2 * IP multicast routing support for mrouted 3.6/3.8
4 * (c) 1995 Alan Cox, <alan@redhat.com>
5 * Linux Consultancy and Custom Driver Development
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
12 * Version: $Id: ipmr.c,v 1.65 2001/10/31 21:55:54 davem Exp $
15 * Michael Chastain : Incorrect size of copying.
16 * Alan Cox : Added the cache manager code
17 * Alan Cox : Fixed the clone/copy bug and device race.
18 * Mike McLagan : Routing by source
19 * Malcolm Beattie : Buffer handling fixes.
20 * Alexey Kuznetsov : Double buffer free and other fixes.
21 * SVR Anand : Fixed several multicast bugs and problems.
22 * Alexey Kuznetsov : Status, optimisations and more.
23 * Brad Parker : Better behaviour on mrouted upcall
25 * Carlos Picoto : PIMv1 Support
26 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
27 * Relax this requrement to work with older peers.
31 #include <linux/config.h>
32 #include <asm/system.h>
33 #include <asm/uaccess.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/errno.h>
37 #include <linux/timer.h>
39 #include <linux/kernel.h>
40 #include <linux/fcntl.h>
41 #include <linux/stat.h>
42 #include <linux/socket.h>
44 #include <linux/inet.h>
45 #include <linux/netdevice.h>
46 #include <linux/inetdevice.h>
47 #include <linux/igmp.h>
48 #include <linux/proc_fs.h>
49 #include <linux/seq_file.h>
50 #include <linux/mroute.h>
51 #include <linux/init.h>
52 #include <linux/if_ether.h>
54 #include <net/protocol.h>
55 #include <linux/skbuff.h>
56 #include <net/route.h>
61 #include <linux/notifier.h>
62 #include <linux/if_arp.h>
63 #include <linux/netfilter_ipv4.h>
65 #include <net/checksum.h>
67 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
68 #define CONFIG_IP_PIMSM 1
71 static struct sock *mroute_socket;
74 /* Big lock, protecting vif table, mrt cache and mroute socket state.
75 Note that the changes are semaphored via rtnl_lock.
78 static DEFINE_RWLOCK(mrt_lock);
81 * Multicast router control variables
84 static struct vif_device vif_table[MAXVIFS]; /* Devices */
87 #define VIF_EXISTS(idx) (vif_table[idx].dev != NULL)
89 static int mroute_do_assert; /* Set in PIM assert */
90 static int mroute_do_pim;
92 static struct mfc_cache *mfc_cache_array[MFC_LINES]; /* Forwarding cache */
94 static struct mfc_cache *mfc_unres_queue; /* Queue of unresolved entries */
95 static atomic_t cache_resolve_queue_len; /* Size of unresolved */
97 /* Special spinlock for queue of unresolved entries */
98 static DEFINE_SPINLOCK(mfc_unres_lock);
100 /* We return to original Alan's scheme. Hash table of resolved
101 entries is changed only in process context and protected
102 with weak lock mrt_lock. Queue of unresolved entries is protected
103 with strong spinlock mfc_unres_lock.
105 In this case data path is free of exclusive locks at all.
108 static kmem_cache_t *mrt_cachep __read_mostly;
110 static int ip_mr_forward(struct sk_buff *skb, struct mfc_cache *cache, int local);
111 static int ipmr_cache_report(struct sk_buff *pkt, vifi_t vifi, int assert);
112 static int ipmr_fill_mroute(struct sk_buff *skb, struct mfc_cache *c, struct rtmsg *rtm);
114 #ifdef CONFIG_IP_PIMSM_V2
115 static struct net_protocol pim_protocol;
118 static struct timer_list ipmr_expire_timer;
120 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
123 struct net_device *ipmr_new_tunnel(struct vifctl *v)
125 struct net_device *dev;
127 dev = __dev_get_by_name("tunl0");
133 struct ip_tunnel_parm p;
134 struct in_device *in_dev;
136 memset(&p, 0, sizeof(p));
137 p.iph.daddr = v->vifc_rmt_addr.s_addr;
138 p.iph.saddr = v->vifc_lcl_addr.s_addr;
141 p.iph.protocol = IPPROTO_IPIP;
142 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
143 ifr.ifr_ifru.ifru_data = (void*)&p;
145 oldfs = get_fs(); set_fs(KERNEL_DS);
146 err = dev->do_ioctl(dev, &ifr, SIOCADDTUNNEL);
151 if (err == 0 && (dev = __dev_get_by_name(p.name)) != NULL) {
152 dev->flags |= IFF_MULTICAST;
154 in_dev = __in_dev_get_rtnl(dev);
155 if (in_dev == NULL && (in_dev = inetdev_init(dev)) == NULL)
157 in_dev->cnf.rp_filter = 0;
166 /* allow the register to be completed before unregistering. */
170 unregister_netdevice(dev);
174 #ifdef CONFIG_IP_PIMSM
176 static int reg_vif_num = -1;
178 static int reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
180 read_lock(&mrt_lock);
181 ((struct net_device_stats*)dev->priv)->tx_bytes += skb->len;
182 ((struct net_device_stats*)dev->priv)->tx_packets++;
183 ipmr_cache_report(skb, reg_vif_num, IGMPMSG_WHOLEPKT);
184 read_unlock(&mrt_lock);
189 static struct net_device_stats *reg_vif_get_stats(struct net_device *dev)
191 return (struct net_device_stats*)dev->priv;
194 static void reg_vif_setup(struct net_device *dev)
196 dev->type = ARPHRD_PIMREG;
197 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
198 dev->flags = IFF_NOARP;
199 dev->hard_start_xmit = reg_vif_xmit;
200 dev->get_stats = reg_vif_get_stats;
201 dev->destructor = free_netdev;
204 static struct net_device *ipmr_reg_vif(void)
206 struct net_device *dev;
207 struct in_device *in_dev;
209 dev = alloc_netdev(sizeof(struct net_device_stats), "pimreg",
215 if (register_netdevice(dev)) {
221 if ((in_dev = inetdev_init(dev)) == NULL)
224 in_dev->cnf.rp_filter = 0;
232 /* allow the register to be completed before unregistering. */
236 unregister_netdevice(dev);
245 static int vif_delete(int vifi)
247 struct vif_device *v;
248 struct net_device *dev;
249 struct in_device *in_dev;
251 if (vifi < 0 || vifi >= maxvif)
252 return -EADDRNOTAVAIL;
254 v = &vif_table[vifi];
256 write_lock_bh(&mrt_lock);
261 write_unlock_bh(&mrt_lock);
262 return -EADDRNOTAVAIL;
265 #ifdef CONFIG_IP_PIMSM
266 if (vifi == reg_vif_num)
270 if (vifi+1 == maxvif) {
272 for (tmp=vifi-1; tmp>=0; tmp--) {
279 write_unlock_bh(&mrt_lock);
281 dev_set_allmulti(dev, -1);
283 if ((in_dev = __in_dev_get_rtnl(dev)) != NULL) {
284 in_dev->cnf.mc_forwarding--;
285 ip_rt_multicast_event(in_dev);
288 if (v->flags&(VIFF_TUNNEL|VIFF_REGISTER))
289 unregister_netdevice(dev);
295 /* Destroy an unresolved cache entry, killing queued skbs
296 and reporting error to netlink readers.
299 static void ipmr_destroy_unres(struct mfc_cache *c)
304 atomic_dec(&cache_resolve_queue_len);
306 while((skb=skb_dequeue(&c->mfc_un.unres.unresolved))) {
307 if (skb->nh.iph->version == 0) {
308 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
309 nlh->nlmsg_type = NLMSG_ERROR;
310 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
311 skb_trim(skb, nlh->nlmsg_len);
313 e->error = -ETIMEDOUT;
314 memset(&e->msg, 0, sizeof(e->msg));
315 netlink_unicast(rtnl, skb, NETLINK_CB(skb).dst_pid, MSG_DONTWAIT);
320 kmem_cache_free(mrt_cachep, c);
324 /* Single timer process for all the unresolved queue. */
326 static void ipmr_expire_process(unsigned long dummy)
329 unsigned long expires;
330 struct mfc_cache *c, **cp;
332 if (!spin_trylock(&mfc_unres_lock)) {
333 mod_timer(&ipmr_expire_timer, jiffies+HZ/10);
337 if (atomic_read(&cache_resolve_queue_len) == 0)
342 cp = &mfc_unres_queue;
344 while ((c=*cp) != NULL) {
345 if (time_after(c->mfc_un.unres.expires, now)) {
346 unsigned long interval = c->mfc_un.unres.expires - now;
347 if (interval < expires)
355 ipmr_destroy_unres(c);
358 if (atomic_read(&cache_resolve_queue_len))
359 mod_timer(&ipmr_expire_timer, jiffies + expires);
362 spin_unlock(&mfc_unres_lock);
365 /* Fill oifs list. It is called under write locked mrt_lock. */
367 static void ipmr_update_thresholds(struct mfc_cache *cache, unsigned char *ttls)
371 cache->mfc_un.res.minvif = MAXVIFS;
372 cache->mfc_un.res.maxvif = 0;
373 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
375 for (vifi=0; vifi<maxvif; vifi++) {
376 if (VIF_EXISTS(vifi) && ttls[vifi] && ttls[vifi] < 255) {
377 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
378 if (cache->mfc_un.res.minvif > vifi)
379 cache->mfc_un.res.minvif = vifi;
380 if (cache->mfc_un.res.maxvif <= vifi)
381 cache->mfc_un.res.maxvif = vifi + 1;
386 static int vif_add(struct vifctl *vifc, int mrtsock)
388 int vifi = vifc->vifc_vifi;
389 struct vif_device *v = &vif_table[vifi];
390 struct net_device *dev;
391 struct in_device *in_dev;
394 if (VIF_EXISTS(vifi))
397 switch (vifc->vifc_flags) {
398 #ifdef CONFIG_IP_PIMSM
401 * Special Purpose VIF in PIM
402 * All the packets will be sent to the daemon
404 if (reg_vif_num >= 0)
406 dev = ipmr_reg_vif();
412 dev = ipmr_new_tunnel(vifc);
417 dev=ip_dev_find(vifc->vifc_lcl_addr.s_addr);
419 return -EADDRNOTAVAIL;
426 if ((in_dev = __in_dev_get_rtnl(dev)) == NULL)
427 return -EADDRNOTAVAIL;
428 in_dev->cnf.mc_forwarding++;
429 dev_set_allmulti(dev, +1);
430 ip_rt_multicast_event(in_dev);
433 * Fill in the VIF structures
435 v->rate_limit=vifc->vifc_rate_limit;
436 v->local=vifc->vifc_lcl_addr.s_addr;
437 v->remote=vifc->vifc_rmt_addr.s_addr;
438 v->flags=vifc->vifc_flags;
440 v->flags |= VIFF_STATIC;
441 v->threshold=vifc->vifc_threshold;
446 v->link = dev->ifindex;
447 if (v->flags&(VIFF_TUNNEL|VIFF_REGISTER))
448 v->link = dev->iflink;
450 /* And finish update writing critical data */
451 write_lock_bh(&mrt_lock);
454 #ifdef CONFIG_IP_PIMSM
455 if (v->flags&VIFF_REGISTER)
460 write_unlock_bh(&mrt_lock);
464 static struct mfc_cache *ipmr_cache_find(__u32 origin, __u32 mcastgrp)
466 int line=MFC_HASH(mcastgrp,origin);
469 for (c=mfc_cache_array[line]; c; c = c->next) {
470 if (c->mfc_origin==origin && c->mfc_mcastgrp==mcastgrp)
477 * Allocate a multicast cache entry
479 static struct mfc_cache *ipmr_cache_alloc(void)
481 struct mfc_cache *c=kmem_cache_alloc(mrt_cachep, GFP_KERNEL);
484 memset(c, 0, sizeof(*c));
485 c->mfc_un.res.minvif = MAXVIFS;
489 static struct mfc_cache *ipmr_cache_alloc_unres(void)
491 struct mfc_cache *c=kmem_cache_alloc(mrt_cachep, GFP_ATOMIC);
494 memset(c, 0, sizeof(*c));
495 skb_queue_head_init(&c->mfc_un.unres.unresolved);
496 c->mfc_un.unres.expires = jiffies + 10*HZ;
501 * A cache entry has gone into a resolved state from queued
504 static void ipmr_cache_resolve(struct mfc_cache *uc, struct mfc_cache *c)
510 * Play the pending entries through our router
513 while((skb=__skb_dequeue(&uc->mfc_un.unres.unresolved))) {
514 if (skb->nh.iph->version == 0) {
516 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
518 if (ipmr_fill_mroute(skb, c, NLMSG_DATA(nlh)) > 0) {
519 nlh->nlmsg_len = skb->tail - (u8*)nlh;
521 nlh->nlmsg_type = NLMSG_ERROR;
522 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
523 skb_trim(skb, nlh->nlmsg_len);
525 e->error = -EMSGSIZE;
526 memset(&e->msg, 0, sizeof(e->msg));
528 err = netlink_unicast(rtnl, skb, NETLINK_CB(skb).dst_pid, MSG_DONTWAIT);
530 ip_mr_forward(skb, c, 0);
535 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
536 * expects the following bizarre scheme.
538 * Called under mrt_lock.
541 static int ipmr_cache_report(struct sk_buff *pkt, vifi_t vifi, int assert)
544 int ihl = pkt->nh.iph->ihl<<2;
545 struct igmphdr *igmp;
549 #ifdef CONFIG_IP_PIMSM
550 if (assert == IGMPMSG_WHOLEPKT)
551 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
554 skb = alloc_skb(128, GFP_ATOMIC);
559 #ifdef CONFIG_IP_PIMSM
560 if (assert == IGMPMSG_WHOLEPKT) {
561 /* Ugly, but we have no choice with this interface.
562 Duplicate old header, fix ihl, length etc.
563 And all this only to mangle msg->im_msgtype and
564 to set msg->im_mbz to "mbz" :-)
566 msg = (struct igmpmsg*)skb_push(skb, sizeof(struct iphdr));
567 skb->nh.raw = skb->h.raw = (u8*)msg;
568 memcpy(msg, pkt->nh.raw, sizeof(struct iphdr));
569 msg->im_msgtype = IGMPMSG_WHOLEPKT;
571 msg->im_vif = reg_vif_num;
572 skb->nh.iph->ihl = sizeof(struct iphdr) >> 2;
573 skb->nh.iph->tot_len = htons(ntohs(pkt->nh.iph->tot_len) + sizeof(struct iphdr));
582 skb->nh.iph = (struct iphdr *)skb_put(skb, ihl);
583 memcpy(skb->data,pkt->data,ihl);
584 skb->nh.iph->protocol = 0; /* Flag to the kernel this is a route add */
585 msg = (struct igmpmsg*)skb->nh.iph;
587 skb->dst = dst_clone(pkt->dst);
593 igmp=(struct igmphdr *)skb_put(skb,sizeof(struct igmphdr));
595 msg->im_msgtype = assert;
597 skb->nh.iph->tot_len=htons(skb->len); /* Fix the length */
598 skb->h.raw = skb->nh.raw;
601 if (mroute_socket == NULL) {
609 if ((ret=sock_queue_rcv_skb(mroute_socket,skb))<0) {
611 printk(KERN_WARNING "mroute: pending queue full, dropping entries.\n");
619 * Queue a packet for resolution. It gets locked cache entry!
623 ipmr_cache_unresolved(vifi_t vifi, struct sk_buff *skb)
628 spin_lock_bh(&mfc_unres_lock);
629 for (c=mfc_unres_queue; c; c=c->next) {
630 if (c->mfc_mcastgrp == skb->nh.iph->daddr &&
631 c->mfc_origin == skb->nh.iph->saddr)
637 * Create a new entry if allowable
640 if (atomic_read(&cache_resolve_queue_len)>=10 ||
641 (c=ipmr_cache_alloc_unres())==NULL) {
642 spin_unlock_bh(&mfc_unres_lock);
649 * Fill in the new cache entry
652 c->mfc_origin=skb->nh.iph->saddr;
653 c->mfc_mcastgrp=skb->nh.iph->daddr;
656 * Reflect first query at mrouted.
658 if ((err = ipmr_cache_report(skb, vifi, IGMPMSG_NOCACHE))<0) {
659 /* If the report failed throw the cache entry
662 spin_unlock_bh(&mfc_unres_lock);
664 kmem_cache_free(mrt_cachep, c);
669 atomic_inc(&cache_resolve_queue_len);
670 c->next = mfc_unres_queue;
673 mod_timer(&ipmr_expire_timer, c->mfc_un.unres.expires);
677 * See if we can append the packet
679 if (c->mfc_un.unres.unresolved.qlen>3) {
683 skb_queue_tail(&c->mfc_un.unres.unresolved,skb);
687 spin_unlock_bh(&mfc_unres_lock);
692 * MFC cache manipulation by user space mroute daemon
695 static int ipmr_mfc_delete(struct mfcctl *mfc)
698 struct mfc_cache *c, **cp;
700 line=MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
702 for (cp=&mfc_cache_array[line]; (c=*cp) != NULL; cp = &c->next) {
703 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
704 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
705 write_lock_bh(&mrt_lock);
707 write_unlock_bh(&mrt_lock);
709 kmem_cache_free(mrt_cachep, c);
716 static int ipmr_mfc_add(struct mfcctl *mfc, int mrtsock)
719 struct mfc_cache *uc, *c, **cp;
721 line=MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
723 for (cp=&mfc_cache_array[line]; (c=*cp) != NULL; cp = &c->next) {
724 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
725 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr)
730 write_lock_bh(&mrt_lock);
731 c->mfc_parent = mfc->mfcc_parent;
732 ipmr_update_thresholds(c, mfc->mfcc_ttls);
734 c->mfc_flags |= MFC_STATIC;
735 write_unlock_bh(&mrt_lock);
739 if(!MULTICAST(mfc->mfcc_mcastgrp.s_addr))
742 c=ipmr_cache_alloc();
746 c->mfc_origin=mfc->mfcc_origin.s_addr;
747 c->mfc_mcastgrp=mfc->mfcc_mcastgrp.s_addr;
748 c->mfc_parent=mfc->mfcc_parent;
749 ipmr_update_thresholds(c, mfc->mfcc_ttls);
751 c->mfc_flags |= MFC_STATIC;
753 write_lock_bh(&mrt_lock);
754 c->next = mfc_cache_array[line];
755 mfc_cache_array[line] = c;
756 write_unlock_bh(&mrt_lock);
759 * Check to see if we resolved a queued list. If so we
760 * need to send on the frames and tidy up.
762 spin_lock_bh(&mfc_unres_lock);
763 for (cp = &mfc_unres_queue; (uc=*cp) != NULL;
765 if (uc->mfc_origin == c->mfc_origin &&
766 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
768 if (atomic_dec_and_test(&cache_resolve_queue_len))
769 del_timer(&ipmr_expire_timer);
773 spin_unlock_bh(&mfc_unres_lock);
776 ipmr_cache_resolve(uc, c);
777 kmem_cache_free(mrt_cachep, uc);
783 * Close the multicast socket, and clear the vif tables etc
786 static void mroute_clean_tables(struct sock *sk)
791 * Shut down all active vif entries
793 for(i=0; i<maxvif; i++) {
794 if (!(vif_table[i].flags&VIFF_STATIC))
801 for (i=0;i<MFC_LINES;i++) {
802 struct mfc_cache *c, **cp;
804 cp = &mfc_cache_array[i];
805 while ((c = *cp) != NULL) {
806 if (c->mfc_flags&MFC_STATIC) {
810 write_lock_bh(&mrt_lock);
812 write_unlock_bh(&mrt_lock);
814 kmem_cache_free(mrt_cachep, c);
818 if (atomic_read(&cache_resolve_queue_len) != 0) {
821 spin_lock_bh(&mfc_unres_lock);
822 while (mfc_unres_queue != NULL) {
824 mfc_unres_queue = c->next;
825 spin_unlock_bh(&mfc_unres_lock);
827 ipmr_destroy_unres(c);
829 spin_lock_bh(&mfc_unres_lock);
831 spin_unlock_bh(&mfc_unres_lock);
835 static void mrtsock_destruct(struct sock *sk)
838 if (sk == mroute_socket) {
839 ipv4_devconf.mc_forwarding--;
841 write_lock_bh(&mrt_lock);
843 write_unlock_bh(&mrt_lock);
845 mroute_clean_tables(sk);
851 * Socket options and virtual interface manipulation. The whole
852 * virtual interface system is a complete heap, but unfortunately
853 * that's how BSD mrouted happens to think. Maybe one day with a proper
854 * MOSPF/PIM router set up we can clean this up.
857 int ip_mroute_setsockopt(struct sock *sk,int optname,char __user *optval,int optlen)
863 if(optname!=MRT_INIT)
865 if(sk!=mroute_socket && !capable(CAP_NET_ADMIN))
872 if (sk->sk_type != SOCK_RAW ||
873 inet_sk(sk)->num != IPPROTO_IGMP)
875 if(optlen!=sizeof(int))
884 ret = ip_ra_control(sk, 1, mrtsock_destruct);
886 write_lock_bh(&mrt_lock);
888 write_unlock_bh(&mrt_lock);
890 ipv4_devconf.mc_forwarding++;
895 if (sk!=mroute_socket)
897 return ip_ra_control(sk, 0, NULL);
900 if(optlen!=sizeof(vif))
902 if (copy_from_user(&vif,optval,sizeof(vif)))
904 if(vif.vifc_vifi >= MAXVIFS)
907 if (optname==MRT_ADD_VIF) {
908 ret = vif_add(&vif, sk==mroute_socket);
910 ret = vif_delete(vif.vifc_vifi);
916 * Manipulate the forwarding caches. These live
917 * in a sort of kernel/user symbiosis.
921 if(optlen!=sizeof(mfc))
923 if (copy_from_user(&mfc,optval, sizeof(mfc)))
926 if (optname==MRT_DEL_MFC)
927 ret = ipmr_mfc_delete(&mfc);
929 ret = ipmr_mfc_add(&mfc, sk==mroute_socket);
933 * Control PIM assert.
938 if(get_user(v,(int __user *)optval))
940 mroute_do_assert=(v)?1:0;
943 #ifdef CONFIG_IP_PIMSM
947 if(get_user(v,(int __user *)optval))
952 if (v != mroute_do_pim) {
954 mroute_do_assert = v;
955 #ifdef CONFIG_IP_PIMSM_V2
957 ret = inet_add_protocol(&pim_protocol,
960 ret = inet_del_protocol(&pim_protocol,
971 * Spurious command, or MRT_VERSION which you cannot
980 * Getsock opt support for the multicast routing system.
983 int ip_mroute_getsockopt(struct sock *sk,int optname,char __user *optval,int __user *optlen)
988 if(optname!=MRT_VERSION &&
989 #ifdef CONFIG_IP_PIMSM
995 if (get_user(olr, optlen))
998 olr = min_t(unsigned int, olr, sizeof(int));
1002 if(put_user(olr,optlen))
1004 if(optname==MRT_VERSION)
1006 #ifdef CONFIG_IP_PIMSM
1007 else if(optname==MRT_PIM)
1011 val=mroute_do_assert;
1012 if(copy_to_user(optval,&val,olr))
1018 * The IP multicast ioctl support routines.
1021 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1023 struct sioc_sg_req sr;
1024 struct sioc_vif_req vr;
1025 struct vif_device *vif;
1026 struct mfc_cache *c;
1031 if (copy_from_user(&vr,arg,sizeof(vr)))
1035 read_lock(&mrt_lock);
1036 vif=&vif_table[vr.vifi];
1037 if(VIF_EXISTS(vr.vifi)) {
1038 vr.icount=vif->pkt_in;
1039 vr.ocount=vif->pkt_out;
1040 vr.ibytes=vif->bytes_in;
1041 vr.obytes=vif->bytes_out;
1042 read_unlock(&mrt_lock);
1044 if (copy_to_user(arg,&vr,sizeof(vr)))
1048 read_unlock(&mrt_lock);
1049 return -EADDRNOTAVAIL;
1051 if (copy_from_user(&sr,arg,sizeof(sr)))
1054 read_lock(&mrt_lock);
1055 c = ipmr_cache_find(sr.src.s_addr, sr.grp.s_addr);
1057 sr.pktcnt = c->mfc_un.res.pkt;
1058 sr.bytecnt = c->mfc_un.res.bytes;
1059 sr.wrong_if = c->mfc_un.res.wrong_if;
1060 read_unlock(&mrt_lock);
1062 if (copy_to_user(arg,&sr,sizeof(sr)))
1066 read_unlock(&mrt_lock);
1067 return -EADDRNOTAVAIL;
1069 return -ENOIOCTLCMD;
1074 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1076 struct vif_device *v;
1078 if (event != NETDEV_UNREGISTER)
1081 for(ct=0;ct<maxvif;ct++,v++) {
1089 static struct notifier_block ip_mr_notifier={
1090 .notifier_call = ipmr_device_event,
1094 * Encapsulate a packet by attaching a valid IPIP header to it.
1095 * This avoids tunnel drivers and other mess and gives us the speed so
1096 * important for multicast video.
1099 static void ip_encap(struct sk_buff *skb, u32 saddr, u32 daddr)
1101 struct iphdr *iph = (struct iphdr *)skb_push(skb,sizeof(struct iphdr));
1104 iph->tos = skb->nh.iph->tos;
1105 iph->ttl = skb->nh.iph->ttl;
1109 iph->protocol = IPPROTO_IPIP;
1111 iph->tot_len = htons(skb->len);
1112 ip_select_ident(iph, skb->dst, NULL);
1115 skb->h.ipiph = skb->nh.iph;
1117 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1121 static inline int ipmr_forward_finish(struct sk_buff *skb)
1123 struct ip_options * opt = &(IPCB(skb)->opt);
1125 IP_INC_STATS_BH(IPSTATS_MIB_OUTFORWDATAGRAMS);
1127 if (unlikely(opt->optlen))
1128 ip_forward_options(skb);
1130 return dst_output(skb);
1134 * Processing handlers for ipmr_forward
1137 static void ipmr_queue_xmit(struct sk_buff *skb, struct mfc_cache *c, int vifi)
1139 struct iphdr *iph = skb->nh.iph;
1140 struct vif_device *vif = &vif_table[vifi];
1141 struct net_device *dev;
1145 if (vif->dev == NULL)
1148 #ifdef CONFIG_IP_PIMSM
1149 if (vif->flags & VIFF_REGISTER) {
1151 vif->bytes_out+=skb->len;
1152 ((struct net_device_stats*)vif->dev->priv)->tx_bytes += skb->len;
1153 ((struct net_device_stats*)vif->dev->priv)->tx_packets++;
1154 ipmr_cache_report(skb, vifi, IGMPMSG_WHOLEPKT);
1160 if (vif->flags&VIFF_TUNNEL) {
1161 struct flowi fl = { .oif = vif->link,
1163 { .daddr = vif->remote,
1164 .saddr = vif->local,
1165 .tos = RT_TOS(iph->tos) } },
1166 .proto = IPPROTO_IPIP };
1167 if (ip_route_output_key(&rt, &fl))
1169 encap = sizeof(struct iphdr);
1171 struct flowi fl = { .oif = vif->link,
1173 { .daddr = iph->daddr,
1174 .tos = RT_TOS(iph->tos) } },
1175 .proto = IPPROTO_IPIP };
1176 if (ip_route_output_key(&rt, &fl))
1180 dev = rt->u.dst.dev;
1182 if (skb->len+encap > dst_mtu(&rt->u.dst) && (ntohs(iph->frag_off) & IP_DF)) {
1183 /* Do not fragment multicasts. Alas, IPv4 does not
1184 allow to send ICMP, so that packets will disappear
1188 IP_INC_STATS_BH(IPSTATS_MIB_FRAGFAILS);
1193 encap += LL_RESERVED_SPACE(dev) + rt->u.dst.header_len;
1195 if (skb_cow(skb, encap)) {
1201 vif->bytes_out+=skb->len;
1203 dst_release(skb->dst);
1204 skb->dst = &rt->u.dst;
1206 ip_decrease_ttl(iph);
1208 /* FIXME: forward and output firewalls used to be called here.
1209 * What do we do with netfilter? -- RR */
1210 if (vif->flags & VIFF_TUNNEL) {
1211 ip_encap(skb, vif->local, vif->remote);
1212 /* FIXME: extra output firewall step used to be here. --RR */
1213 ((struct ip_tunnel *)vif->dev->priv)->stat.tx_packets++;
1214 ((struct ip_tunnel *)vif->dev->priv)->stat.tx_bytes+=skb->len;
1217 IPCB(skb)->flags |= IPSKB_FORWARDED;
1220 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1221 * not only before forwarding, but after forwarding on all output
1222 * interfaces. It is clear, if mrouter runs a multicasting
1223 * program, it should receive packets not depending to what interface
1224 * program is joined.
1225 * If we will not make it, the program will have to join on all
1226 * interfaces. On the other hand, multihoming host (or router, but
1227 * not mrouter) cannot join to more than one interface - it will
1228 * result in receiving multiple packets.
1230 NF_HOOK(PF_INET, NF_IP_FORWARD, skb, skb->dev, dev,
1231 ipmr_forward_finish);
1239 static int ipmr_find_vif(struct net_device *dev)
1242 for (ct=maxvif-1; ct>=0; ct--) {
1243 if (vif_table[ct].dev == dev)
1249 /* "local" means that we should preserve one skb (for local delivery) */
1251 static int ip_mr_forward(struct sk_buff *skb, struct mfc_cache *cache, int local)
1256 vif = cache->mfc_parent;
1257 cache->mfc_un.res.pkt++;
1258 cache->mfc_un.res.bytes += skb->len;
1261 * Wrong interface: drop packet and (maybe) send PIM assert.
1263 if (vif_table[vif].dev != skb->dev) {
1266 if (((struct rtable*)skb->dst)->fl.iif == 0) {
1267 /* It is our own packet, looped back.
1268 Very complicated situation...
1270 The best workaround until routing daemons will be
1271 fixed is not to redistribute packet, if it was
1272 send through wrong interface. It means, that
1273 multicast applications WILL NOT work for
1274 (S,G), which have default multicast route pointing
1275 to wrong oif. In any case, it is not a good
1276 idea to use multicasting applications on router.
1281 cache->mfc_un.res.wrong_if++;
1282 true_vifi = ipmr_find_vif(skb->dev);
1284 if (true_vifi >= 0 && mroute_do_assert &&
1285 /* pimsm uses asserts, when switching from RPT to SPT,
1286 so that we cannot check that packet arrived on an oif.
1287 It is bad, but otherwise we would need to move pretty
1288 large chunk of pimd to kernel. Ough... --ANK
1290 (mroute_do_pim || cache->mfc_un.res.ttls[true_vifi] < 255) &&
1292 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1293 cache->mfc_un.res.last_assert = jiffies;
1294 ipmr_cache_report(skb, true_vifi, IGMPMSG_WRONGVIF);
1299 vif_table[vif].pkt_in++;
1300 vif_table[vif].bytes_in+=skb->len;
1305 for (ct = cache->mfc_un.res.maxvif-1; ct >= cache->mfc_un.res.minvif; ct--) {
1306 if (skb->nh.iph->ttl > cache->mfc_un.res.ttls[ct]) {
1308 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1310 ipmr_queue_xmit(skb2, cache, psend);
1317 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1319 ipmr_queue_xmit(skb2, cache, psend);
1321 ipmr_queue_xmit(skb, cache, psend);
1334 * Multicast packets for forwarding arrive here
1337 int ip_mr_input(struct sk_buff *skb)
1339 struct mfc_cache *cache;
1340 int local = ((struct rtable*)skb->dst)->rt_flags&RTCF_LOCAL;
1342 /* Packet is looped back after forward, it should not be
1343 forwarded second time, but still can be delivered locally.
1345 if (IPCB(skb)->flags&IPSKB_FORWARDED)
1349 if (IPCB(skb)->opt.router_alert) {
1350 if (ip_call_ra_chain(skb))
1352 } else if (skb->nh.iph->protocol == IPPROTO_IGMP){
1353 /* IGMPv1 (and broken IGMPv2 implementations sort of
1354 Cisco IOS <= 11.2(8)) do not put router alert
1355 option to IGMP packets destined to routable
1356 groups. It is very bad, because it means
1357 that we can forward NO IGMP messages.
1359 read_lock(&mrt_lock);
1360 if (mroute_socket) {
1362 raw_rcv(mroute_socket, skb);
1363 read_unlock(&mrt_lock);
1366 read_unlock(&mrt_lock);
1370 read_lock(&mrt_lock);
1371 cache = ipmr_cache_find(skb->nh.iph->saddr, skb->nh.iph->daddr);
1374 * No usable cache entry
1380 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1381 ip_local_deliver(skb);
1383 read_unlock(&mrt_lock);
1389 vif = ipmr_find_vif(skb->dev);
1391 int err = ipmr_cache_unresolved(vif, skb);
1392 read_unlock(&mrt_lock);
1396 read_unlock(&mrt_lock);
1401 ip_mr_forward(skb, cache, local);
1403 read_unlock(&mrt_lock);
1406 return ip_local_deliver(skb);
1412 return ip_local_deliver(skb);
1417 #ifdef CONFIG_IP_PIMSM_V1
1419 * Handle IGMP messages of PIMv1
1422 int pim_rcv_v1(struct sk_buff * skb)
1424 struct igmphdr *pim;
1425 struct iphdr *encap;
1426 struct net_device *reg_dev = NULL;
1428 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(*encap)))
1431 pim = (struct igmphdr*)skb->h.raw;
1433 if (!mroute_do_pim ||
1434 skb->len < sizeof(*pim) + sizeof(*encap) ||
1435 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1438 encap = (struct iphdr*)(skb->h.raw + sizeof(struct igmphdr));
1441 a. packet is really destinted to a multicast group
1442 b. packet is not a NULL-REGISTER
1443 c. packet is not truncated
1445 if (!MULTICAST(encap->daddr) ||
1446 encap->tot_len == 0 ||
1447 ntohs(encap->tot_len) + sizeof(*pim) > skb->len)
1450 read_lock(&mrt_lock);
1451 if (reg_vif_num >= 0)
1452 reg_dev = vif_table[reg_vif_num].dev;
1455 read_unlock(&mrt_lock);
1457 if (reg_dev == NULL)
1460 skb->mac.raw = skb->nh.raw;
1461 skb_pull(skb, (u8*)encap - skb->data);
1462 skb->nh.iph = (struct iphdr *)skb->data;
1464 memset(&(IPCB(skb)->opt), 0, sizeof(struct ip_options));
1465 skb->protocol = htons(ETH_P_IP);
1467 skb->pkt_type = PACKET_HOST;
1468 dst_release(skb->dst);
1470 ((struct net_device_stats*)reg_dev->priv)->rx_bytes += skb->len;
1471 ((struct net_device_stats*)reg_dev->priv)->rx_packets++;
1482 #ifdef CONFIG_IP_PIMSM_V2
1483 static int pim_rcv(struct sk_buff * skb)
1485 struct pimreghdr *pim;
1486 struct iphdr *encap;
1487 struct net_device *reg_dev = NULL;
1489 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(*encap)))
1492 pim = (struct pimreghdr*)skb->h.raw;
1493 if (pim->type != ((PIM_VERSION<<4)|(PIM_REGISTER)) ||
1494 (pim->flags&PIM_NULL_REGISTER) ||
1495 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
1496 (u16)csum_fold(skb_checksum(skb, 0, skb->len, 0))))
1499 /* check if the inner packet is destined to mcast group */
1500 encap = (struct iphdr*)(skb->h.raw + sizeof(struct pimreghdr));
1501 if (!MULTICAST(encap->daddr) ||
1502 encap->tot_len == 0 ||
1503 ntohs(encap->tot_len) + sizeof(*pim) > skb->len)
1506 read_lock(&mrt_lock);
1507 if (reg_vif_num >= 0)
1508 reg_dev = vif_table[reg_vif_num].dev;
1511 read_unlock(&mrt_lock);
1513 if (reg_dev == NULL)
1516 skb->mac.raw = skb->nh.raw;
1517 skb_pull(skb, (u8*)encap - skb->data);
1518 skb->nh.iph = (struct iphdr *)skb->data;
1520 memset(&(IPCB(skb)->opt), 0, sizeof(struct ip_options));
1521 skb->protocol = htons(ETH_P_IP);
1523 skb->pkt_type = PACKET_HOST;
1524 dst_release(skb->dst);
1525 ((struct net_device_stats*)reg_dev->priv)->rx_bytes += skb->len;
1526 ((struct net_device_stats*)reg_dev->priv)->rx_packets++;
1539 ipmr_fill_mroute(struct sk_buff *skb, struct mfc_cache *c, struct rtmsg *rtm)
1542 struct rtnexthop *nhp;
1543 struct net_device *dev = vif_table[c->mfc_parent].dev;
1545 struct rtattr *mp_head;
1548 RTA_PUT(skb, RTA_IIF, 4, &dev->ifindex);
1550 mp_head = (struct rtattr*)skb_put(skb, RTA_LENGTH(0));
1552 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
1553 if (c->mfc_un.res.ttls[ct] < 255) {
1554 if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
1555 goto rtattr_failure;
1556 nhp = (struct rtnexthop*)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
1557 nhp->rtnh_flags = 0;
1558 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
1559 nhp->rtnh_ifindex = vif_table[ct].dev->ifindex;
1560 nhp->rtnh_len = sizeof(*nhp);
1563 mp_head->rta_type = RTA_MULTIPATH;
1564 mp_head->rta_len = skb->tail - (u8*)mp_head;
1565 rtm->rtm_type = RTN_MULTICAST;
1569 skb_trim(skb, b - skb->data);
1573 int ipmr_get_route(struct sk_buff *skb, struct rtmsg *rtm, int nowait)
1576 struct mfc_cache *cache;
1577 struct rtable *rt = (struct rtable*)skb->dst;
1579 read_lock(&mrt_lock);
1580 cache = ipmr_cache_find(rt->rt_src, rt->rt_dst);
1583 struct net_device *dev;
1587 read_unlock(&mrt_lock);
1592 if (dev == NULL || (vif = ipmr_find_vif(dev)) < 0) {
1593 read_unlock(&mrt_lock);
1596 skb->nh.raw = skb_push(skb, sizeof(struct iphdr));
1597 skb->nh.iph->ihl = sizeof(struct iphdr)>>2;
1598 skb->nh.iph->saddr = rt->rt_src;
1599 skb->nh.iph->daddr = rt->rt_dst;
1600 skb->nh.iph->version = 0;
1601 err = ipmr_cache_unresolved(vif, skb);
1602 read_unlock(&mrt_lock);
1606 if (!nowait && (rtm->rtm_flags&RTM_F_NOTIFY))
1607 cache->mfc_flags |= MFC_NOTIFY;
1608 err = ipmr_fill_mroute(skb, cache, rtm);
1609 read_unlock(&mrt_lock);
1613 #ifdef CONFIG_PROC_FS
1615 * The /proc interfaces to multicast routing /proc/ip_mr_cache /proc/ip_mr_vif
1617 struct ipmr_vif_iter {
1621 static struct vif_device *ipmr_vif_seq_idx(struct ipmr_vif_iter *iter,
1624 for (iter->ct = 0; iter->ct < maxvif; ++iter->ct) {
1625 if(!VIF_EXISTS(iter->ct))
1628 return &vif_table[iter->ct];
1633 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
1635 read_lock(&mrt_lock);
1636 return *pos ? ipmr_vif_seq_idx(seq->private, *pos - 1)
1640 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1642 struct ipmr_vif_iter *iter = seq->private;
1645 if (v == SEQ_START_TOKEN)
1646 return ipmr_vif_seq_idx(iter, 0);
1648 while (++iter->ct < maxvif) {
1649 if(!VIF_EXISTS(iter->ct))
1651 return &vif_table[iter->ct];
1656 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
1658 read_unlock(&mrt_lock);
1661 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
1663 if (v == SEQ_START_TOKEN) {
1665 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
1667 const struct vif_device *vif = v;
1668 const char *name = vif->dev ? vif->dev->name : "none";
1671 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
1673 name, vif->bytes_in, vif->pkt_in,
1674 vif->bytes_out, vif->pkt_out,
1675 vif->flags, vif->local, vif->remote);
1680 static struct seq_operations ipmr_vif_seq_ops = {
1681 .start = ipmr_vif_seq_start,
1682 .next = ipmr_vif_seq_next,
1683 .stop = ipmr_vif_seq_stop,
1684 .show = ipmr_vif_seq_show,
1687 static int ipmr_vif_open(struct inode *inode, struct file *file)
1689 struct seq_file *seq;
1691 struct ipmr_vif_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
1696 rc = seq_open(file, &ipmr_vif_seq_ops);
1701 seq = file->private_data;
1711 static struct file_operations ipmr_vif_fops = {
1712 .owner = THIS_MODULE,
1713 .open = ipmr_vif_open,
1715 .llseek = seq_lseek,
1716 .release = seq_release_private,
1719 struct ipmr_mfc_iter {
1720 struct mfc_cache **cache;
1725 static struct mfc_cache *ipmr_mfc_seq_idx(struct ipmr_mfc_iter *it, loff_t pos)
1727 struct mfc_cache *mfc;
1729 it->cache = mfc_cache_array;
1730 read_lock(&mrt_lock);
1731 for (it->ct = 0; it->ct < MFC_LINES; it->ct++)
1732 for(mfc = mfc_cache_array[it->ct]; mfc; mfc = mfc->next)
1735 read_unlock(&mrt_lock);
1737 it->cache = &mfc_unres_queue;
1738 spin_lock_bh(&mfc_unres_lock);
1739 for(mfc = mfc_unres_queue; mfc; mfc = mfc->next)
1742 spin_unlock_bh(&mfc_unres_lock);
1749 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
1751 struct ipmr_mfc_iter *it = seq->private;
1754 return *pos ? ipmr_mfc_seq_idx(seq->private, *pos - 1)
1758 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1760 struct mfc_cache *mfc = v;
1761 struct ipmr_mfc_iter *it = seq->private;
1765 if (v == SEQ_START_TOKEN)
1766 return ipmr_mfc_seq_idx(seq->private, 0);
1771 if (it->cache == &mfc_unres_queue)
1774 BUG_ON(it->cache != mfc_cache_array);
1776 while (++it->ct < MFC_LINES) {
1777 mfc = mfc_cache_array[it->ct];
1782 /* exhausted cache_array, show unresolved */
1783 read_unlock(&mrt_lock);
1784 it->cache = &mfc_unres_queue;
1787 spin_lock_bh(&mfc_unres_lock);
1788 mfc = mfc_unres_queue;
1793 spin_unlock_bh(&mfc_unres_lock);
1799 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
1801 struct ipmr_mfc_iter *it = seq->private;
1803 if (it->cache == &mfc_unres_queue)
1804 spin_unlock_bh(&mfc_unres_lock);
1805 else if (it->cache == mfc_cache_array)
1806 read_unlock(&mrt_lock);
1809 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
1813 if (v == SEQ_START_TOKEN) {
1815 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
1817 const struct mfc_cache *mfc = v;
1818 const struct ipmr_mfc_iter *it = seq->private;
1820 seq_printf(seq, "%08lX %08lX %-3d %8ld %8ld %8ld",
1821 (unsigned long) mfc->mfc_mcastgrp,
1822 (unsigned long) mfc->mfc_origin,
1824 mfc->mfc_un.res.pkt,
1825 mfc->mfc_un.res.bytes,
1826 mfc->mfc_un.res.wrong_if);
1828 if (it->cache != &mfc_unres_queue) {
1829 for(n = mfc->mfc_un.res.minvif;
1830 n < mfc->mfc_un.res.maxvif; n++ ) {
1832 && mfc->mfc_un.res.ttls[n] < 255)
1835 n, mfc->mfc_un.res.ttls[n]);
1838 seq_putc(seq, '\n');
1843 static struct seq_operations ipmr_mfc_seq_ops = {
1844 .start = ipmr_mfc_seq_start,
1845 .next = ipmr_mfc_seq_next,
1846 .stop = ipmr_mfc_seq_stop,
1847 .show = ipmr_mfc_seq_show,
1850 static int ipmr_mfc_open(struct inode *inode, struct file *file)
1852 struct seq_file *seq;
1854 struct ipmr_mfc_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
1859 rc = seq_open(file, &ipmr_mfc_seq_ops);
1863 seq = file->private_data;
1873 static struct file_operations ipmr_mfc_fops = {
1874 .owner = THIS_MODULE,
1875 .open = ipmr_mfc_open,
1877 .llseek = seq_lseek,
1878 .release = seq_release_private,
1882 #ifdef CONFIG_IP_PIMSM_V2
1883 static struct net_protocol pim_protocol = {
1890 * Setup for IP multicast routing
1893 void __init ip_mr_init(void)
1895 mrt_cachep = kmem_cache_create("ip_mrt_cache",
1896 sizeof(struct mfc_cache),
1897 0, SLAB_HWCACHE_ALIGN,
1900 panic("cannot allocate ip_mrt_cache");
1902 init_timer(&ipmr_expire_timer);
1903 ipmr_expire_timer.function=ipmr_expire_process;
1904 register_netdevice_notifier(&ip_mr_notifier);
1905 #ifdef CONFIG_PROC_FS
1906 proc_net_fops_create("ip_mr_vif", 0, &ipmr_vif_fops);
1907 proc_net_fops_create("ip_mr_cache", 0, &ipmr_mfc_fops);