Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos_params.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW2100_DEBUG
179 #define IPW2100_RX_DEBUG        /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int mode = 0;
189 static int channel = 0;
190 static int associate = 0;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param(mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW2100_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214         if (ipw2100_debug_level & (level)) { \
215                 printk(KERN_DEBUG "ipw2100: %c %s ", \
216                        in_interrupt() ? 'I' : 'U',  __func__); \
217                 printk(message); \
218         } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif                          /* CONFIG_IPW2100_DEBUG */
223
224 #ifdef CONFIG_IPW2100_DEBUG
225 static const char *command_types[] = {
226         "undefined",
227         "unused",               /* HOST_ATTENTION */
228         "HOST_COMPLETE",
229         "unused",               /* SLEEP */
230         "unused",               /* HOST_POWER_DOWN */
231         "unused",
232         "SYSTEM_CONFIG",
233         "unused",               /* SET_IMR */
234         "SSID",
235         "MANDATORY_BSSID",
236         "AUTHENTICATION_TYPE",
237         "ADAPTER_ADDRESS",
238         "PORT_TYPE",
239         "INTERNATIONAL_MODE",
240         "CHANNEL",
241         "RTS_THRESHOLD",
242         "FRAG_THRESHOLD",
243         "POWER_MODE",
244         "TX_RATES",
245         "BASIC_TX_RATES",
246         "WEP_KEY_INFO",
247         "unused",
248         "unused",
249         "unused",
250         "unused",
251         "WEP_KEY_INDEX",
252         "WEP_FLAGS",
253         "ADD_MULTICAST",
254         "CLEAR_ALL_MULTICAST",
255         "BEACON_INTERVAL",
256         "ATIM_WINDOW",
257         "CLEAR_STATISTICS",
258         "undefined",
259         "undefined",
260         "undefined",
261         "undefined",
262         "TX_POWER_INDEX",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "BROADCAST_SCAN",
270         "CARD_DISABLE",
271         "PREFERRED_BSSID",
272         "SET_SCAN_OPTIONS",
273         "SCAN_DWELL_TIME",
274         "SWEEP_TABLE",
275         "AP_OR_STATION_TABLE",
276         "GROUP_ORDINALS",
277         "SHORT_RETRY_LIMIT",
278         "LONG_RETRY_LIMIT",
279         "unused",               /* SAVE_CALIBRATION */
280         "unused",               /* RESTORE_CALIBRATION */
281         "undefined",
282         "undefined",
283         "undefined",
284         "HOST_PRE_POWER_DOWN",
285         "unused",               /* HOST_INTERRUPT_COALESCING */
286         "undefined",
287         "CARD_DISABLE_PHY_OFF",
288         "MSDU_TX_RATES" "undefined",
289         "undefined",
290         "SET_STATION_STAT_BITS",
291         "CLEAR_STATIONS_STAT_BITS",
292         "LEAP_ROGUE_MODE",
293         "SET_SECURITY_INFORMATION",
294         "DISASSOCIATION_BSSID",
295         "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309                                struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311                                 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313                                  size_t max);
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315                                     size_t max);
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317                                      struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319                                   struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct work_struct *work);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
323
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 {
326         *val = readl((void __iomem *)(dev->base_addr + reg));
327         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 }
329
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 {
332         writel(val, (void __iomem *)(dev->base_addr + reg));
333         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 }
335
336 static inline void read_register_word(struct net_device *dev, u32 reg,
337                                       u16 * val)
338 {
339         *val = readw((void __iomem *)(dev->base_addr + reg));
340         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 }
342
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 {
345         *val = readb((void __iomem *)(dev->base_addr + reg));
346         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 }
348
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 {
351         writew(val, (void __iomem *)(dev->base_addr + reg));
352         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 }
354
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 {
357         writeb(val, (void __iomem *)(dev->base_addr + reg));
358         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 }
360
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 {
363         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364                        addr & IPW_REG_INDIRECT_ADDR_MASK);
365         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 }
367
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 {
370         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371                        addr & IPW_REG_INDIRECT_ADDR_MASK);
372         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 }
374
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 {
377         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378                        addr & IPW_REG_INDIRECT_ADDR_MASK);
379         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 }
381
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 {
384         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385                        addr & IPW_REG_INDIRECT_ADDR_MASK);
386         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 }
388
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 {
391         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392                        addr & IPW_REG_INDIRECT_ADDR_MASK);
393         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 }
395
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 {
398         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399                        addr & IPW_REG_INDIRECT_ADDR_MASK);
400         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 }
402
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 {
405         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406                        addr & IPW_REG_INDIRECT_ADDR_MASK);
407 }
408
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 {
411         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 }
413
414 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415                                     const u8 * buf)
416 {
417         u32 aligned_addr;
418         u32 aligned_len;
419         u32 dif_len;
420         u32 i;
421
422         /* read first nibble byte by byte */
423         aligned_addr = addr & (~0x3);
424         dif_len = addr - aligned_addr;
425         if (dif_len) {
426                 /* Start reading at aligned_addr + dif_len */
427                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428                                aligned_addr);
429                 for (i = dif_len; i < 4; i++, buf++)
430                         write_register_byte(dev,
431                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
432                                             *buf);
433
434                 len -= dif_len;
435                 aligned_addr += 4;
436         }
437
438         /* read DWs through autoincrement registers */
439         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440         aligned_len = len & (~0x3);
441         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444         /* copy the last nibble */
445         dif_len = len - aligned_len;
446         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447         for (i = 0; i < dif_len; i++, buf++)
448                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449                                     *buf);
450 }
451
452 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453                                    u8 * buf)
454 {
455         u32 aligned_addr;
456         u32 aligned_len;
457         u32 dif_len;
458         u32 i;
459
460         /* read first nibble byte by byte */
461         aligned_addr = addr & (~0x3);
462         dif_len = addr - aligned_addr;
463         if (dif_len) {
464                 /* Start reading at aligned_addr + dif_len */
465                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466                                aligned_addr);
467                 for (i = dif_len; i < 4; i++, buf++)
468                         read_register_byte(dev,
469                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
470                                            buf);
471
472                 len -= dif_len;
473                 aligned_addr += 4;
474         }
475
476         /* read DWs through autoincrement registers */
477         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478         aligned_len = len & (~0x3);
479         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482         /* copy the last nibble */
483         dif_len = len - aligned_len;
484         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485         for (i = 0; i < dif_len; i++, buf++)
486                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 }
488
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 {
491         return (dev->base_addr &&
492                 (readl
493                  ((void __iomem *)(dev->base_addr +
494                                    IPW_REG_DOA_DEBUG_AREA_START))
495                  == IPW_DATA_DOA_DEBUG_VALUE));
496 }
497
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499                                void *val, u32 * len)
500 {
501         struct ipw2100_ordinals *ordinals = &priv->ordinals;
502         u32 addr;
503         u32 field_info;
504         u16 field_len;
505         u16 field_count;
506         u32 total_length;
507
508         if (ordinals->table1_addr == 0) {
509                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510                        "before they have been loaded.\n");
511                 return -EINVAL;
512         }
513
514         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518                         printk(KERN_WARNING DRV_NAME
519                                ": ordinal buffer length too small, need %zd\n",
520                                IPW_ORD_TAB_1_ENTRY_SIZE);
521
522                         return -EINVAL;
523                 }
524
525                 read_nic_dword(priv->net_dev,
526                                ordinals->table1_addr + (ord << 2), &addr);
527                 read_nic_dword(priv->net_dev, addr, val);
528
529                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531                 return 0;
532         }
533
534         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536                 ord -= IPW_START_ORD_TAB_2;
537
538                 /* get the address of statistic */
539                 read_nic_dword(priv->net_dev,
540                                ordinals->table2_addr + (ord << 3), &addr);
541
542                 /* get the second DW of statistics ;
543                  * two 16-bit words - first is length, second is count */
544                 read_nic_dword(priv->net_dev,
545                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
546                                &field_info);
547
548                 /* get each entry length */
549                 field_len = *((u16 *) & field_info);
550
551                 /* get number of entries */
552                 field_count = *(((u16 *) & field_info) + 1);
553
554                 /* abort if no enought memory */
555                 total_length = field_len * field_count;
556                 if (total_length > *len) {
557                         *len = total_length;
558                         return -EINVAL;
559                 }
560
561                 *len = total_length;
562                 if (!total_length)
563                         return 0;
564
565                 /* read the ordinal data from the SRAM */
566                 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568                 return 0;
569         }
570
571         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572                "in table 2\n", ord);
573
574         return -EINVAL;
575 }
576
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578                                u32 * len)
579 {
580         struct ipw2100_ordinals *ordinals = &priv->ordinals;
581         u32 addr;
582
583         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586                         IPW_DEBUG_INFO("wrong size\n");
587                         return -EINVAL;
588                 }
589
590                 read_nic_dword(priv->net_dev,
591                                ordinals->table1_addr + (ord << 2), &addr);
592
593                 write_nic_dword(priv->net_dev, addr, *val);
594
595                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597                 return 0;
598         }
599
600         IPW_DEBUG_INFO("wrong table\n");
601         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602                 return -EINVAL;
603
604         return -EINVAL;
605 }
606
607 static char *snprint_line(char *buf, size_t count,
608                           const u8 * data, u32 len, u32 ofs)
609 {
610         int out, i, j, l;
611         char c;
612
613         out = snprintf(buf, count, "%08X", ofs);
614
615         for (l = 0, i = 0; i < 2; i++) {
616                 out += snprintf(buf + out, count - out, " ");
617                 for (j = 0; j < 8 && l < len; j++, l++)
618                         out += snprintf(buf + out, count - out, "%02X ",
619                                         data[(i * 8 + j)]);
620                 for (; j < 8; j++)
621                         out += snprintf(buf + out, count - out, "   ");
622         }
623
624         out += snprintf(buf + out, count - out, " ");
625         for (l = 0, i = 0; i < 2; i++) {
626                 out += snprintf(buf + out, count - out, " ");
627                 for (j = 0; j < 8 && l < len; j++, l++) {
628                         c = data[(i * 8 + j)];
629                         if (!isascii(c) || !isprint(c))
630                                 c = '.';
631
632                         out += snprintf(buf + out, count - out, "%c", c);
633                 }
634
635                 for (; j < 8; j++)
636                         out += snprintf(buf + out, count - out, " ");
637         }
638
639         return buf;
640 }
641
642 static void printk_buf(int level, const u8 * data, u32 len)
643 {
644         char line[81];
645         u32 ofs = 0;
646         if (!(ipw2100_debug_level & level))
647                 return;
648
649         while (len) {
650                 printk(KERN_DEBUG "%s\n",
651                        snprint_line(line, sizeof(line), &data[ofs],
652                                     min(len, 16U), ofs));
653                 ofs += 16;
654                 len -= min(len, 16U);
655         }
656 }
657
658 #define MAX_RESET_BACKOFF 10
659
660 static void schedule_reset(struct ipw2100_priv *priv)
661 {
662         unsigned long now = get_seconds();
663
664         /* If we haven't received a reset request within the backoff period,
665          * then we can reset the backoff interval so this reset occurs
666          * immediately */
667         if (priv->reset_backoff &&
668             (now - priv->last_reset > priv->reset_backoff))
669                 priv->reset_backoff = 0;
670
671         priv->last_reset = get_seconds();
672
673         if (!(priv->status & STATUS_RESET_PENDING)) {
674                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675                                priv->net_dev->name, priv->reset_backoff);
676                 netif_carrier_off(priv->net_dev);
677                 netif_stop_queue(priv->net_dev);
678                 priv->status |= STATUS_RESET_PENDING;
679                 if (priv->reset_backoff)
680                         queue_delayed_work(priv->workqueue, &priv->reset_work,
681                                            priv->reset_backoff * HZ);
682                 else
683                         queue_delayed_work(priv->workqueue, &priv->reset_work,
684                                            0);
685
686                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
687                         priv->reset_backoff++;
688
689                 wake_up_interruptible(&priv->wait_command_queue);
690         } else
691                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
692                                priv->net_dev->name);
693
694 }
695
696 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
697 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
698                                    struct host_command *cmd)
699 {
700         struct list_head *element;
701         struct ipw2100_tx_packet *packet;
702         unsigned long flags;
703         int err = 0;
704
705         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
706                      command_types[cmd->host_command], cmd->host_command,
707                      cmd->host_command_length);
708         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
709                    cmd->host_command_length);
710
711         spin_lock_irqsave(&priv->low_lock, flags);
712
713         if (priv->fatal_error) {
714                 IPW_DEBUG_INFO
715                     ("Attempt to send command while hardware in fatal error condition.\n");
716                 err = -EIO;
717                 goto fail_unlock;
718         }
719
720         if (!(priv->status & STATUS_RUNNING)) {
721                 IPW_DEBUG_INFO
722                     ("Attempt to send command while hardware is not running.\n");
723                 err = -EIO;
724                 goto fail_unlock;
725         }
726
727         if (priv->status & STATUS_CMD_ACTIVE) {
728                 IPW_DEBUG_INFO
729                     ("Attempt to send command while another command is pending.\n");
730                 err = -EBUSY;
731                 goto fail_unlock;
732         }
733
734         if (list_empty(&priv->msg_free_list)) {
735                 IPW_DEBUG_INFO("no available msg buffers\n");
736                 goto fail_unlock;
737         }
738
739         priv->status |= STATUS_CMD_ACTIVE;
740         priv->messages_sent++;
741
742         element = priv->msg_free_list.next;
743
744         packet = list_entry(element, struct ipw2100_tx_packet, list);
745         packet->jiffy_start = jiffies;
746
747         /* initialize the firmware command packet */
748         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
749         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
750         packet->info.c_struct.cmd->host_command_len_reg =
751             cmd->host_command_length;
752         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
753
754         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
755                cmd->host_command_parameters,
756                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
757
758         list_del(element);
759         DEC_STAT(&priv->msg_free_stat);
760
761         list_add_tail(element, &priv->msg_pend_list);
762         INC_STAT(&priv->msg_pend_stat);
763
764         ipw2100_tx_send_commands(priv);
765         ipw2100_tx_send_data(priv);
766
767         spin_unlock_irqrestore(&priv->low_lock, flags);
768
769         /*
770          * We must wait for this command to complete before another
771          * command can be sent...  but if we wait more than 3 seconds
772          * then there is a problem.
773          */
774
775         err =
776             wait_event_interruptible_timeout(priv->wait_command_queue,
777                                              !(priv->
778                                                status & STATUS_CMD_ACTIVE),
779                                              HOST_COMPLETE_TIMEOUT);
780
781         if (err == 0) {
782                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
783                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
784                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
785                 priv->status &= ~STATUS_CMD_ACTIVE;
786                 schedule_reset(priv);
787                 return -EIO;
788         }
789
790         if (priv->fatal_error) {
791                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
792                        priv->net_dev->name);
793                 return -EIO;
794         }
795
796         /* !!!!! HACK TEST !!!!!
797          * When lots of debug trace statements are enabled, the driver
798          * doesn't seem to have as many firmware restart cycles...
799          *
800          * As a test, we're sticking in a 1/100s delay here */
801         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
802
803         return 0;
804
805       fail_unlock:
806         spin_unlock_irqrestore(&priv->low_lock, flags);
807
808         return err;
809 }
810
811 /*
812  * Verify the values and data access of the hardware
813  * No locks needed or used.  No functions called.
814  */
815 static int ipw2100_verify(struct ipw2100_priv *priv)
816 {
817         u32 data1, data2;
818         u32 address;
819
820         u32 val1 = 0x76543210;
821         u32 val2 = 0xFEDCBA98;
822
823         /* Domain 0 check - all values should be DOA_DEBUG */
824         for (address = IPW_REG_DOA_DEBUG_AREA_START;
825              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
826                 read_register(priv->net_dev, address, &data1);
827                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
828                         return -EIO;
829         }
830
831         /* Domain 1 check - use arbitrary read/write compare  */
832         for (address = 0; address < 5; address++) {
833                 /* The memory area is not used now */
834                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
835                                val1);
836                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
837                                val2);
838                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
839                               &data1);
840                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
841                               &data2);
842                 if (val1 == data1 && val2 == data2)
843                         return 0;
844         }
845
846         return -EIO;
847 }
848
849 /*
850  *
851  * Loop until the CARD_DISABLED bit is the same value as the
852  * supplied parameter
853  *
854  * TODO: See if it would be more efficient to do a wait/wake
855  *       cycle and have the completion event trigger the wakeup
856  *
857  */
858 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
859 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
860 {
861         int i;
862         u32 card_state;
863         u32 len = sizeof(card_state);
864         int err;
865
866         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
867                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
868                                           &card_state, &len);
869                 if (err) {
870                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
871                                        "failed.\n");
872                         return 0;
873                 }
874
875                 /* We'll break out if either the HW state says it is
876                  * in the state we want, or if HOST_COMPLETE command
877                  * finishes */
878                 if ((card_state == state) ||
879                     ((priv->status & STATUS_ENABLED) ?
880                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
881                         if (state == IPW_HW_STATE_ENABLED)
882                                 priv->status |= STATUS_ENABLED;
883                         else
884                                 priv->status &= ~STATUS_ENABLED;
885
886                         return 0;
887                 }
888
889                 udelay(50);
890         }
891
892         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
893                        state ? "DISABLED" : "ENABLED");
894         return -EIO;
895 }
896
897 /*********************************************************************
898     Procedure   :   sw_reset_and_clock
899     Purpose     :   Asserts s/w reset, asserts clock initialization
900                     and waits for clock stabilization
901  ********************************************************************/
902 static int sw_reset_and_clock(struct ipw2100_priv *priv)
903 {
904         int i;
905         u32 r;
906
907         // assert s/w reset
908         write_register(priv->net_dev, IPW_REG_RESET_REG,
909                        IPW_AUX_HOST_RESET_REG_SW_RESET);
910
911         // wait for clock stabilization
912         for (i = 0; i < 1000; i++) {
913                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
914
915                 // check clock ready bit
916                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
917                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
918                         break;
919         }
920
921         if (i == 1000)
922                 return -EIO;    // TODO: better error value
923
924         /* set "initialization complete" bit to move adapter to
925          * D0 state */
926         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
927                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
928
929         /* wait for clock stabilization */
930         for (i = 0; i < 10000; i++) {
931                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
932
933                 /* check clock ready bit */
934                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
935                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
936                         break;
937         }
938
939         if (i == 10000)
940                 return -EIO;    /* TODO: better error value */
941
942         /* set D0 standby bit */
943         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
944         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
945                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
946
947         return 0;
948 }
949
950 /*********************************************************************
951     Procedure   :   ipw2100_download_firmware
952     Purpose     :   Initiaze adapter after power on.
953                     The sequence is:
954                     1. assert s/w reset first!
955                     2. awake clocks & wait for clock stabilization
956                     3. hold ARC (don't ask me why...)
957                     4. load Dino ucode and reset/clock init again
958                     5. zero-out shared mem
959                     6. download f/w
960  *******************************************************************/
961 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
962 {
963         u32 address;
964         int err;
965
966 #ifndef CONFIG_PM
967         /* Fetch the firmware and microcode */
968         struct ipw2100_fw ipw2100_firmware;
969 #endif
970
971         if (priv->fatal_error) {
972                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
973                                 "fatal error %d.  Interface must be brought down.\n",
974                                 priv->net_dev->name, priv->fatal_error);
975                 return -EINVAL;
976         }
977 #ifdef CONFIG_PM
978         if (!ipw2100_firmware.version) {
979                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
980                 if (err) {
981                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
982                                         priv->net_dev->name, err);
983                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
984                         goto fail;
985                 }
986         }
987 #else
988         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
989         if (err) {
990                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
991                                 priv->net_dev->name, err);
992                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
993                 goto fail;
994         }
995 #endif
996         priv->firmware_version = ipw2100_firmware.version;
997
998         /* s/w reset and clock stabilization */
999         err = sw_reset_and_clock(priv);
1000         if (err) {
1001                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1002                                 priv->net_dev->name, err);
1003                 goto fail;
1004         }
1005
1006         err = ipw2100_verify(priv);
1007         if (err) {
1008                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1009                                 priv->net_dev->name, err);
1010                 goto fail;
1011         }
1012
1013         /* Hold ARC */
1014         write_nic_dword(priv->net_dev,
1015                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1016
1017         /* allow ARC to run */
1018         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1019
1020         /* load microcode */
1021         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1022         if (err) {
1023                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1024                        priv->net_dev->name, err);
1025                 goto fail;
1026         }
1027
1028         /* release ARC */
1029         write_nic_dword(priv->net_dev,
1030                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1031
1032         /* s/w reset and clock stabilization (again!!!) */
1033         err = sw_reset_and_clock(priv);
1034         if (err) {
1035                 printk(KERN_ERR DRV_NAME
1036                        ": %s: sw_reset_and_clock failed: %d\n",
1037                        priv->net_dev->name, err);
1038                 goto fail;
1039         }
1040
1041         /* load f/w */
1042         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1043         if (err) {
1044                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1045                                 priv->net_dev->name, err);
1046                 goto fail;
1047         }
1048 #ifndef CONFIG_PM
1049         /*
1050          * When the .resume method of the driver is called, the other
1051          * part of the system, i.e. the ide driver could still stay in
1052          * the suspend stage. This prevents us from loading the firmware
1053          * from the disk.  --YZ
1054          */
1055
1056         /* free any storage allocated for firmware image */
1057         ipw2100_release_firmware(priv, &ipw2100_firmware);
1058 #endif
1059
1060         /* zero out Domain 1 area indirectly (Si requirement) */
1061         for (address = IPW_HOST_FW_SHARED_AREA0;
1062              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1063                 write_nic_dword(priv->net_dev, address, 0);
1064         for (address = IPW_HOST_FW_SHARED_AREA1;
1065              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1066                 write_nic_dword(priv->net_dev, address, 0);
1067         for (address = IPW_HOST_FW_SHARED_AREA2;
1068              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1069                 write_nic_dword(priv->net_dev, address, 0);
1070         for (address = IPW_HOST_FW_SHARED_AREA3;
1071              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1072                 write_nic_dword(priv->net_dev, address, 0);
1073         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1074              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1075                 write_nic_dword(priv->net_dev, address, 0);
1076
1077         return 0;
1078
1079       fail:
1080         ipw2100_release_firmware(priv, &ipw2100_firmware);
1081         return err;
1082 }
1083
1084 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1085 {
1086         if (priv->status & STATUS_INT_ENABLED)
1087                 return;
1088         priv->status |= STATUS_INT_ENABLED;
1089         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1090 }
1091
1092 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1093 {
1094         if (!(priv->status & STATUS_INT_ENABLED))
1095                 return;
1096         priv->status &= ~STATUS_INT_ENABLED;
1097         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1098 }
1099
1100 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1101 {
1102         struct ipw2100_ordinals *ord = &priv->ordinals;
1103
1104         IPW_DEBUG_INFO("enter\n");
1105
1106         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1107                       &ord->table1_addr);
1108
1109         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1110                       &ord->table2_addr);
1111
1112         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1113         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1114
1115         ord->table2_size &= 0x0000FFFF;
1116
1117         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1118         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1119         IPW_DEBUG_INFO("exit\n");
1120 }
1121
1122 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1123 {
1124         u32 reg = 0;
1125         /*
1126          * Set GPIO 3 writable by FW; GPIO 1 writable
1127          * by driver and enable clock
1128          */
1129         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1130                IPW_BIT_GPIO_LED_OFF);
1131         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1132 }
1133
1134 static int rf_kill_active(struct ipw2100_priv *priv)
1135 {
1136 #define MAX_RF_KILL_CHECKS 5
1137 #define RF_KILL_CHECK_DELAY 40
1138
1139         unsigned short value = 0;
1140         u32 reg = 0;
1141         int i;
1142
1143         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1144                 priv->status &= ~STATUS_RF_KILL_HW;
1145                 return 0;
1146         }
1147
1148         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1149                 udelay(RF_KILL_CHECK_DELAY);
1150                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1151                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1152         }
1153
1154         if (value == 0)
1155                 priv->status |= STATUS_RF_KILL_HW;
1156         else
1157                 priv->status &= ~STATUS_RF_KILL_HW;
1158
1159         return (value == 0);
1160 }
1161
1162 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1163 {
1164         u32 addr, len;
1165         u32 val;
1166
1167         /*
1168          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1169          */
1170         len = sizeof(addr);
1171         if (ipw2100_get_ordinal
1172             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1173                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1174                                __LINE__);
1175                 return -EIO;
1176         }
1177
1178         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1179
1180         /*
1181          * EEPROM version is the byte at offset 0xfd in firmware
1182          * We read 4 bytes, then shift out the byte we actually want */
1183         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1184         priv->eeprom_version = (val >> 24) & 0xFF;
1185         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1186
1187         /*
1188          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1189          *
1190          *  notice that the EEPROM bit is reverse polarity, i.e.
1191          *     bit = 0  signifies HW RF kill switch is supported
1192          *     bit = 1  signifies HW RF kill switch is NOT supported
1193          */
1194         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1195         if (!((val >> 24) & 0x01))
1196                 priv->hw_features |= HW_FEATURE_RFKILL;
1197
1198         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1199                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1200
1201         return 0;
1202 }
1203
1204 /*
1205  * Start firmware execution after power on and intialization
1206  * The sequence is:
1207  *  1. Release ARC
1208  *  2. Wait for f/w initialization completes;
1209  */
1210 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1211 {
1212         int i;
1213         u32 inta, inta_mask, gpio;
1214
1215         IPW_DEBUG_INFO("enter\n");
1216
1217         if (priv->status & STATUS_RUNNING)
1218                 return 0;
1219
1220         /*
1221          * Initialize the hw - drive adapter to DO state by setting
1222          * init_done bit. Wait for clk_ready bit and Download
1223          * fw & dino ucode
1224          */
1225         if (ipw2100_download_firmware(priv)) {
1226                 printk(KERN_ERR DRV_NAME
1227                        ": %s: Failed to power on the adapter.\n",
1228                        priv->net_dev->name);
1229                 return -EIO;
1230         }
1231
1232         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1233          * in the firmware RBD and TBD ring queue */
1234         ipw2100_queues_initialize(priv);
1235
1236         ipw2100_hw_set_gpio(priv);
1237
1238         /* TODO -- Look at disabling interrupts here to make sure none
1239          * get fired during FW initialization */
1240
1241         /* Release ARC - clear reset bit */
1242         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1243
1244         /* wait for f/w intialization complete */
1245         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1246         i = 5000;
1247         do {
1248                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1249                 /* Todo... wait for sync command ... */
1250
1251                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1252
1253                 /* check "init done" bit */
1254                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1255                         /* reset "init done" bit */
1256                         write_register(priv->net_dev, IPW_REG_INTA,
1257                                        IPW2100_INTA_FW_INIT_DONE);
1258                         break;
1259                 }
1260
1261                 /* check error conditions : we check these after the firmware
1262                  * check so that if there is an error, the interrupt handler
1263                  * will see it and the adapter will be reset */
1264                 if (inta &
1265                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1266                         /* clear error conditions */
1267                         write_register(priv->net_dev, IPW_REG_INTA,
1268                                        IPW2100_INTA_FATAL_ERROR |
1269                                        IPW2100_INTA_PARITY_ERROR);
1270                 }
1271         } while (--i);
1272
1273         /* Clear out any pending INTAs since we aren't supposed to have
1274          * interrupts enabled at this point... */
1275         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1276         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1277         inta &= IPW_INTERRUPT_MASK;
1278         /* Clear out any pending interrupts */
1279         if (inta & inta_mask)
1280                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1281
1282         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1283                      i ? "SUCCESS" : "FAILED");
1284
1285         if (!i) {
1286                 printk(KERN_WARNING DRV_NAME
1287                        ": %s: Firmware did not initialize.\n",
1288                        priv->net_dev->name);
1289                 return -EIO;
1290         }
1291
1292         /* allow firmware to write to GPIO1 & GPIO3 */
1293         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1294
1295         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1296
1297         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1298
1299         /* Ready to receive commands */
1300         priv->status |= STATUS_RUNNING;
1301
1302         /* The adapter has been reset; we are not associated */
1303         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1304
1305         IPW_DEBUG_INFO("exit\n");
1306
1307         return 0;
1308 }
1309
1310 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1311 {
1312         if (!priv->fatal_error)
1313                 return;
1314
1315         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1316         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1317         priv->fatal_error = 0;
1318 }
1319
1320 /* NOTE: Our interrupt is disabled when this method is called */
1321 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1322 {
1323         u32 reg;
1324         int i;
1325
1326         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1327
1328         ipw2100_hw_set_gpio(priv);
1329
1330         /* Step 1. Stop Master Assert */
1331         write_register(priv->net_dev, IPW_REG_RESET_REG,
1332                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1333
1334         /* Step 2. Wait for stop Master Assert
1335          *         (not more than 50us, otherwise ret error */
1336         i = 5;
1337         do {
1338                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1339                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1340
1341                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1342                         break;
1343         } while (--i);
1344
1345         priv->status &= ~STATUS_RESET_PENDING;
1346
1347         if (!i) {
1348                 IPW_DEBUG_INFO
1349                     ("exit - waited too long for master assert stop\n");
1350                 return -EIO;
1351         }
1352
1353         write_register(priv->net_dev, IPW_REG_RESET_REG,
1354                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1355
1356         /* Reset any fatal_error conditions */
1357         ipw2100_reset_fatalerror(priv);
1358
1359         /* At this point, the adapter is now stopped and disabled */
1360         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1361                           STATUS_ASSOCIATED | STATUS_ENABLED);
1362
1363         return 0;
1364 }
1365
1366 /*
1367  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1368  *
1369  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1370  *
1371  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1372  * if STATUS_ASSN_LOST is sent.
1373  */
1374 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1375 {
1376
1377 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1378
1379         struct host_command cmd = {
1380                 .host_command = CARD_DISABLE_PHY_OFF,
1381                 .host_command_sequence = 0,
1382                 .host_command_length = 0,
1383         };
1384         int err, i;
1385         u32 val1, val2;
1386
1387         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1388
1389         /* Turn off the radio */
1390         err = ipw2100_hw_send_command(priv, &cmd);
1391         if (err)
1392                 return err;
1393
1394         for (i = 0; i < 2500; i++) {
1395                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1396                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1397
1398                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1399                     (val2 & IPW2100_COMMAND_PHY_OFF))
1400                         return 0;
1401
1402                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1403         }
1404
1405         return -EIO;
1406 }
1407
1408 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1409 {
1410         struct host_command cmd = {
1411                 .host_command = HOST_COMPLETE,
1412                 .host_command_sequence = 0,
1413                 .host_command_length = 0
1414         };
1415         int err = 0;
1416
1417         IPW_DEBUG_HC("HOST_COMPLETE\n");
1418
1419         if (priv->status & STATUS_ENABLED)
1420                 return 0;
1421
1422         mutex_lock(&priv->adapter_mutex);
1423
1424         if (rf_kill_active(priv)) {
1425                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1426                 goto fail_up;
1427         }
1428
1429         err = ipw2100_hw_send_command(priv, &cmd);
1430         if (err) {
1431                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1432                 goto fail_up;
1433         }
1434
1435         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1436         if (err) {
1437                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1438                                priv->net_dev->name);
1439                 goto fail_up;
1440         }
1441
1442         if (priv->stop_hang_check) {
1443                 priv->stop_hang_check = 0;
1444                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1445         }
1446
1447       fail_up:
1448         mutex_unlock(&priv->adapter_mutex);
1449         return err;
1450 }
1451
1452 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1453 {
1454 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1455
1456         struct host_command cmd = {
1457                 .host_command = HOST_PRE_POWER_DOWN,
1458                 .host_command_sequence = 0,
1459                 .host_command_length = 0,
1460         };
1461         int err, i;
1462         u32 reg;
1463
1464         if (!(priv->status & STATUS_RUNNING))
1465                 return 0;
1466
1467         priv->status |= STATUS_STOPPING;
1468
1469         /* We can only shut down the card if the firmware is operational.  So,
1470          * if we haven't reset since a fatal_error, then we can not send the
1471          * shutdown commands. */
1472         if (!priv->fatal_error) {
1473                 /* First, make sure the adapter is enabled so that the PHY_OFF
1474                  * command can shut it down */
1475                 ipw2100_enable_adapter(priv);
1476
1477                 err = ipw2100_hw_phy_off(priv);
1478                 if (err)
1479                         printk(KERN_WARNING DRV_NAME
1480                                ": Error disabling radio %d\n", err);
1481
1482                 /*
1483                  * If in D0-standby mode going directly to D3 may cause a
1484                  * PCI bus violation.  Therefore we must change out of the D0
1485                  * state.
1486                  *
1487                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1488                  * hardware from going into standby mode and will transition
1489                  * out of D0-standby if it is already in that state.
1490                  *
1491                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1492                  * driver upon completion.  Once received, the driver can
1493                  * proceed to the D3 state.
1494                  *
1495                  * Prepare for power down command to fw.  This command would
1496                  * take HW out of D0-standby and prepare it for D3 state.
1497                  *
1498                  * Currently FW does not support event notification for this
1499                  * event. Therefore, skip waiting for it.  Just wait a fixed
1500                  * 100ms
1501                  */
1502                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1503
1504                 err = ipw2100_hw_send_command(priv, &cmd);
1505                 if (err)
1506                         printk(KERN_WARNING DRV_NAME ": "
1507                                "%s: Power down command failed: Error %d\n",
1508                                priv->net_dev->name, err);
1509                 else
1510                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1511         }
1512
1513         priv->status &= ~STATUS_ENABLED;
1514
1515         /*
1516          * Set GPIO 3 writable by FW; GPIO 1 writable
1517          * by driver and enable clock
1518          */
1519         ipw2100_hw_set_gpio(priv);
1520
1521         /*
1522          * Power down adapter.  Sequence:
1523          * 1. Stop master assert (RESET_REG[9]=1)
1524          * 2. Wait for stop master (RESET_REG[8]==1)
1525          * 3. S/w reset assert (RESET_REG[7] = 1)
1526          */
1527
1528         /* Stop master assert */
1529         write_register(priv->net_dev, IPW_REG_RESET_REG,
1530                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1531
1532         /* wait stop master not more than 50 usec.
1533          * Otherwise return error. */
1534         for (i = 5; i > 0; i--) {
1535                 udelay(10);
1536
1537                 /* Check master stop bit */
1538                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1539
1540                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1541                         break;
1542         }
1543
1544         if (i == 0)
1545                 printk(KERN_WARNING DRV_NAME
1546                        ": %s: Could now power down adapter.\n",
1547                        priv->net_dev->name);
1548
1549         /* assert s/w reset */
1550         write_register(priv->net_dev, IPW_REG_RESET_REG,
1551                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1552
1553         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1554
1555         return 0;
1556 }
1557
1558 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1559 {
1560         struct host_command cmd = {
1561                 .host_command = CARD_DISABLE,
1562                 .host_command_sequence = 0,
1563                 .host_command_length = 0
1564         };
1565         int err = 0;
1566
1567         IPW_DEBUG_HC("CARD_DISABLE\n");
1568
1569         if (!(priv->status & STATUS_ENABLED))
1570                 return 0;
1571
1572         /* Make sure we clear the associated state */
1573         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1574
1575         if (!priv->stop_hang_check) {
1576                 priv->stop_hang_check = 1;
1577                 cancel_delayed_work(&priv->hang_check);
1578         }
1579
1580         mutex_lock(&priv->adapter_mutex);
1581
1582         err = ipw2100_hw_send_command(priv, &cmd);
1583         if (err) {
1584                 printk(KERN_WARNING DRV_NAME
1585                        ": exit - failed to send CARD_DISABLE command\n");
1586                 goto fail_up;
1587         }
1588
1589         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1590         if (err) {
1591                 printk(KERN_WARNING DRV_NAME
1592                        ": exit - card failed to change to DISABLED\n");
1593                 goto fail_up;
1594         }
1595
1596         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1597
1598       fail_up:
1599         mutex_unlock(&priv->adapter_mutex);
1600         return err;
1601 }
1602
1603 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1604 {
1605         struct host_command cmd = {
1606                 .host_command = SET_SCAN_OPTIONS,
1607                 .host_command_sequence = 0,
1608                 .host_command_length = 8
1609         };
1610         int err;
1611
1612         IPW_DEBUG_INFO("enter\n");
1613
1614         IPW_DEBUG_SCAN("setting scan options\n");
1615
1616         cmd.host_command_parameters[0] = 0;
1617
1618         if (!(priv->config & CFG_ASSOCIATE))
1619                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1620         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1621                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1622         if (priv->config & CFG_PASSIVE_SCAN)
1623                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1624
1625         cmd.host_command_parameters[1] = priv->channel_mask;
1626
1627         err = ipw2100_hw_send_command(priv, &cmd);
1628
1629         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1630                      cmd.host_command_parameters[0]);
1631
1632         return err;
1633 }
1634
1635 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1636 {
1637         struct host_command cmd = {
1638                 .host_command = BROADCAST_SCAN,
1639                 .host_command_sequence = 0,
1640                 .host_command_length = 4
1641         };
1642         int err;
1643
1644         IPW_DEBUG_HC("START_SCAN\n");
1645
1646         cmd.host_command_parameters[0] = 0;
1647
1648         /* No scanning if in monitor mode */
1649         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1650                 return 1;
1651
1652         if (priv->status & STATUS_SCANNING) {
1653                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1654                 return 0;
1655         }
1656
1657         IPW_DEBUG_INFO("enter\n");
1658
1659         /* Not clearing here; doing so makes iwlist always return nothing...
1660          *
1661          * We should modify the table logic to use aging tables vs. clearing
1662          * the table on each scan start.
1663          */
1664         IPW_DEBUG_SCAN("starting scan\n");
1665
1666         priv->status |= STATUS_SCANNING;
1667         err = ipw2100_hw_send_command(priv, &cmd);
1668         if (err)
1669                 priv->status &= ~STATUS_SCANNING;
1670
1671         IPW_DEBUG_INFO("exit\n");
1672
1673         return err;
1674 }
1675
1676 static const struct ieee80211_geo ipw_geos[] = {
1677         {                       /* Restricted */
1678          "---",
1679          .bg_channels = 14,
1680          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1681                 {2427, 4}, {2432, 5}, {2437, 6},
1682                 {2442, 7}, {2447, 8}, {2452, 9},
1683                 {2457, 10}, {2462, 11}, {2467, 12},
1684                 {2472, 13}, {2484, 14}},
1685          },
1686 };
1687
1688 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1689 {
1690         unsigned long flags;
1691         int rc = 0;
1692         u32 lock;
1693         u32 ord_len = sizeof(lock);
1694
1695         /* Quite if manually disabled. */
1696         if (priv->status & STATUS_RF_KILL_SW) {
1697                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1698                                "switch\n", priv->net_dev->name);
1699                 return 0;
1700         }
1701
1702         /* the ipw2100 hardware really doesn't want power management delays
1703          * longer than 175usec
1704          */
1705         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100", 175);
1706
1707         /* If the interrupt is enabled, turn it off... */
1708         spin_lock_irqsave(&priv->low_lock, flags);
1709         ipw2100_disable_interrupts(priv);
1710
1711         /* Reset any fatal_error conditions */
1712         ipw2100_reset_fatalerror(priv);
1713         spin_unlock_irqrestore(&priv->low_lock, flags);
1714
1715         if (priv->status & STATUS_POWERED ||
1716             (priv->status & STATUS_RESET_PENDING)) {
1717                 /* Power cycle the card ... */
1718                 if (ipw2100_power_cycle_adapter(priv)) {
1719                         printk(KERN_WARNING DRV_NAME
1720                                ": %s: Could not cycle adapter.\n",
1721                                priv->net_dev->name);
1722                         rc = 1;
1723                         goto exit;
1724                 }
1725         } else
1726                 priv->status |= STATUS_POWERED;
1727
1728         /* Load the firmware, start the clocks, etc. */
1729         if (ipw2100_start_adapter(priv)) {
1730                 printk(KERN_ERR DRV_NAME
1731                        ": %s: Failed to start the firmware.\n",
1732                        priv->net_dev->name);
1733                 rc = 1;
1734                 goto exit;
1735         }
1736
1737         ipw2100_initialize_ordinals(priv);
1738
1739         /* Determine capabilities of this particular HW configuration */
1740         if (ipw2100_get_hw_features(priv)) {
1741                 printk(KERN_ERR DRV_NAME
1742                        ": %s: Failed to determine HW features.\n",
1743                        priv->net_dev->name);
1744                 rc = 1;
1745                 goto exit;
1746         }
1747
1748         /* Initialize the geo */
1749         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1750                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1751                 return 0;
1752         }
1753         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1754
1755         lock = LOCK_NONE;
1756         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1757                 printk(KERN_ERR DRV_NAME
1758                        ": %s: Failed to clear ordinal lock.\n",
1759                        priv->net_dev->name);
1760                 rc = 1;
1761                 goto exit;
1762         }
1763
1764         priv->status &= ~STATUS_SCANNING;
1765
1766         if (rf_kill_active(priv)) {
1767                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1768                        priv->net_dev->name);
1769
1770                 if (priv->stop_rf_kill) {
1771                         priv->stop_rf_kill = 0;
1772                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1773                                            round_jiffies_relative(HZ));
1774                 }
1775
1776                 deferred = 1;
1777         }
1778
1779         /* Turn on the interrupt so that commands can be processed */
1780         ipw2100_enable_interrupts(priv);
1781
1782         /* Send all of the commands that must be sent prior to
1783          * HOST_COMPLETE */
1784         if (ipw2100_adapter_setup(priv)) {
1785                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1786                        priv->net_dev->name);
1787                 rc = 1;
1788                 goto exit;
1789         }
1790
1791         if (!deferred) {
1792                 /* Enable the adapter - sends HOST_COMPLETE */
1793                 if (ipw2100_enable_adapter(priv)) {
1794                         printk(KERN_ERR DRV_NAME ": "
1795                                "%s: failed in call to enable adapter.\n",
1796                                priv->net_dev->name);
1797                         ipw2100_hw_stop_adapter(priv);
1798                         rc = 1;
1799                         goto exit;
1800                 }
1801
1802                 /* Start a scan . . . */
1803                 ipw2100_set_scan_options(priv);
1804                 ipw2100_start_scan(priv);
1805         }
1806
1807       exit:
1808         return rc;
1809 }
1810
1811 /* Called by register_netdev() */
1812 static int ipw2100_net_init(struct net_device *dev)
1813 {
1814         struct ipw2100_priv *priv = ieee80211_priv(dev);
1815         return ipw2100_up(priv, 1);
1816 }
1817
1818 static void ipw2100_down(struct ipw2100_priv *priv)
1819 {
1820         unsigned long flags;
1821         union iwreq_data wrqu = {
1822                 .ap_addr = {
1823                             .sa_family = ARPHRD_ETHER}
1824         };
1825         int associated = priv->status & STATUS_ASSOCIATED;
1826
1827         /* Kill the RF switch timer */
1828         if (!priv->stop_rf_kill) {
1829                 priv->stop_rf_kill = 1;
1830                 cancel_delayed_work(&priv->rf_kill);
1831         }
1832
1833         /* Kill the firmware hang check timer */
1834         if (!priv->stop_hang_check) {
1835                 priv->stop_hang_check = 1;
1836                 cancel_delayed_work(&priv->hang_check);
1837         }
1838
1839         /* Kill any pending resets */
1840         if (priv->status & STATUS_RESET_PENDING)
1841                 cancel_delayed_work(&priv->reset_work);
1842
1843         /* Make sure the interrupt is on so that FW commands will be
1844          * processed correctly */
1845         spin_lock_irqsave(&priv->low_lock, flags);
1846         ipw2100_enable_interrupts(priv);
1847         spin_unlock_irqrestore(&priv->low_lock, flags);
1848
1849         if (ipw2100_hw_stop_adapter(priv))
1850                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1851                        priv->net_dev->name);
1852
1853         /* Do not disable the interrupt until _after_ we disable
1854          * the adaptor.  Otherwise the CARD_DISABLE command will never
1855          * be ack'd by the firmware */
1856         spin_lock_irqsave(&priv->low_lock, flags);
1857         ipw2100_disable_interrupts(priv);
1858         spin_unlock_irqrestore(&priv->low_lock, flags);
1859
1860         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100",
1861                         PM_QOS_DEFAULT_VALUE);
1862
1863         /* We have to signal any supplicant if we are disassociating */
1864         if (associated)
1865                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1866
1867         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1868         netif_carrier_off(priv->net_dev);
1869         netif_stop_queue(priv->net_dev);
1870 }
1871
1872 static void ipw2100_reset_adapter(struct work_struct *work)
1873 {
1874         struct ipw2100_priv *priv =
1875                 container_of(work, struct ipw2100_priv, reset_work.work);
1876         unsigned long flags;
1877         union iwreq_data wrqu = {
1878                 .ap_addr = {
1879                             .sa_family = ARPHRD_ETHER}
1880         };
1881         int associated = priv->status & STATUS_ASSOCIATED;
1882
1883         spin_lock_irqsave(&priv->low_lock, flags);
1884         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1885         priv->resets++;
1886         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1887         priv->status |= STATUS_SECURITY_UPDATED;
1888
1889         /* Force a power cycle even if interface hasn't been opened
1890          * yet */
1891         cancel_delayed_work(&priv->reset_work);
1892         priv->status |= STATUS_RESET_PENDING;
1893         spin_unlock_irqrestore(&priv->low_lock, flags);
1894
1895         mutex_lock(&priv->action_mutex);
1896         /* stop timed checks so that they don't interfere with reset */
1897         priv->stop_hang_check = 1;
1898         cancel_delayed_work(&priv->hang_check);
1899
1900         /* We have to signal any supplicant if we are disassociating */
1901         if (associated)
1902                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1903
1904         ipw2100_up(priv, 0);
1905         mutex_unlock(&priv->action_mutex);
1906
1907 }
1908
1909 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1910 {
1911
1912 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1913         int ret;
1914         unsigned int len, essid_len;
1915         char essid[IW_ESSID_MAX_SIZE];
1916         u32 txrate;
1917         u32 chan;
1918         char *txratename;
1919         u8 bssid[ETH_ALEN];
1920         DECLARE_SSID_BUF(ssid);
1921
1922         /*
1923          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1924          *      an actual MAC of the AP. Seems like FW sets this
1925          *      address too late. Read it later and expose through
1926          *      /proc or schedule a later task to query and update
1927          */
1928
1929         essid_len = IW_ESSID_MAX_SIZE;
1930         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1931                                   essid, &essid_len);
1932         if (ret) {
1933                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1934                                __LINE__);
1935                 return;
1936         }
1937
1938         len = sizeof(u32);
1939         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1940         if (ret) {
1941                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1942                                __LINE__);
1943                 return;
1944         }
1945
1946         len = sizeof(u32);
1947         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1948         if (ret) {
1949                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1950                                __LINE__);
1951                 return;
1952         }
1953         len = ETH_ALEN;
1954         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1955         if (ret) {
1956                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1957                                __LINE__);
1958                 return;
1959         }
1960         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1961
1962         switch (txrate) {
1963         case TX_RATE_1_MBIT:
1964                 txratename = "1Mbps";
1965                 break;
1966         case TX_RATE_2_MBIT:
1967                 txratename = "2Mbsp";
1968                 break;
1969         case TX_RATE_5_5_MBIT:
1970                 txratename = "5.5Mbps";
1971                 break;
1972         case TX_RATE_11_MBIT:
1973                 txratename = "11Mbps";
1974                 break;
1975         default:
1976                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1977                 txratename = "unknown rate";
1978                 break;
1979         }
1980
1981         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
1982                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
1983                        txratename, chan, bssid);
1984
1985         /* now we copy read ssid into dev */
1986         if (!(priv->config & CFG_STATIC_ESSID)) {
1987                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1988                 memcpy(priv->essid, essid, priv->essid_len);
1989         }
1990         priv->channel = chan;
1991         memcpy(priv->bssid, bssid, ETH_ALEN);
1992
1993         priv->status |= STATUS_ASSOCIATING;
1994         priv->connect_start = get_seconds();
1995
1996         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1997 }
1998
1999 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2000                              int length, int batch_mode)
2001 {
2002         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2003         struct host_command cmd = {
2004                 .host_command = SSID,
2005                 .host_command_sequence = 0,
2006                 .host_command_length = ssid_len
2007         };
2008         int err;
2009         DECLARE_SSID_BUF(ssid);
2010
2011         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2012
2013         if (ssid_len)
2014                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2015
2016         if (!batch_mode) {
2017                 err = ipw2100_disable_adapter(priv);
2018                 if (err)
2019                         return err;
2020         }
2021
2022         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2023          * disable auto association -- so we cheat by setting a bogus SSID */
2024         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2025                 int i;
2026                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2027                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2028                         bogus[i] = 0x18 + i;
2029                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2030         }
2031
2032         /* NOTE:  We always send the SSID command even if the provided ESSID is
2033          * the same as what we currently think is set. */
2034
2035         err = ipw2100_hw_send_command(priv, &cmd);
2036         if (!err) {
2037                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2038                 memcpy(priv->essid, essid, ssid_len);
2039                 priv->essid_len = ssid_len;
2040         }
2041
2042         if (!batch_mode) {
2043                 if (ipw2100_enable_adapter(priv))
2044                         err = -EIO;
2045         }
2046
2047         return err;
2048 }
2049
2050 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2051 {
2052         DECLARE_SSID_BUF(ssid);
2053
2054         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2055                   "disassociated: '%s' %pM \n",
2056                   print_ssid(ssid, priv->essid, priv->essid_len),
2057                   priv->bssid);
2058
2059         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2060
2061         if (priv->status & STATUS_STOPPING) {
2062                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2063                 return;
2064         }
2065
2066         memset(priv->bssid, 0, ETH_ALEN);
2067         memset(priv->ieee->bssid, 0, ETH_ALEN);
2068
2069         netif_carrier_off(priv->net_dev);
2070         netif_stop_queue(priv->net_dev);
2071
2072         if (!(priv->status & STATUS_RUNNING))
2073                 return;
2074
2075         if (priv->status & STATUS_SECURITY_UPDATED)
2076                 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2077
2078         queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2079 }
2080
2081 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2082 {
2083         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2084                        priv->net_dev->name);
2085
2086         /* RF_KILL is now enabled (else we wouldn't be here) */
2087         priv->status |= STATUS_RF_KILL_HW;
2088
2089         /* Make sure the RF Kill check timer is running */
2090         priv->stop_rf_kill = 0;
2091         cancel_delayed_work(&priv->rf_kill);
2092         queue_delayed_work(priv->workqueue, &priv->rf_kill,
2093                            round_jiffies_relative(HZ));
2094 }
2095
2096 static void send_scan_event(void *data)
2097 {
2098         struct ipw2100_priv *priv = data;
2099         union iwreq_data wrqu;
2100
2101         wrqu.data.length = 0;
2102         wrqu.data.flags = 0;
2103         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2104 }
2105
2106 static void ipw2100_scan_event_later(struct work_struct *work)
2107 {
2108         send_scan_event(container_of(work, struct ipw2100_priv,
2109                                         scan_event_later.work));
2110 }
2111
2112 static void ipw2100_scan_event_now(struct work_struct *work)
2113 {
2114         send_scan_event(container_of(work, struct ipw2100_priv,
2115                                         scan_event_now));
2116 }
2117
2118 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2119 {
2120         IPW_DEBUG_SCAN("scan complete\n");
2121         /* Age the scan results... */
2122         priv->ieee->scans++;
2123         priv->status &= ~STATUS_SCANNING;
2124
2125         /* Only userspace-requested scan completion events go out immediately */
2126         if (!priv->user_requested_scan) {
2127                 if (!delayed_work_pending(&priv->scan_event_later))
2128                         queue_delayed_work(priv->workqueue,
2129                                         &priv->scan_event_later,
2130                                         round_jiffies_relative(msecs_to_jiffies(4000)));
2131         } else {
2132                 priv->user_requested_scan = 0;
2133                 cancel_delayed_work(&priv->scan_event_later);
2134                 queue_work(priv->workqueue, &priv->scan_event_now);
2135         }
2136 }
2137
2138 #ifdef CONFIG_IPW2100_DEBUG
2139 #define IPW2100_HANDLER(v, f) { v, f, # v }
2140 struct ipw2100_status_indicator {
2141         int status;
2142         void (*cb) (struct ipw2100_priv * priv, u32 status);
2143         char *name;
2144 };
2145 #else
2146 #define IPW2100_HANDLER(v, f) { v, f }
2147 struct ipw2100_status_indicator {
2148         int status;
2149         void (*cb) (struct ipw2100_priv * priv, u32 status);
2150 };
2151 #endif                          /* CONFIG_IPW2100_DEBUG */
2152
2153 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2154 {
2155         IPW_DEBUG_SCAN("Scanning...\n");
2156         priv->status |= STATUS_SCANNING;
2157 }
2158
2159 static const struct ipw2100_status_indicator status_handlers[] = {
2160         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2161         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2162         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2163         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2164         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2165         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2166         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2167         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2168         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2169         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2170         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2171         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2172         IPW2100_HANDLER(-1, NULL)
2173 };
2174
2175 static void isr_status_change(struct ipw2100_priv *priv, int status)
2176 {
2177         int i;
2178
2179         if (status == IPW_STATE_SCANNING &&
2180             priv->status & STATUS_ASSOCIATED &&
2181             !(priv->status & STATUS_SCANNING)) {
2182                 IPW_DEBUG_INFO("Scan detected while associated, with "
2183                                "no scan request.  Restarting firmware.\n");
2184
2185                 /* Wake up any sleeping jobs */
2186                 schedule_reset(priv);
2187         }
2188
2189         for (i = 0; status_handlers[i].status != -1; i++) {
2190                 if (status == status_handlers[i].status) {
2191                         IPW_DEBUG_NOTIF("Status change: %s\n",
2192                                         status_handlers[i].name);
2193                         if (status_handlers[i].cb)
2194                                 status_handlers[i].cb(priv, status);
2195                         priv->wstats.status = status;
2196                         return;
2197                 }
2198         }
2199
2200         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2201 }
2202
2203 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2204                                     struct ipw2100_cmd_header *cmd)
2205 {
2206 #ifdef CONFIG_IPW2100_DEBUG
2207         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2208                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2209                              command_types[cmd->host_command_reg],
2210                              cmd->host_command_reg);
2211         }
2212 #endif
2213         if (cmd->host_command_reg == HOST_COMPLETE)
2214                 priv->status |= STATUS_ENABLED;
2215
2216         if (cmd->host_command_reg == CARD_DISABLE)
2217                 priv->status &= ~STATUS_ENABLED;
2218
2219         priv->status &= ~STATUS_CMD_ACTIVE;
2220
2221         wake_up_interruptible(&priv->wait_command_queue);
2222 }
2223
2224 #ifdef CONFIG_IPW2100_DEBUG
2225 static const char *frame_types[] = {
2226         "COMMAND_STATUS_VAL",
2227         "STATUS_CHANGE_VAL",
2228         "P80211_DATA_VAL",
2229         "P8023_DATA_VAL",
2230         "HOST_NOTIFICATION_VAL"
2231 };
2232 #endif
2233
2234 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2235                                     struct ipw2100_rx_packet *packet)
2236 {
2237         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2238         if (!packet->skb)
2239                 return -ENOMEM;
2240
2241         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2242         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2243                                           sizeof(struct ipw2100_rx),
2244                                           PCI_DMA_FROMDEVICE);
2245         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2246          *       dma_addr */
2247
2248         return 0;
2249 }
2250
2251 #define SEARCH_ERROR   0xffffffff
2252 #define SEARCH_FAIL    0xfffffffe
2253 #define SEARCH_SUCCESS 0xfffffff0
2254 #define SEARCH_DISCARD 0
2255 #define SEARCH_SNAPSHOT 1
2256
2257 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2258 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2259 {
2260         int i;
2261         if (!priv->snapshot[0])
2262                 return;
2263         for (i = 0; i < 0x30; i++)
2264                 kfree(priv->snapshot[i]);
2265         priv->snapshot[0] = NULL;
2266 }
2267
2268 #ifdef IPW2100_DEBUG_C3
2269 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2270 {
2271         int i;
2272         if (priv->snapshot[0])
2273                 return 1;
2274         for (i = 0; i < 0x30; i++) {
2275                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2276                 if (!priv->snapshot[i]) {
2277                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2278                                        "buffer %d\n", priv->net_dev->name, i);
2279                         while (i > 0)
2280                                 kfree(priv->snapshot[--i]);
2281                         priv->snapshot[0] = NULL;
2282                         return 0;
2283                 }
2284         }
2285
2286         return 1;
2287 }
2288
2289 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2290                                     size_t len, int mode)
2291 {
2292         u32 i, j;
2293         u32 tmp;
2294         u8 *s, *d;
2295         u32 ret;
2296
2297         s = in_buf;
2298         if (mode == SEARCH_SNAPSHOT) {
2299                 if (!ipw2100_snapshot_alloc(priv))
2300                         mode = SEARCH_DISCARD;
2301         }
2302
2303         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2304                 read_nic_dword(priv->net_dev, i, &tmp);
2305                 if (mode == SEARCH_SNAPSHOT)
2306                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2307                 if (ret == SEARCH_FAIL) {
2308                         d = (u8 *) & tmp;
2309                         for (j = 0; j < 4; j++) {
2310                                 if (*s != *d) {
2311                                         s = in_buf;
2312                                         continue;
2313                                 }
2314
2315                                 s++;
2316                                 d++;
2317
2318                                 if ((s - in_buf) == len)
2319                                         ret = (i + j) - len + 1;
2320                         }
2321                 } else if (mode == SEARCH_DISCARD)
2322                         return ret;
2323         }
2324
2325         return ret;
2326 }
2327 #endif
2328
2329 /*
2330  *
2331  * 0) Disconnect the SKB from the firmware (just unmap)
2332  * 1) Pack the ETH header into the SKB
2333  * 2) Pass the SKB to the network stack
2334  *
2335  * When packet is provided by the firmware, it contains the following:
2336  *
2337  * .  ieee80211_hdr
2338  * .  ieee80211_snap_hdr
2339  *
2340  * The size of the constructed ethernet
2341  *
2342  */
2343 #ifdef IPW2100_RX_DEBUG
2344 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2345 #endif
2346
2347 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2348 {
2349 #ifdef IPW2100_DEBUG_C3
2350         struct ipw2100_status *status = &priv->status_queue.drv[i];
2351         u32 match, reg;
2352         int j;
2353 #endif
2354
2355         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2356                        i * sizeof(struct ipw2100_status));
2357
2358 #ifdef IPW2100_DEBUG_C3
2359         /* Halt the fimrware so we can get a good image */
2360         write_register(priv->net_dev, IPW_REG_RESET_REG,
2361                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2362         j = 5;
2363         do {
2364                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2365                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2366
2367                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2368                         break;
2369         } while (j--);
2370
2371         match = ipw2100_match_buf(priv, (u8 *) status,
2372                                   sizeof(struct ipw2100_status),
2373                                   SEARCH_SNAPSHOT);
2374         if (match < SEARCH_SUCCESS)
2375                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2376                                "offset 0x%06X, length %d:\n",
2377                                priv->net_dev->name, match,
2378                                sizeof(struct ipw2100_status));
2379         else
2380                 IPW_DEBUG_INFO("%s: No DMA status match in "
2381                                "Firmware.\n", priv->net_dev->name);
2382
2383         printk_buf((u8 *) priv->status_queue.drv,
2384                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2385 #endif
2386
2387         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2388         priv->ieee->stats.rx_errors++;
2389         schedule_reset(priv);
2390 }
2391
2392 static void isr_rx(struct ipw2100_priv *priv, int i,
2393                           struct ieee80211_rx_stats *stats)
2394 {
2395         struct ipw2100_status *status = &priv->status_queue.drv[i];
2396         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2397
2398         IPW_DEBUG_RX("Handler...\n");
2399
2400         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2401                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2402                                "  Dropping.\n",
2403                                priv->net_dev->name,
2404                                status->frame_size, skb_tailroom(packet->skb));
2405                 priv->ieee->stats.rx_errors++;
2406                 return;
2407         }
2408
2409         if (unlikely(!netif_running(priv->net_dev))) {
2410                 priv->ieee->stats.rx_errors++;
2411                 priv->wstats.discard.misc++;
2412                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2413                 return;
2414         }
2415
2416         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2417                      !(priv->status & STATUS_ASSOCIATED))) {
2418                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2419                 priv->wstats.discard.misc++;
2420                 return;
2421         }
2422
2423         pci_unmap_single(priv->pci_dev,
2424                          packet->dma_addr,
2425                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2426
2427         skb_put(packet->skb, status->frame_size);
2428
2429 #ifdef IPW2100_RX_DEBUG
2430         /* Make a copy of the frame so we can dump it to the logs if
2431          * ieee80211_rx fails */
2432         skb_copy_from_linear_data(packet->skb, packet_data,
2433                                   min_t(u32, status->frame_size,
2434                                              IPW_RX_NIC_BUFFER_LENGTH));
2435 #endif
2436
2437         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2438 #ifdef IPW2100_RX_DEBUG
2439                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2440                                priv->net_dev->name);
2441                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2442 #endif
2443                 priv->ieee->stats.rx_errors++;
2444
2445                 /* ieee80211_rx failed, so it didn't free the SKB */
2446                 dev_kfree_skb_any(packet->skb);
2447                 packet->skb = NULL;
2448         }
2449
2450         /* We need to allocate a new SKB and attach it to the RDB. */
2451         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2452                 printk(KERN_WARNING DRV_NAME ": "
2453                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2454                        "adapter.\n", priv->net_dev->name);
2455                 /* TODO: schedule adapter shutdown */
2456                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2457         }
2458
2459         /* Update the RDB entry */
2460         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2461 }
2462
2463 #ifdef CONFIG_IPW2100_MONITOR
2464
2465 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2466                    struct ieee80211_rx_stats *stats)
2467 {
2468         struct ipw2100_status *status = &priv->status_queue.drv[i];
2469         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2470
2471         /* Magic struct that slots into the radiotap header -- no reason
2472          * to build this manually element by element, we can write it much
2473          * more efficiently than we can parse it. ORDER MATTERS HERE */
2474         struct ipw_rt_hdr {
2475                 struct ieee80211_radiotap_header rt_hdr;
2476                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2477         } *ipw_rt;
2478
2479         IPW_DEBUG_RX("Handler...\n");
2480
2481         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2482                                 sizeof(struct ipw_rt_hdr))) {
2483                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2484                                "  Dropping.\n",
2485                                priv->net_dev->name,
2486                                status->frame_size,
2487                                skb_tailroom(packet->skb));
2488                 priv->ieee->stats.rx_errors++;
2489                 return;
2490         }
2491
2492         if (unlikely(!netif_running(priv->net_dev))) {
2493                 priv->ieee->stats.rx_errors++;
2494                 priv->wstats.discard.misc++;
2495                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2496                 return;
2497         }
2498
2499         if (unlikely(priv->config & CFG_CRC_CHECK &&
2500                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2501                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2502                 priv->ieee->stats.rx_errors++;
2503                 return;
2504         }
2505
2506         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2507                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2508         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2509                 packet->skb->data, status->frame_size);
2510
2511         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2512
2513         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2514         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2515         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2516
2517         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2518
2519         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2520
2521         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2522
2523         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2524                 priv->ieee->stats.rx_errors++;
2525
2526                 /* ieee80211_rx failed, so it didn't free the SKB */
2527                 dev_kfree_skb_any(packet->skb);
2528                 packet->skb = NULL;
2529         }
2530
2531         /* We need to allocate a new SKB and attach it to the RDB. */
2532         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2533                 IPW_DEBUG_WARNING(
2534                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2535                         "adapter.\n", priv->net_dev->name);
2536                 /* TODO: schedule adapter shutdown */
2537                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2538         }
2539
2540         /* Update the RDB entry */
2541         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2542 }
2543
2544 #endif
2545
2546 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2547 {
2548         struct ipw2100_status *status = &priv->status_queue.drv[i];
2549         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2550         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2551
2552         switch (frame_type) {
2553         case COMMAND_STATUS_VAL:
2554                 return (status->frame_size != sizeof(u->rx_data.command));
2555         case STATUS_CHANGE_VAL:
2556                 return (status->frame_size != sizeof(u->rx_data.status));
2557         case HOST_NOTIFICATION_VAL:
2558                 return (status->frame_size < sizeof(u->rx_data.notification));
2559         case P80211_DATA_VAL:
2560         case P8023_DATA_VAL:
2561 #ifdef CONFIG_IPW2100_MONITOR
2562                 return 0;
2563 #else
2564                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2565                 case IEEE80211_FTYPE_MGMT:
2566                 case IEEE80211_FTYPE_CTL:
2567                         return 0;
2568                 case IEEE80211_FTYPE_DATA:
2569                         return (status->frame_size >
2570                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2571                 }
2572 #endif
2573         }
2574
2575         return 1;
2576 }
2577
2578 /*
2579  * ipw2100 interrupts are disabled at this point, and the ISR
2580  * is the only code that calls this method.  So, we do not need
2581  * to play with any locks.
2582  *
2583  * RX Queue works as follows:
2584  *
2585  * Read index - firmware places packet in entry identified by the
2586  *              Read index and advances Read index.  In this manner,
2587  *              Read index will always point to the next packet to
2588  *              be filled--but not yet valid.
2589  *
2590  * Write index - driver fills this entry with an unused RBD entry.
2591  *               This entry has not filled by the firmware yet.
2592  *
2593  * In between the W and R indexes are the RBDs that have been received
2594  * but not yet processed.
2595  *
2596  * The process of handling packets will start at WRITE + 1 and advance
2597  * until it reaches the READ index.
2598  *
2599  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2600  *
2601  */
2602 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2603 {
2604         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2605         struct ipw2100_status_queue *sq = &priv->status_queue;
2606         struct ipw2100_rx_packet *packet;
2607         u16 frame_type;
2608         u32 r, w, i, s;
2609         struct ipw2100_rx *u;
2610         struct ieee80211_rx_stats stats = {
2611                 .mac_time = jiffies,
2612         };
2613
2614         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2615         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2616
2617         if (r >= rxq->entries) {
2618                 IPW_DEBUG_RX("exit - bad read index\n");
2619                 return;
2620         }
2621
2622         i = (rxq->next + 1) % rxq->entries;
2623         s = i;
2624         while (i != r) {
2625                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2626                    r, rxq->next, i); */
2627
2628                 packet = &priv->rx_buffers[i];
2629
2630                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2631                  * the correct values */
2632                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2633                                             sq->nic +
2634                                             sizeof(struct ipw2100_status) * i,
2635                                             sizeof(struct ipw2100_status),
2636                                             PCI_DMA_FROMDEVICE);
2637
2638                 /* Sync the DMA for the RX buffer so CPU is sure to get
2639                  * the correct values */
2640                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2641                                             sizeof(struct ipw2100_rx),
2642                                             PCI_DMA_FROMDEVICE);
2643
2644                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2645                         ipw2100_corruption_detected(priv, i);
2646                         goto increment;
2647                 }
2648
2649                 u = packet->rxp;
2650                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2651                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2652                 stats.len = sq->drv[i].frame_size;
2653
2654                 stats.mask = 0;
2655                 if (stats.rssi != 0)
2656                         stats.mask |= IEEE80211_STATMASK_RSSI;
2657                 stats.freq = IEEE80211_24GHZ_BAND;
2658
2659                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2660                              priv->net_dev->name, frame_types[frame_type],
2661                              stats.len);
2662
2663                 switch (frame_type) {
2664                 case COMMAND_STATUS_VAL:
2665                         /* Reset Rx watchdog */
2666                         isr_rx_complete_command(priv, &u->rx_data.command);
2667                         break;
2668
2669                 case STATUS_CHANGE_VAL:
2670                         isr_status_change(priv, u->rx_data.status);
2671                         break;
2672
2673                 case P80211_DATA_VAL:
2674                 case P8023_DATA_VAL:
2675 #ifdef CONFIG_IPW2100_MONITOR
2676                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2677                                 isr_rx_monitor(priv, i, &stats);
2678                                 break;
2679                         }
2680 #endif
2681                         if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2682                                 break;
2683                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2684                         case IEEE80211_FTYPE_MGMT:
2685                                 ieee80211_rx_mgt(priv->ieee,
2686                                                  &u->rx_data.header, &stats);
2687                                 break;
2688
2689                         case IEEE80211_FTYPE_CTL:
2690                                 break;
2691
2692                         case IEEE80211_FTYPE_DATA:
2693                                 isr_rx(priv, i, &stats);
2694                                 break;
2695
2696                         }
2697                         break;
2698                 }
2699
2700               increment:
2701                 /* clear status field associated with this RBD */
2702                 rxq->drv[i].status.info.field = 0;
2703
2704                 i = (i + 1) % rxq->entries;
2705         }
2706
2707         if (i != s) {
2708                 /* backtrack one entry, wrapping to end if at 0 */
2709                 rxq->next = (i ? i : rxq->entries) - 1;
2710
2711                 write_register(priv->net_dev,
2712                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2713         }
2714 }
2715
2716 /*
2717  * __ipw2100_tx_process
2718  *
2719  * This routine will determine whether the next packet on
2720  * the fw_pend_list has been processed by the firmware yet.
2721  *
2722  * If not, then it does nothing and returns.
2723  *
2724  * If so, then it removes the item from the fw_pend_list, frees
2725  * any associated storage, and places the item back on the
2726  * free list of its source (either msg_free_list or tx_free_list)
2727  *
2728  * TX Queue works as follows:
2729  *
2730  * Read index - points to the next TBD that the firmware will
2731  *              process.  The firmware will read the data, and once
2732  *              done processing, it will advance the Read index.
2733  *
2734  * Write index - driver fills this entry with an constructed TBD
2735  *               entry.  The Write index is not advanced until the
2736  *               packet has been configured.
2737  *
2738  * In between the W and R indexes are the TBDs that have NOT been
2739  * processed.  Lagging behind the R index are packets that have
2740  * been processed but have not been freed by the driver.
2741  *
2742  * In order to free old storage, an internal index will be maintained
2743  * that points to the next packet to be freed.  When all used
2744  * packets have been freed, the oldest index will be the same as the
2745  * firmware's read index.
2746  *
2747  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2748  *
2749  * Because the TBD structure can not contain arbitrary data, the
2750  * driver must keep an internal queue of cached allocations such that
2751  * it can put that data back into the tx_free_list and msg_free_list
2752  * for use by future command and data packets.
2753  *
2754  */
2755 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2756 {
2757         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2758         struct ipw2100_bd *tbd;
2759         struct list_head *element;
2760         struct ipw2100_tx_packet *packet;
2761         int descriptors_used;
2762         int e, i;
2763         u32 r, w, frag_num = 0;
2764
2765         if (list_empty(&priv->fw_pend_list))
2766                 return 0;
2767
2768         element = priv->fw_pend_list.next;
2769
2770         packet = list_entry(element, struct ipw2100_tx_packet, list);
2771         tbd = &txq->drv[packet->index];
2772
2773         /* Determine how many TBD entries must be finished... */
2774         switch (packet->type) {
2775         case COMMAND:
2776                 /* COMMAND uses only one slot; don't advance */
2777                 descriptors_used = 1;
2778                 e = txq->oldest;
2779                 break;
2780
2781         case DATA:
2782                 /* DATA uses two slots; advance and loop position. */
2783                 descriptors_used = tbd->num_fragments;
2784                 frag_num = tbd->num_fragments - 1;
2785                 e = txq->oldest + frag_num;
2786                 e %= txq->entries;
2787                 break;
2788
2789         default:
2790                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2791                        priv->net_dev->name);
2792                 return 0;
2793         }
2794
2795         /* if the last TBD is not done by NIC yet, then packet is
2796          * not ready to be released.
2797          *
2798          */
2799         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2800                       &r);
2801         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2802                       &w);
2803         if (w != txq->next)
2804                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2805                        priv->net_dev->name);
2806
2807         /*
2808          * txq->next is the index of the last packet written txq->oldest is
2809          * the index of the r is the index of the next packet to be read by
2810          * firmware
2811          */
2812
2813         /*
2814          * Quick graphic to help you visualize the following
2815          * if / else statement
2816          *
2817          * ===>|                     s---->|===============
2818          *                               e>|
2819          * | a | b | c | d | e | f | g | h | i | j | k | l
2820          *       r---->|
2821          *               w
2822          *
2823          * w - updated by driver
2824          * r - updated by firmware
2825          * s - start of oldest BD entry (txq->oldest)
2826          * e - end of oldest BD entry
2827          *
2828          */
2829         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2830                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2831                 return 0;
2832         }
2833
2834         list_del(element);
2835         DEC_STAT(&priv->fw_pend_stat);
2836
2837 #ifdef CONFIG_IPW2100_DEBUG
2838         {
2839                 int i = txq->oldest;
2840                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2841                              &txq->drv[i],
2842                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2843                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2844
2845                 if (packet->type == DATA) {
2846                         i = (i + 1) % txq->entries;
2847
2848                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2849                                      &txq->drv[i],
2850                                      (u32) (txq->nic + i *
2851                                             sizeof(struct ipw2100_bd)),
2852                                      (u32) txq->drv[i].host_addr,
2853                                      txq->drv[i].buf_length);
2854                 }
2855         }
2856 #endif
2857
2858         switch (packet->type) {
2859         case DATA:
2860                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2861                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2862                                "Expecting DATA TBD but pulled "
2863                                "something else: ids %d=%d.\n",
2864                                priv->net_dev->name, txq->oldest, packet->index);
2865
2866                 /* DATA packet; we have to unmap and free the SKB */
2867                 for (i = 0; i < frag_num; i++) {
2868                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2869
2870                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2871                                      (packet->index + 1 + i) % txq->entries,
2872                                      tbd->host_addr, tbd->buf_length);
2873
2874                         pci_unmap_single(priv->pci_dev,
2875                                          tbd->host_addr,
2876                                          tbd->buf_length, PCI_DMA_TODEVICE);
2877                 }
2878
2879                 ieee80211_txb_free(packet->info.d_struct.txb);
2880                 packet->info.d_struct.txb = NULL;
2881
2882                 list_add_tail(element, &priv->tx_free_list);
2883                 INC_STAT(&priv->tx_free_stat);
2884
2885                 /* We have a free slot in the Tx queue, so wake up the
2886                  * transmit layer if it is stopped. */
2887                 if (priv->status & STATUS_ASSOCIATED)
2888                         netif_wake_queue(priv->net_dev);
2889
2890                 /* A packet was processed by the hardware, so update the
2891                  * watchdog */
2892                 priv->net_dev->trans_start = jiffies;
2893
2894                 break;
2895
2896         case COMMAND:
2897                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2898                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2899                                "Expecting COMMAND TBD but pulled "
2900                                "something else: ids %d=%d.\n",
2901                                priv->net_dev->name, txq->oldest, packet->index);
2902
2903 #ifdef CONFIG_IPW2100_DEBUG
2904                 if (packet->info.c_struct.cmd->host_command_reg <
2905                     ARRAY_SIZE(command_types))
2906                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2907                                      command_types[packet->info.c_struct.cmd->
2908                                                    host_command_reg],
2909                                      packet->info.c_struct.cmd->
2910                                      host_command_reg,
2911                                      packet->info.c_struct.cmd->cmd_status_reg);
2912 #endif
2913
2914                 list_add_tail(element, &priv->msg_free_list);
2915                 INC_STAT(&priv->msg_free_stat);
2916                 break;
2917         }
2918
2919         /* advance oldest used TBD pointer to start of next entry */
2920         txq->oldest = (e + 1) % txq->entries;
2921         /* increase available TBDs number */
2922         txq->available += descriptors_used;
2923         SET_STAT(&priv->txq_stat, txq->available);
2924
2925         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2926                      jiffies - packet->jiffy_start);
2927
2928         return (!list_empty(&priv->fw_pend_list));
2929 }
2930
2931 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2932 {
2933         int i = 0;
2934
2935         while (__ipw2100_tx_process(priv) && i < 200)
2936                 i++;
2937
2938         if (i == 200) {
2939                 printk(KERN_WARNING DRV_NAME ": "
2940                        "%s: Driver is running slow (%d iters).\n",
2941                        priv->net_dev->name, i);
2942         }
2943 }
2944
2945 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2946 {
2947         struct list_head *element;
2948         struct ipw2100_tx_packet *packet;
2949         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2950         struct ipw2100_bd *tbd;
2951         int next = txq->next;
2952
2953         while (!list_empty(&priv->msg_pend_list)) {
2954                 /* if there isn't enough space in TBD queue, then
2955                  * don't stuff a new one in.
2956                  * NOTE: 3 are needed as a command will take one,
2957                  *       and there is a minimum of 2 that must be
2958                  *       maintained between the r and w indexes
2959                  */
2960                 if (txq->available <= 3) {
2961                         IPW_DEBUG_TX("no room in tx_queue\n");
2962                         break;
2963                 }
2964
2965                 element = priv->msg_pend_list.next;
2966                 list_del(element);
2967                 DEC_STAT(&priv->msg_pend_stat);
2968
2969                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2970
2971                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2972                              &txq->drv[txq->next],
2973                              (void *)(txq->nic + txq->next *
2974                                       sizeof(struct ipw2100_bd)));
2975
2976                 packet->index = txq->next;
2977
2978                 tbd = &txq->drv[txq->next];
2979
2980                 /* initialize TBD */
2981                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2982                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2983                 /* not marking number of fragments causes problems
2984                  * with f/w debug version */
2985                 tbd->num_fragments = 1;
2986                 tbd->status.info.field =
2987                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2988                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2989
2990                 /* update TBD queue counters */
2991                 txq->next++;
2992                 txq->next %= txq->entries;
2993                 txq->available--;
2994                 DEC_STAT(&priv->txq_stat);
2995
2996                 list_add_tail(element, &priv->fw_pend_list);
2997                 INC_STAT(&priv->fw_pend_stat);
2998         }
2999
3000         if (txq->next != next) {
3001                 /* kick off the DMA by notifying firmware the
3002                  * write index has moved; make sure TBD stores are sync'd */
3003                 wmb();
3004                 write_register(priv->net_dev,
3005                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3006                                txq->next);
3007         }
3008 }
3009
3010 /*
3011  * ipw2100_tx_send_data
3012  *
3013  */
3014 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3015 {
3016         struct list_head *element;
3017         struct ipw2100_tx_packet *packet;
3018         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3019         struct ipw2100_bd *tbd;
3020         int next = txq->next;
3021         int i = 0;
3022         struct ipw2100_data_header *ipw_hdr;
3023         struct ieee80211_hdr_3addr *hdr;
3024
3025         while (!list_empty(&priv->tx_pend_list)) {
3026                 /* if there isn't enough space in TBD queue, then
3027                  * don't stuff a new one in.
3028                  * NOTE: 4 are needed as a data will take two,
3029                  *       and there is a minimum of 2 that must be
3030                  *       maintained between the r and w indexes
3031                  */
3032                 element = priv->tx_pend_list.next;
3033                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3034
3035                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3036                              IPW_MAX_BDS)) {
3037                         /* TODO: Support merging buffers if more than
3038                          * IPW_MAX_BDS are used */
3039                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
3040                                        "Increase fragmentation level.\n",
3041                                        priv->net_dev->name);
3042                 }
3043
3044                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3045                         IPW_DEBUG_TX("no room in tx_queue\n");
3046                         break;
3047                 }
3048
3049                 list_del(element);
3050                 DEC_STAT(&priv->tx_pend_stat);
3051
3052                 tbd = &txq->drv[txq->next];
3053
3054                 packet->index = txq->next;
3055
3056                 ipw_hdr = packet->info.d_struct.data;
3057                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3058                     fragments[0]->data;
3059
3060                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3061                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3062                            Addr3 = DA */
3063                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3064                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3065                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3066                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3067                            Addr3 = BSSID */
3068                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3069                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3070                 }
3071
3072                 ipw_hdr->host_command_reg = SEND;
3073                 ipw_hdr->host_command_reg1 = 0;
3074
3075                 /* For now we only support host based encryption */
3076                 ipw_hdr->needs_encryption = 0;
3077                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3078                 if (packet->info.d_struct.txb->nr_frags > 1)
3079                         ipw_hdr->fragment_size =
3080                             packet->info.d_struct.txb->frag_size -
3081                             IEEE80211_3ADDR_LEN;
3082                 else
3083                         ipw_hdr->fragment_size = 0;
3084
3085                 tbd->host_addr = packet->info.d_struct.data_phys;
3086                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3087                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3088                 tbd->status.info.field =
3089                     IPW_BD_STATUS_TX_FRAME_802_3 |
3090                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3091                 txq->next++;
3092                 txq->next %= txq->entries;
3093
3094                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3095                              packet->index, tbd->host_addr, tbd->buf_length);
3096 #ifdef CONFIG_IPW2100_DEBUG
3097                 if (packet->info.d_struct.txb->nr_frags > 1)
3098                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3099                                        packet->info.d_struct.txb->nr_frags);
3100 #endif
3101
3102                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3103                         tbd = &txq->drv[txq->next];
3104                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3105                                 tbd->status.info.field =
3106                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3107                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3108                         else
3109                                 tbd->status.info.field =
3110                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3111                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3112
3113                         tbd->buf_length = packet->info.d_struct.txb->
3114                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3115
3116                         tbd->host_addr = pci_map_single(priv->pci_dev,
3117                                                         packet->info.d_struct.
3118                                                         txb->fragments[i]->
3119                                                         data +
3120                                                         IEEE80211_3ADDR_LEN,
3121                                                         tbd->buf_length,
3122                                                         PCI_DMA_TODEVICE);
3123
3124                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3125                                      txq->next, tbd->host_addr,
3126                                      tbd->buf_length);
3127
3128                         pci_dma_sync_single_for_device(priv->pci_dev,
3129                                                        tbd->host_addr,
3130                                                        tbd->buf_length,
3131                                                        PCI_DMA_TODEVICE);
3132
3133                         txq->next++;
3134                         txq->next %= txq->entries;
3135                 }
3136
3137                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3138                 SET_STAT(&priv->txq_stat, txq->available);
3139
3140                 list_add_tail(element, &priv->fw_pend_list);
3141                 INC_STAT(&priv->fw_pend_stat);
3142         }
3143
3144         if (txq->next != next) {
3145                 /* kick off the DMA by notifying firmware the
3146                  * write index has moved; make sure TBD stores are sync'd */
3147                 write_register(priv->net_dev,
3148                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3149                                txq->next);
3150         }
3151         return;
3152 }
3153
3154 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3155 {
3156         struct net_device *dev = priv->net_dev;
3157         unsigned long flags;
3158         u32 inta, tmp;
3159
3160         spin_lock_irqsave(&priv->low_lock, flags);
3161         ipw2100_disable_interrupts(priv);
3162
3163         read_register(dev, IPW_REG_INTA, &inta);
3164
3165         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3166                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3167
3168         priv->in_isr++;
3169         priv->interrupts++;
3170
3171         /* We do not loop and keep polling for more interrupts as this
3172          * is frowned upon and doesn't play nicely with other potentially
3173          * chained IRQs */
3174         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3175                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3176
3177         if (inta & IPW2100_INTA_FATAL_ERROR) {
3178                 printk(KERN_WARNING DRV_NAME
3179                        ": Fatal interrupt. Scheduling firmware restart.\n");
3180                 priv->inta_other++;
3181                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3182
3183                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3184                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3185                                priv->net_dev->name, priv->fatal_error);
3186
3187                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3188                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3189                                priv->net_dev->name, tmp);
3190
3191                 /* Wake up any sleeping jobs */
3192                 schedule_reset(priv);
3193         }
3194
3195         if (inta & IPW2100_INTA_PARITY_ERROR) {
3196                 printk(KERN_ERR DRV_NAME
3197                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3198                 priv->inta_other++;
3199                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3200         }
3201
3202         if (inta & IPW2100_INTA_RX_TRANSFER) {
3203                 IPW_DEBUG_ISR("RX interrupt\n");
3204
3205                 priv->rx_interrupts++;
3206
3207                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3208
3209                 __ipw2100_rx_process(priv);
3210                 __ipw2100_tx_complete(priv);
3211         }
3212
3213         if (inta & IPW2100_INTA_TX_TRANSFER) {
3214                 IPW_DEBUG_ISR("TX interrupt\n");
3215
3216                 priv->tx_interrupts++;
3217
3218                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3219
3220                 __ipw2100_tx_complete(priv);
3221                 ipw2100_tx_send_commands(priv);
3222                 ipw2100_tx_send_data(priv);
3223         }
3224
3225         if (inta & IPW2100_INTA_TX_COMPLETE) {
3226                 IPW_DEBUG_ISR("TX complete\n");
3227                 priv->inta_other++;
3228                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3229
3230                 __ipw2100_tx_complete(priv);
3231         }
3232
3233         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3234                 /* ipw2100_handle_event(dev); */
3235                 priv->inta_other++;
3236                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3237         }
3238
3239         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3240                 IPW_DEBUG_ISR("FW init done interrupt\n");
3241                 priv->inta_other++;
3242
3243                 read_register(dev, IPW_REG_INTA, &tmp);
3244                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3245                            IPW2100_INTA_PARITY_ERROR)) {
3246                         write_register(dev, IPW_REG_INTA,
3247                                        IPW2100_INTA_FATAL_ERROR |
3248                                        IPW2100_INTA_PARITY_ERROR);
3249                 }
3250
3251                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3252         }
3253
3254         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3255                 IPW_DEBUG_ISR("Status change interrupt\n");
3256                 priv->inta_other++;
3257                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3258         }
3259
3260         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3261                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3262                 priv->inta_other++;
3263                 write_register(dev, IPW_REG_INTA,
3264                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3265         }
3266
3267         priv->in_isr--;
3268         ipw2100_enable_interrupts(priv);
3269
3270         spin_unlock_irqrestore(&priv->low_lock, flags);
3271
3272         IPW_DEBUG_ISR("exit\n");
3273 }
3274
3275 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3276 {
3277         struct ipw2100_priv *priv = data;
3278         u32 inta, inta_mask;
3279
3280         if (!data)
3281                 return IRQ_NONE;
3282
3283         spin_lock(&priv->low_lock);
3284
3285         /* We check to see if we should be ignoring interrupts before
3286          * we touch the hardware.  During ucode load if we try and handle
3287          * an interrupt we can cause keyboard problems as well as cause
3288          * the ucode to fail to initialize */
3289         if (!(priv->status & STATUS_INT_ENABLED)) {
3290                 /* Shared IRQ */
3291                 goto none;
3292         }
3293
3294         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3295         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3296
3297         if (inta == 0xFFFFFFFF) {
3298                 /* Hardware disappeared */
3299                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3300                 goto none;
3301         }
3302
3303         inta &= IPW_INTERRUPT_MASK;
3304
3305         if (!(inta & inta_mask)) {
3306                 /* Shared interrupt */
3307                 goto none;
3308         }
3309
3310         /* We disable the hardware interrupt here just to prevent unneeded
3311          * calls to be made.  We disable this again within the actual
3312          * work tasklet, so if another part of the code re-enables the
3313          * interrupt, that is fine */
3314         ipw2100_disable_interrupts(priv);
3315
3316         tasklet_schedule(&priv->irq_tasklet);
3317         spin_unlock(&priv->low_lock);
3318
3319         return IRQ_HANDLED;
3320       none:
3321         spin_unlock(&priv->low_lock);
3322         return IRQ_NONE;
3323 }
3324
3325 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3326                       int pri)
3327 {
3328         struct ipw2100_priv *priv = ieee80211_priv(dev);
3329         struct list_head *element;
3330         struct ipw2100_tx_packet *packet;
3331         unsigned long flags;
3332
3333         spin_lock_irqsave(&priv->low_lock, flags);
3334
3335         if (!(priv->status & STATUS_ASSOCIATED)) {
3336                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3337                 priv->ieee->stats.tx_carrier_errors++;
3338                 netif_stop_queue(dev);
3339                 goto fail_unlock;
3340         }
3341
3342         if (list_empty(&priv->tx_free_list))
3343                 goto fail_unlock;
3344
3345         element = priv->tx_free_list.next;
3346         packet = list_entry(element, struct ipw2100_tx_packet, list);
3347
3348         packet->info.d_struct.txb = txb;
3349
3350         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3351         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3352
3353         packet->jiffy_start = jiffies;
3354
3355         list_del(element);
3356         DEC_STAT(&priv->tx_free_stat);
3357
3358         list_add_tail(element, &priv->tx_pend_list);
3359         INC_STAT(&priv->tx_pend_stat);
3360
3361         ipw2100_tx_send_data(priv);
3362
3363         spin_unlock_irqrestore(&priv->low_lock, flags);
3364         return 0;
3365
3366       fail_unlock:
3367         netif_stop_queue(dev);
3368         spin_unlock_irqrestore(&priv->low_lock, flags);
3369         return 1;
3370 }
3371
3372 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3373 {
3374         int i, j, err = -EINVAL;
3375         void *v;
3376         dma_addr_t p;
3377
3378         priv->msg_buffers =
3379             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3380                                                 sizeof(struct
3381                                                        ipw2100_tx_packet),
3382                                                 GFP_KERNEL);
3383         if (!priv->msg_buffers) {
3384                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3385                        "buffers.\n", priv->net_dev->name);
3386                 return -ENOMEM;
3387         }
3388
3389         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3390                 v = pci_alloc_consistent(priv->pci_dev,
3391                                          sizeof(struct ipw2100_cmd_header), &p);
3392                 if (!v) {
3393                         printk(KERN_ERR DRV_NAME ": "
3394                                "%s: PCI alloc failed for msg "
3395                                "buffers.\n", priv->net_dev->name);
3396                         err = -ENOMEM;
3397                         break;
3398                 }
3399
3400                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3401
3402                 priv->msg_buffers[i].type = COMMAND;
3403                 priv->msg_buffers[i].info.c_struct.cmd =
3404                     (struct ipw2100_cmd_header *)v;
3405                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3406         }
3407
3408         if (i == IPW_COMMAND_POOL_SIZE)
3409                 return 0;
3410
3411         for (j = 0; j < i; j++) {
3412                 pci_free_consistent(priv->pci_dev,
3413                                     sizeof(struct ipw2100_cmd_header),
3414                                     priv->msg_buffers[j].info.c_struct.cmd,
3415                                     priv->msg_buffers[j].info.c_struct.
3416                                     cmd_phys);
3417         }
3418
3419         kfree(priv->msg_buffers);
3420         priv->msg_buffers = NULL;
3421
3422         return err;
3423 }
3424
3425 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3426 {
3427         int i;
3428
3429         INIT_LIST_HEAD(&priv->msg_free_list);
3430         INIT_LIST_HEAD(&priv->msg_pend_list);
3431
3432         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3433                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3434         SET_STAT(&priv->msg_free_stat, i);
3435
3436         return 0;
3437 }
3438
3439 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3440 {
3441         int i;
3442
3443         if (!priv->msg_buffers)
3444                 return;
3445
3446         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3447                 pci_free_consistent(priv->pci_dev,
3448                                     sizeof(struct ipw2100_cmd_header),
3449                                     priv->msg_buffers[i].info.c_struct.cmd,
3450                                     priv->msg_buffers[i].info.c_struct.
3451                                     cmd_phys);
3452         }
3453
3454         kfree(priv->msg_buffers);
3455         priv->msg_buffers = NULL;
3456 }
3457
3458 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3459                         char *buf)
3460 {
3461         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3462         char *out = buf;
3463         int i, j;
3464         u32 val;
3465
3466         for (i = 0; i < 16; i++) {
3467                 out += sprintf(out, "[%08X] ", i * 16);
3468                 for (j = 0; j < 16; j += 4) {
3469                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3470                         out += sprintf(out, "%08X ", val);
3471                 }
3472                 out += sprintf(out, "\n");
3473         }
3474
3475         return out - buf;
3476 }
3477
3478 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3479
3480 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3481                         char *buf)
3482 {
3483         struct ipw2100_priv *p = d->driver_data;
3484         return sprintf(buf, "0x%08x\n", (int)p->config);
3485 }
3486
3487 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3488
3489 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3490                            char *buf)
3491 {
3492         struct ipw2100_priv *p = d->driver_data;
3493         return sprintf(buf, "0x%08x\n", (int)p->status);
3494 }
3495
3496 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3497
3498 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3499                                char *buf)
3500 {
3501         struct ipw2100_priv *p = d->driver_data;
3502         return sprintf(buf, "0x%08x\n", (int)p->capability);
3503 }
3504
3505 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3506
3507 #define IPW2100_REG(x) { IPW_ ##x, #x }
3508 static const struct {
3509         u32 addr;
3510         const char *name;
3511 } hw_data[] = {
3512 IPW2100_REG(REG_GP_CNTRL),
3513             IPW2100_REG(REG_GPIO),
3514             IPW2100_REG(REG_INTA),
3515             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3516 #define IPW2100_NIC(x, s) { x, #x, s }
3517 static const struct {
3518         u32 addr;
3519         const char *name;
3520         size_t size;
3521 } nic_data[] = {
3522 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3523             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3524 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3525 static const struct {
3526         u8 index;
3527         const char *name;
3528         const char *desc;
3529 } ord_data[] = {
3530 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3531             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3532                                 "successful Host Tx's (MSDU)"),
3533             IPW2100_ORD(STAT_TX_DIR_DATA,
3534                                 "successful Directed Tx's (MSDU)"),
3535             IPW2100_ORD(STAT_TX_DIR_DATA1,
3536                                 "successful Directed Tx's (MSDU) @ 1MB"),
3537             IPW2100_ORD(STAT_TX_DIR_DATA2,
3538                                 "successful Directed Tx's (MSDU) @ 2MB"),
3539             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3540                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3541             IPW2100_ORD(STAT_TX_DIR_DATA11,
3542                                 "successful Directed Tx's (MSDU) @ 11MB"),
3543             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3544                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3545             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3546                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3547             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3548                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3549             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3550                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3551             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3552             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3553             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3554             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3555             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3556             IPW2100_ORD(STAT_TX_ASSN_RESP,
3557                                 "successful Association response Tx's"),
3558             IPW2100_ORD(STAT_TX_REASSN,
3559                                 "successful Reassociation Tx's"),
3560             IPW2100_ORD(STAT_TX_REASSN_RESP,
3561                                 "successful Reassociation response Tx's"),
3562             IPW2100_ORD(STAT_TX_PROBE,
3563                                 "probes successfully transmitted"),
3564             IPW2100_ORD(STAT_TX_PROBE_RESP,
3565                                 "probe responses successfully transmitted"),
3566             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3567             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3568             IPW2100_ORD(STAT_TX_DISASSN,
3569                                 "successful Disassociation TX"),
3570             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3571             IPW2100_ORD(STAT_TX_DEAUTH,
3572                                 "successful Deauthentication TX"),
3573             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3574                                 "Total successful Tx data bytes"),
3575             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3576             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3577             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3578             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3579             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3580             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3581             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3582                                 "times max tries in a hop failed"),
3583             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3584                                 "times disassociation failed"),
3585             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3586             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3587             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3588             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3589             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3590             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3591             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3592                                 "directed packets at 5.5MB"),
3593             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3594             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3595             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3596                                 "nondirected packets at 1MB"),
3597             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3598                                 "nondirected packets at 2MB"),
3599             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3600                                 "nondirected packets at 5.5MB"),
3601             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3602                                 "nondirected packets at 11MB"),
3603             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3604             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3605                                                                     "Rx CTS"),
3606             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3607             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3608             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3609             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3610             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3611             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3612             IPW2100_ORD(STAT_RX_REASSN_RESP,
3613                                 "Reassociation response Rx's"),
3614             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3615             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3616             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3617             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3618             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3619             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3620             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3621             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3622                                 "Total rx data bytes received"),
3623             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3624             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3625             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3626             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3627             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3628             IPW2100_ORD(STAT_RX_DUPLICATE1,
3629                                 "duplicate rx packets at 1MB"),
3630             IPW2100_ORD(STAT_RX_DUPLICATE2,
3631                                 "duplicate rx packets at 2MB"),
3632             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3633                                 "duplicate rx packets at 5.5MB"),
3634             IPW2100_ORD(STAT_RX_DUPLICATE11,
3635                                 "duplicate rx packets at 11MB"),
3636             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3637             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3638             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3639             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3640             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3641                                 "rx frames with invalid protocol"),
3642             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3643             IPW2100_ORD(STAT_RX_NO_BUFFER,
3644                                 "rx frames rejected due to no buffer"),
3645             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3646                                 "rx frames dropped due to missing fragment"),
3647             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3648                                 "rx frames dropped due to non-sequential fragment"),
3649             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3650                                 "rx frames dropped due to unmatched 1st frame"),
3651             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3652                                 "rx frames dropped due to uncompleted frame"),
3653             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3654                                 "ICV errors during decryption"),
3655             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3656             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3657             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3658                                 "poll response timeouts"),
3659             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3660                                 "timeouts waiting for last {broad,multi}cast pkt"),
3661             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3662             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3663             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3664             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3665             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3666                                 "current calculation of % missed beacons"),
3667             IPW2100_ORD(STAT_PERCENT_RETRIES,
3668                                 "current calculation of % missed tx retries"),
3669             IPW2100_ORD(ASSOCIATED_AP_PTR,
3670                                 "0 if not associated, else pointer to AP table entry"),
3671             IPW2100_ORD(AVAILABLE_AP_CNT,
3672                                 "AP's decsribed in the AP table"),
3673             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3674             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3675             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3676             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3677                                 "failures due to response fail"),
3678             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3679             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3680             IPW2100_ORD(STAT_ROAM_INHIBIT,
3681                                 "times roaming was inhibited due to activity"),
3682             IPW2100_ORD(RSSI_AT_ASSN,
3683                                 "RSSI of associated AP at time of association"),
3684             IPW2100_ORD(STAT_ASSN_CAUSE1,
3685                                 "reassociation: no probe response or TX on hop"),
3686             IPW2100_ORD(STAT_ASSN_CAUSE2,
3687                                 "reassociation: poor tx/rx quality"),
3688             IPW2100_ORD(STAT_ASSN_CAUSE3,
3689                                 "reassociation: tx/rx quality (excessive AP load"),
3690             IPW2100_ORD(STAT_ASSN_CAUSE4,
3691                                 "reassociation: AP RSSI level"),
3692             IPW2100_ORD(STAT_ASSN_CAUSE5,
3693                                 "reassociations due to load leveling"),
3694             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3695             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3696                                 "times authentication response failed"),
3697             IPW2100_ORD(STATION_TABLE_CNT,
3698                                 "entries in association table"),
3699             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3700             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3701             IPW2100_ORD(COUNTRY_CODE,
3702                                 "IEEE country code as recv'd from beacon"),
3703             IPW2100_ORD(COUNTRY_CHANNELS,
3704                                 "channels suported by country"),
3705             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3706             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3707             IPW2100_ORD(ANTENNA_DIVERSITY,
3708                                 "TRUE if antenna diversity is disabled"),
3709             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3710             IPW2100_ORD(OUR_FREQ,
3711                                 "current radio freq lower digits - channel ID"),
3712             IPW2100_ORD(RTC_TIME, "current RTC time"),
3713             IPW2100_ORD(PORT_TYPE, "operating mode"),
3714             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3715             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3716             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3717             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3718             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3719             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3720             IPW2100_ORD(CAPABILITIES,
3721                                 "Management frame capability field"),
3722             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3723             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3724             IPW2100_ORD(RTS_THRESHOLD,
3725                                 "Min packet length for RTS handshaking"),
3726             IPW2100_ORD(INT_MODE, "International mode"),
3727             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3728                                 "protocol frag threshold"),
3729             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3730                                 "EEPROM offset in SRAM"),
3731             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3732                                 "EEPROM size in SRAM"),
3733             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3734             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3735                                 "EEPROM IBSS 11b channel set"),
3736             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3737             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3738             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3739             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3740             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3741
3742 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3743                               char *buf)
3744 {
3745         int i;
3746         struct ipw2100_priv *priv = dev_get_drvdata(d);
3747         struct net_device *dev = priv->net_dev;
3748         char *out = buf;
3749         u32 val = 0;
3750
3751         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3752
3753         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3754                 read_register(dev, hw_data[i].addr, &val);
3755                 out += sprintf(out, "%30s [%08X] : %08X\n",
3756                                hw_data[i].name, hw_data[i].addr, val);
3757         }
3758
3759         return out - buf;
3760 }
3761
3762 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3763
3764 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3765                              char *buf)
3766 {
3767         struct ipw2100_priv *priv = dev_get_drvdata(d);
3768         struct net_device *dev = priv->net_dev;
3769         char *out = buf;
3770         int i;
3771
3772         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3773
3774         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3775                 u8 tmp8;
3776                 u16 tmp16;
3777                 u32 tmp32;
3778
3779                 switch (nic_data[i].size) {
3780                 case 1:
3781                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3782                         out += sprintf(out, "%30s [%08X] : %02X\n",
3783                                        nic_data[i].name, nic_data[i].addr,
3784                                        tmp8);
3785                         break;
3786                 case 2:
3787                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3788                         out += sprintf(out, "%30s [%08X] : %04X\n",
3789                                        nic_data[i].name, nic_data[i].addr,
3790                                        tmp16);
3791                         break;
3792                 case 4:
3793                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3794                         out += sprintf(out, "%30s [%08X] : %08X\n",
3795                                        nic_data[i].name, nic_data[i].addr,
3796                                        tmp32);
3797                         break;
3798                 }
3799         }
3800         return out - buf;
3801 }
3802
3803 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3804
3805 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3806                            char *buf)
3807 {
3808         struct ipw2100_priv *priv = dev_get_drvdata(d);
3809         struct net_device *dev = priv->net_dev;
3810         static unsigned long loop = 0;
3811         int len = 0;
3812         u32 buffer[4];
3813         int i;
3814         char line[81];
3815
3816         if (loop >= 0x30000)
3817                 loop = 0;
3818
3819         /* sysfs provides us PAGE_SIZE buffer */
3820         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3821
3822                 if (priv->snapshot[0])
3823                         for (i = 0; i < 4; i++)
3824                                 buffer[i] =
3825                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3826                 else
3827                         for (i = 0; i < 4; i++)
3828                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3829
3830                 if (priv->dump_raw)
3831                         len += sprintf(buf + len,
3832                                        "%c%c%c%c"
3833                                        "%c%c%c%c"
3834                                        "%c%c%c%c"
3835                                        "%c%c%c%c",
3836                                        ((u8 *) buffer)[0x0],
3837                                        ((u8 *) buffer)[0x1],
3838                                        ((u8 *) buffer)[0x2],
3839                                        ((u8 *) buffer)[0x3],
3840                                        ((u8 *) buffer)[0x4],
3841                                        ((u8 *) buffer)[0x5],
3842                                        ((u8 *) buffer)[0x6],
3843                                        ((u8 *) buffer)[0x7],
3844                                        ((u8 *) buffer)[0x8],
3845                                        ((u8 *) buffer)[0x9],
3846                                        ((u8 *) buffer)[0xa],
3847                                        ((u8 *) buffer)[0xb],
3848                                        ((u8 *) buffer)[0xc],
3849                                        ((u8 *) buffer)[0xd],
3850                                        ((u8 *) buffer)[0xe],
3851                                        ((u8 *) buffer)[0xf]);
3852                 else
3853                         len += sprintf(buf + len, "%s\n",
3854                                        snprint_line(line, sizeof(line),
3855                                                     (u8 *) buffer, 16, loop));
3856                 loop += 16;
3857         }
3858
3859         return len;
3860 }
3861
3862 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3863                             const char *buf, size_t count)
3864 {
3865         struct ipw2100_priv *priv = dev_get_drvdata(d);
3866         struct net_device *dev = priv->net_dev;
3867         const char *p = buf;
3868
3869         (void)dev;              /* kill unused-var warning for debug-only code */
3870
3871         if (count < 1)
3872                 return count;
3873
3874         if (p[0] == '1' ||
3875             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3876                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3877                                dev->name);
3878                 priv->dump_raw = 1;
3879
3880         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3881                                    tolower(p[1]) == 'f')) {
3882                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3883                                dev->name);
3884                 priv->dump_raw = 0;
3885
3886         } else if (tolower(p[0]) == 'r') {
3887                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3888                 ipw2100_snapshot_free(priv);
3889
3890         } else
3891                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3892                                "reset = clear memory snapshot\n", dev->name);
3893
3894         return count;
3895 }
3896
3897 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3898
3899 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3900                              char *buf)
3901 {
3902         struct ipw2100_priv *priv = dev_get_drvdata(d);
3903         u32 val = 0;
3904         int len = 0;
3905         u32 val_len;
3906         static int loop = 0;
3907
3908         if (priv->status & STATUS_RF_KILL_MASK)
3909                 return 0;
3910
3911         if (loop >= ARRAY_SIZE(ord_data))
3912                 loop = 0;
3913
3914         /* sysfs provides us PAGE_SIZE buffer */
3915         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3916                 val_len = sizeof(u32);
3917
3918                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3919                                         &val_len))
3920                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3921                                        ord_data[loop].index,
3922                                        ord_data[loop].desc);
3923                 else
3924                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3925                                        ord_data[loop].index, val,
3926                                        ord_data[loop].desc);
3927                 loop++;
3928         }
3929
3930         return len;
3931 }
3932
3933 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3934
3935 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3936                           char *buf)
3937 {
3938         struct ipw2100_priv *priv = dev_get_drvdata(d);
3939         char *out = buf;
3940
3941         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3942                        priv->interrupts, priv->tx_interrupts,
3943                        priv->rx_interrupts, priv->inta_other);
3944         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3945         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3946 #ifdef CONFIG_IPW2100_DEBUG
3947         out += sprintf(out, "packet mismatch image: %s\n",
3948                        priv->snapshot[0] ? "YES" : "NO");
3949 #endif
3950
3951         return out - buf;
3952 }
3953
3954 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3955
3956 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3957 {
3958         int err;
3959
3960         if (mode == priv->ieee->iw_mode)
3961                 return 0;
3962
3963         err = ipw2100_disable_adapter(priv);
3964         if (err) {
3965                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3966                        priv->net_dev->name, err);
3967                 return err;
3968         }
3969
3970         switch (mode) {
3971         case IW_MODE_INFRA:
3972                 priv->net_dev->type = ARPHRD_ETHER;
3973                 break;
3974         case IW_MODE_ADHOC:
3975                 priv->net_dev->type = ARPHRD_ETHER;
3976                 break;
3977 #ifdef CONFIG_IPW2100_MONITOR
3978         case IW_MODE_MONITOR:
3979                 priv->last_mode = priv->ieee->iw_mode;
3980                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3981                 break;
3982 #endif                          /* CONFIG_IPW2100_MONITOR */
3983         }
3984
3985         priv->ieee->iw_mode = mode;
3986
3987 #ifdef CONFIG_PM
3988         /* Indicate ipw2100_download_firmware download firmware
3989          * from disk instead of memory. */
3990         ipw2100_firmware.version = 0;
3991 #endif
3992
3993         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3994         priv->reset_backoff = 0;
3995         schedule_reset(priv);
3996
3997         return 0;
3998 }
3999
4000 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4001                               char *buf)
4002 {
4003         struct ipw2100_priv *priv = dev_get_drvdata(d);
4004         int len = 0;
4005
4006 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4007
4008         if (priv->status & STATUS_ASSOCIATED)
4009                 len += sprintf(buf + len, "connected: %lu\n",
4010                                get_seconds() - priv->connect_start);
4011         else
4012                 len += sprintf(buf + len, "not connected\n");
4013
4014         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4015         DUMP_VAR(status, "08lx");
4016         DUMP_VAR(config, "08lx");
4017         DUMP_VAR(capability, "08lx");
4018
4019         len +=
4020             sprintf(buf + len, "last_rtc: %lu\n",
4021                     (unsigned long)priv->last_rtc);
4022
4023         DUMP_VAR(fatal_error, "d");
4024         DUMP_VAR(stop_hang_check, "d");
4025         DUMP_VAR(stop_rf_kill, "d");
4026         DUMP_VAR(messages_sent, "d");
4027
4028         DUMP_VAR(tx_pend_stat.value, "d");
4029         DUMP_VAR(tx_pend_stat.hi, "d");
4030
4031         DUMP_VAR(tx_free_stat.value, "d");
4032         DUMP_VAR(tx_free_stat.lo, "d");
4033
4034         DUMP_VAR(msg_free_stat.value, "d");
4035         DUMP_VAR(msg_free_stat.lo, "d");
4036
4037         DUMP_VAR(msg_pend_stat.value, "d");
4038         DUMP_VAR(msg_pend_stat.hi, "d");
4039
4040         DUMP_VAR(fw_pend_stat.value, "d");
4041         DUMP_VAR(fw_pend_stat.hi, "d");
4042
4043         DUMP_VAR(txq_stat.value, "d");
4044         DUMP_VAR(txq_stat.lo, "d");
4045
4046         DUMP_VAR(ieee->scans, "d");
4047         DUMP_VAR(reset_backoff, "d");
4048
4049         return len;
4050 }
4051
4052 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4053
4054 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4055                             char *buf)
4056 {
4057         struct ipw2100_priv *priv = dev_get_drvdata(d);
4058         char essid[IW_ESSID_MAX_SIZE + 1];
4059         u8 bssid[ETH_ALEN];
4060         u32 chan = 0;
4061         char *out = buf;
4062         unsigned int length;
4063         int ret;
4064
4065         if (priv->status & STATUS_RF_KILL_MASK)
4066                 return 0;
4067
4068         memset(essid, 0, sizeof(essid));
4069         memset(bssid, 0, sizeof(bssid));
4070
4071         length = IW_ESSID_MAX_SIZE;
4072         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4073         if (ret)
4074                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4075                                __LINE__);
4076
4077         length = sizeof(bssid);
4078         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4079                                   bssid, &length);
4080         if (ret)
4081                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4082                                __LINE__);
4083
4084         length = sizeof(u32);
4085         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4086         if (ret)
4087                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4088                                __LINE__);
4089
4090         out += sprintf(out, "ESSID: %s\n", essid);
4091         out += sprintf(out, "BSSID:   %pM\n", bssid);
4092         out += sprintf(out, "Channel: %d\n", chan);
4093
4094         return out - buf;
4095 }
4096
4097 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4098
4099 #ifdef CONFIG_IPW2100_DEBUG
4100 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4101 {
4102         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4103 }
4104
4105 static ssize_t store_debug_level(struct device_driver *d,
4106                                  const char *buf, size_t count)
4107 {
4108         char *p = (char *)buf;
4109         u32 val;
4110
4111         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4112                 p++;
4113                 if (p[0] == 'x' || p[0] == 'X')
4114                         p++;
4115                 val = simple_strtoul(p, &p, 16);
4116         } else
4117                 val = simple_strtoul(p, &p, 10);
4118         if (p == buf)
4119                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4120         else
4121                 ipw2100_debug_level = val;
4122
4123         return strnlen(buf, count);
4124 }
4125
4126 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4127                    store_debug_level);
4128 #endif                          /* CONFIG_IPW2100_DEBUG */
4129
4130 static ssize_t show_fatal_error(struct device *d,
4131                                 struct device_attribute *attr, char *buf)
4132 {
4133         struct ipw2100_priv *priv = dev_get_drvdata(d);
4134         char *out = buf;
4135         int i;
4136
4137         if (priv->fatal_error)
4138                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4139         else
4140                 out += sprintf(out, "0\n");
4141
4142         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4143                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4144                                         IPW2100_ERROR_QUEUE])
4145                         continue;
4146
4147                 out += sprintf(out, "%d. 0x%08X\n", i,
4148                                priv->fatal_errors[(priv->fatal_index - i) %
4149                                                   IPW2100_ERROR_QUEUE]);
4150         }
4151
4152         return out - buf;
4153 }
4154
4155 static ssize_t store_fatal_error(struct device *d,
4156                                  struct device_attribute *attr, const char *buf,
4157                                  size_t count)
4158 {
4159         struct ipw2100_priv *priv = dev_get_drvdata(d);
4160         schedule_reset(priv);
4161         return count;
4162 }
4163
4164 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4165                    store_fatal_error);
4166
4167 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4168                              char *buf)
4169 {
4170         struct ipw2100_priv *priv = dev_get_drvdata(d);
4171         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4172 }
4173
4174 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4175                               const char *buf, size_t count)
4176 {
4177         struct ipw2100_priv *priv = dev_get_drvdata(d);
4178         struct net_device *dev = priv->net_dev;
4179         char buffer[] = "00000000";
4180         unsigned long len =
4181             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4182         unsigned long val;
4183         char *p = buffer;
4184
4185         (void)dev;              /* kill unused-var warning for debug-only code */
4186
4187         IPW_DEBUG_INFO("enter\n");
4188
4189         strncpy(buffer, buf, len);
4190         buffer[len] = 0;
4191
4192         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4193                 p++;
4194                 if (p[0] == 'x' || p[0] == 'X')
4195                         p++;
4196                 val = simple_strtoul(p, &p, 16);
4197         } else
4198                 val = simple_strtoul(p, &p, 10);
4199         if (p == buffer) {
4200                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4201         } else {
4202                 priv->ieee->scan_age = val;
4203                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4204         }
4205
4206         IPW_DEBUG_INFO("exit\n");
4207         return len;
4208 }
4209
4210 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4211
4212 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4213                             char *buf)
4214 {
4215         /* 0 - RF kill not enabled
4216            1 - SW based RF kill active (sysfs)
4217            2 - HW based RF kill active
4218            3 - Both HW and SW baed RF kill active */
4219         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4220         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4221             (rf_kill_active(priv) ? 0x2 : 0x0);
4222         return sprintf(buf, "%i\n", val);
4223 }
4224
4225 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4226 {
4227         if ((disable_radio ? 1 : 0) ==
4228             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4229                 return 0;
4230
4231         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4232                           disable_radio ? "OFF" : "ON");
4233
4234         mutex_lock(&priv->action_mutex);
4235
4236         if (disable_radio) {
4237                 priv->status |= STATUS_RF_KILL_SW;
4238                 ipw2100_down(priv);
4239         } else {
4240                 priv->status &= ~STATUS_RF_KILL_SW;
4241                 if (rf_kill_active(priv)) {
4242                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4243                                           "disabled by HW switch\n");
4244                         /* Make sure the RF_KILL check timer is running */
4245                         priv->stop_rf_kill = 0;
4246                         cancel_delayed_work(&priv->rf_kill);
4247                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
4248                                            round_jiffies_relative(HZ));
4249                 } else
4250                         schedule_reset(priv);
4251         }
4252
4253         mutex_unlock(&priv->action_mutex);
4254         return 1;
4255 }
4256
4257 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4258                              const char *buf, size_t count)
4259 {
4260         struct ipw2100_priv *priv = dev_get_drvdata(d);
4261         ipw_radio_kill_sw(priv, buf[0] == '1');
4262         return count;
4263 }
4264
4265 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4266
4267 static struct attribute *ipw2100_sysfs_entries[] = {
4268         &dev_attr_hardware.attr,
4269         &dev_attr_registers.attr,
4270         &dev_attr_ordinals.attr,
4271         &dev_attr_pci.attr,
4272         &dev_attr_stats.attr,
4273         &dev_attr_internals.attr,
4274         &dev_attr_bssinfo.attr,
4275         &dev_attr_memory.attr,
4276         &dev_attr_scan_age.attr,
4277         &dev_attr_fatal_error.attr,
4278         &dev_attr_rf_kill.attr,
4279         &dev_attr_cfg.attr,
4280         &dev_attr_status.attr,
4281         &dev_attr_capability.attr,
4282         NULL,
4283 };
4284
4285 static struct attribute_group ipw2100_attribute_group = {
4286         .attrs = ipw2100_sysfs_entries,
4287 };
4288
4289 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4290 {
4291         struct ipw2100_status_queue *q = &priv->status_queue;
4292
4293         IPW_DEBUG_INFO("enter\n");
4294
4295         q->size = entries * sizeof(struct ipw2100_status);
4296         q->drv =
4297             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4298                                                           q->size, &q->nic);
4299         if (!q->drv) {
4300                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4301                 return -ENOMEM;
4302         }
4303
4304         memset(q->drv, 0, q->size);
4305
4306         IPW_DEBUG_INFO("exit\n");
4307
4308         return 0;
4309 }
4310
4311 static void status_queue_free(struct ipw2100_priv *priv)
4312 {
4313         IPW_DEBUG_INFO("enter\n");
4314
4315         if (priv->status_queue.drv) {
4316                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4317                                     priv->status_queue.drv,
4318                                     priv->status_queue.nic);
4319                 priv->status_queue.drv = NULL;
4320         }
4321
4322         IPW_DEBUG_INFO("exit\n");
4323 }
4324
4325 static int bd_queue_allocate(struct ipw2100_priv *priv,
4326                              struct ipw2100_bd_queue *q, int entries)
4327 {
4328         IPW_DEBUG_INFO("enter\n");
4329
4330         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4331
4332         q->entries = entries;
4333         q->size = entries * sizeof(struct ipw2100_bd);
4334         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4335         if (!q->drv) {
4336                 IPW_DEBUG_INFO
4337                     ("can't allocate shared memory for buffer descriptors\n");
4338                 return -ENOMEM;
4339         }
4340         memset(q->drv, 0, q->size);
4341
4342         IPW_DEBUG_INFO("exit\n");
4343
4344         return 0;
4345 }
4346
4347 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4348 {
4349         IPW_DEBUG_INFO("enter\n");
4350
4351         if (!q)
4352                 return;
4353
4354         if (q->drv) {
4355                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4356                 q->drv = NULL;
4357         }
4358
4359         IPW_DEBUG_INFO("exit\n");
4360 }
4361
4362 static void bd_queue_initialize(struct ipw2100_priv *priv,
4363                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4364                                 u32 r, u32 w)
4365 {
4366         IPW_DEBUG_INFO("enter\n");
4367
4368         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4369                        (u32) q->nic);
4370
4371         write_register(priv->net_dev, base, q->nic);
4372         write_register(priv->net_dev, size, q->entries);
4373         write_register(priv->net_dev, r, q->oldest);
4374         write_register(priv->net_dev, w, q->next);
4375
4376         IPW_DEBUG_INFO("exit\n");
4377 }
4378
4379 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4380 {
4381         if (priv->workqueue) {
4382                 priv->stop_rf_kill = 1;
4383                 priv->stop_hang_check = 1;
4384                 cancel_delayed_work(&priv->reset_work);
4385                 cancel_delayed_work(&priv->security_work);
4386                 cancel_delayed_work(&priv->wx_event_work);
4387                 cancel_delayed_work(&priv->hang_check);
4388                 cancel_delayed_work(&priv->rf_kill);
4389                 cancel_delayed_work(&priv->scan_event_later);
4390                 destroy_workqueue(priv->workqueue);
4391                 priv->workqueue = NULL;
4392         }
4393 }
4394
4395 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4396 {
4397         int i, j, err = -EINVAL;
4398         void *v;
4399         dma_addr_t p;
4400
4401         IPW_DEBUG_INFO("enter\n");
4402
4403         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4404         if (err) {
4405                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4406                                 priv->net_dev->name);
4407                 return err;
4408         }
4409
4410         priv->tx_buffers =
4411             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4412                                                 sizeof(struct
4413                                                        ipw2100_tx_packet),
4414                                                 GFP_ATOMIC);
4415         if (!priv->tx_buffers) {
4416                 printk(KERN_ERR DRV_NAME
4417                        ": %s: alloc failed form tx buffers.\n",
4418                        priv->net_dev->name);
4419                 bd_queue_free(priv, &priv->tx_queue);
4420                 return -ENOMEM;
4421         }
4422
4423         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4424                 v = pci_alloc_consistent(priv->pci_dev,
4425                                          sizeof(struct ipw2100_data_header),
4426                                          &p);
4427                 if (!v) {
4428                         printk(KERN_ERR DRV_NAME
4429                                ": %s: PCI alloc failed for tx " "buffers.\n",
4430                                priv->net_dev->name);
4431                         err = -ENOMEM;
4432                         break;
4433                 }
4434
4435                 priv->tx_buffers[i].type = DATA;
4436                 priv->tx_buffers[i].info.d_struct.data =
4437                     (struct ipw2100_data_header *)v;
4438                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4439                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4440         }
4441
4442         if (i == TX_PENDED_QUEUE_LENGTH)
4443                 return 0;
4444
4445         for (j = 0; j < i; j++) {
4446                 pci_free_consistent(priv->pci_dev,
4447                                     sizeof(struct ipw2100_data_header),
4448                                     priv->tx_buffers[j].info.d_struct.data,
4449                                     priv->tx_buffers[j].info.d_struct.
4450                                     data_phys);
4451         }
4452
4453         kfree(priv->tx_buffers);
4454         priv->tx_buffers = NULL;
4455
4456         return err;
4457 }
4458
4459 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4460 {
4461         int i;
4462
4463         IPW_DEBUG_INFO("enter\n");
4464
4465         /*
4466          * reinitialize packet info lists
4467          */
4468         INIT_LIST_HEAD(&priv->fw_pend_list);
4469         INIT_STAT(&priv->fw_pend_stat);
4470
4471         /*
4472          * reinitialize lists
4473          */
4474         INIT_LIST_HEAD(&priv->tx_pend_list);
4475         INIT_LIST_HEAD(&priv->tx_free_list);
4476         INIT_STAT(&priv->tx_pend_stat);
4477         INIT_STAT(&priv->tx_free_stat);
4478
4479         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4480                 /* We simply drop any SKBs that have been queued for
4481                  * transmit */
4482                 if (priv->tx_buffers[i].info.d_struct.txb) {
4483                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4484                                            txb);
4485                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4486                 }
4487
4488                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4489         }
4490
4491         SET_STAT(&priv->tx_free_stat, i);
4492
4493         priv->tx_queue.oldest = 0;
4494         priv->tx_queue.available = priv->tx_queue.entries;
4495         priv->tx_queue.next = 0;
4496         INIT_STAT(&priv->txq_stat);
4497         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4498
4499         bd_queue_initialize(priv, &priv->tx_queue,
4500                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4501                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4502                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4503                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4504
4505         IPW_DEBUG_INFO("exit\n");
4506
4507 }
4508
4509 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4510 {
4511         int i;
4512
4513         IPW_DEBUG_INFO("enter\n");
4514
4515         bd_queue_free(priv, &priv->tx_queue);
4516
4517         if (!priv->tx_buffers)
4518                 return;
4519
4520         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4521                 if (priv->tx_buffers[i].info.d_struct.txb) {
4522                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4523                                            txb);
4524                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4525                 }
4526                 if (priv->tx_buffers[i].info.d_struct.data)
4527                         pci_free_consistent(priv->pci_dev,
4528                                             sizeof(struct ipw2100_data_header),
4529                                             priv->tx_buffers[i].info.d_struct.
4530                                             data,
4531                                             priv->tx_buffers[i].info.d_struct.
4532                                             data_phys);
4533         }
4534
4535         kfree(priv->tx_buffers);
4536         priv->tx_buffers = NULL;
4537
4538         IPW_DEBUG_INFO("exit\n");
4539 }
4540
4541 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4542 {
4543         int i, j, err = -EINVAL;
4544
4545         IPW_DEBUG_INFO("enter\n");
4546
4547         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4548         if (err) {
4549                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4550                 return err;
4551         }
4552
4553         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4554         if (err) {
4555                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4556                 bd_queue_free(priv, &priv->rx_queue);
4557                 return err;
4558         }
4559
4560         /*
4561          * allocate packets
4562          */
4563         priv->rx_buffers = (struct ipw2100_rx_packet *)
4564             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4565                     GFP_KERNEL);
4566         if (!priv->rx_buffers) {
4567                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4568
4569                 bd_queue_free(priv, &priv->rx_queue);
4570
4571                 status_queue_free(priv);
4572
4573                 return -ENOMEM;
4574         }
4575
4576         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4577                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4578
4579                 err = ipw2100_alloc_skb(priv, packet);
4580                 if (unlikely(err)) {
4581                         err = -ENOMEM;
4582                         break;
4583                 }
4584
4585                 /* The BD holds the cache aligned address */
4586                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4587                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4588                 priv->status_queue.drv[i].status_fields = 0;
4589         }
4590
4591         if (i == RX_QUEUE_LENGTH)
4592                 return 0;
4593
4594         for (j = 0; j < i; j++) {
4595                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4596                                  sizeof(struct ipw2100_rx_packet),
4597                                  PCI_DMA_FROMDEVICE);
4598                 dev_kfree_skb(priv->rx_buffers[j].skb);
4599         }
4600
4601         kfree(priv->rx_buffers);
4602         priv->rx_buffers = NULL;
4603
4604         bd_queue_free(priv, &priv->rx_queue);
4605
4606         status_queue_free(priv);
4607
4608         return err;
4609 }
4610
4611 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4612 {
4613         IPW_DEBUG_INFO("enter\n");
4614
4615         priv->rx_queue.oldest = 0;
4616         priv->rx_queue.available = priv->rx_queue.entries - 1;
4617         priv->rx_queue.next = priv->rx_queue.entries - 1;
4618
4619         INIT_STAT(&priv->rxq_stat);
4620         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4621
4622         bd_queue_initialize(priv, &priv->rx_queue,
4623                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4624                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4625                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4626                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4627
4628         /* set up the status queue */
4629         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4630                        priv->status_queue.nic);
4631
4632         IPW_DEBUG_INFO("exit\n");
4633 }
4634
4635 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4636 {
4637         int i;
4638
4639         IPW_DEBUG_INFO("enter\n");
4640
4641         bd_queue_free(priv, &priv->rx_queue);
4642         status_queue_free(priv);
4643
4644         if (!priv->rx_buffers)
4645                 return;
4646
4647         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4648                 if (priv->rx_buffers[i].rxp) {
4649                         pci_unmap_single(priv->pci_dev,
4650                                          priv->rx_buffers[i].dma_addr,
4651                                          sizeof(struct ipw2100_rx),
4652                                          PCI_DMA_FROMDEVICE);
4653                         dev_kfree_skb(priv->rx_buffers[i].skb);
4654                 }
4655         }
4656
4657         kfree(priv->rx_buffers);
4658         priv->rx_buffers = NULL;
4659
4660         IPW_DEBUG_INFO("exit\n");
4661 }
4662
4663 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4664 {
4665         u32 length = ETH_ALEN;
4666         u8 addr[ETH_ALEN];
4667
4668         int err;
4669
4670         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4671         if (err) {
4672                 IPW_DEBUG_INFO("MAC address read failed\n");
4673                 return -EIO;
4674         }
4675
4676         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4677         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4678
4679         return 0;
4680 }
4681
4682 /********************************************************************
4683  *
4684  * Firmware Commands
4685  *
4686  ********************************************************************/
4687
4688 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4689 {
4690         struct host_command cmd = {
4691                 .host_command = ADAPTER_ADDRESS,
4692                 .host_command_sequence = 0,
4693                 .host_command_length = ETH_ALEN
4694         };
4695         int err;
4696
4697         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4698
4699         IPW_DEBUG_INFO("enter\n");
4700
4701         if (priv->config & CFG_CUSTOM_MAC) {
4702                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4703                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4704         } else
4705                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4706                        ETH_ALEN);
4707
4708         err = ipw2100_hw_send_command(priv, &cmd);
4709
4710         IPW_DEBUG_INFO("exit\n");
4711         return err;
4712 }
4713
4714 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4715                                  int batch_mode)
4716 {
4717         struct host_command cmd = {
4718                 .host_command = PORT_TYPE,
4719                 .host_command_sequence = 0,
4720                 .host_command_length = sizeof(u32)
4721         };
4722         int err;
4723
4724         switch (port_type) {
4725         case IW_MODE_INFRA:
4726                 cmd.host_command_parameters[0] = IPW_BSS;
4727                 break;
4728         case IW_MODE_ADHOC:
4729                 cmd.host_command_parameters[0] = IPW_IBSS;
4730                 break;
4731         }
4732
4733         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4734                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4735
4736         if (!batch_mode) {
4737                 err = ipw2100_disable_adapter(priv);
4738                 if (err) {
4739                         printk(KERN_ERR DRV_NAME
4740                                ": %s: Could not disable adapter %d\n",
4741                                priv->net_dev->name, err);
4742                         return err;
4743                 }
4744         }
4745
4746         /* send cmd to firmware */
4747         err = ipw2100_hw_send_command(priv, &cmd);
4748
4749         if (!batch_mode)
4750                 ipw2100_enable_adapter(priv);
4751
4752         return err;
4753 }
4754
4755 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4756                                int batch_mode)
4757 {
4758         struct host_command cmd = {
4759                 .host_command = CHANNEL,
4760                 .host_command_sequence = 0,
4761                 .host_command_length = sizeof(u32)
4762         };
4763         int err;
4764
4765         cmd.host_command_parameters[0] = channel;
4766
4767         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4768
4769         /* If BSS then we don't support channel selection */
4770         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4771                 return 0;
4772
4773         if ((channel != 0) &&
4774             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4775                 return -EINVAL;
4776
4777         if (!batch_mode) {
4778                 err = ipw2100_disable_adapter(priv);
4779                 if (err)
4780                         return err;
4781         }
4782
4783         err = ipw2100_hw_send_command(priv, &cmd);
4784         if (err) {
4785                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4786                 return err;
4787         }
4788
4789         if (channel)
4790                 priv->config |= CFG_STATIC_CHANNEL;
4791         else
4792                 priv->config &= ~CFG_STATIC_CHANNEL;
4793
4794         priv->channel = channel;
4795
4796         if (!batch_mode) {
4797                 err = ipw2100_enable_adapter(priv);
4798                 if (err)
4799                         return err;
4800         }
4801
4802         return 0;
4803 }
4804
4805 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4806 {
4807         struct host_command cmd = {
4808                 .host_command = SYSTEM_CONFIG,
4809                 .host_command_sequence = 0,
4810                 .host_command_length = 12,
4811         };
4812         u32 ibss_mask, len = sizeof(u32);
4813         int err;
4814
4815         /* Set system configuration */
4816
4817         if (!batch_mode) {
4818                 err = ipw2100_disable_adapter(priv);
4819                 if (err)
4820                         return err;
4821         }
4822
4823         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4824                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4825
4826         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4827             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4828
4829         if (!(priv->config & CFG_LONG_PREAMBLE))
4830                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4831
4832         err = ipw2100_get_ordinal(priv,
4833                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4834                                   &ibss_mask, &len);
4835         if (err)
4836                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4837
4838         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4839         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4840
4841         /* 11b only */
4842         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4843
4844         err = ipw2100_hw_send_command(priv, &cmd);
4845         if (err)
4846                 return err;
4847
4848 /* If IPv6 is configured in the kernel then we don't want to filter out all
4849  * of the multicast packets as IPv6 needs some. */
4850 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4851         cmd.host_command = ADD_MULTICAST;
4852         cmd.host_command_sequence = 0;
4853         cmd.host_command_length = 0;
4854
4855         ipw2100_hw_send_command(priv, &cmd);
4856 #endif
4857         if (!batch_mode) {
4858                 err = ipw2100_enable_adapter(priv);
4859                 if (err)
4860                         return err;
4861         }
4862
4863         return 0;
4864 }
4865
4866 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4867                                 int batch_mode)
4868 {
4869         struct host_command cmd = {
4870                 .host_command = BASIC_TX_RATES,
4871                 .host_command_sequence = 0,
4872                 .host_command_length = 4
4873         };
4874         int err;
4875
4876         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4877
4878         if (!batch_mode) {
4879                 err = ipw2100_disable_adapter(priv);
4880                 if (err)
4881                         return err;
4882         }
4883
4884         /* Set BASIC TX Rate first */
4885         ipw2100_hw_send_command(priv, &cmd);
4886
4887         /* Set TX Rate */
4888         cmd.host_command = TX_RATES;
4889         ipw2100_hw_send_command(priv, &cmd);
4890
4891         /* Set MSDU TX Rate */
4892         cmd.host_command = MSDU_TX_RATES;
4893         ipw2100_hw_send_command(priv, &cmd);
4894
4895         if (!batch_mode) {
4896                 err = ipw2100_enable_adapter(priv);
4897                 if (err)
4898                         return err;
4899         }
4900
4901         priv->tx_rates = rate;
4902
4903         return 0;
4904 }
4905
4906 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4907 {
4908         struct host_command cmd = {
4909                 .host_command = POWER_MODE,
4910                 .host_command_sequence = 0,
4911                 .host_command_length = 4
4912         };
4913         int err;
4914
4915         cmd.host_command_parameters[0] = power_level;
4916
4917         err = ipw2100_hw_send_command(priv, &cmd);
4918         if (err)
4919                 return err;
4920
4921         if (power_level == IPW_POWER_MODE_CAM)
4922                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4923         else
4924                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4925
4926 #ifdef IPW2100_TX_POWER
4927         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4928                 /* Set beacon interval */
4929                 cmd.host_command = TX_POWER_INDEX;
4930                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4931
4932                 err = ipw2100_hw_send_command(priv, &cmd);
4933                 if (err)
4934                         return err;
4935         }
4936 #endif
4937
4938         return 0;
4939 }
4940
4941 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4942 {
4943         struct host_command cmd = {
4944                 .host_command = RTS_THRESHOLD,
4945                 .host_command_sequence = 0,
4946                 .host_command_length = 4
4947         };
4948         int err;
4949
4950         if (threshold & RTS_DISABLED)
4951                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4952         else
4953                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4954
4955         err = ipw2100_hw_send_command(priv, &cmd);
4956         if (err)
4957                 return err;
4958
4959         priv->rts_threshold = threshold;
4960
4961         return 0;
4962 }
4963
4964 #if 0
4965 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4966                                         u32 threshold, int batch_mode)
4967 {
4968         struct host_command cmd = {
4969                 .host_command = FRAG_THRESHOLD,
4970                 .host_command_sequence = 0,
4971                 .host_command_length = 4,
4972                 .host_command_parameters[0] = 0,
4973         };
4974         int err;
4975
4976         if (!batch_mode) {
4977                 err = ipw2100_disable_adapter(priv);
4978                 if (err)
4979                         return err;
4980         }
4981
4982         if (threshold == 0)
4983                 threshold = DEFAULT_FRAG_THRESHOLD;
4984         else {
4985                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4986                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4987         }
4988
4989         cmd.host_command_parameters[0] = threshold;
4990
4991         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4992
4993         err = ipw2100_hw_send_command(priv, &cmd);
4994
4995         if (!batch_mode)
4996                 ipw2100_enable_adapter(priv);
4997
4998         if (!err)
4999                 priv->frag_threshold = threshold;
5000
5001         return err;
5002 }
5003 #endif
5004
5005 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5006 {
5007         struct host_command cmd = {
5008                 .host_command = SHORT_RETRY_LIMIT,
5009                 .host_command_sequence = 0,
5010                 .host_command_length = 4
5011         };
5012         int err;
5013
5014         cmd.host_command_parameters[0] = retry;
5015
5016         err = ipw2100_hw_send_command(priv, &cmd);
5017         if (err)
5018                 return err;
5019
5020         priv->short_retry_limit = retry;
5021
5022         return 0;
5023 }
5024
5025 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5026 {
5027         struct host_command cmd = {
5028                 .host_command = LONG_RETRY_LIMIT,
5029                 .host_command_sequence = 0,
5030                 .host_command_length = 4
5031         };
5032         int err;
5033
5034         cmd.host_command_parameters[0] = retry;
5035
5036         err = ipw2100_hw_send_command(priv, &cmd);
5037         if (err)
5038                 return err;
5039
5040         priv->long_retry_limit = retry;
5041
5042         return 0;
5043 }
5044
5045 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5046                                        int batch_mode)
5047 {
5048         struct host_command cmd = {
5049                 .host_command = MANDATORY_BSSID,
5050                 .host_command_sequence = 0,
5051                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5052         };
5053         int err;
5054
5055 #ifdef CONFIG_IPW2100_DEBUG
5056         if (bssid != NULL)
5057                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5058         else
5059                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5060 #endif
5061         /* if BSSID is empty then we disable mandatory bssid mode */
5062         if (bssid != NULL)
5063                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5064
5065         if (!batch_mode) {
5066                 err = ipw2100_disable_adapter(priv);
5067                 if (err)
5068                         return err;
5069         }
5070
5071         err = ipw2100_hw_send_command(priv, &cmd);
5072
5073         if (!batch_mode)
5074                 ipw2100_enable_adapter(priv);
5075
5076         return err;
5077 }
5078
5079 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5080 {
5081         struct host_command cmd = {
5082                 .host_command = DISASSOCIATION_BSSID,
5083                 .host_command_sequence = 0,
5084                 .host_command_length = ETH_ALEN
5085         };
5086         int err;
5087         int len;
5088
5089         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5090
5091         len = ETH_ALEN;
5092         /* The Firmware currently ignores the BSSID and just disassociates from
5093          * the currently associated AP -- but in the off chance that a future
5094          * firmware does use the BSSID provided here, we go ahead and try and
5095          * set it to the currently associated AP's BSSID */
5096         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5097
5098         err = ipw2100_hw_send_command(priv, &cmd);
5099
5100         return err;
5101 }
5102
5103 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5104                               struct ipw2100_wpa_assoc_frame *, int)
5105     __attribute__ ((unused));
5106
5107 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5108                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5109                               int batch_mode)
5110 {
5111         struct host_command cmd = {
5112                 .host_command = SET_WPA_IE,
5113                 .host_command_sequence = 0,
5114                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5115         };
5116         int err;
5117
5118         IPW_DEBUG_HC("SET_WPA_IE\n");
5119
5120         if (!batch_mode) {
5121                 err = ipw2100_disable_adapter(priv);
5122                 if (err)
5123                         return err;
5124         }
5125
5126         memcpy(cmd.host_command_parameters, wpa_frame,
5127                sizeof(struct ipw2100_wpa_assoc_frame));
5128
5129         err = ipw2100_hw_send_command(priv, &cmd);
5130
5131         if (!batch_mode) {
5132                 if (ipw2100_enable_adapter(priv))
5133                         err = -EIO;
5134         }
5135
5136         return err;
5137 }
5138
5139 struct security_info_params {
5140         u32 allowed_ciphers;
5141         u16 version;
5142         u8 auth_mode;
5143         u8 replay_counters_number;
5144         u8 unicast_using_group;
5145 } __attribute__ ((packed));
5146
5147 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5148                                             int auth_mode,
5149                                             int security_level,
5150                                             int unicast_using_group,
5151                                             int batch_mode)
5152 {
5153         struct host_command cmd = {
5154                 .host_command = SET_SECURITY_INFORMATION,
5155                 .host_command_sequence = 0,
5156                 .host_command_length = sizeof(struct security_info_params)
5157         };
5158         struct security_info_params *security =
5159             (struct security_info_params *)&cmd.host_command_parameters;
5160         int err;
5161         memset(security, 0, sizeof(*security));
5162
5163         /* If shared key AP authentication is turned on, then we need to
5164          * configure the firmware to try and use it.
5165          *
5166          * Actual data encryption/decryption is handled by the host. */
5167         security->auth_mode = auth_mode;
5168         security->unicast_using_group = unicast_using_group;
5169
5170         switch (security_level) {
5171         default:
5172         case SEC_LEVEL_0:
5173                 security->allowed_ciphers = IPW_NONE_CIPHER;
5174                 break;
5175         case SEC_LEVEL_1:
5176                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5177                     IPW_WEP104_CIPHER;
5178                 break;
5179         case SEC_LEVEL_2:
5180                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5181                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5182                 break;
5183         case SEC_LEVEL_2_CKIP:
5184                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5185                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5186                 break;
5187         case SEC_LEVEL_3:
5188                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5189                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5190                 break;
5191         }
5192
5193         IPW_DEBUG_HC
5194             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5195              security->auth_mode, security->allowed_ciphers, security_level);
5196
5197         security->replay_counters_number = 0;
5198
5199         if (!batch_mode) {
5200                 err = ipw2100_disable_adapter(priv);
5201                 if (err)
5202                         return err;
5203         }
5204
5205         err = ipw2100_hw_send_command(priv, &cmd);
5206
5207         if (!batch_mode)
5208                 ipw2100_enable_adapter(priv);
5209
5210         return err;
5211 }
5212
5213 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5214 {
5215         struct host_command cmd = {
5216                 .host_command = TX_POWER_INDEX,
5217                 .host_command_sequence = 0,
5218                 .host_command_length = 4
5219         };
5220         int err = 0;
5221         u32 tmp = tx_power;
5222
5223         if (tx_power != IPW_TX_POWER_DEFAULT)
5224                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5225                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5226
5227         cmd.host_command_parameters[0] = tmp;
5228
5229         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5230                 err = ipw2100_hw_send_command(priv, &cmd);
5231         if (!err)
5232                 priv->tx_power = tx_power;
5233
5234         return 0;
5235 }
5236
5237 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5238                                             u32 interval, int batch_mode)
5239 {
5240         struct host_command cmd = {
5241                 .host_command = BEACON_INTERVAL,
5242                 .host_command_sequence = 0,
5243                 .host_command_length = 4
5244         };
5245         int err;
5246
5247         cmd.host_command_parameters[0] = interval;
5248
5249         IPW_DEBUG_INFO("enter\n");
5250
5251         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5252                 if (!batch_mode) {
5253                         err = ipw2100_disable_adapter(priv);
5254                         if (err)
5255                                 return err;
5256                 }
5257
5258                 ipw2100_hw_send_command(priv, &cmd);
5259
5260                 if (!batch_mode) {
5261                         err = ipw2100_enable_adapter(priv);
5262                         if (err)
5263                                 return err;
5264                 }
5265         }
5266
5267         IPW_DEBUG_INFO("exit\n");
5268
5269         return 0;
5270 }
5271
5272 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5273 {
5274         ipw2100_tx_initialize(priv);
5275         ipw2100_rx_initialize(priv);
5276         ipw2100_msg_initialize(priv);
5277 }
5278
5279 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5280 {
5281         ipw2100_tx_free(priv);
5282         ipw2100_rx_free(priv);
5283         ipw2100_msg_free(priv);
5284 }
5285
5286 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5287 {
5288         if (ipw2100_tx_allocate(priv) ||
5289             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5290                 goto fail;
5291
5292         return 0;
5293
5294       fail:
5295         ipw2100_tx_free(priv);
5296         ipw2100_rx_free(priv);
5297         ipw2100_msg_free(priv);
5298         return -ENOMEM;
5299 }
5300
5301 #define IPW_PRIVACY_CAPABLE 0x0008
5302
5303 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5304                                  int batch_mode)
5305 {
5306         struct host_command cmd = {
5307                 .host_command = WEP_FLAGS,
5308                 .host_command_sequence = 0,
5309                 .host_command_length = 4
5310         };
5311         int err;
5312
5313         cmd.host_command_parameters[0] = flags;
5314
5315         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5316
5317         if (!batch_mode) {
5318                 err = ipw2100_disable_adapter(priv);
5319                 if (err) {
5320                         printk(KERN_ERR DRV_NAME
5321                                ": %s: Could not disable adapter %d\n",
5322                                priv->net_dev->name, err);
5323                         return err;
5324                 }
5325         }
5326
5327         /* send cmd to firmware */
5328         err = ipw2100_hw_send_command(priv, &cmd);
5329
5330         if (!batch_mode)
5331                 ipw2100_enable_adapter(priv);
5332
5333         return err;
5334 }
5335
5336 struct ipw2100_wep_key {
5337         u8 idx;
5338         u8 len;
5339         u8 key[13];
5340 };
5341
5342 /* Macros to ease up priting WEP keys */
5343 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5344 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5345 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5346 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5347
5348 /**
5349  * Set a the wep key
5350  *
5351  * @priv: struct to work on
5352  * @idx: index of the key we want to set
5353  * @key: ptr to the key data to set
5354  * @len: length of the buffer at @key
5355  * @batch_mode: FIXME perform the operation in batch mode, not
5356  *              disabling the device.
5357  *
5358  * @returns 0 if OK, < 0 errno code on error.
5359  *
5360  * Fill out a command structure with the new wep key, length an
5361  * index and send it down the wire.
5362  */
5363 static int ipw2100_set_key(struct ipw2100_priv *priv,
5364                            int idx, char *key, int len, int batch_mode)
5365 {
5366         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5367         struct host_command cmd = {
5368                 .host_command = WEP_KEY_INFO,
5369                 .host_command_sequence = 0,
5370                 .host_command_length = sizeof(struct ipw2100_wep_key),
5371         };
5372         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5373         int err;
5374
5375         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5376                      idx, keylen, len);
5377
5378         /* NOTE: We don't check cached values in case the firmware was reset
5379          * or some other problem is occurring.  If the user is setting the key,
5380          * then we push the change */
5381
5382         wep_key->idx = idx;
5383         wep_key->len = keylen;
5384
5385         if (keylen) {
5386                 memcpy(wep_key->key, key, len);
5387                 memset(wep_key->key + len, 0, keylen - len);
5388         }
5389
5390         /* Will be optimized out on debug not being configured in */
5391         if (keylen == 0)
5392                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5393                               priv->net_dev->name, wep_key->idx);
5394         else if (keylen == 5)
5395                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5396                               priv->net_dev->name, wep_key->idx, wep_key->len,
5397                               WEP_STR_64(wep_key->key));
5398         else
5399                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5400                               "\n",
5401                               priv->net_dev->name, wep_key->idx, wep_key->len,
5402                               WEP_STR_128(wep_key->key));
5403
5404         if (!batch_mode) {
5405                 err = ipw2100_disable_adapter(priv);
5406                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5407                 if (err) {
5408                         printk(KERN_ERR DRV_NAME
5409                                ": %s: Could not disable adapter %d\n",
5410                                priv->net_dev->name, err);
5411                         return err;
5412                 }
5413         }
5414
5415         /* send cmd to firmware */
5416         err = ipw2100_hw_send_command(priv, &cmd);
5417
5418         if (!batch_mode) {
5419                 int err2 = ipw2100_enable_adapter(priv);
5420                 if (err == 0)
5421                         err = err2;
5422         }
5423         return err;
5424 }
5425
5426 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5427                                  int idx, int batch_mode)
5428 {
5429         struct host_command cmd = {
5430                 .host_command = WEP_KEY_INDEX,
5431                 .host_command_sequence = 0,
5432                 .host_command_length = 4,
5433                 .host_command_parameters = {idx},
5434         };
5435         int err;
5436
5437         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5438
5439         if (idx < 0 || idx > 3)
5440                 return -EINVAL;
5441
5442         if (!batch_mode) {
5443                 err = ipw2100_disable_adapter(priv);
5444                 if (err) {
5445                         printk(KERN_ERR DRV_NAME
5446                                ": %s: Could not disable adapter %d\n",
5447                                priv->net_dev->name, err);
5448                         return err;
5449                 }
5450         }
5451
5452         /* send cmd to firmware */
5453         err = ipw2100_hw_send_command(priv, &cmd);
5454
5455         if (!batch_mode)
5456                 ipw2100_enable_adapter(priv);
5457
5458         return err;
5459 }
5460
5461 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5462 {
5463         int i, err, auth_mode, sec_level, use_group;
5464
5465         if (!(priv->status & STATUS_RUNNING))
5466                 return 0;
5467
5468         if (!batch_mode) {
5469                 err = ipw2100_disable_adapter(priv);
5470                 if (err)
5471                         return err;
5472         }
5473
5474         if (!priv->ieee->sec.enabled) {
5475                 err =
5476                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5477                                                      SEC_LEVEL_0, 0, 1);
5478         } else {
5479                 auth_mode = IPW_AUTH_OPEN;
5480                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5481                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5482                                 auth_mode = IPW_AUTH_SHARED;
5483                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5484                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5485                 }
5486
5487                 sec_level = SEC_LEVEL_0;
5488                 if (priv->ieee->sec.flags & SEC_LEVEL)
5489                         sec_level = priv->ieee->sec.level;
5490
5491                 use_group = 0;
5492                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5493                         use_group = priv->ieee->sec.unicast_uses_group;
5494
5495                 err =
5496                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5497                                                      use_group, 1);
5498         }
5499
5500         if (err)
5501                 goto exit;
5502
5503         if (priv->ieee->sec.enabled) {
5504                 for (i = 0; i < 4; i++) {
5505                         if (!(priv->ieee->sec.flags & (1 << i))) {
5506                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5507                                 priv->ieee->sec.key_sizes[i] = 0;
5508                         } else {
5509                                 err = ipw2100_set_key(priv, i,
5510                                                       priv->ieee->sec.keys[i],
5511                                                       priv->ieee->sec.
5512                                                       key_sizes[i], 1);
5513                                 if (err)
5514                                         goto exit;
5515                         }
5516                 }
5517
5518                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5519         }
5520
5521         /* Always enable privacy so the Host can filter WEP packets if
5522          * encrypted data is sent up */
5523         err =
5524             ipw2100_set_wep_flags(priv,
5525                                   priv->ieee->sec.
5526                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5527         if (err)
5528                 goto exit;
5529
5530         priv->status &= ~STATUS_SECURITY_UPDATED;
5531
5532       exit:
5533         if (!batch_mode)
5534                 ipw2100_enable_adapter(priv);
5535
5536         return err;
5537 }
5538
5539 static void ipw2100_security_work(struct work_struct *work)
5540 {
5541         struct ipw2100_priv *priv =
5542                 container_of(work, struct ipw2100_priv, security_work.work);
5543
5544         /* If we happen to have reconnected before we get a chance to
5545          * process this, then update the security settings--which causes
5546          * a disassociation to occur */
5547         if (!(priv->status & STATUS_ASSOCIATED) &&
5548             priv->status & STATUS_SECURITY_UPDATED)
5549                 ipw2100_configure_security(priv, 0);
5550 }
5551
5552 static void shim__set_security(struct net_device *dev,
5553                                struct ieee80211_security *sec)
5554 {
5555         struct ipw2100_priv *priv = ieee80211_priv(dev);
5556         int i, force_update = 0;
5557
5558         mutex_lock(&priv->action_mutex);
5559         if (!(priv->status & STATUS_INITIALIZED))
5560                 goto done;
5561
5562         for (i = 0; i < 4; i++) {
5563                 if (sec->flags & (1 << i)) {
5564                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5565                         if (sec->key_sizes[i] == 0)
5566                                 priv->ieee->sec.flags &= ~(1 << i);
5567                         else
5568                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5569                                        sec->key_sizes[i]);
5570                         if (sec->level == SEC_LEVEL_1) {
5571                                 priv->ieee->sec.flags |= (1 << i);
5572                                 priv->status |= STATUS_SECURITY_UPDATED;
5573                         } else
5574                                 priv->ieee->sec.flags &= ~(1 << i);
5575                 }
5576         }
5577
5578         if ((sec->flags & SEC_ACTIVE_KEY) &&
5579             priv->ieee->sec.active_key != sec->active_key) {
5580                 if (sec->active_key <= 3) {
5581                         priv->ieee->sec.active_key = sec->active_key;
5582                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5583                 } else
5584                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5585
5586                 priv->status |= STATUS_SECURITY_UPDATED;
5587         }
5588
5589         if ((sec->flags & SEC_AUTH_MODE) &&
5590             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5591                 priv->ieee->sec.auth_mode = sec->auth_mode;
5592                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5593                 priv->status |= STATUS_SECURITY_UPDATED;
5594         }
5595
5596         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5597                 priv->ieee->sec.flags |= SEC_ENABLED;
5598                 priv->ieee->sec.enabled = sec->enabled;
5599                 priv->status |= STATUS_SECURITY_UPDATED;
5600                 force_update = 1;
5601         }
5602
5603         if (sec->flags & SEC_ENCRYPT)
5604                 priv->ieee->sec.encrypt = sec->encrypt;
5605
5606         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5607                 priv->ieee->sec.level = sec->level;
5608                 priv->ieee->sec.flags |= SEC_LEVEL;
5609                 priv->status |= STATUS_SECURITY_UPDATED;
5610         }
5611
5612         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5613                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5614                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5615                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5616                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5617                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5618                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5619                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5620                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5621                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5622
5623 /* As a temporary work around to enable WPA until we figure out why
5624  * wpa_supplicant toggles the security capability of the driver, which
5625  * forces a disassocation with force_update...
5626  *
5627  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5628         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5629                 ipw2100_configure_security(priv, 0);
5630       done:
5631         mutex_unlock(&priv->action_mutex);
5632 }
5633
5634 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5635 {
5636         int err;
5637         int batch_mode = 1;
5638         u8 *bssid;
5639
5640         IPW_DEBUG_INFO("enter\n");
5641
5642         err = ipw2100_disable_adapter(priv);
5643         if (err)
5644                 return err;
5645 #ifdef CONFIG_IPW2100_MONITOR
5646         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5647                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5648                 if (err)
5649                         return err;
5650
5651                 IPW_DEBUG_INFO("exit\n");
5652
5653                 return 0;
5654         }
5655 #endif                          /* CONFIG_IPW2100_MONITOR */
5656
5657         err = ipw2100_read_mac_address(priv);
5658         if (err)
5659                 return -EIO;
5660
5661         err = ipw2100_set_mac_address(priv, batch_mode);
5662         if (err)
5663                 return err;
5664
5665         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5666         if (err)
5667                 return err;
5668
5669         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5670                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5671                 if (err)
5672                         return err;
5673         }
5674
5675         err = ipw2100_system_config(priv, batch_mode);
5676         if (err)
5677                 return err;
5678
5679         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5680         if (err)
5681                 return err;
5682
5683         /* Default to power mode OFF */
5684         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5685         if (err)
5686                 return err;
5687
5688         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5689         if (err)
5690                 return err;
5691
5692         if (priv->config & CFG_STATIC_BSSID)
5693                 bssid = priv->bssid;
5694         else
5695                 bssid = NULL;
5696         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5697         if (err)
5698                 return err;
5699
5700         if (priv->config & CFG_STATIC_ESSID)
5701                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5702                                         batch_mode);
5703         else
5704                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5705         if (err)
5706                 return err;
5707
5708         err = ipw2100_configure_security(priv, batch_mode);
5709         if (err)
5710                 return err;
5711
5712         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5713                 err =
5714                     ipw2100_set_ibss_beacon_interval(priv,
5715                                                      priv->beacon_interval,
5716                                                      batch_mode);
5717                 if (err)
5718                         return err;
5719
5720                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5721                 if (err)
5722                         return err;
5723         }
5724
5725         /*
5726            err = ipw2100_set_fragmentation_threshold(
5727            priv, priv->frag_threshold, batch_mode);
5728            if (err)
5729            return err;
5730          */
5731
5732         IPW_DEBUG_INFO("exit\n");
5733
5734         return 0;
5735 }
5736
5737 /*************************************************************************
5738  *
5739  * EXTERNALLY CALLED METHODS
5740  *
5741  *************************************************************************/
5742
5743 /* This method is called by the network layer -- not to be confused with
5744  * ipw2100_set_mac_address() declared above called by this driver (and this
5745  * method as well) to talk to the firmware */
5746 static int ipw2100_set_address(struct net_device *dev, void *p)
5747 {
5748         struct ipw2100_priv *priv = ieee80211_priv(dev);
5749         struct sockaddr *addr = p;
5750         int err = 0;
5751
5752         if (!is_valid_ether_addr(addr->sa_data))
5753                 return -EADDRNOTAVAIL;
5754
5755         mutex_lock(&priv->action_mutex);
5756
5757         priv->config |= CFG_CUSTOM_MAC;
5758         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5759
5760         err = ipw2100_set_mac_address(priv, 0);
5761         if (err)
5762                 goto done;
5763
5764         priv->reset_backoff = 0;
5765         mutex_unlock(&priv->action_mutex);
5766         ipw2100_reset_adapter(&priv->reset_work.work);
5767         return 0;
5768
5769       done:
5770         mutex_unlock(&priv->action_mutex);
5771         return err;
5772 }
5773
5774 static int ipw2100_open(struct net_device *dev)
5775 {
5776         struct ipw2100_priv *priv = ieee80211_priv(dev);
5777         unsigned long flags;
5778         IPW_DEBUG_INFO("dev->open\n");
5779
5780         spin_lock_irqsave(&priv->low_lock, flags);
5781         if (priv->status & STATUS_ASSOCIATED) {
5782                 netif_carrier_on(dev);
5783                 netif_start_queue(dev);
5784         }
5785         spin_unlock_irqrestore(&priv->low_lock, flags);
5786
5787         return 0;
5788 }
5789
5790 static int ipw2100_close(struct net_device *dev)
5791 {
5792         struct ipw2100_priv *priv = ieee80211_priv(dev);
5793         unsigned long flags;
5794         struct list_head *element;
5795         struct ipw2100_tx_packet *packet;
5796
5797         IPW_DEBUG_INFO("enter\n");
5798
5799         spin_lock_irqsave(&priv->low_lock, flags);
5800
5801         if (priv->status & STATUS_ASSOCIATED)
5802                 netif_carrier_off(dev);
5803         netif_stop_queue(dev);
5804
5805         /* Flush the TX queue ... */
5806         while (!list_empty(&priv->tx_pend_list)) {
5807                 element = priv->tx_pend_list.next;
5808                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5809
5810                 list_del(element);
5811                 DEC_STAT(&priv->tx_pend_stat);
5812
5813                 ieee80211_txb_free(packet->info.d_struct.txb);
5814                 packet->info.d_struct.txb = NULL;
5815
5816                 list_add_tail(element, &priv->tx_free_list);
5817                 INC_STAT(&priv->tx_free_stat);
5818         }
5819         spin_unlock_irqrestore(&priv->low_lock, flags);
5820
5821         IPW_DEBUG_INFO("exit\n");
5822
5823         return 0;
5824 }
5825
5826 /*
5827  * TODO:  Fix this function... its just wrong
5828  */
5829 static void ipw2100_tx_timeout(struct net_device *dev)
5830 {
5831         struct ipw2100_priv *priv = ieee80211_priv(dev);
5832
5833         priv->ieee->stats.tx_errors++;
5834
5835 #ifdef CONFIG_IPW2100_MONITOR
5836         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5837                 return;
5838 #endif
5839
5840         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5841                        dev->name);
5842         schedule_reset(priv);
5843 }
5844
5845 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5846 {
5847         /* This is called when wpa_supplicant loads and closes the driver
5848          * interface. */
5849         priv->ieee->wpa_enabled = value;
5850         return 0;
5851 }
5852
5853 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5854 {
5855
5856         struct ieee80211_device *ieee = priv->ieee;
5857         struct ieee80211_security sec = {
5858                 .flags = SEC_AUTH_MODE,
5859         };
5860         int ret = 0;
5861
5862         if (value & IW_AUTH_ALG_SHARED_KEY) {
5863                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5864                 ieee->open_wep = 0;
5865         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5866                 sec.auth_mode = WLAN_AUTH_OPEN;
5867                 ieee->open_wep = 1;
5868         } else if (value & IW_AUTH_ALG_LEAP) {
5869                 sec.auth_mode = WLAN_AUTH_LEAP;
5870                 ieee->open_wep = 1;
5871         } else
5872                 return -EINVAL;
5873
5874         if (ieee->set_security)
5875                 ieee->set_security(ieee->dev, &sec);
5876         else
5877                 ret = -EOPNOTSUPP;
5878
5879         return ret;
5880 }
5881
5882 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5883                                     char *wpa_ie, int wpa_ie_len)
5884 {
5885
5886         struct ipw2100_wpa_assoc_frame frame;
5887
5888         frame.fixed_ie_mask = 0;
5889
5890         /* copy WPA IE */
5891         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5892         frame.var_ie_len = wpa_ie_len;
5893
5894         /* make sure WPA is enabled */
5895         ipw2100_wpa_enable(priv, 1);
5896         ipw2100_set_wpa_ie(priv, &frame, 0);
5897 }
5898
5899 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5900                                     struct ethtool_drvinfo *info)
5901 {
5902         struct ipw2100_priv *priv = ieee80211_priv(dev);
5903         char fw_ver[64], ucode_ver[64];
5904
5905         strcpy(info->driver, DRV_NAME);
5906         strcpy(info->version, DRV_VERSION);
5907
5908         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5909         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5910
5911         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5912                  fw_ver, priv->eeprom_version, ucode_ver);
5913
5914         strcpy(info->bus_info, pci_name(priv->pci_dev));
5915 }
5916
5917 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5918 {
5919         struct ipw2100_priv *priv = ieee80211_priv(dev);
5920         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5921 }
5922
5923 static const struct ethtool_ops ipw2100_ethtool_ops = {
5924         .get_link = ipw2100_ethtool_get_link,
5925         .get_drvinfo = ipw_ethtool_get_drvinfo,
5926 };
5927
5928 static void ipw2100_hang_check(struct work_struct *work)
5929 {
5930         struct ipw2100_priv *priv =
5931                 container_of(work, struct ipw2100_priv, hang_check.work);
5932         unsigned long flags;
5933         u32 rtc = 0xa5a5a5a5;
5934         u32 len = sizeof(rtc);
5935         int restart = 0;
5936
5937         spin_lock_irqsave(&priv->low_lock, flags);
5938
5939         if (priv->fatal_error != 0) {
5940                 /* If fatal_error is set then we need to restart */
5941                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5942                                priv->net_dev->name);
5943
5944                 restart = 1;
5945         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5946                    (rtc == priv->last_rtc)) {
5947                 /* Check if firmware is hung */
5948                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5949                                priv->net_dev->name);
5950
5951                 restart = 1;
5952         }
5953
5954         if (restart) {
5955                 /* Kill timer */
5956                 priv->stop_hang_check = 1;
5957                 priv->hangs++;
5958
5959                 /* Restart the NIC */
5960                 schedule_reset(priv);
5961         }
5962
5963         priv->last_rtc = rtc;
5964
5965         if (!priv->stop_hang_check)
5966                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5967
5968         spin_unlock_irqrestore(&priv->low_lock, flags);
5969 }
5970
5971 static void ipw2100_rf_kill(struct work_struct *work)
5972 {
5973         struct ipw2100_priv *priv =
5974                 container_of(work, struct ipw2100_priv, rf_kill.work);
5975         unsigned long flags;
5976
5977         spin_lock_irqsave(&priv->low_lock, flags);
5978
5979         if (rf_kill_active(priv)) {
5980                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5981                 if (!priv->stop_rf_kill)
5982                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
5983                                            round_jiffies_relative(HZ));
5984                 goto exit_unlock;
5985         }
5986
5987         /* RF Kill is now disabled, so bring the device back up */
5988
5989         if (!(priv->status & STATUS_RF_KILL_MASK)) {
5990                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5991                                   "device\n");
5992                 schedule_reset(priv);
5993         } else
5994                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
5995                                   "enabled\n");
5996
5997       exit_unlock:
5998         spin_unlock_irqrestore(&priv->low_lock, flags);
5999 }
6000
6001 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6002
6003 /* Look into using netdev destructor to shutdown ieee80211? */
6004
6005 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6006                                                void __iomem * base_addr,
6007                                                unsigned long mem_start,
6008                                                unsigned long mem_len)
6009 {
6010         struct ipw2100_priv *priv;
6011         struct net_device *dev;
6012
6013         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6014         if (!dev)
6015                 return NULL;
6016         priv = ieee80211_priv(dev);
6017         priv->ieee = netdev_priv(dev);
6018         priv->pci_dev = pci_dev;
6019         priv->net_dev = dev;
6020
6021         priv->ieee->hard_start_xmit = ipw2100_tx;
6022         priv->ieee->set_security = shim__set_security;
6023
6024         priv->ieee->perfect_rssi = -20;
6025         priv->ieee->worst_rssi = -85;
6026
6027         dev->open = ipw2100_open;
6028         dev->stop = ipw2100_close;
6029         dev->init = ipw2100_net_init;
6030         dev->ethtool_ops = &ipw2100_ethtool_ops;
6031         dev->tx_timeout = ipw2100_tx_timeout;
6032         dev->wireless_handlers = &ipw2100_wx_handler_def;
6033         priv->wireless_data.ieee80211 = priv->ieee;
6034         dev->wireless_data = &priv->wireless_data;
6035         dev->set_mac_address = ipw2100_set_address;
6036         dev->watchdog_timeo = 3 * HZ;
6037         dev->irq = 0;
6038
6039         dev->base_addr = (unsigned long)base_addr;
6040         dev->mem_start = mem_start;
6041         dev->mem_end = dev->mem_start + mem_len - 1;
6042
6043         /* NOTE: We don't use the wireless_handlers hook
6044          * in dev as the system will start throwing WX requests
6045          * to us before we're actually initialized and it just
6046          * ends up causing problems.  So, we just handle
6047          * the WX extensions through the ipw2100_ioctl interface */
6048
6049         /* memset() puts everything to 0, so we only have explicitly set
6050          * those values that need to be something else */
6051
6052         /* If power management is turned on, default to AUTO mode */
6053         priv->power_mode = IPW_POWER_AUTO;
6054
6055 #ifdef CONFIG_IPW2100_MONITOR
6056         priv->config |= CFG_CRC_CHECK;
6057 #endif
6058         priv->ieee->wpa_enabled = 0;
6059         priv->ieee->drop_unencrypted = 0;
6060         priv->ieee->privacy_invoked = 0;
6061         priv->ieee->ieee802_1x = 1;
6062
6063         /* Set module parameters */
6064         switch (mode) {
6065         case 1:
6066                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6067                 break;
6068 #ifdef CONFIG_IPW2100_MONITOR
6069         case 2:
6070                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6071                 break;
6072 #endif
6073         default:
6074         case 0:
6075                 priv->ieee->iw_mode = IW_MODE_INFRA;
6076                 break;
6077         }
6078
6079         if (disable == 1)
6080                 priv->status |= STATUS_RF_KILL_SW;
6081
6082         if (channel != 0 &&
6083             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6084                 priv->config |= CFG_STATIC_CHANNEL;
6085                 priv->channel = channel;
6086         }
6087
6088         if (associate)
6089                 priv->config |= CFG_ASSOCIATE;
6090
6091         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6092         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6093         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6094         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6095         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6096         priv->tx_power = IPW_TX_POWER_DEFAULT;
6097         priv->tx_rates = DEFAULT_TX_RATES;
6098
6099         strcpy(priv->nick, "ipw2100");
6100
6101         spin_lock_init(&priv->low_lock);
6102         mutex_init(&priv->action_mutex);
6103         mutex_init(&priv->adapter_mutex);
6104
6105         init_waitqueue_head(&priv->wait_command_queue);
6106
6107         netif_carrier_off(dev);
6108
6109         INIT_LIST_HEAD(&priv->msg_free_list);
6110         INIT_LIST_HEAD(&priv->msg_pend_list);
6111         INIT_STAT(&priv->msg_free_stat);
6112         INIT_STAT(&priv->msg_pend_stat);
6113
6114         INIT_LIST_HEAD(&priv->tx_free_list);
6115         INIT_LIST_HEAD(&priv->tx_pend_list);
6116         INIT_STAT(&priv->tx_free_stat);
6117         INIT_STAT(&priv->tx_pend_stat);
6118
6119         INIT_LIST_HEAD(&priv->fw_pend_list);
6120         INIT_STAT(&priv->fw_pend_stat);
6121
6122         priv->workqueue = create_workqueue(DRV_NAME);
6123
6124         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6125         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6126         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6127         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6128         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6129         INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6130         INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6131
6132         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6133                      ipw2100_irq_tasklet, (unsigned long)priv);
6134
6135         /* NOTE:  We do not start the deferred work for status checks yet */
6136         priv->stop_rf_kill = 1;
6137         priv->stop_hang_check = 1;
6138
6139         return dev;
6140 }
6141
6142 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6143                                 const struct pci_device_id *ent)
6144 {
6145         unsigned long mem_start, mem_len, mem_flags;
6146         void __iomem *base_addr = NULL;
6147         struct net_device *dev = NULL;
6148         struct ipw2100_priv *priv = NULL;
6149         int err = 0;
6150         int registered = 0;
6151         u32 val;
6152
6153         IPW_DEBUG_INFO("enter\n");
6154
6155         mem_start = pci_resource_start(pci_dev, 0);
6156         mem_len = pci_resource_len(pci_dev, 0);
6157         mem_flags = pci_resource_flags(pci_dev, 0);
6158
6159         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6160                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6161                 err = -ENODEV;
6162                 goto fail;
6163         }
6164
6165         base_addr = ioremap_nocache(mem_start, mem_len);
6166         if (!base_addr) {
6167                 printk(KERN_WARNING DRV_NAME
6168                        "Error calling ioremap_nocache.\n");
6169                 err = -EIO;
6170                 goto fail;
6171         }
6172
6173         /* allocate and initialize our net_device */
6174         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6175         if (!dev) {
6176                 printk(KERN_WARNING DRV_NAME
6177                        "Error calling ipw2100_alloc_device.\n");
6178                 err = -ENOMEM;
6179                 goto fail;
6180         }
6181
6182         /* set up PCI mappings for device */
6183         err = pci_enable_device(pci_dev);
6184         if (err) {
6185                 printk(KERN_WARNING DRV_NAME
6186                        "Error calling pci_enable_device.\n");
6187                 return err;
6188         }
6189
6190         priv = ieee80211_priv(dev);
6191
6192         pci_set_master(pci_dev);
6193         pci_set_drvdata(pci_dev, priv);
6194
6195         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6196         if (err) {
6197                 printk(KERN_WARNING DRV_NAME
6198                        "Error calling pci_set_dma_mask.\n");
6199                 pci_disable_device(pci_dev);
6200                 return err;
6201         }
6202
6203         err = pci_request_regions(pci_dev, DRV_NAME);
6204         if (err) {
6205                 printk(KERN_WARNING DRV_NAME
6206                        "Error calling pci_request_regions.\n");
6207                 pci_disable_device(pci_dev);
6208                 return err;
6209         }
6210
6211         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6212          * PCI Tx retries from interfering with C3 CPU state */
6213         pci_read_config_dword(pci_dev, 0x40, &val);
6214         if ((val & 0x0000ff00) != 0)
6215                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6216
6217         pci_set_power_state(pci_dev, PCI_D0);
6218
6219         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6220                 printk(KERN_WARNING DRV_NAME
6221                        "Device not found via register read.\n");
6222                 err = -ENODEV;
6223                 goto fail;
6224         }
6225
6226         SET_NETDEV_DEV(dev, &pci_dev->dev);
6227
6228         /* Force interrupts to be shut off on the device */
6229         priv->status |= STATUS_INT_ENABLED;
6230         ipw2100_disable_interrupts(priv);
6231
6232         /* Allocate and initialize the Tx/Rx queues and lists */
6233         if (ipw2100_queues_allocate(priv)) {
6234                 printk(KERN_WARNING DRV_NAME
6235                        "Error calling ipw2100_queues_allocate.\n");
6236                 err = -ENOMEM;
6237                 goto fail;
6238         }
6239         ipw2100_queues_initialize(priv);
6240
6241         err = request_irq(pci_dev->irq,
6242                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6243         if (err) {
6244                 printk(KERN_WARNING DRV_NAME
6245                        "Error calling request_irq: %d.\n", pci_dev->irq);
6246                 goto fail;
6247         }
6248         dev->irq = pci_dev->irq;
6249
6250         IPW_DEBUG_INFO("Attempting to register device...\n");
6251
6252         printk(KERN_INFO DRV_NAME
6253                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6254
6255         /* Bring up the interface.  Pre 0.46, after we registered the
6256          * network device we would call ipw2100_up.  This introduced a race
6257          * condition with newer hotplug configurations (network was coming
6258          * up and making calls before the device was initialized).
6259          *
6260          * If we called ipw2100_up before we registered the device, then the
6261          * device name wasn't registered.  So, we instead use the net_dev->init
6262          * member to call a function that then just turns and calls ipw2100_up.
6263          * net_dev->init is called after name allocation but before the
6264          * notifier chain is called */
6265         err = register_netdev(dev);
6266         if (err) {
6267                 printk(KERN_WARNING DRV_NAME
6268                        "Error calling register_netdev.\n");
6269                 goto fail;
6270         }
6271
6272         mutex_lock(&priv->action_mutex);
6273         registered = 1;
6274
6275         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6276
6277         /* perform this after register_netdev so that dev->name is set */
6278         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6279         if (err)
6280                 goto fail_unlock;
6281
6282         /* If the RF Kill switch is disabled, go ahead and complete the
6283          * startup sequence */
6284         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6285                 /* Enable the adapter - sends HOST_COMPLETE */
6286                 if (ipw2100_enable_adapter(priv)) {
6287                         printk(KERN_WARNING DRV_NAME
6288                                ": %s: failed in call to enable adapter.\n",
6289                                priv->net_dev->name);
6290                         ipw2100_hw_stop_adapter(priv);
6291                         err = -EIO;
6292                         goto fail_unlock;
6293                 }
6294
6295                 /* Start a scan . . . */
6296                 ipw2100_set_scan_options(priv);
6297                 ipw2100_start_scan(priv);
6298         }
6299
6300         IPW_DEBUG_INFO("exit\n");
6301
6302         priv->status |= STATUS_INITIALIZED;
6303
6304         mutex_unlock(&priv->action_mutex);
6305
6306         return 0;
6307
6308       fail_unlock:
6309         mutex_unlock(&priv->action_mutex);
6310
6311       fail:
6312         if (dev) {
6313                 if (registered)
6314                         unregister_netdev(dev);
6315
6316                 ipw2100_hw_stop_adapter(priv);
6317
6318                 ipw2100_disable_interrupts(priv);
6319
6320                 if (dev->irq)
6321                         free_irq(dev->irq, priv);
6322
6323                 ipw2100_kill_workqueue(priv);
6324
6325                 /* These are safe to call even if they weren't allocated */
6326                 ipw2100_queues_free(priv);
6327                 sysfs_remove_group(&pci_dev->dev.kobj,
6328                                    &ipw2100_attribute_group);
6329
6330                 free_ieee80211(dev);
6331                 pci_set_drvdata(pci_dev, NULL);
6332         }
6333
6334         if (base_addr)
6335                 iounmap(base_addr);
6336
6337         pci_release_regions(pci_dev);
6338         pci_disable_device(pci_dev);
6339
6340         return err;
6341 }
6342
6343 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6344 {
6345         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6346         struct net_device *dev;
6347
6348         if (priv) {
6349                 mutex_lock(&priv->action_mutex);
6350
6351                 priv->status &= ~STATUS_INITIALIZED;
6352
6353                 dev = priv->net_dev;
6354                 sysfs_remove_group(&pci_dev->dev.kobj,
6355                                    &ipw2100_attribute_group);
6356
6357 #ifdef CONFIG_PM
6358                 if (ipw2100_firmware.version)
6359                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6360 #endif
6361                 /* Take down the hardware */
6362                 ipw2100_down(priv);
6363
6364                 /* Release the mutex so that the network subsystem can
6365                  * complete any needed calls into the driver... */
6366                 mutex_unlock(&priv->action_mutex);
6367
6368                 /* Unregister the device first - this results in close()
6369                  * being called if the device is open.  If we free storage
6370                  * first, then close() will crash. */
6371                 unregister_netdev(dev);
6372
6373                 /* ipw2100_down will ensure that there is no more pending work
6374                  * in the workqueue's, so we can safely remove them now. */
6375                 ipw2100_kill_workqueue(priv);
6376
6377                 ipw2100_queues_free(priv);
6378
6379                 /* Free potential debugging firmware snapshot */
6380                 ipw2100_snapshot_free(priv);
6381
6382                 if (dev->irq)
6383                         free_irq(dev->irq, priv);
6384
6385                 if (dev->base_addr)
6386                         iounmap((void __iomem *)dev->base_addr);
6387
6388                 free_ieee80211(dev);
6389         }
6390
6391         pci_release_regions(pci_dev);
6392         pci_disable_device(pci_dev);
6393
6394         IPW_DEBUG_INFO("exit\n");
6395 }
6396
6397 #ifdef CONFIG_PM
6398 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6399 {
6400         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6401         struct net_device *dev = priv->net_dev;
6402
6403         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6404
6405         mutex_lock(&priv->action_mutex);
6406         if (priv->status & STATUS_INITIALIZED) {
6407                 /* Take down the device; powers it off, etc. */
6408                 ipw2100_down(priv);
6409         }
6410
6411         /* Remove the PRESENT state of the device */
6412         netif_device_detach(dev);
6413
6414         pci_save_state(pci_dev);
6415         pci_disable_device(pci_dev);
6416         pci_set_power_state(pci_dev, PCI_D3hot);
6417
6418         mutex_unlock(&priv->action_mutex);
6419
6420         return 0;
6421 }
6422
6423 static int ipw2100_resume(struct pci_dev *pci_dev)
6424 {
6425         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6426         struct net_device *dev = priv->net_dev;
6427         int err;
6428         u32 val;
6429
6430         if (IPW2100_PM_DISABLED)
6431                 return 0;
6432
6433         mutex_lock(&priv->action_mutex);
6434
6435         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6436
6437         pci_set_power_state(pci_dev, PCI_D0);
6438         err = pci_enable_device(pci_dev);
6439         if (err) {
6440                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6441                        dev->name);
6442                 mutex_unlock(&priv->action_mutex);
6443                 return err;
6444         }
6445         pci_restore_state(pci_dev);
6446
6447         /*
6448          * Suspend/Resume resets the PCI configuration space, so we have to
6449          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6450          * from interfering with C3 CPU state. pci_restore_state won't help
6451          * here since it only restores the first 64 bytes pci config header.
6452          */
6453         pci_read_config_dword(pci_dev, 0x40, &val);
6454         if ((val & 0x0000ff00) != 0)
6455                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6456
6457         /* Set the device back into the PRESENT state; this will also wake
6458          * the queue of needed */
6459         netif_device_attach(dev);
6460
6461         /* Bring the device back up */
6462         if (!(priv->status & STATUS_RF_KILL_SW))
6463                 ipw2100_up(priv, 0);
6464
6465         mutex_unlock(&priv->action_mutex);
6466
6467         return 0;
6468 }
6469 #endif
6470
6471 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6472
6473 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6474         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6475         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6476         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6477         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6478         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6479         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6480         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6481         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6482         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6483         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6484         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6485         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6486         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6487
6488         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6489         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6490         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6491         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6492         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6493
6494         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6495         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6496         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6497         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6498         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6499         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6500         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6501
6502         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6503
6504         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6505         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6506         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6507         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6508         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6509         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6510         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6511
6512         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6513         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6514         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6515         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6516         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6517         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6518
6519         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6520         {0,},
6521 };
6522
6523 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6524
6525 static struct pci_driver ipw2100_pci_driver = {
6526         .name = DRV_NAME,
6527         .id_table = ipw2100_pci_id_table,
6528         .probe = ipw2100_pci_init_one,
6529         .remove = __devexit_p(ipw2100_pci_remove_one),
6530 #ifdef CONFIG_PM
6531         .suspend = ipw2100_suspend,
6532         .resume = ipw2100_resume,
6533 #endif
6534 };
6535
6536 /**
6537  * Initialize the ipw2100 driver/module
6538  *
6539  * @returns 0 if ok, < 0 errno node con error.
6540  *
6541  * Note: we cannot init the /proc stuff until the PCI driver is there,
6542  * or we risk an unlikely race condition on someone accessing
6543  * uninitialized data in the PCI dev struct through /proc.
6544  */
6545 static int __init ipw2100_init(void)
6546 {
6547         int ret;
6548
6549         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6550         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6551
6552         ret = pci_register_driver(&ipw2100_pci_driver);
6553         if (ret)
6554                 goto out;
6555
6556         pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100",
6557                         PM_QOS_DEFAULT_VALUE);
6558 #ifdef CONFIG_IPW2100_DEBUG
6559         ipw2100_debug_level = debug;
6560         ret = driver_create_file(&ipw2100_pci_driver.driver,
6561                                  &driver_attr_debug_level);
6562 #endif
6563
6564 out:
6565         return ret;
6566 }
6567
6568 /**
6569  * Cleanup ipw2100 driver registration
6570  */
6571 static void __exit ipw2100_exit(void)
6572 {
6573         /* FIXME: IPG: check that we have no instances of the devices open */
6574 #ifdef CONFIG_IPW2100_DEBUG
6575         driver_remove_file(&ipw2100_pci_driver.driver,
6576                            &driver_attr_debug_level);
6577 #endif
6578         pci_unregister_driver(&ipw2100_pci_driver);
6579         pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100");
6580 }
6581
6582 module_init(ipw2100_init);
6583 module_exit(ipw2100_exit);
6584
6585 #define WEXT_USECHANNELS 1
6586
6587 static const long ipw2100_frequencies[] = {
6588         2412, 2417, 2422, 2427,
6589         2432, 2437, 2442, 2447,
6590         2452, 2457, 2462, 2467,
6591         2472, 2484
6592 };
6593
6594 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
6595
6596 static const long ipw2100_rates_11b[] = {
6597         1000000,
6598         2000000,
6599         5500000,
6600         11000000
6601 };
6602
6603 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6604
6605 static int ipw2100_wx_get_name(struct net_device *dev,
6606                                struct iw_request_info *info,
6607                                union iwreq_data *wrqu, char *extra)
6608 {
6609         /*
6610          * This can be called at any time.  No action lock required
6611          */
6612
6613         struct ipw2100_priv *priv = ieee80211_priv(dev);
6614         if (!(priv->status & STATUS_ASSOCIATED))
6615                 strcpy(wrqu->name, "unassociated");
6616         else
6617                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6618
6619         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6620         return 0;
6621 }
6622
6623 static int ipw2100_wx_set_freq(struct net_device *dev,
6624                                struct iw_request_info *info,
6625                                union iwreq_data *wrqu, char *extra)
6626 {
6627         struct ipw2100_priv *priv = ieee80211_priv(dev);
6628         struct iw_freq *fwrq = &wrqu->freq;
6629         int err = 0;
6630
6631         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6632                 return -EOPNOTSUPP;
6633
6634         mutex_lock(&priv->action_mutex);
6635         if (!(priv->status & STATUS_INITIALIZED)) {
6636                 err = -EIO;
6637                 goto done;
6638         }
6639
6640         /* if setting by freq convert to channel */
6641         if (fwrq->e == 1) {
6642                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6643                         int f = fwrq->m / 100000;
6644                         int c = 0;
6645
6646                         while ((c < REG_MAX_CHANNEL) &&
6647                                (f != ipw2100_frequencies[c]))
6648                                 c++;
6649
6650                         /* hack to fall through */
6651                         fwrq->e = 0;
6652                         fwrq->m = c + 1;
6653                 }
6654         }
6655
6656         if (fwrq->e > 0 || fwrq->m > 1000) {
6657                 err = -EOPNOTSUPP;
6658                 goto done;
6659         } else {                /* Set the channel */
6660                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6661                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6662         }
6663
6664       done:
6665         mutex_unlock(&priv->action_mutex);
6666         return err;
6667 }
6668
6669 static int ipw2100_wx_get_freq(struct net_device *dev,
6670                                struct iw_request_info *info,
6671                                union iwreq_data *wrqu, char *extra)
6672 {
6673         /*
6674          * This can be called at any time.  No action lock required
6675          */
6676
6677         struct ipw2100_priv *priv = ieee80211_priv(dev);
6678
6679         wrqu->freq.e = 0;
6680
6681         /* If we are associated, trying to associate, or have a statically
6682          * configured CHANNEL then return that; otherwise return ANY */
6683         if (priv->config & CFG_STATIC_CHANNEL ||
6684             priv->status & STATUS_ASSOCIATED)
6685                 wrqu->freq.m = priv->channel;
6686         else
6687                 wrqu->freq.m = 0;
6688
6689         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6690         return 0;
6691
6692 }
6693
6694 static int ipw2100_wx_set_mode(struct net_device *dev,
6695                                struct iw_request_info *info,
6696                                union iwreq_data *wrqu, char *extra)
6697 {
6698         struct ipw2100_priv *priv = ieee80211_priv(dev);
6699         int err = 0;
6700
6701         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6702
6703         if (wrqu->mode == priv->ieee->iw_mode)
6704                 return 0;
6705
6706         mutex_lock(&priv->action_mutex);
6707         if (!(priv->status & STATUS_INITIALIZED)) {
6708                 err = -EIO;
6709                 goto done;
6710         }
6711
6712         switch (wrqu->mode) {
6713 #ifdef CONFIG_IPW2100_MONITOR
6714         case IW_MODE_MONITOR:
6715                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6716                 break;
6717 #endif                          /* CONFIG_IPW2100_MONITOR */
6718         case IW_MODE_ADHOC:
6719                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6720                 break;
6721         case IW_MODE_INFRA:
6722         case IW_MODE_AUTO:
6723         default:
6724                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6725                 break;
6726         }
6727
6728       done:
6729         mutex_unlock(&priv->action_mutex);
6730         return err;
6731 }
6732
6733 static int ipw2100_wx_get_mode(struct net_device *dev,
6734                                struct iw_request_info *info,
6735                                union iwreq_data *wrqu, char *extra)
6736 {
6737         /*
6738          * This can be called at any time.  No action lock required
6739          */
6740
6741         struct ipw2100_priv *priv = ieee80211_priv(dev);
6742
6743         wrqu->mode = priv->ieee->iw_mode;
6744         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6745
6746         return 0;
6747 }
6748
6749 #define POWER_MODES 5
6750
6751 /* Values are in microsecond */
6752 static const s32 timeout_duration[POWER_MODES] = {
6753         350000,
6754         250000,
6755         75000,
6756         37000,
6757         25000,
6758 };
6759
6760 static const s32 period_duration[POWER_MODES] = {
6761         400000,
6762         700000,
6763         1000000,
6764         1000000,
6765         1000000
6766 };
6767
6768 static int ipw2100_wx_get_range(struct net_device *dev,
6769                                 struct iw_request_info *info,
6770                                 union iwreq_data *wrqu, char *extra)
6771 {
6772         /*
6773          * This can be called at any time.  No action lock required
6774          */
6775
6776         struct ipw2100_priv *priv = ieee80211_priv(dev);
6777         struct iw_range *range = (struct iw_range *)extra;
6778         u16 val;
6779         int i, level;
6780
6781         wrqu->data.length = sizeof(*range);
6782         memset(range, 0, sizeof(*range));
6783
6784         /* Let's try to keep this struct in the same order as in
6785          * linux/include/wireless.h
6786          */
6787
6788         /* TODO: See what values we can set, and remove the ones we can't
6789          * set, or fill them with some default data.
6790          */
6791
6792         /* ~5 Mb/s real (802.11b) */
6793         range->throughput = 5 * 1000 * 1000;
6794
6795 //      range->sensitivity;     /* signal level threshold range */
6796
6797         range->max_qual.qual = 100;
6798         /* TODO: Find real max RSSI and stick here */
6799         range->max_qual.level = 0;
6800         range->max_qual.noise = 0;
6801         range->max_qual.updated = 7;    /* Updated all three */
6802
6803         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6804         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6805         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6806         range->avg_qual.noise = 0;
6807         range->avg_qual.updated = 7;    /* Updated all three */
6808
6809         range->num_bitrates = RATE_COUNT;
6810
6811         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6812                 range->bitrate[i] = ipw2100_rates_11b[i];
6813         }
6814
6815         range->min_rts = MIN_RTS_THRESHOLD;
6816         range->max_rts = MAX_RTS_THRESHOLD;
6817         range->min_frag = MIN_FRAG_THRESHOLD;
6818         range->max_frag = MAX_FRAG_THRESHOLD;
6819
6820         range->min_pmp = period_duration[0];    /* Minimal PM period */
6821         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6822         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6823         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6824
6825         /* How to decode max/min PM period */
6826         range->pmp_flags = IW_POWER_PERIOD;
6827         /* How to decode max/min PM period */
6828         range->pmt_flags = IW_POWER_TIMEOUT;
6829         /* What PM options are supported */
6830         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6831
6832         range->encoding_size[0] = 5;
6833         range->encoding_size[1] = 13;   /* Different token sizes */
6834         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6835         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6836 //      range->encoding_login_index;            /* token index for login token */
6837
6838         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6839                 range->txpower_capa = IW_TXPOW_DBM;
6840                 range->num_txpower = IW_MAX_TXPOWER;
6841                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6842                      i < IW_MAX_TXPOWER;
6843                      i++, level -=
6844                      ((IPW_TX_POWER_MAX_DBM -
6845                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6846                         range->txpower[i] = level / 16;
6847         } else {
6848                 range->txpower_capa = 0;
6849                 range->num_txpower = 0;
6850         }
6851
6852         /* Set the Wireless Extension versions */
6853         range->we_version_compiled = WIRELESS_EXT;
6854         range->we_version_source = 18;
6855
6856 //      range->retry_capa;      /* What retry options are supported */
6857 //      range->retry_flags;     /* How to decode max/min retry limit */
6858 //      range->r_time_flags;    /* How to decode max/min retry life */
6859 //      range->min_retry;       /* Minimal number of retries */
6860 //      range->max_retry;       /* Maximal number of retries */
6861 //      range->min_r_time;      /* Minimal retry lifetime */
6862 //      range->max_r_time;      /* Maximal retry lifetime */
6863
6864         range->num_channels = FREQ_COUNT;
6865
6866         val = 0;
6867         for (i = 0; i < FREQ_COUNT; i++) {
6868                 // TODO: Include only legal frequencies for some countries
6869 //              if (local->channel_mask & (1 << i)) {
6870                 range->freq[val].i = i + 1;
6871                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6872                 range->freq[val].e = 1;
6873                 val++;
6874 //              }
6875                 if (val == IW_MAX_FREQUENCIES)
6876                         break;
6877         }
6878         range->num_frequency = val;
6879
6880         /* Event capability (kernel + driver) */
6881         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6882                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6883         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6884
6885         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6886                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6887
6888         IPW_DEBUG_WX("GET Range\n");
6889
6890         return 0;
6891 }
6892
6893 static int ipw2100_wx_set_wap(struct net_device *dev,
6894                               struct iw_request_info *info,
6895                               union iwreq_data *wrqu, char *extra)
6896 {
6897         struct ipw2100_priv *priv = ieee80211_priv(dev);
6898         int err = 0;
6899
6900         static const unsigned char any[] = {
6901                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6902         };
6903         static const unsigned char off[] = {
6904                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6905         };
6906
6907         // sanity checks
6908         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6909                 return -EINVAL;
6910
6911         mutex_lock(&priv->action_mutex);
6912         if (!(priv->status & STATUS_INITIALIZED)) {
6913                 err = -EIO;
6914                 goto done;
6915         }
6916
6917         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6918             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6919                 /* we disable mandatory BSSID association */
6920                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6921                 priv->config &= ~CFG_STATIC_BSSID;
6922                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6923                 goto done;
6924         }
6925
6926         priv->config |= CFG_STATIC_BSSID;
6927         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6928
6929         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6930
6931         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6932
6933       done:
6934         mutex_unlock(&priv->action_mutex);
6935         return err;
6936 }
6937
6938 static int ipw2100_wx_get_wap(struct net_device *dev,
6939                               struct iw_request_info *info,
6940                               union iwreq_data *wrqu, char *extra)
6941 {
6942         /*
6943          * This can be called at any time.  No action lock required
6944          */
6945
6946         struct ipw2100_priv *priv = ieee80211_priv(dev);
6947
6948         /* If we are associated, trying to associate, or have a statically
6949          * configured BSSID then return that; otherwise return ANY */
6950         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6951                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6952                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6953         } else
6954                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6955
6956         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6957         return 0;
6958 }
6959
6960 static int ipw2100_wx_set_essid(struct net_device *dev,
6961                                 struct iw_request_info *info,
6962                                 union iwreq_data *wrqu, char *extra)
6963 {
6964         struct ipw2100_priv *priv = ieee80211_priv(dev);
6965         char *essid = "";       /* ANY */
6966         int length = 0;
6967         int err = 0;
6968         DECLARE_SSID_BUF(ssid);
6969
6970         mutex_lock(&priv->action_mutex);
6971         if (!(priv->status & STATUS_INITIALIZED)) {
6972                 err = -EIO;
6973                 goto done;
6974         }
6975
6976         if (wrqu->essid.flags && wrqu->essid.length) {
6977                 length = wrqu->essid.length;
6978                 essid = extra;
6979         }
6980
6981         if (length == 0) {
6982                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6983                 priv->config &= ~CFG_STATIC_ESSID;
6984                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6985                 goto done;
6986         }
6987
6988         length = min(length, IW_ESSID_MAX_SIZE);
6989
6990         priv->config |= CFG_STATIC_ESSID;
6991
6992         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6993                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6994                 err = 0;
6995                 goto done;
6996         }
6997
6998         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
6999                      print_ssid(ssid, essid, length), length);
7000
7001         priv->essid_len = length;
7002         memcpy(priv->essid, essid, priv->essid_len);
7003
7004         err = ipw2100_set_essid(priv, essid, length, 0);
7005
7006       done:
7007         mutex_unlock(&priv->action_mutex);
7008         return err;
7009 }
7010
7011 static int ipw2100_wx_get_essid(struct net_device *dev,
7012                                 struct iw_request_info *info,
7013                                 union iwreq_data *wrqu, char *extra)
7014 {
7015         /*
7016          * This can be called at any time.  No action lock required
7017          */
7018
7019         struct ipw2100_priv *priv = ieee80211_priv(dev);
7020         DECLARE_SSID_BUF(ssid);
7021
7022         /* If we are associated, trying to associate, or have a statically
7023          * configured ESSID then return that; otherwise return ANY */
7024         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7025                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7026                              print_ssid(ssid, priv->essid, priv->essid_len));
7027                 memcpy(extra, priv->essid, priv->essid_len);
7028                 wrqu->essid.length = priv->essid_len;
7029                 wrqu->essid.flags = 1;  /* active */
7030         } else {
7031                 IPW_DEBUG_WX("Getting essid: ANY\n");
7032                 wrqu->essid.length = 0;
7033                 wrqu->essid.flags = 0;  /* active */
7034         }
7035
7036         return 0;
7037 }
7038
7039 static int ipw2100_wx_set_nick(struct net_device *dev,
7040                                struct iw_request_info *info,
7041                                union iwreq_data *wrqu, char *extra)
7042 {
7043         /*
7044          * This can be called at any time.  No action lock required
7045          */
7046
7047         struct ipw2100_priv *priv = ieee80211_priv(dev);
7048
7049         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7050                 return -E2BIG;
7051
7052         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7053         memset(priv->nick, 0, sizeof(priv->nick));
7054         memcpy(priv->nick, extra, wrqu->data.length);
7055
7056         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7057
7058         return 0;
7059 }
7060
7061 static int ipw2100_wx_get_nick(struct net_device *dev,
7062                                struct iw_request_info *info,
7063                                union iwreq_data *wrqu, char *extra)
7064 {
7065         /*
7066          * This can be called at any time.  No action lock required
7067          */
7068
7069         struct ipw2100_priv *priv = ieee80211_priv(dev);
7070
7071         wrqu->data.length = strlen(priv->nick);
7072         memcpy(extra, priv->nick, wrqu->data.length);
7073         wrqu->data.flags = 1;   /* active */
7074
7075         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7076
7077         return 0;
7078 }
7079
7080 static int ipw2100_wx_set_rate(struct net_device *dev,
7081                                struct iw_request_info *info,
7082                                union iwreq_data *wrqu, char *extra)
7083 {
7084         struct ipw2100_priv *priv = ieee80211_priv(dev);
7085         u32 target_rate = wrqu->bitrate.value;
7086         u32 rate;
7087         int err = 0;
7088
7089         mutex_lock(&priv->action_mutex);
7090         if (!(priv->status & STATUS_INITIALIZED)) {
7091                 err = -EIO;
7092                 goto done;
7093         }
7094
7095         rate = 0;
7096
7097         if (target_rate == 1000000 ||
7098             (!wrqu->bitrate.fixed && target_rate > 1000000))
7099                 rate |= TX_RATE_1_MBIT;
7100         if (target_rate == 2000000 ||
7101             (!wrqu->bitrate.fixed && target_rate > 2000000))
7102                 rate |= TX_RATE_2_MBIT;
7103         if (target_rate == 5500000 ||
7104             (!wrqu->bitrate.fixed && target_rate > 5500000))
7105                 rate |= TX_RATE_5_5_MBIT;
7106         if (target_rate == 11000000 ||
7107             (!wrqu->bitrate.fixed && target_rate > 11000000))
7108                 rate |= TX_RATE_11_MBIT;
7109         if (rate == 0)
7110                 rate = DEFAULT_TX_RATES;
7111
7112         err = ipw2100_set_tx_rates(priv, rate, 0);
7113
7114         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7115       done:
7116         mutex_unlock(&priv->action_mutex);
7117         return err;
7118 }
7119
7120 static int ipw2100_wx_get_rate(struct net_device *dev,
7121                                struct iw_request_info *info,
7122                                union iwreq_data *wrqu, char *extra)
7123 {
7124         struct ipw2100_priv *priv = ieee80211_priv(dev);
7125         int val;
7126         unsigned int len = sizeof(val);
7127         int err = 0;
7128
7129         if (!(priv->status & STATUS_ENABLED) ||
7130             priv->status & STATUS_RF_KILL_MASK ||
7131             !(priv->status & STATUS_ASSOCIATED)) {
7132                 wrqu->bitrate.value = 0;
7133                 return 0;
7134         }
7135
7136         mutex_lock(&priv->action_mutex);
7137         if (!(priv->status & STATUS_INITIALIZED)) {
7138                 err = -EIO;
7139                 goto done;
7140         }
7141
7142         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7143         if (err) {
7144                 IPW_DEBUG_WX("failed querying ordinals.\n");
7145                 goto done;
7146         }
7147
7148         switch (val & TX_RATE_MASK) {
7149         case TX_RATE_1_MBIT:
7150                 wrqu->bitrate.value = 1000000;
7151                 break;
7152         case TX_RATE_2_MBIT:
7153                 wrqu->bitrate.value = 2000000;
7154                 break;
7155         case TX_RATE_5_5_MBIT:
7156                 wrqu->bitrate.value = 5500000;
7157                 break;
7158         case TX_RATE_11_MBIT:
7159                 wrqu->bitrate.value = 11000000;
7160                 break;
7161         default:
7162                 wrqu->bitrate.value = 0;
7163         }
7164
7165         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7166
7167       done:
7168         mutex_unlock(&priv->action_mutex);
7169         return err;
7170 }
7171
7172 static int ipw2100_wx_set_rts(struct net_device *dev,
7173                               struct iw_request_info *info,
7174                               union iwreq_data *wrqu, char *extra)
7175 {
7176         struct ipw2100_priv *priv = ieee80211_priv(dev);
7177         int value, err;
7178
7179         /* Auto RTS not yet supported */
7180         if (wrqu->rts.fixed == 0)
7181                 return -EINVAL;
7182
7183         mutex_lock(&priv->action_mutex);
7184         if (!(priv->status & STATUS_INITIALIZED)) {
7185                 err = -EIO;
7186                 goto done;
7187         }
7188
7189         if (wrqu->rts.disabled)
7190                 value = priv->rts_threshold | RTS_DISABLED;
7191         else {
7192                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7193                         err = -EINVAL;
7194                         goto done;
7195                 }
7196                 value = wrqu->rts.value;
7197         }
7198
7199         err = ipw2100_set_rts_threshold(priv, value);
7200
7201         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7202       done:
7203         mutex_unlock(&priv->action_mutex);
7204         return err;
7205 }
7206
7207 static int ipw2100_wx_get_rts(struct net_device *dev,
7208                               struct iw_request_info *info,
7209                               union iwreq_data *wrqu, char *extra)
7210 {
7211         /*
7212          * This can be called at any time.  No action lock required
7213          */
7214
7215         struct ipw2100_priv *priv = ieee80211_priv(dev);
7216
7217         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7218         wrqu->rts.fixed = 1;    /* no auto select */
7219
7220         /* If RTS is set to the default value, then it is disabled */
7221         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7222
7223         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7224
7225         return 0;
7226 }
7227
7228 static int ipw2100_wx_set_txpow(struct net_device *dev,
7229                                 struct iw_request_info *info,
7230                                 union iwreq_data *wrqu, char *extra)
7231 {
7232         struct ipw2100_priv *priv = ieee80211_priv(dev);
7233         int err = 0, value;
7234         
7235         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7236                 return -EINPROGRESS;
7237
7238         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7239                 return 0;
7240
7241         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7242                 return -EINVAL;
7243
7244         if (wrqu->txpower.fixed == 0)
7245                 value = IPW_TX_POWER_DEFAULT;
7246         else {
7247                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7248                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7249                         return -EINVAL;
7250
7251                 value = wrqu->txpower.value;
7252         }
7253
7254         mutex_lock(&priv->action_mutex);
7255         if (!(priv->status & STATUS_INITIALIZED)) {
7256                 err = -EIO;
7257                 goto done;
7258         }
7259
7260         err = ipw2100_set_tx_power(priv, value);
7261
7262         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7263
7264       done:
7265         mutex_unlock(&priv->action_mutex);
7266         return err;
7267 }
7268
7269 static int ipw2100_wx_get_txpow(struct net_device *dev,
7270                                 struct iw_request_info *info,
7271                                 union iwreq_data *wrqu, char *extra)
7272 {
7273         /*
7274          * This can be called at any time.  No action lock required
7275          */
7276
7277         struct ipw2100_priv *priv = ieee80211_priv(dev);
7278
7279         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7280
7281         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7282                 wrqu->txpower.fixed = 0;
7283                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7284         } else {
7285                 wrqu->txpower.fixed = 1;
7286                 wrqu->txpower.value = priv->tx_power;
7287         }
7288
7289         wrqu->txpower.flags = IW_TXPOW_DBM;
7290
7291         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7292
7293         return 0;
7294 }
7295
7296 static int ipw2100_wx_set_frag(struct net_device *dev,
7297                                struct iw_request_info *info,
7298                                union iwreq_data *wrqu, char *extra)
7299 {
7300         /*
7301          * This can be called at any time.  No action lock required
7302          */
7303
7304         struct ipw2100_priv *priv = ieee80211_priv(dev);
7305
7306         if (!wrqu->frag.fixed)
7307                 return -EINVAL;
7308
7309         if (wrqu->frag.disabled) {
7310                 priv->frag_threshold |= FRAG_DISABLED;
7311                 priv->ieee->fts = DEFAULT_FTS;
7312         } else {
7313                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7314                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7315                         return -EINVAL;
7316
7317                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7318                 priv->frag_threshold = priv->ieee->fts;
7319         }
7320
7321         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7322
7323         return 0;
7324 }
7325
7326 static int ipw2100_wx_get_frag(struct net_device *dev,
7327                                struct iw_request_info *info,
7328                                union iwreq_data *wrqu, char *extra)
7329 {
7330         /*
7331          * This can be called at any time.  No action lock required
7332          */
7333
7334         struct ipw2100_priv *priv = ieee80211_priv(dev);
7335         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7336         wrqu->frag.fixed = 0;   /* no auto select */
7337         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7338
7339         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7340
7341         return 0;
7342 }
7343
7344 static int ipw2100_wx_set_retry(struct net_device *dev,
7345                                 struct iw_request_info *info,
7346                                 union iwreq_data *wrqu, char *extra)
7347 {
7348         struct ipw2100_priv *priv = ieee80211_priv(dev);
7349         int err = 0;
7350
7351         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7352                 return -EINVAL;
7353
7354         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7355                 return 0;
7356
7357         mutex_lock(&priv->action_mutex);
7358         if (!(priv->status & STATUS_INITIALIZED)) {
7359                 err = -EIO;
7360                 goto done;
7361         }
7362
7363         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7364                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7365                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7366                              wrqu->retry.value);
7367                 goto done;
7368         }
7369
7370         if (wrqu->retry.flags & IW_RETRY_LONG) {
7371                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7372                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7373                              wrqu->retry.value);
7374                 goto done;
7375         }
7376
7377         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7378         if (!err)
7379                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7380
7381         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7382
7383       done:
7384         mutex_unlock(&priv->action_mutex);
7385         return err;
7386 }
7387
7388 static int ipw2100_wx_get_retry(struct net_device *dev,
7389                                 struct iw_request_info *info,
7390                                 union iwreq_data *wrqu, char *extra)
7391 {
7392         /*
7393          * This can be called at any time.  No action lock required
7394          */
7395
7396         struct ipw2100_priv *priv = ieee80211_priv(dev);
7397
7398         wrqu->retry.disabled = 0;       /* can't be disabled */
7399
7400         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7401                 return -EINVAL;
7402
7403         if (wrqu->retry.flags & IW_RETRY_LONG) {
7404                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7405                 wrqu->retry.value = priv->long_retry_limit;
7406         } else {
7407                 wrqu->retry.flags =
7408                     (priv->short_retry_limit !=
7409                      priv->long_retry_limit) ?
7410                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7411
7412                 wrqu->retry.value = priv->short_retry_limit;
7413         }
7414
7415         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7416
7417         return 0;
7418 }
7419
7420 static int ipw2100_wx_set_scan(struct net_device *dev,
7421                                struct iw_request_info *info,
7422                                union iwreq_data *wrqu, char *extra)
7423 {
7424         struct ipw2100_priv *priv = ieee80211_priv(dev);
7425         int err = 0;
7426
7427         mutex_lock(&priv->action_mutex);
7428         if (!(priv->status & STATUS_INITIALIZED)) {
7429                 err = -EIO;
7430                 goto done;
7431         }
7432
7433         IPW_DEBUG_WX("Initiating scan...\n");
7434
7435         priv->user_requested_scan = 1;
7436         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7437                 IPW_DEBUG_WX("Start scan failed.\n");
7438
7439                 /* TODO: Mark a scan as pending so when hardware initialized
7440                  *       a scan starts */
7441         }
7442
7443       done:
7444         mutex_unlock(&priv->action_mutex);
7445         return err;
7446 }
7447
7448 static int ipw2100_wx_get_scan(struct net_device *dev,
7449                                struct iw_request_info *info,
7450                                union iwreq_data *wrqu, char *extra)
7451 {
7452         /*
7453          * This can be called at any time.  No action lock required
7454          */
7455
7456         struct ipw2100_priv *priv = ieee80211_priv(dev);
7457         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7458 }
7459
7460 /*
7461  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7462  */
7463 static int ipw2100_wx_set_encode(struct net_device *dev,
7464                                  struct iw_request_info *info,
7465                                  union iwreq_data *wrqu, char *key)
7466 {
7467         /*
7468          * No check of STATUS_INITIALIZED required
7469          */
7470
7471         struct ipw2100_priv *priv = ieee80211_priv(dev);
7472         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7473 }
7474
7475 static int ipw2100_wx_get_encode(struct net_device *dev,
7476                                  struct iw_request_info *info,
7477                                  union iwreq_data *wrqu, char *key)
7478 {
7479         /*
7480          * This can be called at any time.  No action lock required
7481          */
7482
7483         struct ipw2100_priv *priv = ieee80211_priv(dev);
7484         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7485 }
7486
7487 static int ipw2100_wx_set_power(struct net_device *dev,
7488                                 struct iw_request_info *info,
7489                                 union iwreq_data *wrqu, char *extra)
7490 {
7491         struct ipw2100_priv *priv = ieee80211_priv(dev);
7492         int err = 0;
7493
7494         mutex_lock(&priv->action_mutex);
7495         if (!(priv->status & STATUS_INITIALIZED)) {
7496                 err = -EIO;
7497                 goto done;
7498         }
7499
7500         if (wrqu->power.disabled) {
7501                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7502                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7503                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7504                 goto done;
7505         }
7506
7507         switch (wrqu->power.flags & IW_POWER_MODE) {
7508         case IW_POWER_ON:       /* If not specified */
7509         case IW_POWER_MODE:     /* If set all mask */
7510         case IW_POWER_ALL_R:    /* If explicitly state all */
7511                 break;
7512         default:                /* Otherwise we don't support it */
7513                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7514                              wrqu->power.flags);
7515                 err = -EOPNOTSUPP;
7516                 goto done;
7517         }
7518
7519         /* If the user hasn't specified a power management mode yet, default
7520          * to BATTERY */
7521         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7522         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7523
7524         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7525
7526       done:
7527         mutex_unlock(&priv->action_mutex);
7528         return err;
7529
7530 }
7531
7532 static int ipw2100_wx_get_power(struct net_device *dev,
7533                                 struct iw_request_info *info,
7534                                 union iwreq_data *wrqu, char *extra)
7535 {
7536         /*
7537          * This can be called at any time.  No action lock required
7538          */
7539
7540         struct ipw2100_priv *priv = ieee80211_priv(dev);
7541
7542         if (!(priv->power_mode & IPW_POWER_ENABLED))
7543                 wrqu->power.disabled = 1;
7544         else {
7545                 wrqu->power.disabled = 0;
7546                 wrqu->power.flags = 0;
7547         }
7548
7549         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7550
7551         return 0;
7552 }
7553
7554 /*
7555  * WE-18 WPA support
7556  */
7557
7558 /* SIOCSIWGENIE */
7559 static int ipw2100_wx_set_genie(struct net_device *dev,
7560                                 struct iw_request_info *info,
7561                                 union iwreq_data *wrqu, char *extra)
7562 {
7563
7564         struct ipw2100_priv *priv = ieee80211_priv(dev);
7565         struct ieee80211_device *ieee = priv->ieee;
7566         u8 *buf;
7567
7568         if (!ieee->wpa_enabled)
7569                 return -EOPNOTSUPP;
7570
7571         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7572             (wrqu->data.length && extra == NULL))
7573                 return -EINVAL;
7574
7575         if (wrqu->data.length) {
7576                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7577                 if (buf == NULL)
7578                         return -ENOMEM;
7579
7580                 kfree(ieee->wpa_ie);
7581                 ieee->wpa_ie = buf;
7582                 ieee->wpa_ie_len = wrqu->data.length;
7583         } else {
7584                 kfree(ieee->wpa_ie);
7585                 ieee->wpa_ie = NULL;
7586                 ieee->wpa_ie_len = 0;
7587         }
7588
7589         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7590
7591         return 0;
7592 }
7593
7594 /* SIOCGIWGENIE */
7595 static int ipw2100_wx_get_genie(struct net_device *dev,
7596                                 struct iw_request_info *info,
7597                                 union iwreq_data *wrqu, char *extra)
7598 {
7599         struct ipw2100_priv *priv = ieee80211_priv(dev);
7600         struct ieee80211_device *ieee = priv->ieee;
7601
7602         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7603                 wrqu->data.length = 0;
7604                 return 0;
7605         }
7606
7607         if (wrqu->data.length < ieee->wpa_ie_len)
7608                 return -E2BIG;
7609
7610         wrqu->data.length = ieee->wpa_ie_len;
7611         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7612
7613         return 0;
7614 }
7615
7616 /* SIOCSIWAUTH */
7617 static int ipw2100_wx_set_auth(struct net_device *dev,
7618                                struct iw_request_info *info,
7619                                union iwreq_data *wrqu, char *extra)
7620 {
7621         struct ipw2100_priv *priv = ieee80211_priv(dev);
7622         struct ieee80211_device *ieee = priv->ieee;
7623         struct iw_param *param = &wrqu->param;
7624         struct lib80211_crypt_data *crypt;
7625         unsigned long flags;
7626         int ret = 0;
7627
7628         switch (param->flags & IW_AUTH_INDEX) {
7629         case IW_AUTH_WPA_VERSION:
7630         case IW_AUTH_CIPHER_PAIRWISE:
7631         case IW_AUTH_CIPHER_GROUP:
7632         case IW_AUTH_KEY_MGMT:
7633                 /*
7634                  * ipw2200 does not use these parameters
7635                  */
7636                 break;
7637
7638         case IW_AUTH_TKIP_COUNTERMEASURES:
7639                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7640                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7641                         break;
7642
7643                 flags = crypt->ops->get_flags(crypt->priv);
7644
7645                 if (param->value)
7646                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7647                 else
7648                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7649
7650                 crypt->ops->set_flags(flags, crypt->priv);
7651
7652                 break;
7653
7654         case IW_AUTH_DROP_UNENCRYPTED:{
7655                         /* HACK:
7656                          *
7657                          * wpa_supplicant calls set_wpa_enabled when the driver
7658                          * is loaded and unloaded, regardless of if WPA is being
7659                          * used.  No other calls are made which can be used to
7660                          * determine if encryption will be used or not prior to
7661                          * association being expected.  If encryption is not being
7662                          * used, drop_unencrypted is set to false, else true -- we
7663                          * can use this to determine if the CAP_PRIVACY_ON bit should
7664                          * be set.
7665                          */
7666                         struct ieee80211_security sec = {
7667                                 .flags = SEC_ENABLED,
7668                                 .enabled = param->value,
7669                         };
7670                         priv->ieee->drop_unencrypted = param->value;
7671                         /* We only change SEC_LEVEL for open mode. Others
7672                          * are set by ipw_wpa_set_encryption.
7673                          */
7674                         if (!param->value) {
7675                                 sec.flags |= SEC_LEVEL;
7676                                 sec.level = SEC_LEVEL_0;
7677                         } else {
7678                                 sec.flags |= SEC_LEVEL;
7679                                 sec.level = SEC_LEVEL_1;
7680                         }
7681                         if (priv->ieee->set_security)
7682                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7683                         break;
7684                 }
7685
7686         case IW_AUTH_80211_AUTH_ALG:
7687                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7688                 break;
7689
7690         case IW_AUTH_WPA_ENABLED:
7691                 ret = ipw2100_wpa_enable(priv, param->value);
7692                 break;
7693
7694         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7695                 ieee->ieee802_1x = param->value;
7696                 break;
7697
7698                 //case IW_AUTH_ROAMING_CONTROL:
7699         case IW_AUTH_PRIVACY_INVOKED:
7700                 ieee->privacy_invoked = param->value;
7701                 break;
7702
7703         default:
7704                 return -EOPNOTSUPP;
7705         }
7706         return ret;
7707 }
7708
7709 /* SIOCGIWAUTH */
7710 static int ipw2100_wx_get_auth(struct net_device *dev,
7711                                struct iw_request_info *info,
7712                                union iwreq_data *wrqu, char *extra)
7713 {
7714         struct ipw2100_priv *priv = ieee80211_priv(dev);
7715         struct ieee80211_device *ieee = priv->ieee;
7716         struct lib80211_crypt_data *crypt;
7717         struct iw_param *param = &wrqu->param;
7718         int ret = 0;
7719
7720         switch (param->flags & IW_AUTH_INDEX) {
7721         case IW_AUTH_WPA_VERSION:
7722         case IW_AUTH_CIPHER_PAIRWISE:
7723         case IW_AUTH_CIPHER_GROUP:
7724         case IW_AUTH_KEY_MGMT:
7725                 /*
7726                  * wpa_supplicant will control these internally
7727                  */
7728                 ret = -EOPNOTSUPP;
7729                 break;
7730
7731         case IW_AUTH_TKIP_COUNTERMEASURES:
7732                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7733                 if (!crypt || !crypt->ops->get_flags) {
7734                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7735                                           "crypt not set!\n");
7736                         break;
7737                 }
7738
7739                 param->value = (crypt->ops->get_flags(crypt->priv) &
7740                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7741
7742                 break;
7743
7744         case IW_AUTH_DROP_UNENCRYPTED:
7745                 param->value = ieee->drop_unencrypted;
7746                 break;
7747
7748         case IW_AUTH_80211_AUTH_ALG:
7749                 param->value = priv->ieee->sec.auth_mode;
7750                 break;
7751
7752         case IW_AUTH_WPA_ENABLED:
7753                 param->value = ieee->wpa_enabled;
7754                 break;
7755
7756         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7757                 param->value = ieee->ieee802_1x;
7758                 break;
7759
7760         case IW_AUTH_ROAMING_CONTROL:
7761         case IW_AUTH_PRIVACY_INVOKED:
7762                 param->value = ieee->privacy_invoked;
7763                 break;
7764
7765         default:
7766                 return -EOPNOTSUPP;
7767         }
7768         return 0;
7769 }
7770
7771 /* SIOCSIWENCODEEXT */
7772 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7773                                     struct iw_request_info *info,
7774                                     union iwreq_data *wrqu, char *extra)
7775 {
7776         struct ipw2100_priv *priv = ieee80211_priv(dev);
7777         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7778 }
7779
7780 /* SIOCGIWENCODEEXT */
7781 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7782                                     struct iw_request_info *info,
7783                                     union iwreq_data *wrqu, char *extra)
7784 {
7785         struct ipw2100_priv *priv = ieee80211_priv(dev);
7786         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7787 }
7788
7789 /* SIOCSIWMLME */
7790 static int ipw2100_wx_set_mlme(struct net_device *dev,
7791                                struct iw_request_info *info,
7792                                union iwreq_data *wrqu, char *extra)
7793 {
7794         struct ipw2100_priv *priv = ieee80211_priv(dev);
7795         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7796         __le16 reason;
7797
7798         reason = cpu_to_le16(mlme->reason_code);
7799
7800         switch (mlme->cmd) {
7801         case IW_MLME_DEAUTH:
7802                 // silently ignore
7803                 break;
7804
7805         case IW_MLME_DISASSOC:
7806                 ipw2100_disassociate_bssid(priv);
7807                 break;
7808
7809         default:
7810                 return -EOPNOTSUPP;
7811         }
7812         return 0;
7813 }
7814
7815 /*
7816  *
7817  * IWPRIV handlers
7818  *
7819  */
7820 #ifdef CONFIG_IPW2100_MONITOR
7821 static int ipw2100_wx_set_promisc(struct net_device *dev,
7822                                   struct iw_request_info *info,
7823                                   union iwreq_data *wrqu, char *extra)
7824 {
7825         struct ipw2100_priv *priv = ieee80211_priv(dev);
7826         int *parms = (int *)extra;
7827         int enable = (parms[0] > 0);
7828         int err = 0;
7829
7830         mutex_lock(&priv->action_mutex);
7831         if (!(priv->status & STATUS_INITIALIZED)) {
7832                 err = -EIO;
7833                 goto done;
7834         }
7835
7836         if (enable) {
7837                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7838                         err = ipw2100_set_channel(priv, parms[1], 0);
7839                         goto done;
7840                 }
7841                 priv->channel = parms[1];
7842                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7843         } else {
7844                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7845                         err = ipw2100_switch_mode(priv, priv->last_mode);
7846         }
7847       done:
7848         mutex_unlock(&priv->action_mutex);
7849         return err;
7850 }
7851
7852 static int ipw2100_wx_reset(struct net_device *dev,
7853                             struct iw_request_info *info,
7854                             union iwreq_data *wrqu, char *extra)
7855 {
7856         struct ipw2100_priv *priv = ieee80211_priv(dev);
7857         if (priv->status & STATUS_INITIALIZED)
7858                 schedule_reset(priv);
7859         return 0;
7860 }
7861
7862 #endif
7863
7864 static int ipw2100_wx_set_powermode(struct net_device *dev,
7865                                     struct iw_request_info *info,
7866                                     union iwreq_data *wrqu, char *extra)
7867 {
7868         struct ipw2100_priv *priv = ieee80211_priv(dev);
7869         int err = 0, mode = *(int *)extra;
7870
7871         mutex_lock(&priv->action_mutex);
7872         if (!(priv->status & STATUS_INITIALIZED)) {
7873                 err = -EIO;
7874                 goto done;
7875         }
7876
7877         if ((mode < 0) || (mode > POWER_MODES))
7878                 mode = IPW_POWER_AUTO;
7879
7880         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7881                 err = ipw2100_set_power_mode(priv, mode);
7882       done:
7883         mutex_unlock(&priv->action_mutex);
7884         return err;
7885 }
7886
7887 #define MAX_POWER_STRING 80
7888 static int ipw2100_wx_get_powermode(struct net_device *dev,
7889                                     struct iw_request_info *info,
7890                                     union iwreq_data *wrqu, char *extra)
7891 {
7892         /*
7893          * This can be called at any time.  No action lock required
7894          */
7895
7896         struct ipw2100_priv *priv = ieee80211_priv(dev);
7897         int level = IPW_POWER_LEVEL(priv->power_mode);
7898         s32 timeout, period;
7899
7900         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7901                 snprintf(extra, MAX_POWER_STRING,
7902                          "Power save level: %d (Off)", level);
7903         } else {
7904                 switch (level) {
7905                 case IPW_POWER_MODE_CAM:
7906                         snprintf(extra, MAX_POWER_STRING,
7907                                  "Power save level: %d (None)", level);
7908                         break;
7909                 case IPW_POWER_AUTO:
7910                         snprintf(extra, MAX_POWER_STRING,
7911                                  "Power save level: %d (Auto)", level);
7912                         break;
7913                 default:
7914                         timeout = timeout_duration[level - 1] / 1000;
7915                         period = period_duration[level - 1] / 1000;
7916                         snprintf(extra, MAX_POWER_STRING,
7917                                  "Power save level: %d "
7918                                  "(Timeout %dms, Period %dms)",
7919                                  level, timeout, period);
7920                 }
7921         }
7922
7923         wrqu->data.length = strlen(extra) + 1;
7924
7925         return 0;
7926 }
7927
7928 static int ipw2100_wx_set_preamble(struct net_device *dev,
7929                                    struct iw_request_info *info,
7930                                    union iwreq_data *wrqu, char *extra)
7931 {
7932         struct ipw2100_priv *priv = ieee80211_priv(dev);
7933         int err, mode = *(int *)extra;
7934
7935         mutex_lock(&priv->action_mutex);
7936         if (!(priv->status & STATUS_INITIALIZED)) {
7937                 err = -EIO;
7938                 goto done;
7939         }
7940
7941         if (mode == 1)
7942                 priv->config |= CFG_LONG_PREAMBLE;
7943         else if (mode == 0)
7944                 priv->config &= ~CFG_LONG_PREAMBLE;
7945         else {
7946                 err = -EINVAL;
7947                 goto done;
7948         }
7949
7950         err = ipw2100_system_config(priv, 0);
7951
7952       done:
7953         mutex_unlock(&priv->action_mutex);
7954         return err;
7955 }
7956
7957 static int ipw2100_wx_get_preamble(struct net_device *dev,
7958                                    struct iw_request_info *info,
7959                                    union iwreq_data *wrqu, char *extra)
7960 {
7961         /*
7962          * This can be called at any time.  No action lock required
7963          */
7964
7965         struct ipw2100_priv *priv = ieee80211_priv(dev);
7966
7967         if (priv->config & CFG_LONG_PREAMBLE)
7968                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7969         else
7970                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7971
7972         return 0;
7973 }
7974
7975 #ifdef CONFIG_IPW2100_MONITOR
7976 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7977                                     struct iw_request_info *info,
7978                                     union iwreq_data *wrqu, char *extra)
7979 {
7980         struct ipw2100_priv *priv = ieee80211_priv(dev);
7981         int err, mode = *(int *)extra;
7982
7983         mutex_lock(&priv->action_mutex);
7984         if (!(priv->status & STATUS_INITIALIZED)) {
7985                 err = -EIO;
7986                 goto done;
7987         }
7988
7989         if (mode == 1)
7990                 priv->config |= CFG_CRC_CHECK;
7991         else if (mode == 0)
7992                 priv->config &= ~CFG_CRC_CHECK;
7993         else {
7994                 err = -EINVAL;
7995                 goto done;
7996         }
7997         err = 0;
7998
7999       done:
8000         mutex_unlock(&priv->action_mutex);
8001         return err;
8002 }
8003
8004 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8005                                     struct iw_request_info *info,
8006                                     union iwreq_data *wrqu, char *extra)
8007 {
8008         /*
8009          * This can be called at any time.  No action lock required
8010          */
8011
8012         struct ipw2100_priv *priv = ieee80211_priv(dev);
8013
8014         if (priv->config & CFG_CRC_CHECK)
8015                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8016         else
8017                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8018
8019         return 0;
8020 }
8021 #endif                          /* CONFIG_IPW2100_MONITOR */
8022
8023 static iw_handler ipw2100_wx_handlers[] = {
8024         NULL,                   /* SIOCSIWCOMMIT */
8025         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8026         NULL,                   /* SIOCSIWNWID */
8027         NULL,                   /* SIOCGIWNWID */
8028         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8029         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8030         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8031         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8032         NULL,                   /* SIOCSIWSENS */
8033         NULL,                   /* SIOCGIWSENS */
8034         NULL,                   /* SIOCSIWRANGE */
8035         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8036         NULL,                   /* SIOCSIWPRIV */
8037         NULL,                   /* SIOCGIWPRIV */
8038         NULL,                   /* SIOCSIWSTATS */
8039         NULL,                   /* SIOCGIWSTATS */
8040         NULL,                   /* SIOCSIWSPY */
8041         NULL,                   /* SIOCGIWSPY */
8042         NULL,                   /* SIOCGIWTHRSPY */
8043         NULL,                   /* SIOCWIWTHRSPY */
8044         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8045         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8046         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8047         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8048         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8049         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8050         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8051         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8052         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8053         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8054         NULL,                   /* -- hole -- */
8055         NULL,                   /* -- hole -- */
8056         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8057         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8058         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8059         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8060         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8061         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8062         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8063         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8064         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8065         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8066         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8067         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8068         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8069         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8070         NULL,                   /* -- hole -- */
8071         NULL,                   /* -- hole -- */
8072         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8073         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8074         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8075         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8076         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8077         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8078         NULL,                   /* SIOCSIWPMKSA */
8079 };
8080
8081 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8082 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8083 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8084 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8085 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8086 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8087 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8088 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8089
8090 static const struct iw_priv_args ipw2100_private_args[] = {
8091
8092 #ifdef CONFIG_IPW2100_MONITOR
8093         {
8094          IPW2100_PRIV_SET_MONITOR,
8095          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8096         {
8097          IPW2100_PRIV_RESET,
8098          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8099 #endif                          /* CONFIG_IPW2100_MONITOR */
8100
8101         {
8102          IPW2100_PRIV_SET_POWER,
8103          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8104         {
8105          IPW2100_PRIV_GET_POWER,
8106          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8107          "get_power"},
8108         {
8109          IPW2100_PRIV_SET_LONGPREAMBLE,
8110          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8111         {
8112          IPW2100_PRIV_GET_LONGPREAMBLE,
8113          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8114 #ifdef CONFIG_IPW2100_MONITOR
8115         {
8116          IPW2100_PRIV_SET_CRC_CHECK,
8117          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8118         {
8119          IPW2100_PRIV_GET_CRC_CHECK,
8120          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8121 #endif                          /* CONFIG_IPW2100_MONITOR */
8122 };
8123
8124 static iw_handler ipw2100_private_handler[] = {
8125 #ifdef CONFIG_IPW2100_MONITOR
8126         ipw2100_wx_set_promisc,
8127         ipw2100_wx_reset,
8128 #else                           /* CONFIG_IPW2100_MONITOR */
8129         NULL,
8130         NULL,
8131 #endif                          /* CONFIG_IPW2100_MONITOR */
8132         ipw2100_wx_set_powermode,
8133         ipw2100_wx_get_powermode,
8134         ipw2100_wx_set_preamble,
8135         ipw2100_wx_get_preamble,
8136 #ifdef CONFIG_IPW2100_MONITOR
8137         ipw2100_wx_set_crc_check,
8138         ipw2100_wx_get_crc_check,
8139 #else                           /* CONFIG_IPW2100_MONITOR */
8140         NULL,
8141         NULL,
8142 #endif                          /* CONFIG_IPW2100_MONITOR */
8143 };
8144
8145 /*
8146  * Get wireless statistics.
8147  * Called by /proc/net/wireless
8148  * Also called by SIOCGIWSTATS
8149  */
8150 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8151 {
8152         enum {
8153                 POOR = 30,
8154                 FAIR = 60,
8155                 GOOD = 80,
8156                 VERY_GOOD = 90,
8157                 EXCELLENT = 95,
8158                 PERFECT = 100
8159         };
8160         int rssi_qual;
8161         int tx_qual;
8162         int beacon_qual;
8163
8164         struct ipw2100_priv *priv = ieee80211_priv(dev);
8165         struct iw_statistics *wstats;
8166         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8167         u32 ord_len = sizeof(u32);
8168
8169         if (!priv)
8170                 return (struct iw_statistics *)NULL;
8171
8172         wstats = &priv->wstats;
8173
8174         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8175          * ipw2100_wx_wireless_stats seems to be called before fw is
8176          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8177          * and associated; if not associcated, the values are all meaningless
8178          * anyway, so set them all to NULL and INVALID */
8179         if (!(priv->status & STATUS_ASSOCIATED)) {
8180                 wstats->miss.beacon = 0;
8181                 wstats->discard.retries = 0;
8182                 wstats->qual.qual = 0;
8183                 wstats->qual.level = 0;
8184                 wstats->qual.noise = 0;
8185                 wstats->qual.updated = 7;
8186                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8187                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8188                 return wstats;
8189         }
8190
8191         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8192                                 &missed_beacons, &ord_len))
8193                 goto fail_get_ordinal;
8194
8195         /* If we don't have a connection the quality and level is 0 */
8196         if (!(priv->status & STATUS_ASSOCIATED)) {
8197                 wstats->qual.qual = 0;
8198                 wstats->qual.level = 0;
8199         } else {
8200                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8201                                         &rssi, &ord_len))
8202                         goto fail_get_ordinal;
8203                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8204                 if (rssi < 10)
8205                         rssi_qual = rssi * POOR / 10;
8206                 else if (rssi < 15)
8207                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8208                 else if (rssi < 20)
8209                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8210                 else if (rssi < 30)
8211                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8212                             10 + GOOD;
8213                 else
8214                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8215                             10 + VERY_GOOD;
8216
8217                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8218                                         &tx_retries, &ord_len))
8219                         goto fail_get_ordinal;
8220
8221                 if (tx_retries > 75)
8222                         tx_qual = (90 - tx_retries) * POOR / 15;
8223                 else if (tx_retries > 70)
8224                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8225                 else if (tx_retries > 65)
8226                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8227                 else if (tx_retries > 50)
8228                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8229                             15 + GOOD;
8230                 else
8231                         tx_qual = (50 - tx_retries) *
8232                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8233
8234                 if (missed_beacons > 50)
8235                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8236                 else if (missed_beacons > 40)
8237                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8238                             10 + POOR;
8239                 else if (missed_beacons > 32)
8240                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8241                             18 + FAIR;
8242                 else if (missed_beacons > 20)
8243                         beacon_qual = (32 - missed_beacons) *
8244                             (VERY_GOOD - GOOD) / 20 + GOOD;
8245                 else
8246                         beacon_qual = (20 - missed_beacons) *
8247                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8248
8249                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8250
8251 #ifdef CONFIG_IPW2100_DEBUG
8252                 if (beacon_qual == quality)
8253                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8254                 else if (tx_qual == quality)
8255                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8256                 else if (quality != 100)
8257                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8258                 else
8259                         IPW_DEBUG_WX("Quality not clamped.\n");
8260 #endif
8261
8262                 wstats->qual.qual = quality;
8263                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8264         }
8265
8266         wstats->qual.noise = 0;
8267         wstats->qual.updated = 7;
8268         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8269
8270         /* FIXME: this is percent and not a # */
8271         wstats->miss.beacon = missed_beacons;
8272
8273         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8274                                 &tx_failures, &ord_len))
8275                 goto fail_get_ordinal;
8276         wstats->discard.retries = tx_failures;
8277
8278         return wstats;
8279
8280       fail_get_ordinal:
8281         IPW_DEBUG_WX("failed querying ordinals.\n");
8282
8283         return (struct iw_statistics *)NULL;
8284 }
8285
8286 static struct iw_handler_def ipw2100_wx_handler_def = {
8287         .standard = ipw2100_wx_handlers,
8288         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8289         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8290         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8291         .private = (iw_handler *) ipw2100_private_handler,
8292         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8293         .get_wireless_stats = ipw2100_wx_wireless_stats,
8294 };
8295
8296 static void ipw2100_wx_event_work(struct work_struct *work)
8297 {
8298         struct ipw2100_priv *priv =
8299                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8300         union iwreq_data wrqu;
8301         unsigned int len = ETH_ALEN;
8302
8303         if (priv->status & STATUS_STOPPING)
8304                 return;
8305
8306         mutex_lock(&priv->action_mutex);
8307
8308         IPW_DEBUG_WX("enter\n");
8309
8310         mutex_unlock(&priv->action_mutex);
8311
8312         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8313
8314         /* Fetch BSSID from the hardware */
8315         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8316             priv->status & STATUS_RF_KILL_MASK ||
8317             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8318                                 &priv->bssid, &len)) {
8319                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8320         } else {
8321                 /* We now have the BSSID, so can finish setting to the full
8322                  * associated state */
8323                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8324                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8325                 priv->status &= ~STATUS_ASSOCIATING;
8326                 priv->status |= STATUS_ASSOCIATED;
8327                 netif_carrier_on(priv->net_dev);
8328                 netif_wake_queue(priv->net_dev);
8329         }
8330
8331         if (!(priv->status & STATUS_ASSOCIATED)) {
8332                 IPW_DEBUG_WX("Configuring ESSID\n");
8333                 mutex_lock(&priv->action_mutex);
8334                 /* This is a disassociation event, so kick the firmware to
8335                  * look for another AP */
8336                 if (priv->config & CFG_STATIC_ESSID)
8337                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8338                                           0);
8339                 else
8340                         ipw2100_set_essid(priv, NULL, 0, 0);
8341                 mutex_unlock(&priv->action_mutex);
8342         }
8343
8344         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8345 }
8346
8347 #define IPW2100_FW_MAJOR_VERSION 1
8348 #define IPW2100_FW_MINOR_VERSION 3
8349
8350 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8351 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8352
8353 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8354                              IPW2100_FW_MAJOR_VERSION)
8355
8356 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8357 "." __stringify(IPW2100_FW_MINOR_VERSION)
8358
8359 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8360
8361 /*
8362
8363 BINARY FIRMWARE HEADER FORMAT
8364
8365 offset      length   desc
8366 0           2        version
8367 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8368 4           4        fw_len
8369 8           4        uc_len
8370 C           fw_len   firmware data
8371 12 + fw_len uc_len   microcode data
8372
8373 */
8374
8375 struct ipw2100_fw_header {
8376         short version;
8377         short mode;
8378         unsigned int fw_size;
8379         unsigned int uc_size;
8380 } __attribute__ ((packed));
8381
8382 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8383 {
8384         struct ipw2100_fw_header *h =
8385             (struct ipw2100_fw_header *)fw->fw_entry->data;
8386
8387         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8388                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8389                        "(detected version id of %u). "
8390                        "See Documentation/networking/README.ipw2100\n",
8391                        h->version);
8392                 return 1;
8393         }
8394
8395         fw->version = h->version;
8396         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8397         fw->fw.size = h->fw_size;
8398         fw->uc.data = fw->fw.data + h->fw_size;
8399         fw->uc.size = h->uc_size;
8400
8401         return 0;
8402 }
8403
8404 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8405                                 struct ipw2100_fw *fw)
8406 {
8407         char *fw_name;
8408         int rc;
8409
8410         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8411                        priv->net_dev->name);
8412
8413         switch (priv->ieee->iw_mode) {
8414         case IW_MODE_ADHOC:
8415                 fw_name = IPW2100_FW_NAME("-i");
8416                 break;
8417 #ifdef CONFIG_IPW2100_MONITOR
8418         case IW_MODE_MONITOR:
8419                 fw_name = IPW2100_FW_NAME("-p");
8420                 break;
8421 #endif
8422         case IW_MODE_INFRA:
8423         default:
8424                 fw_name = IPW2100_FW_NAME("");
8425                 break;
8426         }
8427
8428         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8429
8430         if (rc < 0) {
8431                 printk(KERN_ERR DRV_NAME ": "
8432                        "%s: Firmware '%s' not available or load failed.\n",
8433                        priv->net_dev->name, fw_name);
8434                 return rc;
8435         }
8436         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8437                        fw->fw_entry->size);
8438
8439         ipw2100_mod_firmware_load(fw);
8440
8441         return 0;
8442 }
8443
8444 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8445                                      struct ipw2100_fw *fw)
8446 {
8447         fw->version = 0;
8448         if (fw->fw_entry)
8449                 release_firmware(fw->fw_entry);
8450         fw->fw_entry = NULL;
8451 }
8452
8453 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8454                                  size_t max)
8455 {
8456         char ver[MAX_FW_VERSION_LEN];
8457         u32 len = MAX_FW_VERSION_LEN;
8458         u32 tmp;
8459         int i;
8460         /* firmware version is an ascii string (max len of 14) */
8461         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8462                 return -EIO;
8463         tmp = max;
8464         if (len >= max)
8465                 len = max - 1;
8466         for (i = 0; i < len; i++)
8467                 buf[i] = ver[i];
8468         buf[i] = '\0';
8469         return tmp;
8470 }
8471
8472 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8473                                     size_t max)
8474 {
8475         u32 ver;
8476         u32 len = sizeof(ver);
8477         /* microcode version is a 32 bit integer */
8478         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8479                 return -EIO;
8480         return snprintf(buf, max, "%08X", ver);
8481 }
8482
8483 /*
8484  * On exit, the firmware will have been freed from the fw list
8485  */
8486 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8487 {
8488         /* firmware is constructed of N contiguous entries, each entry is
8489          * structured as:
8490          *
8491          * offset    sie         desc
8492          * 0         4           address to write to
8493          * 4         2           length of data run
8494          * 6         length      data
8495          */
8496         unsigned int addr;
8497         unsigned short len;
8498
8499         const unsigned char *firmware_data = fw->fw.data;
8500         unsigned int firmware_data_left = fw->fw.size;
8501
8502         while (firmware_data_left > 0) {
8503                 addr = *(u32 *) (firmware_data);
8504                 firmware_data += 4;
8505                 firmware_data_left -= 4;
8506
8507                 len = *(u16 *) (firmware_data);
8508                 firmware_data += 2;
8509                 firmware_data_left -= 2;
8510
8511                 if (len > 32) {
8512                         printk(KERN_ERR DRV_NAME ": "
8513                                "Invalid firmware run-length of %d bytes\n",
8514                                len);
8515                         return -EINVAL;
8516                 }
8517
8518                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8519                 firmware_data += len;
8520                 firmware_data_left -= len;
8521         }
8522
8523         return 0;
8524 }
8525
8526 struct symbol_alive_response {
8527         u8 cmd_id;
8528         u8 seq_num;
8529         u8 ucode_rev;
8530         u8 eeprom_valid;
8531         u16 valid_flags;
8532         u8 IEEE_addr[6];
8533         u16 flags;
8534         u16 pcb_rev;
8535         u16 clock_settle_time;  // 1us LSB
8536         u16 powerup_settle_time;        // 1us LSB
8537         u16 hop_settle_time;    // 1us LSB
8538         u8 date[3];             // month, day, year
8539         u8 time[2];             // hours, minutes
8540         u8 ucode_valid;
8541 };
8542
8543 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8544                                   struct ipw2100_fw *fw)
8545 {
8546         struct net_device *dev = priv->net_dev;
8547         const unsigned char *microcode_data = fw->uc.data;
8548         unsigned int microcode_data_left = fw->uc.size;
8549         void __iomem *reg = (void __iomem *)dev->base_addr;
8550
8551         struct symbol_alive_response response;
8552         int i, j;
8553         u8 data;
8554
8555         /* Symbol control */
8556         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8557         readl(reg);
8558         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8559         readl(reg);
8560
8561         /* HW config */
8562         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8563         readl(reg);
8564         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8565         readl(reg);
8566
8567         /* EN_CS_ACCESS bit to reset control store pointer */
8568         write_nic_byte(dev, 0x210000, 0x40);
8569         readl(reg);
8570         write_nic_byte(dev, 0x210000, 0x0);
8571         readl(reg);
8572         write_nic_byte(dev, 0x210000, 0x40);
8573         readl(reg);
8574
8575         /* copy microcode from buffer into Symbol */
8576
8577         while (microcode_data_left > 0) {
8578                 write_nic_byte(dev, 0x210010, *microcode_data++);
8579                 write_nic_byte(dev, 0x210010, *microcode_data++);
8580                 microcode_data_left -= 2;
8581         }
8582
8583         /* EN_CS_ACCESS bit to reset the control store pointer */
8584         write_nic_byte(dev, 0x210000, 0x0);
8585         readl(reg);
8586
8587         /* Enable System (Reg 0)
8588          * first enable causes garbage in RX FIFO */
8589         write_nic_byte(dev, 0x210000, 0x0);
8590         readl(reg);
8591         write_nic_byte(dev, 0x210000, 0x80);
8592         readl(reg);
8593
8594         /* Reset External Baseband Reg */
8595         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8596         readl(reg);
8597         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8598         readl(reg);
8599
8600         /* HW Config (Reg 5) */
8601         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8602         readl(reg);
8603         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8604         readl(reg);
8605
8606         /* Enable System (Reg 0)
8607          * second enable should be OK */
8608         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8609         readl(reg);
8610         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8611
8612         /* check Symbol is enabled - upped this from 5 as it wasn't always
8613          * catching the update */
8614         for (i = 0; i < 10; i++) {
8615                 udelay(10);
8616
8617                 /* check Dino is enabled bit */
8618                 read_nic_byte(dev, 0x210000, &data);
8619                 if (data & 0x1)
8620                         break;
8621         }
8622
8623         if (i == 10) {
8624                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8625                        dev->name);
8626                 return -EIO;
8627         }
8628
8629         /* Get Symbol alive response */
8630         for (i = 0; i < 30; i++) {
8631                 /* Read alive response structure */
8632                 for (j = 0;
8633                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8634                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8635
8636                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8637                         break;
8638                 udelay(10);
8639         }
8640
8641         if (i == 30) {
8642                 printk(KERN_ERR DRV_NAME
8643                        ": %s: No response from Symbol - hw not alive\n",
8644                        dev->name);
8645                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8646                 return -EIO;
8647         }
8648
8649         return 0;
8650 }