1994                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1995 }
1996
1997 /*
1998  * Interrupt functions.
1999  */
2000 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2001 {
2002         struct data_queue *queue;
2003         struct queue_entry *entry;
2004         struct queue_entry *entry_done;
2005         struct queue_entry_priv_pci *entry_priv;
2006         struct txdone_entry_desc txdesc;
2007         u32 word;
2008         u32 reg;
2009         u32 old_reg;
2010         int type;
2011         int index;
2012
2013         /*
2014          * During each loop we will compare the freshly read
2015          * STA_CSR4 register value with the value read from
2016          * the previous loop. If the 2 values are equal then
2017          * we should stop processing because the chance it
2018          * quite big that the device has been unplugged and
2019          * we risk going into an endless loop.
2020          */
2021         old_reg = 0;
2022
2023         while (1) {
2024                 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2025                 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2026                         break;
2027
2028                 if (old_reg == reg)
2029                         break;
2030                 old_reg = reg;
2031
2032                 /*
2033                  * Skip this entry when it contains an invalid
2034                  * queue identication number.
2035                  */
2036                 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2037                 queue = rt2x00queue_get_queue(rt2x00dev, type);
2038                 if (unlikely(!queue))
2039                         continue;
2040
2041                 /*
2042                  * Skip this entry when it contains an invalid
2043                  * index number.
2044                  */
2045                 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2046                 if (unlikely(index >= queue->limit))
2047                         continue;
2048
2049                 entry = &queue->entries[index];
2050                 entry_priv = entry->priv_data;
2051                 rt2x00_desc_read(entry_priv->desc, 0, &word);
2052
2053                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2054                     !rt2x00_get_field32(word, TXD_W0_VALID))
2055                         return;
2056
2057                 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2058                 while (entry != entry_done) {
2059                         /* Catch up.
2060                          * Just report any entries we missed as failed.
2061                          */
2062                         WARNING(rt2x00dev,
2063                                 "TX status report missed for entry %d\n",
2064                                 entry_done->entry_idx);
2065
2066                         txdesc.flags = 0;
2067                         __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2068                         txdesc.retry = 0;
2069
2070                         rt2x00lib_txdone(entry_done, &txdesc);
2071                         entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2072                 }
2073
2074                 /*
2075                  * Obtain the status about this packet.
2076                  */
2077                 txdesc.flags = 0;
2078                 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2079                 case 0: /* Success, maybe with retry */
2080                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2081                         break;
2082                 case 6: /* Failure, excessive retries */
2083                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2084                         /* Don't break, this is a failed frame! */
2085                 default: /* Failure */
2086                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
2087                 }
2088                 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2089
2090                 rt2x00lib_txdone(entry, &txdesc);
2091         }
2092 }
2093
2094 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2095 {
2096         struct rt2x00_dev *rt2x00dev = dev_instance;
2097         u32 reg_mcu;
2098         u32 reg;
2099
2100         /*
2101          * Get the interrupt sources & saved to local variable.
2102          * Write register value back to clear pending interrupts.
2103          */
2104         rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2105         rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2106
2107         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2108         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2109
2110         if (!reg && !reg_mcu)
2111                 return IRQ_NONE;
2112
2113         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2114                 return IRQ_HANDLED;
2115
2116         /*
2117          * Handle interrupts, walk through all bits
2118          * and run the tasks, the bits are checked in order of
2119          * priority.
2120          */
2121
2122         /*
2123          * 1 - Rx ring done interrupt.
2124          */
2125         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2126                 rt2x00pci_rxdone(rt2x00dev);
2127
2128         /*
2129          * 2 - Tx ring done interrupt.
2130          */
2131         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2132                 rt61pci_txdone(rt2x00dev);
2133
2134         /*
2135          * 3 - Handle MCU command done.
2136          */
2137         if (reg_mcu)
2138                 rt2x00pci_register_write(rt2x00dev,
2139                                          M2H_CMD_DONE_CSR, 0xffffffff);
2140
2141         return IRQ_HANDLED;
2142 }
2143
2144 /*
2145  * Device probe functions.
2146  */
2147 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2148 {
2149         struct eeprom_93cx6 eeprom;
2150         u32 reg;
2151         u16 word;
2152         u8 *mac;
2153         s8 value;
2154
2155         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2156
2157         eeprom.data = rt2x00dev;
2158         eeprom.register_read = rt61pci_eepromregister_read;
2159         eeprom.register_write = rt61pci_eepromregister_write;
2160         eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2161             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2162         eeprom.reg_data_in = 0;
2163         eeprom.reg_data_out = 0;
2164         eeprom.reg_data_clock = 0;
2165         eeprom.reg_chip_select = 0;
2166
2167         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2168                                EEPROM_SIZE / sizeof(u16));
2169
2170         /*
2171          * Start validation of the data that has been read.
2172          */
2173         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2174         if (!is_valid_ether_addr(mac)) {
2175                 random_ether_addr(mac);
2176                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2177         }
2178
2179         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2180         if (word == 0xffff) {
2181                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2182                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2183                                    ANTENNA_B);
2184                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2185                                    ANTENNA_B);
2186                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2187                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2188                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2189                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2190                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2191                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2192         }
2193
2194         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2195         if (word == 0xffff) {
2196                 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2197                 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2198                 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
2199                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2200                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2201                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2202                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2203                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2204         }
2205
2206         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2207         if (word == 0xffff) {
2208                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2209                                    LED_MODE_DEFAULT);
2210                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2211                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2212         }
2213
2214         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2215         if (word == 0xffff) {
2216                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2217                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2218                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2219                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2220         }
2221
2222         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2223         if (word == 0xffff) {
2224                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2225                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2226                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2227                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2228         } else {
2229                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2230                 if (value < -10 || value > 10)
2231                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2232                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2233                 if (value < -10 || value > 10)
2234                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2235                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2236         }
2237
2238         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2239         if (word == 0xffff) {
2240                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2241                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2242                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2243                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2244         } else {
2245                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2246                 if (value < -10 || value > 10)
2247                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2248                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2249                 if (value < -10 || value > 10)
2250                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2251                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2252         }
2253
2254         return 0;
2255 }
2256
2257 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2258 {
2259         u32 reg;
2260         u16 value;
2261         u16 eeprom;
2262         u16 device;
2263
2264         /*
2265          * Read EEPROM word for configuration.
2266          */
2267         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2268
2269         /*
2270          * Identify RF chipset.
2271          * To determine the RT chip we have to read the
2272          * PCI header of the device.
2273          */
2274         pci_read_config_word(to_pci_dev(rt2x00dev->dev),
2275                              PCI_CONFIG_HEADER_DEVICE, &device);
2276         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2277         rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2278         rt2x00_set_chip(rt2x00dev, device, value, reg);
2279
2280         if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2281             !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2282             !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2283             !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2284                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2285                 return -ENODEV;
2286         }
2287
2288         /*
2289          * Determine number of antenna's.
2290          */
2291         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2292                 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2293
2294         /*
2295          * Identify default antenna configuration.
2296          */
2297         rt2x00dev->default_ant.tx =
2298             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2299         rt2x00dev->default_ant.rx =
2300             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2301
2302         /*
2303          * Read the Frame type.
2304          */
2305         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2306                 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2307
2308         /*
2309          * Detect if this device has an hardware controlled radio.
2310          */
2311 #ifdef CONFIG_RT2X00_LIB_RFKILL
2312         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2313                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2314 #endif /* CONFIG_RT2X00_LIB_RFKILL */
2315
2316         /*
2317          * Read frequency offset and RF programming sequence.
2318          */
2319         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2320         if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2321                 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2322
2323         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2324
2325         /*
2326          * Read external LNA informations.
2327          */
2328         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2329
2330         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2331                 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2332         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2333                 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2334
2335         /*
2336          * When working with a RF2529 chip without double antenna
2337          * the antenna settings should be gathered from the NIC
2338          * eeprom word.
2339          */
2340         if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2341             !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2342                 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
2343                 case 0:
2344                         rt2x00dev->default_ant.tx = ANTENNA_B;
2345                         rt2x00dev->default_ant.rx = ANTENNA_A;
2346                         break;
2347                 case 1:
2348                         rt2x00dev->default_ant.tx = ANTENNA_B;
2349                         rt2x00dev->default_ant.rx = ANTENNA_B;
2350                         break;
2351                 case 2:
2352                         rt2x00dev->default_ant.tx = ANTENNA_A;
2353                         rt2x00dev->default_ant.rx = ANTENNA_A;
2354                         break;
2355                 case 3:
2356                         rt2x00dev->default_ant.tx = ANTENNA_A;
2357                         rt2x00dev->default_ant.rx = ANTENNA_B;
2358                         break;
2359                 }
2360
2361                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2362                         rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2363                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2364                         rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2365         }
2366
2367         /*
2368          * Store led settings, for correct led behaviour.
2369          * If the eeprom value is invalid,
2370          * switch to default led mode.
2371          */
2372 #ifdef CONFIG_RT2X00_LIB_LEDS
2373         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2374         value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2375
2376         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2377         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2378         if (value == LED_MODE_SIGNAL_STRENGTH)
2379                 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2380                                  LED_TYPE_QUALITY);
2381
2382         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2383         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2384                            rt2x00_get_field16(eeprom,
2385                                               EEPROM_LED_POLARITY_GPIO_0));
2386         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2387                            rt2x00_get_field16(eeprom,
2388                                               EEPROM_LED_POLARITY_GPIO_1));
2389         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2390                            rt2x00_get_field16(eeprom,
2391                                               EEPROM_LED_POLARITY_GPIO_2));
2392         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2393                            rt2x00_get_field16(eeprom,
2394                                               EEPROM_LED_POLARITY_GPIO_3));
2395         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2396                            rt2x00_get_field16(eeprom,
2397                                               EEPROM_LED_POLARITY_GPIO_4));
2398         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2399                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2400         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2401                            rt2x00_get_field16(eeprom,
2402                                               EEPROM_LED_POLARITY_RDY_G));
2403         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2404                            rt2x00_get_field16(eeprom,
2405                                               EEPROM_LED_POLARITY_RDY_A));
2406 #endif /* CONFIG_RT2X00_LIB_LEDS */
2407
2408         return 0;
2409 }
2410
2411 /*
2412  * RF value list for RF5225 & RF5325
2413  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2414  */
2415 static const struct rf_channel rf_vals_noseq[] = {
2416         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2417         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2418         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2419         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2420         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2421         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2422         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2423         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2424         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2425         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2426         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2427         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2428         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2429         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2430
2431         /* 802.11 UNI / HyperLan 2 */
2432         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2433         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2434         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2435         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2436         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2437         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2438         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2439         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2440
2441         /* 802.11 HyperLan 2 */
2442         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2443         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2444         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2445         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2446         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2447         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2448         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2449         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2450         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2451         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2452
2453         /* 802.11 UNII */
2454         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2455         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2456         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2457         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2458         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2459         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2460
2461         /* MMAC(Japan)J52 ch 34,38,42,46 */
2462         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2463         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2464         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2465         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2466 };
2467
2468 /*
2469  * RF value list for RF5225 & RF5325
2470  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2471  */
2472 static const struct rf_channel rf_vals_seq[] = {
2473         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2474         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2475         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2476         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2477         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2478         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2479         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2480         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2481         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2482         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2483         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2484         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2485         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2486         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2487
2488         /* 802.11 UNI / HyperLan 2 */
2489         { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2490         { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2491         { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2492         { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2493         { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2494         { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2495         { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2496         { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2497
2498         /* 802.11 HyperLan 2 */
2499         { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2500         { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2501         { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2502         { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2503         { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2504         { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2505         { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2506         { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2507         { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2508         { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2509
2510         /* 802.11 UNII */
2511         { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2512         { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2513         { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2514         { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2515         { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2516         { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2517
2518         /* MMAC(Japan)J52 ch 34,38,42,46 */
2519         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2520         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2521         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2522         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2523 };
2524
2525 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2526 {
2527         struct hw_mode_spec *spec = &rt2x00dev->spec;
2528         struct channel_info *info;
2529         char *tx_power;
2530         unsigned int i;
2531
2532         /*
2533          * Initialize all hw fields.
2534          */
2535         rt2x00dev->hw->flags =
2536             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2537             IEEE80211_HW_SIGNAL_DBM;
2538         rt2x00dev->hw->extra_tx_headroom = 0;
2539
2540         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2541         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2542                                 rt2x00_eeprom_addr(rt2x00dev,
2543                                                    EEPROM_MAC_ADDR_0));
2544
2545         /*
2546          * Initialize hw_mode information.
2547          */
2548         spec->supported_bands = SUPPORT_BAND_2GHZ;
2549         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2550
2551         if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2552                 spec->num_channels = 14;
2553                 spec->channels = rf_vals_noseq;
2554         } else {
2555                 spec->num_channels = 14;
2556                 spec->channels = rf_vals_seq;
2557         }
2558
2559         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2560             rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2561                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2562                 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2563         }
2564
2565         /*
2566          * Create channel information array
2567          */
2568         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2569         if (!info)
2570                 return -ENOMEM;
2571
2572         spec->channels_info = info;
2573
2574         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2575         for (i = 0; i < 14; i++)
2576                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2577
2578         if (spec->num_channels > 14) {
2579                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2580                 for (i = 14; i < spec->num_channels; i++)
2581                         info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2582         }
2583
2584         return 0;
2585 }
2586
2587 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2588 {
2589         int retval;
2590
2591         /*
2592          * Allocate eeprom data.
2593          */
2594         retval = rt61pci_validate_eeprom(rt2x00dev);
2595         if (retval)
2596                 return retval;
2597
2598         retval = rt61pci_init_eeprom(rt2x00dev);
2599         if (retval)
2600                 return retval;
2601
2602         /*
2603          * Initialize hw specifications.
2604          */
2605         retval = rt61pci_probe_hw_mode(rt2x00dev);
2606         if (retval)
2607                 return retval;
2608
2609         /*
2610          * This device requires firmware and DMA mapped skbs.
2611          */
2612         __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2613         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2614         if (!modparam_nohwcrypt)
2615                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2616
2617         /*
2618          * Set the rssi offset.
2619          */
2620         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2621
2622         return 0;
2623 }
2624
2625 /*
2626  * IEEE80211 stack callback functions.
2627  */
2628 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2629                            const struct ieee80211_tx_queue_params *params)
2630 {
2631         struct rt2x00_dev *rt2x00dev = hw->priv;
2632         struct data_queue *queue;
2633         struct rt2x00_field32 field;
2634         int retval;
2635         u32 reg;
2636
2637         /*
2638          * First pass the configuration through rt2x00lib, that will
2639          * update the queue settings and validate the input. After that
2640          * we are free to update the registers based on the value
2641          * in the queue parameter.
2642          */
2643         retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2644         if (retval)
2645                 return retval;
2646
2647         queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2648
2649         /* Update WMM TXOP register */
2650         if (queue_idx < 2) {
2651                 field.bit_offset = queue_idx * 16;
2652                 field.bit_mask = 0xffff << field.bit_offset;
2653
2654                 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
2655                 rt2x00_set_field32(&reg, field, queue->txop);
2656                 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
2657         } else if (queue_idx < 4) {
2658                 field.bit_offset = (queue_idx - 2) * 16;
2659                 field.bit_mask = 0xffff << field.bit_offset;
2660
2661                 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
2662                 rt2x00_set_field32(&reg, field, queue->txop);
2663                 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
2664         }
2665
2666         /* Update WMM registers */
2667         field.bit_offset = queue_idx * 4;
2668         field.bit_mask = 0xf << field.bit_offset;
2669
2670         rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2671         rt2x00_set_field32(&reg, field, queue->aifs);
2672         rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2673
2674         rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2675         rt2x00_set_field32(&reg, field, queue->cw_min);
2676         rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2677
2678         rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2679         rt2x00_set_field32(&reg, field, queue->cw_max);
2680         rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2681
2682         return 0;
2683 }
2684
2685 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2686 {
2687         struct rt2x00_dev *rt2x00dev = hw->priv;
2688         u64 tsf;
2689         u32 reg;
2690
2691         rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2692         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2693         rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2694         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2695
2696         return tsf;
2697 }
2698
2699 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2700         .tx                     = rt2x00mac_tx,
2701         .start                  = rt2x00mac_start,
2702         .stop                   = rt2x00mac_stop,
2703         .add_interface          = rt2x00mac_add_interface,
2704         .remove_interface       = rt2x00mac_remove_interface,
2705         .config                 = rt2x00mac_config,
2706         .config_interface       = rt2x00mac_config_interface,
2707         .configure_filter       = rt2x00mac_configure_filter,
2708         .set_key                = rt2x00mac_set_key,
2709         .get_stats              = rt2x00mac_get_stats,
2710         .bss_info_changed       = rt2x00mac_bss_info_changed,
2711         .conf_tx                = rt61pci_conf_tx,
2712         .get_tx_stats           = rt2x00mac_get_tx_stats,
2713         .get_tsf                = rt61pci_get_tsf,
2714 };
2715
2716 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2717         .irq_handler            = rt61pci_interrupt,
2718         .probe_hw               = rt61pci_probe_hw,
2719         .get_firmware_name      = rt61pci_get_firmware_name,
2720         .get_firmware_crc       = rt61pci_get_firmware_crc,
2721         .load_firmware          = rt61pci_load_firmware,
2722         .initialize             = rt2x00pci_initialize,
2723         .uninitialize           = rt2x00pci_uninitialize,
2724         .get_entry_state        = rt61pci_get_entry_state,
2725         .clear_entry            = rt61pci_clear_entry,
2726         .set_device_state       = rt61pci_set_device_state,
2727         .rfkill_poll            = rt61pci_rfkill_poll,
2728         .link_stats             = rt61pci_link_stats,
2729         .reset_tuner            = rt61pci_reset_tuner,
2730         .link_tuner             = rt61pci_link_tuner,
2731         .write_tx_desc          = rt61pci_write_tx_desc,
2732         .write_tx_data          = rt2x00pci_write_tx_data,
2733         .write_beacon           = rt61pci_write_beacon,
2734         .kick_tx_queue          = rt61pci_kick_tx_queue,
2735         .fill_rxdone            = rt61pci_fill_rxdone,
2736         .config_shared_key      = rt61pci_config_shared_key,
2737         .config_pairwise_key    = rt61pci_config_pairwise_key,
2738         .config_filter          = rt61pci_config_filter,
2739         .config_intf            = rt61pci_config_intf,
2740         .config_erp             = rt61pci_config_erp,
2741         .config_ant             = rt61pci_config_ant,
2742         .config                 = rt61pci_config,
2743 };
2744
2745 static const struct data_queue_desc rt61pci_queue_rx = {
2746         .entry_num              = RX_ENTRIES,
2747         .data_size              = DATA_FRAME_SIZE,
2748         .desc_size              = RXD_DESC_SIZE,
2749         .priv_size              = sizeof(struct queue_entry_priv_pci),
2750 };
2751
2752 static const struct data_queue_desc rt61pci_queue_tx = {
2753         .entry_num              = TX_ENTRIES,
2754         .data_size              = DATA_FRAME_SIZE,
2755         .desc_size              = TXD_DESC_SIZE,
2756         .priv_size              = sizeof(struct queue_entry_priv_pci),
2757 };
2758
2759 static const struct data_queue_desc rt61pci_queue_bcn = {
2760         .entry_num              = 4 * BEACON_ENTRIES,
2761         .data_size              = 0, /* No DMA required for beacons */
2762         .desc_size              = TXINFO_SIZE,
2763         .priv_size              = sizeof(struct queue_entry_priv_pci),
2764 };
2765
2766 static const struct rt2x00_ops rt61pci_ops = {
2767         .name           = KBUILD_MODNAME,
2768         .max_sta_intf   = 1,
2769         .max_ap_intf    = 4,
2770         .eeprom_size    = EEPROM_SIZE,
2771         .rf_size        = RF_SIZE,
2772         .tx_queues      = NUM_TX_QUEUES,
2773         .rx             = &rt61pci_queue_rx,
2774         .tx             = &rt61pci_queue_tx,
2775         .bcn            = &rt61pci_queue_bcn,
2776         .lib            = &rt61pci_rt2x00_ops,
2777         .hw             = &rt61pci_mac80211_ops,
2778 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2779         .debugfs        = &rt61pci_rt2x00debug,
2780 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2781 };
2782
2783 /*
2784  * RT61pci module information.
2785  */
2786 static struct pci_device_id rt61pci_device_table[] = {
2787         /* RT2561s */
2788         { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2789         /* RT2561 v2 */
2790         { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2791         /* RT2661 */
2792         { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2793         { 0, }
2794 };
2795
2796 MODULE_AUTHOR(DRV_PROJECT);
2797 MODULE_VERSION(DRV_VERSION);
2798 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2799 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2800                         "PCI & PCMCIA chipset based cards");
2801 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2802 MODULE_FIRMWARE(FIRMWARE_RT2561);
2803 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2804 MODULE_FIRMWARE(FIRMWARE_RT2661);
2805 MODULE_LICENSE("GPL");
2806
2807 static struct pci_driver rt61pci_driver = {
2808         .name           = KBUILD_MODNAME,
2809         .id_table       = rt61pci_device_table,
2810         .probe          = rt2x00pci_probe,
2811         .remove         = __devexit_p(rt2x00pci_remove),
2812         .suspend        = rt2x00pci_suspend,
2813         .resume         = rt2x00pci_resume,
2814 };
2815
2816 static int __init rt61pci_init(void)
2817 {
2818         return pci_register_driver(&rt61pci_driver);
2819 }
2820
2821 static void __exit rt61pci_exit(void)
2822 {
2823         pci_unregister_driver(&rt61pci_driver);
2824 }
2825
2826 module_init(rt61pci_init);
2827 module_exit(rt61pci_exit);