2 * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2005 Anton Altaparmakov
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/pagemap.h>
23 #include <linux/buffer_head.h>
24 #include <linux/smp_lock.h>
25 #include <linux/quotaops.h>
26 #include <linux/mount.h>
40 * ntfs_test_inode - compare two (possibly fake) inodes for equality
41 * @vi: vfs inode which to test
42 * @na: ntfs attribute which is being tested with
44 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
45 * inode @vi for equality with the ntfs attribute @na.
47 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
48 * @na->name and @na->name_len are then ignored.
50 * Return 1 if the attributes match and 0 if not.
52 * NOTE: This function runs with the inode_lock spin lock held so it is not
55 int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
59 if (vi->i_ino != na->mft_no)
62 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
63 if (likely(!NInoAttr(ni))) {
64 /* If not looking for a normal inode this is a mismatch. */
65 if (unlikely(na->type != AT_UNUSED))
68 /* A fake inode describing an attribute. */
69 if (ni->type != na->type)
71 if (ni->name_len != na->name_len)
73 if (na->name_len && memcmp(ni->name, na->name,
74 na->name_len * sizeof(ntfschar)))
82 * ntfs_init_locked_inode - initialize an inode
83 * @vi: vfs inode to initialize
84 * @na: ntfs attribute which to initialize @vi to
86 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
87 * order to enable ntfs_test_inode() to do its work.
89 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
90 * In that case, @na->name and @na->name_len should be set to NULL and 0,
91 * respectively. Although that is not strictly necessary as
92 * ntfs_read_inode_locked() will fill them in later.
94 * Return 0 on success and -errno on error.
96 * NOTE: This function runs with the inode_lock spin lock held so it is not
97 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
99 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
101 ntfs_inode *ni = NTFS_I(vi);
103 vi->i_ino = na->mft_no;
106 if (na->type == AT_INDEX_ALLOCATION)
107 NInoSetMstProtected(ni);
110 ni->name_len = na->name_len;
112 /* If initializing a normal inode, we are done. */
113 if (likely(na->type == AT_UNUSED)) {
115 BUG_ON(na->name_len);
119 /* It is a fake inode. */
123 * We have I30 global constant as an optimization as it is the name
124 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
125 * allocation but that is ok. And most attributes are unnamed anyway,
126 * thus the fraction of named attributes with name != I30 is actually
129 if (na->name_len && na->name != I30) {
133 i = na->name_len * sizeof(ntfschar);
134 ni->name = (ntfschar*)kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
137 memcpy(ni->name, na->name, i);
143 typedef int (*set_t)(struct inode *, void *);
144 static int ntfs_read_locked_inode(struct inode *vi);
145 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
146 static int ntfs_read_locked_index_inode(struct inode *base_vi,
150 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
151 * @sb: super block of mounted volume
152 * @mft_no: mft record number / inode number to obtain
154 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
155 * file or directory).
157 * If the inode is in the cache, it is just returned with an increased
158 * reference count. Otherwise, a new struct inode is allocated and initialized,
159 * and finally ntfs_read_locked_inode() is called to read in the inode and
160 * fill in the remainder of the inode structure.
162 * Return the struct inode on success. Check the return value with IS_ERR() and
163 * if true, the function failed and the error code is obtained from PTR_ERR().
165 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
176 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
177 (set_t)ntfs_init_locked_inode, &na);
179 return ERR_PTR(-ENOMEM);
183 /* If this is a freshly allocated inode, need to read it now. */
184 if (vi->i_state & I_NEW) {
185 err = ntfs_read_locked_inode(vi);
186 unlock_new_inode(vi);
189 * There is no point in keeping bad inodes around if the failure was
190 * due to ENOMEM. We want to be able to retry again later.
192 if (unlikely(err == -ENOMEM)) {
200 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
201 * @base_vi: vfs base inode containing the attribute
202 * @type: attribute type
203 * @name: Unicode name of the attribute (NULL if unnamed)
204 * @name_len: length of @name in Unicode characters (0 if unnamed)
206 * Obtain the (fake) struct inode corresponding to the attribute specified by
207 * @type, @name, and @name_len, which is present in the base mft record
208 * specified by the vfs inode @base_vi.
210 * If the attribute inode is in the cache, it is just returned with an
211 * increased reference count. Otherwise, a new struct inode is allocated and
212 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
213 * attribute and fill in the inode structure.
215 * Note, for index allocation attributes, you need to use ntfs_index_iget()
216 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
218 * Return the struct inode of the attribute inode on success. Check the return
219 * value with IS_ERR() and if true, the function failed and the error code is
220 * obtained from PTR_ERR().
222 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
223 ntfschar *name, u32 name_len)
229 /* Make sure no one calls ntfs_attr_iget() for indices. */
230 BUG_ON(type == AT_INDEX_ALLOCATION);
232 na.mft_no = base_vi->i_ino;
235 na.name_len = name_len;
237 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
238 (set_t)ntfs_init_locked_inode, &na);
240 return ERR_PTR(-ENOMEM);
244 /* If this is a freshly allocated inode, need to read it now. */
245 if (vi->i_state & I_NEW) {
246 err = ntfs_read_locked_attr_inode(base_vi, vi);
247 unlock_new_inode(vi);
250 * There is no point in keeping bad attribute inodes around. This also
251 * simplifies things in that we never need to check for bad attribute
262 * ntfs_index_iget - obtain a struct inode corresponding to an index
263 * @base_vi: vfs base inode containing the index related attributes
264 * @name: Unicode name of the index
265 * @name_len: length of @name in Unicode characters
267 * Obtain the (fake) struct inode corresponding to the index specified by @name
268 * and @name_len, which is present in the base mft record specified by the vfs
271 * If the index inode is in the cache, it is just returned with an increased
272 * reference count. Otherwise, a new struct inode is allocated and
273 * initialized, and finally ntfs_read_locked_index_inode() is called to read
274 * the index related attributes and fill in the inode structure.
276 * Return the struct inode of the index inode on success. Check the return
277 * value with IS_ERR() and if true, the function failed and the error code is
278 * obtained from PTR_ERR().
280 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
287 na.mft_no = base_vi->i_ino;
288 na.type = AT_INDEX_ALLOCATION;
290 na.name_len = name_len;
292 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
293 (set_t)ntfs_init_locked_inode, &na);
295 return ERR_PTR(-ENOMEM);
299 /* If this is a freshly allocated inode, need to read it now. */
300 if (vi->i_state & I_NEW) {
301 err = ntfs_read_locked_index_inode(base_vi, vi);
302 unlock_new_inode(vi);
305 * There is no point in keeping bad index inodes around. This also
306 * simplifies things in that we never need to check for bad index
316 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
320 ntfs_debug("Entering.");
321 ni = kmem_cache_alloc(ntfs_big_inode_cache, SLAB_NOFS);
322 if (likely(ni != NULL)) {
326 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
330 void ntfs_destroy_big_inode(struct inode *inode)
332 ntfs_inode *ni = NTFS_I(inode);
334 ntfs_debug("Entering.");
336 if (!atomic_dec_and_test(&ni->count))
338 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
341 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
345 ntfs_debug("Entering.");
346 ni = kmem_cache_alloc(ntfs_inode_cache, SLAB_NOFS);
347 if (likely(ni != NULL)) {
351 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
355 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
357 ntfs_debug("Entering.");
359 if (!atomic_dec_and_test(&ni->count))
361 kmem_cache_free(ntfs_inode_cache, ni);
365 * __ntfs_init_inode - initialize ntfs specific part of an inode
366 * @sb: super block of mounted volume
367 * @ni: freshly allocated ntfs inode which to initialize
369 * Initialize an ntfs inode to defaults.
371 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
372 * untouched. Make sure to initialize them elsewhere.
374 * Return zero on success and -ENOMEM on error.
376 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
378 ntfs_debug("Entering.");
379 rwlock_init(&ni->size_lock);
380 ni->initialized_size = ni->allocated_size = 0;
382 atomic_set(&ni->count, 1);
383 ni->vol = NTFS_SB(sb);
384 ntfs_init_runlist(&ni->runlist);
385 init_MUTEX(&ni->mrec_lock);
388 ni->attr_list_size = 0;
389 ni->attr_list = NULL;
390 ntfs_init_runlist(&ni->attr_list_rl);
391 ni->itype.index.bmp_ino = NULL;
392 ni->itype.index.block_size = 0;
393 ni->itype.index.vcn_size = 0;
394 ni->itype.index.collation_rule = 0;
395 ni->itype.index.block_size_bits = 0;
396 ni->itype.index.vcn_size_bits = 0;
397 init_MUTEX(&ni->extent_lock);
399 ni->ext.base_ntfs_ino = NULL;
402 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
403 unsigned long mft_no)
405 ntfs_inode *ni = ntfs_alloc_extent_inode();
407 ntfs_debug("Entering.");
408 if (likely(ni != NULL)) {
409 __ntfs_init_inode(sb, ni);
411 ni->type = AT_UNUSED;
419 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
420 * @ctx: initialized attribute search context
422 * Search all file name attributes in the inode described by the attribute
423 * search context @ctx and check if any of the names are in the $Extend system
427 * 1: file is in $Extend directory
428 * 0: file is not in $Extend directory
429 * -errno: failed to determine if the file is in the $Extend directory
431 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
435 /* Restart search. */
436 ntfs_attr_reinit_search_ctx(ctx);
438 /* Get number of hard links. */
439 nr_links = le16_to_cpu(ctx->mrec->link_count);
441 /* Loop through all hard links. */
442 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
444 FILE_NAME_ATTR *file_name_attr;
445 ATTR_RECORD *attr = ctx->attr;
450 * Maximum sanity checking as we are called on an inode that
451 * we suspect might be corrupt.
453 p = (u8*)attr + le32_to_cpu(attr->length);
454 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
455 le32_to_cpu(ctx->mrec->bytes_in_use)) {
457 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
458 "attribute. You should run chkdsk.");
461 if (attr->non_resident) {
462 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
463 "name. You should run chkdsk.");
467 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
468 "invalid flags. You should run "
472 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
473 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
474 "name. You should run chkdsk.");
477 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
478 le16_to_cpu(attr->data.resident.value_offset));
479 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
480 if (p2 < (u8*)attr || p2 > p)
481 goto err_corrupt_attr;
482 /* This attribute is ok, but is it in the $Extend directory? */
483 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
484 return 1; /* YES, it's an extended system file. */
486 if (unlikely(err != -ENOENT))
488 if (unlikely(nr_links)) {
489 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
490 "doesn't match number of name attributes. You "
491 "should run chkdsk.");
494 return 0; /* NO, it is not an extended system file. */
498 * ntfs_read_locked_inode - read an inode from its device
501 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
502 * described by @vi into memory from the device.
504 * The only fields in @vi that we need to/can look at when the function is
505 * called are i_sb, pointing to the mounted device's super block, and i_ino,
506 * the number of the inode to load.
508 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
509 * for reading and sets up the necessary @vi fields as well as initializing
512 * Q: What locks are held when the function is called?
513 * A: i_state has I_LOCK set, hence the inode is locked, also
514 * i_count is set to 1, so it is not going to go away
515 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
516 * is allowed to write to them. We should of course be honouring them but
517 * we need to do that using the IS_* macros defined in include/linux/fs.h.
518 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
520 * Return 0 on success and -errno on error. In the error case, the inode will
521 * have had make_bad_inode() executed on it.
523 static int ntfs_read_locked_inode(struct inode *vi)
525 ntfs_volume *vol = NTFS_SB(vi->i_sb);
529 STANDARD_INFORMATION *si;
530 ntfs_attr_search_ctx *ctx;
533 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
535 /* Setup the generic vfs inode parts now. */
537 /* This is the optimal IO size (for stat), not the fs block size. */
538 vi->i_blksize = PAGE_CACHE_SIZE;
540 * This is for checking whether an inode has changed w.r.t. a file so
541 * that the file can be updated if necessary (compare with f_version).
545 vi->i_uid = vol->uid;
546 vi->i_gid = vol->gid;
550 * Initialize the ntfs specific part of @vi special casing
551 * FILE_MFT which we need to do at mount time.
553 if (vi->i_ino != FILE_MFT)
554 ntfs_init_big_inode(vi);
557 m = map_mft_record(ni);
562 ctx = ntfs_attr_get_search_ctx(ni, m);
568 if (!(m->flags & MFT_RECORD_IN_USE)) {
569 ntfs_error(vi->i_sb, "Inode is not in use!");
572 if (m->base_mft_record) {
573 ntfs_error(vi->i_sb, "Inode is an extent inode!");
577 /* Transfer information from mft record into vfs and ntfs inodes. */
578 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
581 * FIXME: Keep in mind that link_count is two for files which have both
582 * a long file name and a short file name as separate entries, so if
583 * we are hiding short file names this will be too high. Either we need
584 * to account for the short file names by subtracting them or we need
585 * to make sure we delete files even though i_nlink is not zero which
586 * might be tricky due to vfs interactions. Need to think about this
587 * some more when implementing the unlink command.
589 vi->i_nlink = le16_to_cpu(m->link_count);
591 * FIXME: Reparse points can have the directory bit set even though
592 * they would be S_IFLNK. Need to deal with this further below when we
593 * implement reparse points / symbolic links but it will do for now.
594 * Also if not a directory, it could be something else, rather than
595 * a regular file. But again, will do for now.
597 /* Everyone gets all permissions. */
598 vi->i_mode |= S_IRWXUGO;
599 /* If read-only, noone gets write permissions. */
601 vi->i_mode &= ~S_IWUGO;
602 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
603 vi->i_mode |= S_IFDIR;
605 * Apply the directory permissions mask set in the mount
608 vi->i_mode &= ~vol->dmask;
609 /* Things break without this kludge! */
613 vi->i_mode |= S_IFREG;
614 /* Apply the file permissions mask set in the mount options. */
615 vi->i_mode &= ~vol->fmask;
618 * Find the standard information attribute in the mft record. At this
619 * stage we haven't setup the attribute list stuff yet, so this could
620 * in fact fail if the standard information is in an extent record, but
621 * I don't think this actually ever happens.
623 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
626 if (err == -ENOENT) {
628 * TODO: We should be performing a hot fix here (if the
629 * recover mount option is set) by creating a new
632 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
638 /* Get the standard information attribute value. */
639 si = (STANDARD_INFORMATION*)((u8*)a +
640 le16_to_cpu(a->data.resident.value_offset));
642 /* Transfer information from the standard information into vi. */
644 * Note: The i_?times do not quite map perfectly onto the NTFS times,
645 * but they are close enough, and in the end it doesn't really matter
649 * mtime is the last change of the data within the file. Not changed
650 * when only metadata is changed, e.g. a rename doesn't affect mtime.
652 vi->i_mtime = ntfs2utc(si->last_data_change_time);
654 * ctime is the last change of the metadata of the file. This obviously
655 * always changes, when mtime is changed. ctime can be changed on its
656 * own, mtime is then not changed, e.g. when a file is renamed.
658 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
660 * Last access to the data within the file. Not changed during a rename
661 * for example but changed whenever the file is written to.
663 vi->i_atime = ntfs2utc(si->last_access_time);
665 /* Find the attribute list attribute if present. */
666 ntfs_attr_reinit_search_ctx(ctx);
667 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
669 if (unlikely(err != -ENOENT)) {
670 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
674 } else /* if (!err) */ {
675 if (vi->i_ino == FILE_MFT)
676 goto skip_attr_list_load;
677 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
680 if (a->flags & ATTR_COMPRESSION_MASK) {
681 ntfs_error(vi->i_sb, "Attribute list attribute is "
685 if (a->flags & ATTR_IS_ENCRYPTED ||
686 a->flags & ATTR_IS_SPARSE) {
687 if (a->non_resident) {
688 ntfs_error(vi->i_sb, "Non-resident attribute "
689 "list attribute is encrypted/"
693 ntfs_warning(vi->i_sb, "Resident attribute list "
694 "attribute in inode 0x%lx is marked "
695 "encrypted/sparse which is not true. "
696 "However, Windows allows this and "
697 "chkdsk does not detect or correct it "
698 "so we will just ignore the invalid "
699 "flags and pretend they are not set.",
702 /* Now allocate memory for the attribute list. */
703 ni->attr_list_size = (u32)ntfs_attr_size(a);
704 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
705 if (!ni->attr_list) {
706 ntfs_error(vi->i_sb, "Not enough memory to allocate "
707 "buffer for attribute list.");
711 if (a->non_resident) {
712 NInoSetAttrListNonResident(ni);
713 if (a->data.non_resident.lowest_vcn) {
714 ntfs_error(vi->i_sb, "Attribute list has non "
719 * Setup the runlist. No need for locking as we have
720 * exclusive access to the inode at this time.
722 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
724 if (IS_ERR(ni->attr_list_rl.rl)) {
725 err = PTR_ERR(ni->attr_list_rl.rl);
726 ni->attr_list_rl.rl = NULL;
727 ntfs_error(vi->i_sb, "Mapping pairs "
728 "decompression failed.");
731 /* Now load the attribute list. */
732 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
733 ni->attr_list, ni->attr_list_size,
734 sle64_to_cpu(a->data.non_resident.
735 initialized_size)))) {
736 ntfs_error(vi->i_sb, "Failed to load "
737 "attribute list attribute.");
740 } else /* if (!a->non_resident) */ {
741 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
743 a->data.resident.value_length) >
744 (u8*)ctx->mrec + vol->mft_record_size) {
745 ntfs_error(vi->i_sb, "Corrupt attribute list "
749 /* Now copy the attribute list. */
750 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
751 a->data.resident.value_offset),
753 a->data.resident.value_length));
758 * If an attribute list is present we now have the attribute list value
759 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
761 if (S_ISDIR(vi->i_mode)) {
766 u8 *ir_end, *index_end;
768 /* It is a directory, find index root attribute. */
769 ntfs_attr_reinit_search_ctx(ctx);
770 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
773 if (err == -ENOENT) {
774 // FIXME: File is corrupt! Hot-fix with empty
775 // index root attribute if recovery option is
777 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
783 /* Set up the state. */
784 if (unlikely(a->non_resident)) {
785 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
789 /* Ensure the attribute name is placed before the value. */
790 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
791 le16_to_cpu(a->data.resident.value_offset)))) {
792 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
793 "placed after the attribute value.");
797 * Compressed/encrypted index root just means that the newly
798 * created files in that directory should be created compressed/
799 * encrypted. However index root cannot be both compressed and
802 if (a->flags & ATTR_COMPRESSION_MASK)
803 NInoSetCompressed(ni);
804 if (a->flags & ATTR_IS_ENCRYPTED) {
805 if (a->flags & ATTR_COMPRESSION_MASK) {
806 ntfs_error(vi->i_sb, "Found encrypted and "
807 "compressed attribute.");
810 NInoSetEncrypted(ni);
812 if (a->flags & ATTR_IS_SPARSE)
814 ir = (INDEX_ROOT*)((u8*)a +
815 le16_to_cpu(a->data.resident.value_offset));
816 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
817 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
818 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
822 index_end = (u8*)&ir->index +
823 le32_to_cpu(ir->index.index_length);
824 if (index_end > ir_end) {
825 ntfs_error(vi->i_sb, "Directory index is corrupt.");
828 if (ir->type != AT_FILE_NAME) {
829 ntfs_error(vi->i_sb, "Indexed attribute is not "
833 if (ir->collation_rule != COLLATION_FILE_NAME) {
834 ntfs_error(vi->i_sb, "Index collation rule is not "
835 "COLLATION_FILE_NAME.");
838 ni->itype.index.collation_rule = ir->collation_rule;
839 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
840 if (ni->itype.index.block_size &
841 (ni->itype.index.block_size - 1)) {
842 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
844 ni->itype.index.block_size);
847 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
848 ntfs_error(vi->i_sb, "Index block size (%u) > "
849 "PAGE_CACHE_SIZE (%ld) is not "
851 ni->itype.index.block_size,
856 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
857 ntfs_error(vi->i_sb, "Index block size (%u) < "
858 "NTFS_BLOCK_SIZE (%i) is not "
860 ni->itype.index.block_size,
865 ni->itype.index.block_size_bits =
866 ffs(ni->itype.index.block_size) - 1;
867 /* Determine the size of a vcn in the directory index. */
868 if (vol->cluster_size <= ni->itype.index.block_size) {
869 ni->itype.index.vcn_size = vol->cluster_size;
870 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
872 ni->itype.index.vcn_size = vol->sector_size;
873 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
876 /* Setup the index allocation attribute, even if not present. */
877 NInoSetMstProtected(ni);
878 ni->type = AT_INDEX_ALLOCATION;
882 if (!(ir->index.flags & LARGE_INDEX)) {
883 /* No index allocation. */
884 vi->i_size = ni->initialized_size =
885 ni->allocated_size = 0;
886 /* We are done with the mft record, so we release it. */
887 ntfs_attr_put_search_ctx(ctx);
888 unmap_mft_record(ni);
891 goto skip_large_dir_stuff;
892 } /* LARGE_INDEX: Index allocation present. Setup state. */
893 NInoSetIndexAllocPresent(ni);
894 /* Find index allocation attribute. */
895 ntfs_attr_reinit_search_ctx(ctx);
896 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
897 CASE_SENSITIVE, 0, NULL, 0, ctx);
900 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
901 "attribute is not present but "
902 "$INDEX_ROOT indicated it is.");
904 ntfs_error(vi->i_sb, "Failed to lookup "
910 if (!a->non_resident) {
911 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
916 * Ensure the attribute name is placed before the mapping pairs
919 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
921 a->data.non_resident.mapping_pairs_offset)))) {
922 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
923 "is placed after the mapping pairs "
927 if (a->flags & ATTR_IS_ENCRYPTED) {
928 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
932 if (a->flags & ATTR_IS_SPARSE) {
933 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
937 if (a->flags & ATTR_COMPRESSION_MASK) {
938 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
942 if (a->data.non_resident.lowest_vcn) {
943 ntfs_error(vi->i_sb, "First extent of "
944 "$INDEX_ALLOCATION attribute has non "
948 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
949 ni->initialized_size = sle64_to_cpu(
950 a->data.non_resident.initialized_size);
951 ni->allocated_size = sle64_to_cpu(
952 a->data.non_resident.allocated_size);
954 * We are done with the mft record, so we release it. Otherwise
955 * we would deadlock in ntfs_attr_iget().
957 ntfs_attr_put_search_ctx(ctx);
958 unmap_mft_record(ni);
961 /* Get the index bitmap attribute inode. */
962 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
964 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
968 ni->itype.index.bmp_ino = bvi;
970 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
972 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
973 "and/or encrypted and/or sparse.");
976 /* Consistency check bitmap size vs. index allocation size. */
977 bvi_size = i_size_read(bvi);
978 if ((bvi_size << 3) < (vi->i_size >>
979 ni->itype.index.block_size_bits)) {
980 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
981 "for index allocation (0x%llx).",
982 bvi_size << 3, vi->i_size);
985 skip_large_dir_stuff:
986 /* Setup the operations for this inode. */
987 vi->i_op = &ntfs_dir_inode_ops;
988 vi->i_fop = &ntfs_dir_ops;
991 ntfs_attr_reinit_search_ctx(ctx);
993 /* Setup the data attribute, even if not present. */
998 /* Find first extent of the unnamed data attribute. */
999 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1000 if (unlikely(err)) {
1001 vi->i_size = ni->initialized_size =
1002 ni->allocated_size = 0;
1003 if (err != -ENOENT) {
1004 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1009 * FILE_Secure does not have an unnamed $DATA
1010 * attribute, so we special case it here.
1012 if (vi->i_ino == FILE_Secure)
1013 goto no_data_attr_special_case;
1015 * Most if not all the system files in the $Extend
1016 * system directory do not have unnamed data
1017 * attributes so we need to check if the parent
1018 * directory of the file is FILE_Extend and if it is
1019 * ignore this error. To do this we need to get the
1020 * name of this inode from the mft record as the name
1021 * contains the back reference to the parent directory.
1023 if (ntfs_is_extended_system_file(ctx) > 0)
1024 goto no_data_attr_special_case;
1025 // FIXME: File is corrupt! Hot-fix with empty data
1026 // attribute if recovery option is set.
1027 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1031 /* Setup the state. */
1032 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1033 if (a->flags & ATTR_COMPRESSION_MASK) {
1034 NInoSetCompressed(ni);
1035 if (vol->cluster_size > 4096) {
1036 ntfs_error(vi->i_sb, "Found "
1037 "compressed data but "
1040 "cluster size (%i) > "
1045 if ((a->flags & ATTR_COMPRESSION_MASK)
1046 != ATTR_IS_COMPRESSED) {
1047 ntfs_error(vi->i_sb, "Found unknown "
1048 "compression method "
1049 "or corrupt file.");
1053 if (a->flags & ATTR_IS_SPARSE)
1056 if (a->flags & ATTR_IS_ENCRYPTED) {
1057 if (NInoCompressed(ni)) {
1058 ntfs_error(vi->i_sb, "Found encrypted and "
1059 "compressed data.");
1062 NInoSetEncrypted(ni);
1064 if (a->non_resident) {
1065 NInoSetNonResident(ni);
1066 if (NInoCompressed(ni) || NInoSparse(ni)) {
1067 if (a->data.non_resident.compression_unit !=
1069 ntfs_error(vi->i_sb, "Found "
1071 "compression unit (%u "
1073 "Cannot handle this.",
1074 a->data.non_resident.
1079 ni->itype.compressed.block_clusters = 1U <<
1080 a->data.non_resident.
1082 ni->itype.compressed.block_size = 1U << (
1083 a->data.non_resident.
1085 vol->cluster_size_bits);
1086 ni->itype.compressed.block_size_bits = ffs(
1087 ni->itype.compressed.
1089 ni->itype.compressed.size = sle64_to_cpu(
1090 a->data.non_resident.
1093 if (a->data.non_resident.lowest_vcn) {
1094 ntfs_error(vi->i_sb, "First extent of $DATA "
1095 "attribute has non zero "
1099 vi->i_size = sle64_to_cpu(
1100 a->data.non_resident.data_size);
1101 ni->initialized_size = sle64_to_cpu(
1102 a->data.non_resident.initialized_size);
1103 ni->allocated_size = sle64_to_cpu(
1104 a->data.non_resident.allocated_size);
1105 } else { /* Resident attribute. */
1106 vi->i_size = ni->initialized_size = le32_to_cpu(
1107 a->data.resident.value_length);
1108 ni->allocated_size = le32_to_cpu(a->length) -
1110 a->data.resident.value_offset);
1111 if (vi->i_size > ni->allocated_size) {
1112 ntfs_error(vi->i_sb, "Resident data attribute "
1113 "is corrupt (size exceeds "
1118 no_data_attr_special_case:
1119 /* We are done with the mft record, so we release it. */
1120 ntfs_attr_put_search_ctx(ctx);
1121 unmap_mft_record(ni);
1124 /* Setup the operations for this inode. */
1125 vi->i_op = &ntfs_file_inode_ops;
1126 vi->i_fop = &ntfs_file_ops;
1128 if (NInoMstProtected(ni))
1129 vi->i_mapping->a_ops = &ntfs_mst_aops;
1131 vi->i_mapping->a_ops = &ntfs_aops;
1133 * The number of 512-byte blocks used on disk (for stat). This is in so
1134 * far inaccurate as it doesn't account for any named streams or other
1135 * special non-resident attributes, but that is how Windows works, too,
1136 * so we are at least consistent with Windows, if not entirely
1137 * consistent with the Linux Way. Doing it the Linux Way would cause a
1138 * significant slowdown as it would involve iterating over all
1139 * attributes in the mft record and adding the allocated/compressed
1140 * sizes of all non-resident attributes present to give us the Linux
1141 * correct size that should go into i_blocks (after division by 512).
1143 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1144 vi->i_blocks = ni->itype.compressed.size >> 9;
1146 vi->i_blocks = ni->allocated_size >> 9;
1147 ntfs_debug("Done.");
1154 ntfs_attr_put_search_ctx(ctx);
1156 unmap_mft_record(ni);
1158 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1159 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1161 if (err != -EOPNOTSUPP && err != -ENOMEM)
1167 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1168 * @base_vi: base inode
1169 * @vi: attribute inode to read
1171 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1172 * attribute inode described by @vi into memory from the base mft record
1173 * described by @base_ni.
1175 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1176 * reading and looks up the attribute described by @vi before setting up the
1177 * necessary fields in @vi as well as initializing the ntfs inode.
1179 * Q: What locks are held when the function is called?
1180 * A: i_state has I_LOCK set, hence the inode is locked, also
1181 * i_count is set to 1, so it is not going to go away
1183 * Return 0 on success and -errno on error. In the error case, the inode will
1184 * have had make_bad_inode() executed on it.
1186 * Note this cannot be called for AT_INDEX_ALLOCATION.
1188 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1190 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1191 ntfs_inode *ni, *base_ni;
1194 ntfs_attr_search_ctx *ctx;
1197 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1199 ntfs_init_big_inode(vi);
1202 base_ni = NTFS_I(base_vi);
1204 /* Just mirror the values from the base inode. */
1205 vi->i_blksize = base_vi->i_blksize;
1206 vi->i_version = base_vi->i_version;
1207 vi->i_uid = base_vi->i_uid;
1208 vi->i_gid = base_vi->i_gid;
1209 vi->i_nlink = base_vi->i_nlink;
1210 vi->i_mtime = base_vi->i_mtime;
1211 vi->i_ctime = base_vi->i_ctime;
1212 vi->i_atime = base_vi->i_atime;
1213 vi->i_generation = ni->seq_no = base_ni->seq_no;
1215 /* Set inode type to zero but preserve permissions. */
1216 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1218 m = map_mft_record(base_ni);
1223 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1228 /* Find the attribute. */
1229 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1230 CASE_SENSITIVE, 0, NULL, 0, ctx);
1234 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1235 if (a->flags & ATTR_COMPRESSION_MASK) {
1236 NInoSetCompressed(ni);
1237 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1239 ntfs_error(vi->i_sb, "Found compressed "
1240 "non-data or named data "
1241 "attribute. Please report "
1242 "you saw this message to "
1243 "linux-ntfs-dev@lists."
1247 if (vol->cluster_size > 4096) {
1248 ntfs_error(vi->i_sb, "Found compressed "
1249 "attribute but compression is "
1250 "disabled due to cluster size "
1255 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1256 ATTR_IS_COMPRESSED) {
1257 ntfs_error(vi->i_sb, "Found unknown "
1258 "compression method.");
1263 * The compressed/sparse flag set in an index root just means
1264 * to compress all files.
1266 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1267 ntfs_error(vi->i_sb, "Found mst protected attribute "
1268 "but the attribute is %s. Please "
1269 "report you saw this message to "
1270 "linux-ntfs-dev@lists.sourceforge.net",
1271 NInoCompressed(ni) ? "compressed" :
1275 if (a->flags & ATTR_IS_SPARSE)
1278 if (a->flags & ATTR_IS_ENCRYPTED) {
1279 if (NInoCompressed(ni)) {
1280 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1285 * The encryption flag set in an index root just means to
1286 * encrypt all files.
1288 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1289 ntfs_error(vi->i_sb, "Found mst protected attribute "
1290 "but the attribute is encrypted. "
1291 "Please report you saw this message "
1292 "to linux-ntfs-dev@lists.sourceforge."
1296 if (ni->type != AT_DATA) {
1297 ntfs_error(vi->i_sb, "Found encrypted non-data "
1301 NInoSetEncrypted(ni);
1303 if (!a->non_resident) {
1304 /* Ensure the attribute name is placed before the value. */
1305 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1306 le16_to_cpu(a->data.resident.value_offset)))) {
1307 ntfs_error(vol->sb, "Attribute name is placed after "
1308 "the attribute value.");
1311 if (NInoMstProtected(ni)) {
1312 ntfs_error(vi->i_sb, "Found mst protected attribute "
1313 "but the attribute is resident. "
1314 "Please report you saw this message to "
1315 "linux-ntfs-dev@lists.sourceforge.net");
1318 vi->i_size = ni->initialized_size = le32_to_cpu(
1319 a->data.resident.value_length);
1320 ni->allocated_size = le32_to_cpu(a->length) -
1321 le16_to_cpu(a->data.resident.value_offset);
1322 if (vi->i_size > ni->allocated_size) {
1323 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1324 "(size exceeds allocation).");
1328 NInoSetNonResident(ni);
1330 * Ensure the attribute name is placed before the mapping pairs
1333 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1335 a->data.non_resident.mapping_pairs_offset)))) {
1336 ntfs_error(vol->sb, "Attribute name is placed after "
1337 "the mapping pairs array.");
1340 if (NInoCompressed(ni) || NInoSparse(ni)) {
1341 if (a->data.non_resident.compression_unit != 4) {
1342 ntfs_error(vi->i_sb, "Found nonstandard "
1343 "compression unit (%u instead "
1344 "of 4). Cannot handle this.",
1345 a->data.non_resident.
1350 ni->itype.compressed.block_clusters = 1U <<
1351 a->data.non_resident.compression_unit;
1352 ni->itype.compressed.block_size = 1U << (
1353 a->data.non_resident.compression_unit +
1354 vol->cluster_size_bits);
1355 ni->itype.compressed.block_size_bits = ffs(
1356 ni->itype.compressed.block_size) - 1;
1357 ni->itype.compressed.size = sle64_to_cpu(
1358 a->data.non_resident.compressed_size);
1360 if (a->data.non_resident.lowest_vcn) {
1361 ntfs_error(vi->i_sb, "First extent of attribute has "
1362 "non-zero lowest_vcn.");
1365 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1366 ni->initialized_size = sle64_to_cpu(
1367 a->data.non_resident.initialized_size);
1368 ni->allocated_size = sle64_to_cpu(
1369 a->data.non_resident.allocated_size);
1371 /* Setup the operations for this attribute inode. */
1374 if (NInoMstProtected(ni))
1375 vi->i_mapping->a_ops = &ntfs_mst_aops;
1377 vi->i_mapping->a_ops = &ntfs_aops;
1378 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1379 vi->i_blocks = ni->itype.compressed.size >> 9;
1381 vi->i_blocks = ni->allocated_size >> 9;
1383 * Make sure the base inode does not go away and attach it to the
1387 ni->ext.base_ntfs_ino = base_ni;
1388 ni->nr_extents = -1;
1390 ntfs_attr_put_search_ctx(ctx);
1391 unmap_mft_record(base_ni);
1393 ntfs_debug("Done.");
1400 ntfs_attr_put_search_ctx(ctx);
1401 unmap_mft_record(base_ni);
1403 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1404 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1405 "Marking corrupt inode and base inode 0x%lx as bad. "
1406 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1409 make_bad_inode(base_vi);
1416 * ntfs_read_locked_index_inode - read an index inode from its base inode
1417 * @base_vi: base inode
1418 * @vi: index inode to read
1420 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1421 * index inode described by @vi into memory from the base mft record described
1424 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1425 * reading and looks up the attributes relating to the index described by @vi
1426 * before setting up the necessary fields in @vi as well as initializing the
1429 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1430 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1431 * are setup like directory inodes since directories are a special case of
1432 * indices ao they need to be treated in much the same way. Most importantly,
1433 * for small indices the index allocation attribute might not actually exist.
1434 * However, the index root attribute always exists but this does not need to
1435 * have an inode associated with it and this is why we define a new inode type
1436 * index. Also, like for directories, we need to have an attribute inode for
1437 * the bitmap attribute corresponding to the index allocation attribute and we
1438 * can store this in the appropriate field of the inode, just like we do for
1439 * normal directory inodes.
1441 * Q: What locks are held when the function is called?
1442 * A: i_state has I_LOCK set, hence the inode is locked, also
1443 * i_count is set to 1, so it is not going to go away
1445 * Return 0 on success and -errno on error. In the error case, the inode will
1446 * have had make_bad_inode() executed on it.
1448 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1451 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1452 ntfs_inode *ni, *base_ni, *bni;
1456 ntfs_attr_search_ctx *ctx;
1458 u8 *ir_end, *index_end;
1461 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1462 ntfs_init_big_inode(vi);
1464 base_ni = NTFS_I(base_vi);
1465 /* Just mirror the values from the base inode. */
1466 vi->i_blksize = base_vi->i_blksize;
1467 vi->i_version = base_vi->i_version;
1468 vi->i_uid = base_vi->i_uid;
1469 vi->i_gid = base_vi->i_gid;
1470 vi->i_nlink = base_vi->i_nlink;
1471 vi->i_mtime = base_vi->i_mtime;
1472 vi->i_ctime = base_vi->i_ctime;
1473 vi->i_atime = base_vi->i_atime;
1474 vi->i_generation = ni->seq_no = base_ni->seq_no;
1475 /* Set inode type to zero but preserve permissions. */
1476 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1477 /* Map the mft record for the base inode. */
1478 m = map_mft_record(base_ni);
1483 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1488 /* Find the index root attribute. */
1489 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1490 CASE_SENSITIVE, 0, NULL, 0, ctx);
1491 if (unlikely(err)) {
1493 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1498 /* Set up the state. */
1499 if (unlikely(a->non_resident)) {
1500 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1503 /* Ensure the attribute name is placed before the value. */
1504 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1505 le16_to_cpu(a->data.resident.value_offset)))) {
1506 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1507 "after the attribute value.");
1511 * Compressed/encrypted/sparse index root is not allowed, except for
1512 * directories of course but those are not dealt with here.
1514 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1516 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1520 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1521 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1522 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1523 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1526 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1527 if (index_end > ir_end) {
1528 ntfs_error(vi->i_sb, "Index is corrupt.");
1532 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1533 le32_to_cpu(ir->type));
1536 ni->itype.index.collation_rule = ir->collation_rule;
1537 ntfs_debug("Index collation rule is 0x%x.",
1538 le32_to_cpu(ir->collation_rule));
1539 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1540 if (ni->itype.index.block_size & (ni->itype.index.block_size - 1)) {
1541 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1542 "two.", ni->itype.index.block_size);
1545 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
1546 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE "
1547 "(%ld) is not supported. Sorry.",
1548 ni->itype.index.block_size, PAGE_CACHE_SIZE);
1552 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1553 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1554 "(%i) is not supported. Sorry.",
1555 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1559 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1560 /* Determine the size of a vcn in the index. */
1561 if (vol->cluster_size <= ni->itype.index.block_size) {
1562 ni->itype.index.vcn_size = vol->cluster_size;
1563 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1565 ni->itype.index.vcn_size = vol->sector_size;
1566 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1568 /* Check for presence of index allocation attribute. */
1569 if (!(ir->index.flags & LARGE_INDEX)) {
1570 /* No index allocation. */
1571 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1572 /* We are done with the mft record, so we release it. */
1573 ntfs_attr_put_search_ctx(ctx);
1574 unmap_mft_record(base_ni);
1577 goto skip_large_index_stuff;
1578 } /* LARGE_INDEX: Index allocation present. Setup state. */
1579 NInoSetIndexAllocPresent(ni);
1580 /* Find index allocation attribute. */
1581 ntfs_attr_reinit_search_ctx(ctx);
1582 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1583 CASE_SENSITIVE, 0, NULL, 0, ctx);
1584 if (unlikely(err)) {
1586 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1587 "not present but $INDEX_ROOT "
1588 "indicated it is.");
1590 ntfs_error(vi->i_sb, "Failed to lookup "
1591 "$INDEX_ALLOCATION attribute.");
1594 if (!a->non_resident) {
1595 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1600 * Ensure the attribute name is placed before the mapping pairs array.
1602 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1604 a->data.non_resident.mapping_pairs_offset)))) {
1605 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1606 "placed after the mapping pairs array.");
1609 if (a->flags & ATTR_IS_ENCRYPTED) {
1610 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1614 if (a->flags & ATTR_IS_SPARSE) {
1615 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1618 if (a->flags & ATTR_COMPRESSION_MASK) {
1619 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1623 if (a->data.non_resident.lowest_vcn) {
1624 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1625 "attribute has non zero lowest_vcn.");
1628 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1629 ni->initialized_size = sle64_to_cpu(
1630 a->data.non_resident.initialized_size);
1631 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1633 * We are done with the mft record, so we release it. Otherwise
1634 * we would deadlock in ntfs_attr_iget().
1636 ntfs_attr_put_search_ctx(ctx);
1637 unmap_mft_record(base_ni);
1640 /* Get the index bitmap attribute inode. */
1641 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1643 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1648 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1650 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1651 "encrypted and/or sparse.");
1652 goto iput_unm_err_out;
1654 /* Consistency check bitmap size vs. index allocation size. */
1655 bvi_size = i_size_read(bvi);
1656 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1657 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1658 "index allocation (0x%llx).", bvi_size << 3,
1660 goto iput_unm_err_out;
1662 ni->itype.index.bmp_ino = bvi;
1663 skip_large_index_stuff:
1664 /* Setup the operations for this index inode. */
1667 vi->i_mapping->a_ops = &ntfs_mst_aops;
1668 vi->i_blocks = ni->allocated_size >> 9;
1670 * Make sure the base inode doesn't go away and attach it to the
1674 ni->ext.base_ntfs_ino = base_ni;
1675 ni->nr_extents = -1;
1677 ntfs_debug("Done.");
1686 ntfs_attr_put_search_ctx(ctx);
1688 unmap_mft_record(base_ni);
1690 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1691 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1694 if (err != -EOPNOTSUPP && err != -ENOMEM)
1700 * ntfs_read_inode_mount - special read_inode for mount time use only
1701 * @vi: inode to read
1703 * Read inode FILE_MFT at mount time, only called with super_block lock
1704 * held from within the read_super() code path.
1706 * This function exists because when it is called the page cache for $MFT/$DATA
1707 * is not initialized and hence we cannot get at the contents of mft records
1708 * by calling map_mft_record*().
1710 * Further it needs to cope with the circular references problem, i.e. cannot
1711 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1712 * we do not know where the other extent mft records are yet and again, because
1713 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1714 * attribute list is actually present in $MFT inode.
1716 * We solve these problems by starting with the $DATA attribute before anything
1717 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1718 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1719 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1720 * sufficient information for the next step to complete.
1722 * This should work but there are two possible pit falls (see inline comments
1723 * below), but only time will tell if they are real pits or just smoke...
1725 int ntfs_read_inode_mount(struct inode *vi)
1727 VCN next_vcn, last_vcn, highest_vcn;
1729 struct super_block *sb = vi->i_sb;
1730 ntfs_volume *vol = NTFS_SB(sb);
1731 struct buffer_head *bh;
1733 MFT_RECORD *m = NULL;
1735 ntfs_attr_search_ctx *ctx;
1736 unsigned int i, nr_blocks;
1739 ntfs_debug("Entering.");
1741 /* Initialize the ntfs specific part of @vi. */
1742 ntfs_init_big_inode(vi);
1746 /* Setup the data attribute. It is special as it is mst protected. */
1747 NInoSetNonResident(ni);
1748 NInoSetMstProtected(ni);
1749 NInoSetSparseDisabled(ni);
1754 * This sets up our little cheat allowing us to reuse the async read io
1755 * completion handler for directories.
1757 ni->itype.index.block_size = vol->mft_record_size;
1758 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1760 /* Very important! Needed to be able to call map_mft_record*(). */
1763 /* Allocate enough memory to read the first mft record. */
1764 if (vol->mft_record_size > 64 * 1024) {
1765 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1766 vol->mft_record_size);
1769 i = vol->mft_record_size;
1770 if (i < sb->s_blocksize)
1771 i = sb->s_blocksize;
1772 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1774 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1778 /* Determine the first block of the $MFT/$DATA attribute. */
1779 block = vol->mft_lcn << vol->cluster_size_bits >>
1780 sb->s_blocksize_bits;
1781 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1785 /* Load $MFT/$DATA's first mft record. */
1786 for (i = 0; i < nr_blocks; i++) {
1787 bh = sb_bread(sb, block++);
1789 ntfs_error(sb, "Device read failed.");
1792 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1797 /* Apply the mst fixups. */
1798 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1799 /* FIXME: Try to use the $MFTMirr now. */
1800 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1804 /* Need this to sanity check attribute list references to $MFT. */
1805 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1807 /* Provides readpage() and sync_page() for map_mft_record(). */
1808 vi->i_mapping->a_ops = &ntfs_mst_aops;
1810 ctx = ntfs_attr_get_search_ctx(ni, m);
1816 /* Find the attribute list attribute if present. */
1817 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1819 if (unlikely(err != -ENOENT)) {
1820 ntfs_error(sb, "Failed to lookup attribute list "
1821 "attribute. You should run chkdsk.");
1824 } else /* if (!err) */ {
1825 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1827 static const char *es = " Not allowed. $MFT is corrupt. "
1828 "You should run chkdsk.";
1830 ntfs_debug("Attribute list attribute found in $MFT.");
1831 NInoSetAttrList(ni);
1833 if (a->flags & ATTR_COMPRESSION_MASK) {
1834 ntfs_error(sb, "Attribute list attribute is "
1835 "compressed.%s", es);
1838 if (a->flags & ATTR_IS_ENCRYPTED ||
1839 a->flags & ATTR_IS_SPARSE) {
1840 if (a->non_resident) {
1841 ntfs_error(sb, "Non-resident attribute list "
1842 "attribute is encrypted/"
1846 ntfs_warning(sb, "Resident attribute list attribute "
1847 "in $MFT system file is marked "
1848 "encrypted/sparse which is not true. "
1849 "However, Windows allows this and "
1850 "chkdsk does not detect or correct it "
1851 "so we will just ignore the invalid "
1852 "flags and pretend they are not set.");
1854 /* Now allocate memory for the attribute list. */
1855 ni->attr_list_size = (u32)ntfs_attr_size(a);
1856 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1857 if (!ni->attr_list) {
1858 ntfs_error(sb, "Not enough memory to allocate buffer "
1859 "for attribute list.");
1862 if (a->non_resident) {
1863 NInoSetAttrListNonResident(ni);
1864 if (a->data.non_resident.lowest_vcn) {
1865 ntfs_error(sb, "Attribute list has non zero "
1866 "lowest_vcn. $MFT is corrupt. "
1867 "You should run chkdsk.");
1870 /* Setup the runlist. */
1871 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1873 if (IS_ERR(ni->attr_list_rl.rl)) {
1874 err = PTR_ERR(ni->attr_list_rl.rl);
1875 ni->attr_list_rl.rl = NULL;
1876 ntfs_error(sb, "Mapping pairs decompression "
1877 "failed with error code %i.",
1881 /* Now load the attribute list. */
1882 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1883 ni->attr_list, ni->attr_list_size,
1884 sle64_to_cpu(a->data.
1885 non_resident.initialized_size)))) {
1886 ntfs_error(sb, "Failed to load attribute list "
1887 "attribute with error code %i.",
1891 } else /* if (!ctx.attr->non_resident) */ {
1892 if ((u8*)a + le16_to_cpu(
1893 a->data.resident.value_offset) +
1895 a->data.resident.value_length) >
1896 (u8*)ctx->mrec + vol->mft_record_size) {
1897 ntfs_error(sb, "Corrupt attribute list "
1901 /* Now copy the attribute list. */
1902 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1903 a->data.resident.value_offset),
1905 a->data.resident.value_length));
1907 /* The attribute list is now setup in memory. */
1909 * FIXME: I don't know if this case is actually possible.
1910 * According to logic it is not possible but I have seen too
1911 * many weird things in MS software to rely on logic... Thus we
1912 * perform a manual search and make sure the first $MFT/$DATA
1913 * extent is in the base inode. If it is not we abort with an
1914 * error and if we ever see a report of this error we will need
1915 * to do some magic in order to have the necessary mft record
1916 * loaded and in the right place in the page cache. But
1917 * hopefully logic will prevail and this never happens...
1919 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1920 al_end = (u8*)al_entry + ni->attr_list_size;
1921 for (;; al_entry = next_al_entry) {
1922 /* Out of bounds check. */
1923 if ((u8*)al_entry < ni->attr_list ||
1924 (u8*)al_entry > al_end)
1925 goto em_put_err_out;
1926 /* Catch the end of the attribute list. */
1927 if ((u8*)al_entry == al_end)
1928 goto em_put_err_out;
1929 if (!al_entry->length)
1930 goto em_put_err_out;
1931 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1932 le16_to_cpu(al_entry->length) > al_end)
1933 goto em_put_err_out;
1934 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1935 le16_to_cpu(al_entry->length));
1936 if (le32_to_cpu(al_entry->type) >
1937 const_le32_to_cpu(AT_DATA))
1938 goto em_put_err_out;
1939 if (AT_DATA != al_entry->type)
1941 /* We want an unnamed attribute. */
1942 if (al_entry->name_length)
1943 goto em_put_err_out;
1944 /* Want the first entry, i.e. lowest_vcn == 0. */
1945 if (al_entry->lowest_vcn)
1946 goto em_put_err_out;
1947 /* First entry has to be in the base mft record. */
1948 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1949 /* MFT references do not match, logic fails. */
1950 ntfs_error(sb, "BUG: The first $DATA extent "
1951 "of $MFT is not in the base "
1952 "mft record. Please report "
1953 "you saw this message to "
1954 "linux-ntfs-dev@lists."
1958 /* Sequence numbers must match. */
1959 if (MSEQNO_LE(al_entry->mft_reference) !=
1961 goto em_put_err_out;
1962 /* Got it. All is ok. We can stop now. */
1968 ntfs_attr_reinit_search_ctx(ctx);
1970 /* Now load all attribute extents. */
1972 next_vcn = last_vcn = highest_vcn = 0;
1973 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
1975 runlist_element *nrl;
1977 /* Cache the current attribute. */
1979 /* $MFT must be non-resident. */
1980 if (!a->non_resident) {
1981 ntfs_error(sb, "$MFT must be non-resident but a "
1982 "resident extent was found. $MFT is "
1983 "corrupt. Run chkdsk.");
1986 /* $MFT must be uncompressed and unencrypted. */
1987 if (a->flags & ATTR_COMPRESSION_MASK ||
1988 a->flags & ATTR_IS_ENCRYPTED ||
1989 a->flags & ATTR_IS_SPARSE) {
1990 ntfs_error(sb, "$MFT must be uncompressed, "
1991 "non-sparse, and unencrypted but a "
1992 "compressed/sparse/encrypted extent "
1993 "was found. $MFT is corrupt. Run "
1998 * Decompress the mapping pairs array of this extent and merge
1999 * the result into the existing runlist. No need for locking
2000 * as we have exclusive access to the inode at this time and we
2001 * are a mount in progress task, too.
2003 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2005 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2006 "failed with error code %ld. $MFT is "
2007 "corrupt.", PTR_ERR(nrl));
2010 ni->runlist.rl = nrl;
2012 /* Are we in the first extent? */
2014 if (a->data.non_resident.lowest_vcn) {
2015 ntfs_error(sb, "First extent of $DATA "
2016 "attribute has non zero "
2017 "lowest_vcn. $MFT is corrupt. "
2018 "You should run chkdsk.");
2021 /* Get the last vcn in the $DATA attribute. */
2022 last_vcn = sle64_to_cpu(
2023 a->data.non_resident.allocated_size)
2024 >> vol->cluster_size_bits;
2025 /* Fill in the inode size. */
2026 vi->i_size = sle64_to_cpu(
2027 a->data.non_resident.data_size);
2028 ni->initialized_size = sle64_to_cpu(
2029 a->data.non_resident.initialized_size);
2030 ni->allocated_size = sle64_to_cpu(
2031 a->data.non_resident.allocated_size);
2033 * Verify the number of mft records does not exceed
2036 if ((vi->i_size >> vol->mft_record_size_bits) >=
2038 ntfs_error(sb, "$MFT is too big! Aborting.");
2042 * We have got the first extent of the runlist for
2043 * $MFT which means it is now relatively safe to call
2044 * the normal ntfs_read_inode() function.
2045 * Complete reading the inode, this will actually
2046 * re-read the mft record for $MFT, this time entering
2047 * it into the page cache with which we complete the
2048 * kick start of the volume. It should be safe to do
2049 * this now as the first extent of $MFT/$DATA is
2050 * already known and we would hope that we don't need
2051 * further extents in order to find the other
2052 * attributes belonging to $MFT. Only time will tell if
2053 * this is really the case. If not we will have to play
2054 * magic at this point, possibly duplicating a lot of
2055 * ntfs_read_inode() at this point. We will need to
2056 * ensure we do enough of its work to be able to call
2057 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2058 * hope this never happens...
2060 ntfs_read_locked_inode(vi);
2061 if (is_bad_inode(vi)) {
2062 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2063 "failed. BUG or corrupt $MFT. "
2064 "Run chkdsk and if no errors "
2065 "are found, please report you "
2066 "saw this message to "
2067 "linux-ntfs-dev@lists."
2069 ntfs_attr_put_search_ctx(ctx);
2070 /* Revert to the safe super operations. */
2075 * Re-initialize some specifics about $MFT's inode as
2076 * ntfs_read_inode() will have set up the default ones.
2078 /* Set uid and gid to root. */
2079 vi->i_uid = vi->i_gid = 0;
2080 /* Regular file. No access for anyone. */
2081 vi->i_mode = S_IFREG;
2082 /* No VFS initiated operations allowed for $MFT. */
2083 vi->i_op = &ntfs_empty_inode_ops;
2084 vi->i_fop = &ntfs_empty_file_ops;
2087 /* Get the lowest vcn for the next extent. */
2088 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2089 next_vcn = highest_vcn + 1;
2091 /* Only one extent or error, which we catch below. */
2095 /* Avoid endless loops due to corruption. */
2096 if (next_vcn < sle64_to_cpu(
2097 a->data.non_resident.lowest_vcn)) {
2098 ntfs_error(sb, "$MFT has corrupt attribute list "
2099 "attribute. Run chkdsk.");
2103 if (err != -ENOENT) {
2104 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2105 "$MFT is corrupt. Run chkdsk.");
2109 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2110 "corrupt. Run chkdsk.");
2113 if (highest_vcn && highest_vcn != last_vcn - 1) {
2114 ntfs_error(sb, "Failed to load the complete runlist for "
2115 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2117 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2118 (unsigned long long)highest_vcn,
2119 (unsigned long long)last_vcn - 1);
2122 ntfs_attr_put_search_ctx(ctx);
2123 ntfs_debug("Done.");
2128 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2129 "attribute list. $MFT is corrupt. Run chkdsk.");
2131 ntfs_attr_put_search_ctx(ctx);
2133 ntfs_error(sb, "Failed. Marking inode as bad.");
2140 * ntfs_put_inode - handler for when the inode reference count is decremented
2143 * The VFS calls ntfs_put_inode() every time the inode reference count (i_count)
2144 * is about to be decremented (but before the decrement itself.
2146 * If the inode @vi is a directory with two references, one of which is being
2147 * dropped, we need to put the attribute inode for the directory index bitmap,
2148 * if it is present, otherwise the directory inode would remain pinned for
2151 void ntfs_put_inode(struct inode *vi)
2153 if (S_ISDIR(vi->i_mode) && atomic_read(&vi->i_count) == 2) {
2154 ntfs_inode *ni = NTFS_I(vi);
2155 if (NInoIndexAllocPresent(ni)) {
2156 struct inode *bvi = NULL;
2157 mutex_lock(&vi->i_mutex);
2158 if (atomic_read(&vi->i_count) == 2) {
2159 bvi = ni->itype.index.bmp_ino;
2161 ni->itype.index.bmp_ino = NULL;
2163 mutex_unlock(&vi->i_mutex);
2170 static void __ntfs_clear_inode(ntfs_inode *ni)
2172 /* Free all alocated memory. */
2173 down_write(&ni->runlist.lock);
2174 if (ni->runlist.rl) {
2175 ntfs_free(ni->runlist.rl);
2176 ni->runlist.rl = NULL;
2178 up_write(&ni->runlist.lock);
2180 if (ni->attr_list) {
2181 ntfs_free(ni->attr_list);
2182 ni->attr_list = NULL;
2185 down_write(&ni->attr_list_rl.lock);
2186 if (ni->attr_list_rl.rl) {
2187 ntfs_free(ni->attr_list_rl.rl);
2188 ni->attr_list_rl.rl = NULL;
2190 up_write(&ni->attr_list_rl.lock);
2192 if (ni->name_len && ni->name != I30) {
2199 void ntfs_clear_extent_inode(ntfs_inode *ni)
2201 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2203 BUG_ON(NInoAttr(ni));
2204 BUG_ON(ni->nr_extents != -1);
2207 if (NInoDirty(ni)) {
2208 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2209 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2210 "Losing data! This is a BUG!!!");
2211 // FIXME: Do something!!!
2213 #endif /* NTFS_RW */
2215 __ntfs_clear_inode(ni);
2218 ntfs_destroy_extent_inode(ni);
2222 * ntfs_clear_big_inode - clean up the ntfs specific part of an inode
2223 * @vi: vfs inode pending annihilation
2225 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2226 * is called, which deallocates all memory belonging to the NTFS specific part
2227 * of the inode and returns.
2229 * If the MFT record is dirty, we commit it before doing anything else.
2231 void ntfs_clear_big_inode(struct inode *vi)
2233 ntfs_inode *ni = NTFS_I(vi);
2236 * If the inode @vi is an index inode we need to put the attribute
2237 * inode for the index bitmap, if it is present, otherwise the index
2238 * inode would disappear and the attribute inode for the index bitmap
2239 * would no longer be referenced from anywhere and thus it would remain
2242 if (NInoAttr(ni) && (ni->type == AT_INDEX_ALLOCATION) &&
2243 NInoIndexAllocPresent(ni) && ni->itype.index.bmp_ino) {
2244 iput(ni->itype.index.bmp_ino);
2245 ni->itype.index.bmp_ino = NULL;
2248 if (NInoDirty(ni)) {
2249 BOOL was_bad = (is_bad_inode(vi));
2251 /* Committing the inode also commits all extent inodes. */
2252 ntfs_commit_inode(vi);
2254 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2255 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2256 "0x%lx. Losing data!", vi->i_ino);
2257 // FIXME: Do something!!!
2260 #endif /* NTFS_RW */
2262 /* No need to lock at this stage as no one else has a reference. */
2263 if (ni->nr_extents > 0) {
2266 for (i = 0; i < ni->nr_extents; i++)
2267 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2268 kfree(ni->ext.extent_ntfs_inos);
2271 __ntfs_clear_inode(ni);
2274 /* Release the base inode if we are holding it. */
2275 if (ni->nr_extents == -1) {
2276 iput(VFS_I(ni->ext.base_ntfs_ino));
2278 ni->ext.base_ntfs_ino = NULL;
2285 * ntfs_show_options - show mount options in /proc/mounts
2286 * @sf: seq_file in which to write our mount options
2287 * @mnt: vfs mount whose mount options to display
2289 * Called by the VFS once for each mounted ntfs volume when someone reads
2290 * /proc/mounts in order to display the NTFS specific mount options of each
2291 * mount. The mount options of the vfs mount @mnt are written to the seq file
2292 * @sf and success is returned.
2294 int ntfs_show_options(struct seq_file *sf, struct vfsmount *mnt)
2296 ntfs_volume *vol = NTFS_SB(mnt->mnt_sb);
2299 seq_printf(sf, ",uid=%i", vol->uid);
2300 seq_printf(sf, ",gid=%i", vol->gid);
2301 if (vol->fmask == vol->dmask)
2302 seq_printf(sf, ",umask=0%o", vol->fmask);
2304 seq_printf(sf, ",fmask=0%o", vol->fmask);
2305 seq_printf(sf, ",dmask=0%o", vol->dmask);
2307 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2308 if (NVolCaseSensitive(vol))
2309 seq_printf(sf, ",case_sensitive");
2310 if (NVolShowSystemFiles(vol))
2311 seq_printf(sf, ",show_sys_files");
2312 if (!NVolSparseEnabled(vol))
2313 seq_printf(sf, ",disable_sparse");
2314 for (i = 0; on_errors_arr[i].val; i++) {
2315 if (on_errors_arr[i].val & vol->on_errors)
2316 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2318 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2324 static const char *es = " Leaving inconsistent metadata. Unmount and run "
2328 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2329 * @vi: inode for which the i_size was changed
2331 * We only support i_size changes for normal files at present, i.e. not
2332 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2335 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2336 * that the change is allowed.
2338 * This implies for us that @vi is a file inode rather than a directory, index,
2339 * or attribute inode as well as that @vi is a base inode.
2341 * Returns 0 on success or -errno on error.
2343 * Called with ->i_mutex held. In all but one case ->i_alloc_sem is held for
2344 * writing. The only case in the kernel where ->i_alloc_sem is not held is
2345 * mm/filemap.c::generic_file_buffered_write() where vmtruncate() is called
2346 * with the current i_size as the offset. The analogous place in NTFS is in
2347 * fs/ntfs/file.c::ntfs_file_buffered_write() where we call vmtruncate() again
2348 * without holding ->i_alloc_sem.
2350 int ntfs_truncate(struct inode *vi)
2352 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2354 unsigned long flags;
2355 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2356 ntfs_volume *vol = ni->vol;
2357 ntfs_attr_search_ctx *ctx;
2360 const char *te = " Leaving file length out of sync with i_size.";
2361 int err, mp_size, size_change, alloc_change;
2364 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2365 BUG_ON(NInoAttr(ni));
2366 BUG_ON(S_ISDIR(vi->i_mode));
2367 BUG_ON(NInoMstProtected(ni));
2368 BUG_ON(ni->nr_extents < 0);
2371 * Lock the runlist for writing and map the mft record to ensure it is
2372 * safe to mess with the attribute runlist and sizes.
2374 down_write(&ni->runlist.lock);
2378 base_ni = ni->ext.base_ntfs_ino;
2379 m = map_mft_record(base_ni);
2382 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2383 "(error code %d).%s", vi->i_ino, err, te);
2388 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2389 if (unlikely(!ctx)) {
2390 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2391 "inode 0x%lx (not enough memory).%s",
2396 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2397 CASE_SENSITIVE, 0, NULL, 0, ctx);
2398 if (unlikely(err)) {
2399 if (err == -ENOENT) {
2400 ntfs_error(vi->i_sb, "Open attribute is missing from "
2401 "mft record. Inode 0x%lx is corrupt. "
2402 "Run chkdsk.%s", vi->i_ino, te);
2405 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2406 "inode 0x%lx (error code %d).%s",
2407 vi->i_ino, err, te);
2413 * The i_size of the vfs inode is the new size for the attribute value.
2415 new_size = i_size_read(vi);
2416 /* The current size of the attribute value is the old size. */
2417 old_size = ntfs_attr_size(a);
2418 /* Calculate the new allocated size. */
2419 if (NInoNonResident(ni))
2420 new_alloc_size = (new_size + vol->cluster_size - 1) &
2421 ~(s64)vol->cluster_size_mask;
2423 new_alloc_size = (new_size + 7) & ~7;
2424 /* The current allocated size is the old allocated size. */
2425 read_lock_irqsave(&ni->size_lock, flags);
2426 old_alloc_size = ni->allocated_size;
2427 read_unlock_irqrestore(&ni->size_lock, flags);
2429 * The change in the file size. This will be 0 if no change, >0 if the
2430 * size is growing, and <0 if the size is shrinking.
2433 if (new_size - old_size >= 0) {
2435 if (new_size == old_size)
2438 /* As above for the allocated size. */
2440 if (new_alloc_size - old_alloc_size >= 0) {
2442 if (new_alloc_size == old_alloc_size)
2446 * If neither the size nor the allocation are being changed there is
2449 if (!size_change && !alloc_change)
2451 /* If the size is changing, check if new size is allowed in $AttrDef. */
2453 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2454 if (unlikely(err)) {
2455 if (err == -ERANGE) {
2456 ntfs_error(vol->sb, "Truncate would cause the "
2457 "inode 0x%lx to %simum size "
2458 "for its attribute type "
2459 "(0x%x). Aborting truncate.",
2461 new_size > old_size ? "exceed "
2462 "the max" : "go under the min",
2463 le32_to_cpu(ni->type));
2466 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2467 "attribute type 0x%x. "
2468 "Aborting truncate.",
2470 le32_to_cpu(ni->type));
2473 /* Reset the vfs inode size to the old size. */
2474 i_size_write(vi, old_size);
2478 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2479 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2480 "supported yet for %s files, ignoring.",
2481 NInoCompressed(ni) ? "compressed" :
2486 if (a->non_resident)
2487 goto do_non_resident_truncate;
2488 BUG_ON(NInoNonResident(ni));
2489 /* Resize the attribute record to best fit the new attribute size. */
2490 if (new_size < vol->mft_record_size &&
2491 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2492 unsigned long flags;
2494 /* The resize succeeded! */
2495 flush_dcache_mft_record_page(ctx->ntfs_ino);
2496 mark_mft_record_dirty(ctx->ntfs_ino);
2497 write_lock_irqsave(&ni->size_lock, flags);
2498 /* Update the sizes in the ntfs inode and all is done. */
2499 ni->allocated_size = le32_to_cpu(a->length) -
2500 le16_to_cpu(a->data.resident.value_offset);
2502 * Note ntfs_resident_attr_value_resize() has already done any
2503 * necessary data clearing in the attribute record. When the
2504 * file is being shrunk vmtruncate() will already have cleared
2505 * the top part of the last partial page, i.e. since this is
2506 * the resident case this is the page with index 0. However,
2507 * when the file is being expanded, the page cache page data
2508 * between the old data_size, i.e. old_size, and the new_size
2509 * has not been zeroed. Fortunately, we do not need to zero it
2510 * either since on one hand it will either already be zero due
2511 * to both readpage and writepage clearing partial page data
2512 * beyond i_size in which case there is nothing to do or in the
2513 * case of the file being mmap()ped at the same time, POSIX
2514 * specifies that the behaviour is unspecified thus we do not
2515 * have to do anything. This means that in our implementation
2516 * in the rare case that the file is mmap()ped and a write
2517 * occured into the mmap()ped region just beyond the file size
2518 * and writepage has not yet been called to write out the page
2519 * (which would clear the area beyond the file size) and we now
2520 * extend the file size to incorporate this dirty region
2521 * outside the file size, a write of the page would result in
2522 * this data being written to disk instead of being cleared.
2523 * Given both POSIX and the Linux mmap(2) man page specify that
2524 * this corner case is undefined, we choose to leave it like
2525 * that as this is much simpler for us as we cannot lock the
2526 * relevant page now since we are holding too many ntfs locks
2527 * which would result in a lock reversal deadlock.
2529 ni->initialized_size = new_size;
2530 write_unlock_irqrestore(&ni->size_lock, flags);
2533 /* If the above resize failed, this must be an attribute extension. */
2534 BUG_ON(size_change < 0);
2536 * We have to drop all the locks so we can call
2537 * ntfs_attr_make_non_resident(). This could be optimised by try-
2538 * locking the first page cache page and only if that fails dropping
2539 * the locks, locking the page, and redoing all the locking and
2540 * lookups. While this would be a huge optimisation, it is not worth
2541 * it as this is definitely a slow code path as it only ever can happen
2542 * once for any given file.
2544 ntfs_attr_put_search_ctx(ctx);
2545 unmap_mft_record(base_ni);
2546 up_write(&ni->runlist.lock);
2548 * Not enough space in the mft record, try to make the attribute
2549 * non-resident and if successful restart the truncation process.
2551 err = ntfs_attr_make_non_resident(ni, old_size);
2553 goto retry_truncate;
2555 * Could not make non-resident. If this is due to this not being
2556 * permitted for this attribute type or there not being enough space,
2557 * try to make other attributes non-resident. Otherwise fail.
2559 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2560 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2561 "type 0x%x, because the conversion from "
2562 "resident to non-resident attribute failed "
2563 "with error code %i.", vi->i_ino,
2564 (unsigned)le32_to_cpu(ni->type), err);
2569 /* TODO: Not implemented from here, abort. */
2571 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2572 "disk for the non-resident attribute value. "
2573 "This case is not implemented yet.");
2574 else /* if (err == -EPERM) */
2575 ntfs_error(vol->sb, "This attribute type may not be "
2576 "non-resident. This case is not implemented "
2581 // TODO: Attempt to make other attributes non-resident.
2583 goto do_resident_extend;
2585 * Both the attribute list attribute and the standard information
2586 * attribute must remain in the base inode. Thus, if this is one of
2587 * these attributes, we have to try to move other attributes out into
2588 * extent mft records instead.
2590 if (ni->type == AT_ATTRIBUTE_LIST ||
2591 ni->type == AT_STANDARD_INFORMATION) {
2592 // TODO: Attempt to move other attributes into extent mft
2596 goto do_resident_extend;
2599 // TODO: Attempt to move this attribute to an extent mft record, but
2600 // only if it is not already the only attribute in an mft record in
2601 // which case there would be nothing to gain.
2604 goto do_resident_extend;
2605 /* There is nothing we can do to make enough space. )-: */
2608 do_non_resident_truncate:
2609 BUG_ON(!NInoNonResident(ni));
2610 if (alloc_change < 0) {
2611 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2612 if (highest_vcn > 0 &&
2613 old_alloc_size >> vol->cluster_size_bits >
2616 * This attribute has multiple extents. Not yet
2619 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2620 "attribute type 0x%x, because the "
2621 "attribute is highly fragmented (it "
2622 "consists of multiple extents) and "
2623 "this case is not implemented yet.",
2625 (unsigned)le32_to_cpu(ni->type));
2631 * If the size is shrinking, need to reduce the initialized_size and
2632 * the data_size before reducing the allocation.
2634 if (size_change < 0) {
2636 * Make the valid size smaller (i_size is already up-to-date).
2638 write_lock_irqsave(&ni->size_lock, flags);
2639 if (new_size < ni->initialized_size) {
2640 ni->initialized_size = new_size;
2641 a->data.non_resident.initialized_size =
2642 cpu_to_sle64(new_size);
2644 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2645 write_unlock_irqrestore(&ni->size_lock, flags);
2646 flush_dcache_mft_record_page(ctx->ntfs_ino);
2647 mark_mft_record_dirty(ctx->ntfs_ino);
2648 /* If the allocated size is not changing, we are done. */
2652 * If the size is shrinking it makes no sense for the
2653 * allocation to be growing.
2655 BUG_ON(alloc_change > 0);
2656 } else /* if (size_change >= 0) */ {
2658 * The file size is growing or staying the same but the
2659 * allocation can be shrinking, growing or staying the same.
2661 if (alloc_change > 0) {
2663 * We need to extend the allocation and possibly update
2664 * the data size. If we are updating the data size,
2665 * since we are not touching the initialized_size we do
2666 * not need to worry about the actual data on disk.
2667 * And as far as the page cache is concerned, there
2668 * will be no pages beyond the old data size and any
2669 * partial region in the last page between the old and
2670 * new data size (or the end of the page if the new
2671 * data size is outside the page) does not need to be
2672 * modified as explained above for the resident
2673 * attribute truncate case. To do this, we simply drop
2674 * the locks we hold and leave all the work to our
2675 * friendly helper ntfs_attr_extend_allocation().
2677 ntfs_attr_put_search_ctx(ctx);
2678 unmap_mft_record(base_ni);
2679 up_write(&ni->runlist.lock);
2680 err = ntfs_attr_extend_allocation(ni, new_size,
2681 size_change > 0 ? new_size : -1, -1);
2683 * ntfs_attr_extend_allocation() will have done error
2691 /* alloc_change < 0 */
2692 /* Free the clusters. */
2693 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2694 vol->cluster_size_bits, -1, ctx);
2697 if (unlikely(nr_freed < 0)) {
2698 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2699 "%lli). Unmount and run chkdsk to recover "
2700 "the lost cluster(s).", (long long)nr_freed);
2704 /* Truncate the runlist. */
2705 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2706 new_alloc_size >> vol->cluster_size_bits);
2708 * If the runlist truncation failed and/or the search context is no
2709 * longer valid, we cannot resize the attribute record or build the
2710 * mapping pairs array thus we mark the inode bad so that no access to
2711 * the freed clusters can happen.
2713 if (unlikely(err || IS_ERR(m))) {
2714 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2716 "restore attribute search context" :
2717 "truncate attribute runlist",
2718 IS_ERR(m) ? PTR_ERR(m) : err, es);
2722 /* Get the size for the shrunk mapping pairs array for the runlist. */
2723 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2724 if (unlikely(mp_size <= 0)) {
2725 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2726 "attribute type 0x%x, because determining the "
2727 "size for the mapping pairs failed with error "
2728 "code %i.%s", vi->i_ino,
2729 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2734 * Shrink the attribute record for the new mapping pairs array. Note,
2735 * this cannot fail since we are making the attribute smaller thus by
2736 * definition there is enough space to do so.
2738 attr_len = le32_to_cpu(a->length);
2739 err = ntfs_attr_record_resize(m, a, mp_size +
2740 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2743 * Generate the mapping pairs array directly into the attribute record.
2745 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2746 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2747 mp_size, ni->runlist.rl, 0, -1, NULL);
2748 if (unlikely(err)) {
2749 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2750 "attribute type 0x%x, because building the "
2751 "mapping pairs failed with error code %i.%s",
2752 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2757 /* Update the allocated/compressed size as well as the highest vcn. */
2758 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2759 vol->cluster_size_bits) - 1);
2760 write_lock_irqsave(&ni->size_lock, flags);
2761 ni->allocated_size = new_alloc_size;
2762 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2763 if (NInoSparse(ni) || NInoCompressed(ni)) {
2765 ni->itype.compressed.size -= nr_freed <<
2766 vol->cluster_size_bits;
2767 BUG_ON(ni->itype.compressed.size < 0);
2768 a->data.non_resident.compressed_size = cpu_to_sle64(
2769 ni->itype.compressed.size);
2770 vi->i_blocks = ni->itype.compressed.size >> 9;
2773 vi->i_blocks = new_alloc_size >> 9;
2774 write_unlock_irqrestore(&ni->size_lock, flags);
2776 * We have shrunk the allocation. If this is a shrinking truncate we
2777 * have already dealt with the initialized_size and the data_size above
2778 * and we are done. If the truncate is only changing the allocation
2779 * and not the data_size, we are also done. If this is an extending
2780 * truncate, need to extend the data_size now which is ensured by the
2781 * fact that @size_change is positive.
2785 * If the size is growing, need to update it now. If it is shrinking,
2786 * we have already updated it above (before the allocation change).
2788 if (size_change > 0)
2789 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2790 /* Ensure the modified mft record is written out. */
2791 flush_dcache_mft_record_page(ctx->ntfs_ino);
2792 mark_mft_record_dirty(ctx->ntfs_ino);
2794 ntfs_attr_put_search_ctx(ctx);
2795 unmap_mft_record(base_ni);
2796 up_write(&ni->runlist.lock);
2798 /* Update the mtime and ctime on the base inode. */
2799 /* normally ->truncate shouldn't update ctime or mtime,
2800 * but ntfs did before so it got a copy & paste version
2801 * of file_update_time. one day someone should fix this
2804 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2805 struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb);
2808 if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2809 !timespec_equal(&VFS_I(base_ni)->i_ctime, &now))
2811 VFS_I(base_ni)->i_mtime = now;
2812 VFS_I(base_ni)->i_ctime = now;
2815 mark_inode_dirty_sync(VFS_I(base_ni));
2819 NInoClearTruncateFailed(ni);
2820 ntfs_debug("Done.");
2826 if (err != -ENOMEM && err != -EOPNOTSUPP) {
2828 make_bad_inode(VFS_I(base_ni));
2831 if (err != -EOPNOTSUPP)
2832 NInoSetTruncateFailed(ni);
2833 else if (old_size >= 0)
2834 i_size_write(vi, old_size);
2837 ntfs_attr_put_search_ctx(ctx);
2839 unmap_mft_record(base_ni);
2840 up_write(&ni->runlist.lock);
2842 ntfs_debug("Failed. Returning error code %i.", err);
2845 if (err != -ENOMEM && err != -EOPNOTSUPP) {
2847 make_bad_inode(VFS_I(base_ni));
2850 if (err != -EOPNOTSUPP)
2851 NInoSetTruncateFailed(ni);
2853 i_size_write(vi, old_size);
2858 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2859 * @vi: inode for which the i_size was changed
2861 * Wrapper for ntfs_truncate() that has no return value.
2863 * See ntfs_truncate() description above for details.
2865 void ntfs_truncate_vfs(struct inode *vi) {
2870 * ntfs_setattr - called from notify_change() when an attribute is being changed
2871 * @dentry: dentry whose attributes to change
2872 * @attr: structure describing the attributes and the changes
2874 * We have to trap VFS attempts to truncate the file described by @dentry as
2875 * soon as possible, because we do not implement changes in i_size yet. So we
2876 * abort all i_size changes here.
2878 * We also abort all changes of user, group, and mode as we do not implement
2879 * the NTFS ACLs yet.
2881 * Called with ->i_mutex held. For the ATTR_SIZE (i.e. ->truncate) case, also
2882 * called with ->i_alloc_sem held for writing.
2884 * Basically this is a copy of generic notify_change() and inode_setattr()
2885 * functionality, except we intercept and abort changes in i_size.
2887 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2889 struct inode *vi = dentry->d_inode;
2891 unsigned int ia_valid = attr->ia_valid;
2893 err = inode_change_ok(vi, attr);
2896 /* We do not support NTFS ACLs yet. */
2897 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2898 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2899 "supported yet, ignoring.");
2903 if (ia_valid & ATTR_SIZE) {
2904 if (attr->ia_size != i_size_read(vi)) {
2905 ntfs_inode *ni = NTFS_I(vi);
2907 * FIXME: For now we do not support resizing of
2908 * compressed or encrypted files yet.
2910 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2911 ntfs_warning(vi->i_sb, "Changes in inode size "
2912 "are not supported yet for "
2913 "%s files, ignoring.",
2914 NInoCompressed(ni) ?
2915 "compressed" : "encrypted");
2918 err = vmtruncate(vi, attr->ia_size);
2919 if (err || ia_valid == ATTR_SIZE)
2923 * We skipped the truncate but must still update
2926 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2929 if (ia_valid & ATTR_ATIME)
2930 vi->i_atime = timespec_trunc(attr->ia_atime,
2931 vi->i_sb->s_time_gran);
2932 if (ia_valid & ATTR_MTIME)
2933 vi->i_mtime = timespec_trunc(attr->ia_mtime,
2934 vi->i_sb->s_time_gran);
2935 if (ia_valid & ATTR_CTIME)
2936 vi->i_ctime = timespec_trunc(attr->ia_ctime,
2937 vi->i_sb->s_time_gran);
2938 mark_inode_dirty(vi);
2944 * ntfs_write_inode - write out a dirty inode
2945 * @vi: inode to write out
2946 * @sync: if true, write out synchronously
2948 * Write out a dirty inode to disk including any extent inodes if present.
2950 * If @sync is true, commit the inode to disk and wait for io completion. This
2951 * is done using write_mft_record().
2953 * If @sync is false, just schedule the write to happen but do not wait for i/o
2954 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2955 * marking the page (and in this case mft record) dirty but we do not implement
2956 * this yet as write_mft_record() largely ignores the @sync parameter and
2957 * always performs synchronous writes.
2959 * Return 0 on success and -errno on error.
2961 int ntfs_write_inode(struct inode *vi, int sync)
2964 ntfs_inode *ni = NTFS_I(vi);
2965 ntfs_attr_search_ctx *ctx;
2967 STANDARD_INFORMATION *si;
2969 BOOL modified = FALSE;
2971 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2974 * Dirty attribute inodes are written via their real inodes so just
2975 * clean them here. Access time updates are taken care off when the
2976 * real inode is written.
2980 ntfs_debug("Done.");
2983 /* Map, pin, and lock the mft record belonging to the inode. */
2984 m = map_mft_record(ni);
2989 /* Update the access times in the standard information attribute. */
2990 ctx = ntfs_attr_get_search_ctx(ni, m);
2991 if (unlikely(!ctx)) {
2995 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2996 CASE_SENSITIVE, 0, NULL, 0, ctx);
2997 if (unlikely(err)) {
2998 ntfs_attr_put_search_ctx(ctx);
3001 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
3002 le16_to_cpu(ctx->attr->data.resident.value_offset));
3003 /* Update the access times if they have changed. */
3004 nt = utc2ntfs(vi->i_mtime);
3005 if (si->last_data_change_time != nt) {
3006 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3007 "new = 0x%llx", vi->i_ino, (long long)
3008 sle64_to_cpu(si->last_data_change_time),
3009 (long long)sle64_to_cpu(nt));
3010 si->last_data_change_time = nt;
3013 nt = utc2ntfs(vi->i_ctime);
3014 if (si->last_mft_change_time != nt) {
3015 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3016 "new = 0x%llx", vi->i_ino, (long long)
3017 sle64_to_cpu(si->last_mft_change_time),
3018 (long long)sle64_to_cpu(nt));
3019 si->last_mft_change_time = nt;
3022 nt = utc2ntfs(vi->i_atime);
3023 if (si->last_access_time != nt) {
3024 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3025 "new = 0x%llx", vi->i_ino,
3026 (long long)sle64_to_cpu(si->last_access_time),
3027 (long long)sle64_to_cpu(nt));
3028 si->last_access_time = nt;
3032 * If we just modified the standard information attribute we need to
3033 * mark the mft record it is in dirty. We do this manually so that
3034 * mark_inode_dirty() is not called which would redirty the inode and
3035 * hence result in an infinite loop of trying to write the inode.
3036 * There is no need to mark the base inode nor the base mft record
3037 * dirty, since we are going to write this mft record below in any case
3038 * and the base mft record may actually not have been modified so it
3039 * might not need to be written out.
3040 * NOTE: It is not a problem when the inode for $MFT itself is being
3041 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3042 * on the $MFT inode and hence ntfs_write_inode() will not be
3043 * re-invoked because of it which in turn is ok since the dirtied mft
3044 * record will be cleaned and written out to disk below, i.e. before
3045 * this function returns.
3047 if (modified && !NInoTestSetDirty(ctx->ntfs_ino))
3048 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3049 ctx->ntfs_ino->page_ofs);
3050 ntfs_attr_put_search_ctx(ctx);
3051 /* Now the access times are updated, write the base mft record. */
3053 err = write_mft_record(ni, m, sync);
3054 /* Write all attached extent mft records. */
3055 down(&ni->extent_lock);
3056 if (ni->nr_extents > 0) {
3057 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3060 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3061 for (i = 0; i < ni->nr_extents; i++) {
3062 ntfs_inode *tni = extent_nis[i];
3064 if (NInoDirty(tni)) {
3065 MFT_RECORD *tm = map_mft_record(tni);
3069 if (!err || err == -ENOMEM)
3073 ret = write_mft_record(tni, tm, sync);
3074 unmap_mft_record(tni);
3075 if (unlikely(ret)) {
3076 if (!err || err == -ENOMEM)
3082 up(&ni->extent_lock);
3083 unmap_mft_record(ni);
3086 ntfs_debug("Done.");
3089 unmap_mft_record(ni);
3091 if (err == -ENOMEM) {
3092 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3093 "Marking the inode dirty again, so the VFS "
3095 mark_inode_dirty(vi);
3097 ntfs_error(vi->i_sb, "Failed (error code %i): Marking inode "
3098 "as bad. You should run chkdsk.", -err);
3100 NVolSetErrors(ni->vol);
3105 #endif /* NTFS_RW */