ath9k: Split beacon configuration into mode specific routines
[linux-2.6] / drivers / net / wireless / ath9k / main.c
1 /*
2  * Copyright (c) 2008 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19
20 #define ATH_PCI_VERSION "0.1"
21
22 static char *dev_info = "ath9k";
23
24 MODULE_AUTHOR("Atheros Communications");
25 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
26 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
27 MODULE_LICENSE("Dual BSD/GPL");
28
29 static int modparam_nohwcrypt;
30 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
31 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
32
33 /* We use the hw_value as an index into our private channel structure */
34
35 #define CHAN2G(_freq, _idx)  { \
36         .center_freq = (_freq), \
37         .hw_value = (_idx), \
38         .max_power = 30, \
39 }
40
41 #define CHAN5G(_freq, _idx) { \
42         .band = IEEE80211_BAND_5GHZ, \
43         .center_freq = (_freq), \
44         .hw_value = (_idx), \
45         .max_power = 30, \
46 }
47
48 /* Some 2 GHz radios are actually tunable on 2312-2732
49  * on 5 MHz steps, we support the channels which we know
50  * we have calibration data for all cards though to make
51  * this static */
52 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
53         CHAN2G(2412, 0), /* Channel 1 */
54         CHAN2G(2417, 1), /* Channel 2 */
55         CHAN2G(2422, 2), /* Channel 3 */
56         CHAN2G(2427, 3), /* Channel 4 */
57         CHAN2G(2432, 4), /* Channel 5 */
58         CHAN2G(2437, 5), /* Channel 6 */
59         CHAN2G(2442, 6), /* Channel 7 */
60         CHAN2G(2447, 7), /* Channel 8 */
61         CHAN2G(2452, 8), /* Channel 9 */
62         CHAN2G(2457, 9), /* Channel 10 */
63         CHAN2G(2462, 10), /* Channel 11 */
64         CHAN2G(2467, 11), /* Channel 12 */
65         CHAN2G(2472, 12), /* Channel 13 */
66         CHAN2G(2484, 13), /* Channel 14 */
67 };
68
69 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
70  * on 5 MHz steps, we support the channels which we know
71  * we have calibration data for all cards though to make
72  * this static */
73 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
74         /* _We_ call this UNII 1 */
75         CHAN5G(5180, 14), /* Channel 36 */
76         CHAN5G(5200, 15), /* Channel 40 */
77         CHAN5G(5220, 16), /* Channel 44 */
78         CHAN5G(5240, 17), /* Channel 48 */
79         /* _We_ call this UNII 2 */
80         CHAN5G(5260, 18), /* Channel 52 */
81         CHAN5G(5280, 19), /* Channel 56 */
82         CHAN5G(5300, 20), /* Channel 60 */
83         CHAN5G(5320, 21), /* Channel 64 */
84         /* _We_ call this "Middle band" */
85         CHAN5G(5500, 22), /* Channel 100 */
86         CHAN5G(5520, 23), /* Channel 104 */
87         CHAN5G(5540, 24), /* Channel 108 */
88         CHAN5G(5560, 25), /* Channel 112 */
89         CHAN5G(5580, 26), /* Channel 116 */
90         CHAN5G(5600, 27), /* Channel 120 */
91         CHAN5G(5620, 28), /* Channel 124 */
92         CHAN5G(5640, 29), /* Channel 128 */
93         CHAN5G(5660, 30), /* Channel 132 */
94         CHAN5G(5680, 31), /* Channel 136 */
95         CHAN5G(5700, 32), /* Channel 140 */
96         /* _We_ call this UNII 3 */
97         CHAN5G(5745, 33), /* Channel 149 */
98         CHAN5G(5765, 34), /* Channel 153 */
99         CHAN5G(5785, 35), /* Channel 157 */
100         CHAN5G(5805, 36), /* Channel 161 */
101         CHAN5G(5825, 37), /* Channel 165 */
102 };
103
104 static void ath_cache_conf_rate(struct ath_softc *sc,
105                                 struct ieee80211_conf *conf)
106 {
107         switch (conf->channel->band) {
108         case IEEE80211_BAND_2GHZ:
109                 if (conf_is_ht20(conf))
110                         sc->cur_rate_table =
111                           sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
112                 else if (conf_is_ht40_minus(conf))
113                         sc->cur_rate_table =
114                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
115                 else if (conf_is_ht40_plus(conf))
116                         sc->cur_rate_table =
117                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
118                 else
119                         sc->cur_rate_table =
120                           sc->hw_rate_table[ATH9K_MODE_11G];
121                 break;
122         case IEEE80211_BAND_5GHZ:
123                 if (conf_is_ht20(conf))
124                         sc->cur_rate_table =
125                           sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
126                 else if (conf_is_ht40_minus(conf))
127                         sc->cur_rate_table =
128                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
129                 else if (conf_is_ht40_plus(conf))
130                         sc->cur_rate_table =
131                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
132                 else
133                         sc->cur_rate_table =
134                           sc->hw_rate_table[ATH9K_MODE_11A];
135                 break;
136         default:
137                 BUG_ON(1);
138                 break;
139         }
140 }
141
142 static void ath_update_txpow(struct ath_softc *sc)
143 {
144         struct ath_hw *ah = sc->sc_ah;
145         u32 txpow;
146
147         if (sc->curtxpow != sc->config.txpowlimit) {
148                 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
149                 /* read back in case value is clamped */
150                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
151                 sc->curtxpow = txpow;
152         }
153 }
154
155 static u8 parse_mpdudensity(u8 mpdudensity)
156 {
157         /*
158          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
159          *   0 for no restriction
160          *   1 for 1/4 us
161          *   2 for 1/2 us
162          *   3 for 1 us
163          *   4 for 2 us
164          *   5 for 4 us
165          *   6 for 8 us
166          *   7 for 16 us
167          */
168         switch (mpdudensity) {
169         case 0:
170                 return 0;
171         case 1:
172         case 2:
173         case 3:
174                 /* Our lower layer calculations limit our precision to
175                    1 microsecond */
176                 return 1;
177         case 4:
178                 return 2;
179         case 5:
180                 return 4;
181         case 6:
182                 return 8;
183         case 7:
184                 return 16;
185         default:
186                 return 0;
187         }
188 }
189
190 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
191 {
192         struct ath_rate_table *rate_table = NULL;
193         struct ieee80211_supported_band *sband;
194         struct ieee80211_rate *rate;
195         int i, maxrates;
196
197         switch (band) {
198         case IEEE80211_BAND_2GHZ:
199                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
200                 break;
201         case IEEE80211_BAND_5GHZ:
202                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
203                 break;
204         default:
205                 break;
206         }
207
208         if (rate_table == NULL)
209                 return;
210
211         sband = &sc->sbands[band];
212         rate = sc->rates[band];
213
214         if (rate_table->rate_cnt > ATH_RATE_MAX)
215                 maxrates = ATH_RATE_MAX;
216         else
217                 maxrates = rate_table->rate_cnt;
218
219         for (i = 0; i < maxrates; i++) {
220                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
221                 rate[i].hw_value = rate_table->info[i].ratecode;
222                 if (rate_table->info[i].short_preamble) {
223                         rate[i].hw_value_short = rate_table->info[i].ratecode |
224                                 rate_table->info[i].short_preamble;
225                         rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
226                 }
227                 sband->n_bitrates++;
228
229                 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
230                         rate[i].bitrate / 10, rate[i].hw_value);
231         }
232 }
233
234 /*
235  * Set/change channels.  If the channel is really being changed, it's done
236  * by reseting the chip.  To accomplish this we must first cleanup any pending
237  * DMA, then restart stuff.
238 */
239 static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
240 {
241         struct ath_hw *ah = sc->sc_ah;
242         bool fastcc = true, stopped;
243         struct ieee80211_hw *hw = sc->hw;
244         struct ieee80211_channel *channel = hw->conf.channel;
245         int r;
246
247         if (sc->sc_flags & SC_OP_INVALID)
248                 return -EIO;
249
250         ath9k_ps_wakeup(sc);
251
252         /*
253          * This is only performed if the channel settings have
254          * actually changed.
255          *
256          * To switch channels clear any pending DMA operations;
257          * wait long enough for the RX fifo to drain, reset the
258          * hardware at the new frequency, and then re-enable
259          * the relevant bits of the h/w.
260          */
261         ath9k_hw_set_interrupts(ah, 0);
262         ath_drain_all_txq(sc, false);
263         stopped = ath_stoprecv(sc);
264
265         /* XXX: do not flush receive queue here. We don't want
266          * to flush data frames already in queue because of
267          * changing channel. */
268
269         if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
270                 fastcc = false;
271
272         DPRINTF(sc, ATH_DBG_CONFIG,
273                 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
274                 sc->sc_ah->curchan->channel,
275                 channel->center_freq, sc->tx_chan_width);
276
277         spin_lock_bh(&sc->sc_resetlock);
278
279         r = ath9k_hw_reset(ah, hchan, fastcc);
280         if (r) {
281                 DPRINTF(sc, ATH_DBG_FATAL,
282                         "Unable to reset channel (%u Mhz) "
283                         "reset status %u\n",
284                         channel->center_freq, r);
285                 spin_unlock_bh(&sc->sc_resetlock);
286                 return r;
287         }
288         spin_unlock_bh(&sc->sc_resetlock);
289
290         sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
291         sc->sc_flags &= ~SC_OP_FULL_RESET;
292
293         if (ath_startrecv(sc) != 0) {
294                 DPRINTF(sc, ATH_DBG_FATAL,
295                         "Unable to restart recv logic\n");
296                 return -EIO;
297         }
298
299         ath_cache_conf_rate(sc, &hw->conf);
300         ath_update_txpow(sc);
301         ath9k_hw_set_interrupts(ah, sc->imask);
302         ath9k_ps_restore(sc);
303         return 0;
304 }
305
306 /*
307  *  This routine performs the periodic noise floor calibration function
308  *  that is used to adjust and optimize the chip performance.  This
309  *  takes environmental changes (location, temperature) into account.
310  *  When the task is complete, it reschedules itself depending on the
311  *  appropriate interval that was calculated.
312  */
313 static void ath_ani_calibrate(unsigned long data)
314 {
315         struct ath_softc *sc = (struct ath_softc *)data;
316         struct ath_hw *ah = sc->sc_ah;
317         bool longcal = false;
318         bool shortcal = false;
319         bool aniflag = false;
320         unsigned int timestamp = jiffies_to_msecs(jiffies);
321         u32 cal_interval, short_cal_interval;
322
323         short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
324                 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
325
326         /*
327         * don't calibrate when we're scanning.
328         * we are most likely not on our home channel.
329         */
330         if (sc->sc_flags & SC_OP_SCANNING)
331                 goto set_timer;
332
333         /* Long calibration runs independently of short calibration. */
334         if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
335                 longcal = true;
336                 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
337                 sc->ani.longcal_timer = timestamp;
338         }
339
340         /* Short calibration applies only while caldone is false */
341         if (!sc->ani.caldone) {
342                 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
343                         shortcal = true;
344                         DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
345                         sc->ani.shortcal_timer = timestamp;
346                         sc->ani.resetcal_timer = timestamp;
347                 }
348         } else {
349                 if ((timestamp - sc->ani.resetcal_timer) >=
350                     ATH_RESTART_CALINTERVAL) {
351                         sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
352                         if (sc->ani.caldone)
353                                 sc->ani.resetcal_timer = timestamp;
354                 }
355         }
356
357         /* Verify whether we must check ANI */
358         if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
359                 aniflag = true;
360                 sc->ani.checkani_timer = timestamp;
361         }
362
363         /* Skip all processing if there's nothing to do. */
364         if (longcal || shortcal || aniflag) {
365                 /* Call ANI routine if necessary */
366                 if (aniflag)
367                         ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
368
369                 /* Perform calibration if necessary */
370                 if (longcal || shortcal) {
371                         bool iscaldone = false;
372
373                         if (ath9k_hw_calibrate(ah, ah->curchan,
374                                                sc->rx_chainmask, longcal,
375                                                &iscaldone)) {
376                                 if (longcal)
377                                         sc->ani.noise_floor =
378                                                 ath9k_hw_getchan_noise(ah,
379                                                                ah->curchan);
380
381                                 DPRINTF(sc, ATH_DBG_ANI,
382                                         "calibrate chan %u/%x nf: %d\n",
383                                         ah->curchan->channel,
384                                         ah->curchan->channelFlags,
385                                         sc->ani.noise_floor);
386                         } else {
387                                 DPRINTF(sc, ATH_DBG_ANY,
388                                         "calibrate chan %u/%x failed\n",
389                                         ah->curchan->channel,
390                                         ah->curchan->channelFlags);
391                         }
392                         sc->ani.caldone = iscaldone;
393                 }
394         }
395
396 set_timer:
397         /*
398         * Set timer interval based on previous results.
399         * The interval must be the shortest necessary to satisfy ANI,
400         * short calibration and long calibration.
401         */
402         cal_interval = ATH_LONG_CALINTERVAL;
403         if (sc->sc_ah->config.enable_ani)
404                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
405         if (!sc->ani.caldone)
406                 cal_interval = min(cal_interval, (u32)short_cal_interval);
407
408         mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
409 }
410
411 /*
412  * Update tx/rx chainmask. For legacy association,
413  * hard code chainmask to 1x1, for 11n association, use
414  * the chainmask configuration, for bt coexistence, use
415  * the chainmask configuration even in legacy mode.
416  */
417 static void ath_update_chainmask(struct ath_softc *sc, int is_ht)
418 {
419         sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
420         if (is_ht ||
421             (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
422                 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
423                 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
424         } else {
425                 sc->tx_chainmask = 1;
426                 sc->rx_chainmask = 1;
427         }
428
429         DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
430                 sc->tx_chainmask, sc->rx_chainmask);
431 }
432
433 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
434 {
435         struct ath_node *an;
436
437         an = (struct ath_node *)sta->drv_priv;
438
439         if (sc->sc_flags & SC_OP_TXAGGR)
440                 ath_tx_node_init(sc, an);
441
442         an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
443                              sta->ht_cap.ampdu_factor);
444         an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
445 }
446
447 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
448 {
449         struct ath_node *an = (struct ath_node *)sta->drv_priv;
450
451         if (sc->sc_flags & SC_OP_TXAGGR)
452                 ath_tx_node_cleanup(sc, an);
453 }
454
455 static void ath9k_tasklet(unsigned long data)
456 {
457         struct ath_softc *sc = (struct ath_softc *)data;
458         u32 status = sc->intrstatus;
459
460         if (status & ATH9K_INT_FATAL) {
461                 /* need a chip reset */
462                 ath_reset(sc, false);
463                 return;
464         } else {
465
466                 if (status &
467                     (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
468                         spin_lock_bh(&sc->rx.rxflushlock);
469                         ath_rx_tasklet(sc, 0);
470                         spin_unlock_bh(&sc->rx.rxflushlock);
471                 }
472                 /* XXX: optimize this */
473                 if (status & ATH9K_INT_TX)
474                         ath_tx_tasklet(sc);
475         }
476
477         /* re-enable hardware interrupt */
478         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
479 }
480
481 irqreturn_t ath_isr(int irq, void *dev)
482 {
483         struct ath_softc *sc = dev;
484         struct ath_hw *ah = sc->sc_ah;
485         enum ath9k_int status;
486         bool sched = false;
487
488         do {
489                 if (sc->sc_flags & SC_OP_INVALID) {
490                         /*
491                          * The hardware is not ready/present, don't
492                          * touch anything. Note this can happen early
493                          * on if the IRQ is shared.
494                          */
495                         return IRQ_NONE;
496                 }
497                 if (!ath9k_hw_intrpend(ah)) {   /* shared irq, not for us */
498                         return IRQ_NONE;
499                 }
500
501                 /*
502                  * Figure out the reason(s) for the interrupt.  Note
503                  * that the hal returns a pseudo-ISR that may include
504                  * bits we haven't explicitly enabled so we mask the
505                  * value to insure we only process bits we requested.
506                  */
507                 ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
508
509                 status &= sc->imask;    /* discard unasked-for bits */
510
511                 /*
512                  * If there are no status bits set, then this interrupt was not
513                  * for me (should have been caught above).
514                  */
515                 if (!status)
516                         return IRQ_NONE;
517
518                 sc->intrstatus = status;
519                 ath9k_ps_wakeup(sc);
520
521                 if (status & ATH9K_INT_FATAL) {
522                         /* need a chip reset */
523                         sched = true;
524                 } else if (status & ATH9K_INT_RXORN) {
525                         /* need a chip reset */
526                         sched = true;
527                 } else {
528                         if (status & ATH9K_INT_SWBA) {
529                                 /* schedule a tasklet for beacon handling */
530                                 tasklet_schedule(&sc->bcon_tasklet);
531                         }
532                         if (status & ATH9K_INT_RXEOL) {
533                                 /*
534                                  * NB: the hardware should re-read the link when
535                                  *     RXE bit is written, but it doesn't work
536                                  *     at least on older hardware revs.
537                                  */
538                                 sched = true;
539                         }
540
541                         if (status & ATH9K_INT_TXURN)
542                                 /* bump tx trigger level */
543                                 ath9k_hw_updatetxtriglevel(ah, true);
544                         /* XXX: optimize this */
545                         if (status & ATH9K_INT_RX)
546                                 sched = true;
547                         if (status & ATH9K_INT_TX)
548                                 sched = true;
549                         if (status & ATH9K_INT_BMISS)
550                                 sched = true;
551                         /* carrier sense timeout */
552                         if (status & ATH9K_INT_CST)
553                                 sched = true;
554                         if (status & ATH9K_INT_MIB) {
555                                 /*
556                                  * Disable interrupts until we service the MIB
557                                  * interrupt; otherwise it will continue to
558                                  * fire.
559                                  */
560                                 ath9k_hw_set_interrupts(ah, 0);
561                                 /*
562                                  * Let the hal handle the event. We assume
563                                  * it will clear whatever condition caused
564                                  * the interrupt.
565                                  */
566                                 ath9k_hw_procmibevent(ah, &sc->nodestats);
567                                 ath9k_hw_set_interrupts(ah, sc->imask);
568                         }
569                         if (status & ATH9K_INT_TIM_TIMER) {
570                                 if (!(ah->caps.hw_caps &
571                                       ATH9K_HW_CAP_AUTOSLEEP)) {
572                                         /* Clear RxAbort bit so that we can
573                                          * receive frames */
574                                         ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
575                                         ath9k_hw_setrxabort(ah, 0);
576                                         sched = true;
577                                         sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
578                                 }
579                         }
580                         if (status & ATH9K_INT_TSFOOR) {
581                                 /* FIXME: Handle this interrupt for power save */
582                                 sched = true;
583                         }
584                 }
585                 ath9k_ps_restore(sc);
586         } while (0);
587
588         ath_debug_stat_interrupt(sc, status);
589
590         if (sched) {
591                 /* turn off every interrupt except SWBA */
592                 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
593                 tasklet_schedule(&sc->intr_tq);
594         }
595
596         return IRQ_HANDLED;
597 }
598
599 static u32 ath_get_extchanmode(struct ath_softc *sc,
600                                struct ieee80211_channel *chan,
601                                enum nl80211_channel_type channel_type)
602 {
603         u32 chanmode = 0;
604
605         switch (chan->band) {
606         case IEEE80211_BAND_2GHZ:
607                 switch(channel_type) {
608                 case NL80211_CHAN_NO_HT:
609                 case NL80211_CHAN_HT20:
610                         chanmode = CHANNEL_G_HT20;
611                         break;
612                 case NL80211_CHAN_HT40PLUS:
613                         chanmode = CHANNEL_G_HT40PLUS;
614                         break;
615                 case NL80211_CHAN_HT40MINUS:
616                         chanmode = CHANNEL_G_HT40MINUS;
617                         break;
618                 }
619                 break;
620         case IEEE80211_BAND_5GHZ:
621                 switch(channel_type) {
622                 case NL80211_CHAN_NO_HT:
623                 case NL80211_CHAN_HT20:
624                         chanmode = CHANNEL_A_HT20;
625                         break;
626                 case NL80211_CHAN_HT40PLUS:
627                         chanmode = CHANNEL_A_HT40PLUS;
628                         break;
629                 case NL80211_CHAN_HT40MINUS:
630                         chanmode = CHANNEL_A_HT40MINUS;
631                         break;
632                 }
633                 break;
634         default:
635                 break;
636         }
637
638         return chanmode;
639 }
640
641 static int ath_keyset(struct ath_softc *sc, u16 keyix,
642                struct ath9k_keyval *hk, const u8 mac[ETH_ALEN])
643 {
644         bool status;
645
646         status = ath9k_hw_set_keycache_entry(sc->sc_ah,
647                 keyix, hk, mac);
648
649         return status != false;
650 }
651
652 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
653                            struct ath9k_keyval *hk, const u8 *addr,
654                            bool authenticator)
655 {
656         const u8 *key_rxmic;
657         const u8 *key_txmic;
658
659         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
660         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
661
662         if (addr == NULL) {
663                 /* Group key installation */
664                 if (authenticator) {
665                         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
666                         memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
667                 } else {
668                         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
669                         memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
670                 }
671                 return ath_keyset(sc, keyix, hk, addr);
672         }
673         if (!sc->splitmic) {
674                 /*
675                  * data key goes at first index,
676                  * the hal handles the MIC keys at index+64.
677                  */
678                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
679                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
680                 return ath_keyset(sc, keyix, hk, addr);
681         }
682         /*
683          * TX key goes at first index, RX key at +32.
684          * The hal handles the MIC keys at index+64.
685          */
686         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
687         if (!ath_keyset(sc, keyix, hk, NULL)) {
688                 /* Txmic entry failed. No need to proceed further */
689                 DPRINTF(sc, ATH_DBG_KEYCACHE,
690                         "Setting TX MIC Key Failed\n");
691                 return 0;
692         }
693
694         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
695         /* XXX delete tx key on failure? */
696         return ath_keyset(sc, keyix + 32, hk, addr);
697 }
698
699 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
700 {
701         int i;
702
703         for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
704                 if (test_bit(i, sc->keymap) ||
705                     test_bit(i + 64, sc->keymap))
706                         continue; /* At least one part of TKIP key allocated */
707                 if (sc->splitmic &&
708                     (test_bit(i + 32, sc->keymap) ||
709                      test_bit(i + 64 + 32, sc->keymap)))
710                         continue; /* At least one part of TKIP key allocated */
711
712                 /* Found a free slot for a TKIP key */
713                 return i;
714         }
715         return -1;
716 }
717
718 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
719 {
720         int i;
721
722         /* First, try to find slots that would not be available for TKIP. */
723         if (sc->splitmic) {
724                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
725                         if (!test_bit(i, sc->keymap) &&
726                             (test_bit(i + 32, sc->keymap) ||
727                              test_bit(i + 64, sc->keymap) ||
728                              test_bit(i + 64 + 32, sc->keymap)))
729                                 return i;
730                         if (!test_bit(i + 32, sc->keymap) &&
731                             (test_bit(i, sc->keymap) ||
732                              test_bit(i + 64, sc->keymap) ||
733                              test_bit(i + 64 + 32, sc->keymap)))
734                                 return i + 32;
735                         if (!test_bit(i + 64, sc->keymap) &&
736                             (test_bit(i , sc->keymap) ||
737                              test_bit(i + 32, sc->keymap) ||
738                              test_bit(i + 64 + 32, sc->keymap)))
739                                 return i + 64;
740                         if (!test_bit(i + 64 + 32, sc->keymap) &&
741                             (test_bit(i, sc->keymap) ||
742                              test_bit(i + 32, sc->keymap) ||
743                              test_bit(i + 64, sc->keymap)))
744                                 return i + 64 + 32;
745                 }
746         } else {
747                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
748                         if (!test_bit(i, sc->keymap) &&
749                             test_bit(i + 64, sc->keymap))
750                                 return i;
751                         if (test_bit(i, sc->keymap) &&
752                             !test_bit(i + 64, sc->keymap))
753                                 return i + 64;
754                 }
755         }
756
757         /* No partially used TKIP slots, pick any available slot */
758         for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
759                 /* Do not allow slots that could be needed for TKIP group keys
760                  * to be used. This limitation could be removed if we know that
761                  * TKIP will not be used. */
762                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
763                         continue;
764                 if (sc->splitmic) {
765                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
766                                 continue;
767                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
768                                 continue;
769                 }
770
771                 if (!test_bit(i, sc->keymap))
772                         return i; /* Found a free slot for a key */
773         }
774
775         /* No free slot found */
776         return -1;
777 }
778
779 static int ath_key_config(struct ath_softc *sc,
780                           struct ieee80211_vif *vif,
781                           struct ieee80211_sta *sta,
782                           struct ieee80211_key_conf *key)
783 {
784         struct ath9k_keyval hk;
785         const u8 *mac = NULL;
786         int ret = 0;
787         int idx;
788
789         memset(&hk, 0, sizeof(hk));
790
791         switch (key->alg) {
792         case ALG_WEP:
793                 hk.kv_type = ATH9K_CIPHER_WEP;
794                 break;
795         case ALG_TKIP:
796                 hk.kv_type = ATH9K_CIPHER_TKIP;
797                 break;
798         case ALG_CCMP:
799                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
800                 break;
801         default:
802                 return -EOPNOTSUPP;
803         }
804
805         hk.kv_len = key->keylen;
806         memcpy(hk.kv_val, key->key, key->keylen);
807
808         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
809                 /* For now, use the default keys for broadcast keys. This may
810                  * need to change with virtual interfaces. */
811                 idx = key->keyidx;
812         } else if (key->keyidx) {
813                 struct ieee80211_vif *vif;
814
815                 if (WARN_ON(!sta))
816                         return -EOPNOTSUPP;
817                 mac = sta->addr;
818
819                 vif = sc->vifs[0];
820                 if (vif->type != NL80211_IFTYPE_AP) {
821                         /* Only keyidx 0 should be used with unicast key, but
822                          * allow this for client mode for now. */
823                         idx = key->keyidx;
824                 } else
825                         return -EIO;
826         } else {
827                 if (WARN_ON(!sta))
828                         return -EOPNOTSUPP;
829                 mac = sta->addr;
830
831                 if (key->alg == ALG_TKIP)
832                         idx = ath_reserve_key_cache_slot_tkip(sc);
833                 else
834                         idx = ath_reserve_key_cache_slot(sc);
835                 if (idx < 0)
836                         return -ENOSPC; /* no free key cache entries */
837         }
838
839         if (key->alg == ALG_TKIP)
840                 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
841                                       vif->type == NL80211_IFTYPE_AP);
842         else
843                 ret = ath_keyset(sc, idx, &hk, mac);
844
845         if (!ret)
846                 return -EIO;
847
848         set_bit(idx, sc->keymap);
849         if (key->alg == ALG_TKIP) {
850                 set_bit(idx + 64, sc->keymap);
851                 if (sc->splitmic) {
852                         set_bit(idx + 32, sc->keymap);
853                         set_bit(idx + 64 + 32, sc->keymap);
854                 }
855         }
856
857         return idx;
858 }
859
860 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
861 {
862         ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
863         if (key->hw_key_idx < IEEE80211_WEP_NKID)
864                 return;
865
866         clear_bit(key->hw_key_idx, sc->keymap);
867         if (key->alg != ALG_TKIP)
868                 return;
869
870         clear_bit(key->hw_key_idx + 64, sc->keymap);
871         if (sc->splitmic) {
872                 clear_bit(key->hw_key_idx + 32, sc->keymap);
873                 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
874         }
875 }
876
877 static void setup_ht_cap(struct ath_softc *sc,
878                          struct ieee80211_sta_ht_cap *ht_info)
879 {
880 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3       /* 2 ^ 16 */
881 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6          /* 8 usec */
882
883         ht_info->ht_supported = true;
884         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
885                        IEEE80211_HT_CAP_SM_PS |
886                        IEEE80211_HT_CAP_SGI_40 |
887                        IEEE80211_HT_CAP_DSSSCCK40;
888
889         ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
890         ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
891
892         /* set up supported mcs set */
893         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
894
895         switch(sc->rx_chainmask) {
896         case 1:
897                 ht_info->mcs.rx_mask[0] = 0xff;
898                 break;
899         case 3:
900         case 5:
901         case 7:
902         default:
903                 ht_info->mcs.rx_mask[0] = 0xff;
904                 ht_info->mcs.rx_mask[1] = 0xff;
905                 break;
906         }
907
908         ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
909 }
910
911 static void ath9k_bss_assoc_info(struct ath_softc *sc,
912                                  struct ieee80211_vif *vif,
913                                  struct ieee80211_bss_conf *bss_conf)
914 {
915         struct ath_vif *avp = (void *)vif->drv_priv;
916
917         if (bss_conf->assoc) {
918                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
919                         bss_conf->aid, sc->curbssid);
920
921                 /* New association, store aid */
922                 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
923                         sc->curaid = bss_conf->aid;
924                         ath9k_hw_write_associd(sc);
925                 }
926
927                 /* Configure the beacon */
928                 ath_beacon_config(sc, 0);
929
930                 /* Reset rssi stats */
931                 sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
932                 sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
933                 sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
934                 sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
935
936                 /* Start ANI */
937                 mod_timer(&sc->ani.timer,
938                           jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
939         } else {
940                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
941                 sc->curaid = 0;
942         }
943 }
944
945 /********************************/
946 /*       LED functions          */
947 /********************************/
948
949 static void ath_led_blink_work(struct work_struct *work)
950 {
951         struct ath_softc *sc = container_of(work, struct ath_softc,
952                                             ath_led_blink_work.work);
953
954         if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
955                 return;
956         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
957                           (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
958
959         queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
960                            (sc->sc_flags & SC_OP_LED_ON) ?
961                            msecs_to_jiffies(sc->led_off_duration) :
962                            msecs_to_jiffies(sc->led_on_duration));
963
964         sc->led_on_duration =
965                         max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25);
966         sc->led_off_duration =
967                         max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10);
968         sc->led_on_cnt = sc->led_off_cnt = 0;
969         if (sc->sc_flags & SC_OP_LED_ON)
970                 sc->sc_flags &= ~SC_OP_LED_ON;
971         else
972                 sc->sc_flags |= SC_OP_LED_ON;
973 }
974
975 static void ath_led_brightness(struct led_classdev *led_cdev,
976                                enum led_brightness brightness)
977 {
978         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
979         struct ath_softc *sc = led->sc;
980
981         switch (brightness) {
982         case LED_OFF:
983                 if (led->led_type == ATH_LED_ASSOC ||
984                     led->led_type == ATH_LED_RADIO) {
985                         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
986                                 (led->led_type == ATH_LED_RADIO));
987                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
988                         if (led->led_type == ATH_LED_RADIO)
989                                 sc->sc_flags &= ~SC_OP_LED_ON;
990                 } else {
991                         sc->led_off_cnt++;
992                 }
993                 break;
994         case LED_FULL:
995                 if (led->led_type == ATH_LED_ASSOC) {
996                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
997                         queue_delayed_work(sc->hw->workqueue,
998                                            &sc->ath_led_blink_work, 0);
999                 } else if (led->led_type == ATH_LED_RADIO) {
1000                         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
1001                         sc->sc_flags |= SC_OP_LED_ON;
1002                 } else {
1003                         sc->led_on_cnt++;
1004                 }
1005                 break;
1006         default:
1007                 break;
1008         }
1009 }
1010
1011 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1012                             char *trigger)
1013 {
1014         int ret;
1015
1016         led->sc = sc;
1017         led->led_cdev.name = led->name;
1018         led->led_cdev.default_trigger = trigger;
1019         led->led_cdev.brightness_set = ath_led_brightness;
1020
1021         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1022         if (ret)
1023                 DPRINTF(sc, ATH_DBG_FATAL,
1024                         "Failed to register led:%s", led->name);
1025         else
1026                 led->registered = 1;
1027         return ret;
1028 }
1029
1030 static void ath_unregister_led(struct ath_led *led)
1031 {
1032         if (led->registered) {
1033                 led_classdev_unregister(&led->led_cdev);
1034                 led->registered = 0;
1035         }
1036 }
1037
1038 static void ath_deinit_leds(struct ath_softc *sc)
1039 {
1040         cancel_delayed_work_sync(&sc->ath_led_blink_work);
1041         ath_unregister_led(&sc->assoc_led);
1042         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1043         ath_unregister_led(&sc->tx_led);
1044         ath_unregister_led(&sc->rx_led);
1045         ath_unregister_led(&sc->radio_led);
1046         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1047 }
1048
1049 static void ath_init_leds(struct ath_softc *sc)
1050 {
1051         char *trigger;
1052         int ret;
1053
1054         /* Configure gpio 1 for output */
1055         ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1056                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1057         /* LED off, active low */
1058         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1059
1060         INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1061
1062         trigger = ieee80211_get_radio_led_name(sc->hw);
1063         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1064                 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1065         ret = ath_register_led(sc, &sc->radio_led, trigger);
1066         sc->radio_led.led_type = ATH_LED_RADIO;
1067         if (ret)
1068                 goto fail;
1069
1070         trigger = ieee80211_get_assoc_led_name(sc->hw);
1071         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1072                 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1073         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1074         sc->assoc_led.led_type = ATH_LED_ASSOC;
1075         if (ret)
1076                 goto fail;
1077
1078         trigger = ieee80211_get_tx_led_name(sc->hw);
1079         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1080                 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1081         ret = ath_register_led(sc, &sc->tx_led, trigger);
1082         sc->tx_led.led_type = ATH_LED_TX;
1083         if (ret)
1084                 goto fail;
1085
1086         trigger = ieee80211_get_rx_led_name(sc->hw);
1087         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1088                 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1089         ret = ath_register_led(sc, &sc->rx_led, trigger);
1090         sc->rx_led.led_type = ATH_LED_RX;
1091         if (ret)
1092                 goto fail;
1093
1094         return;
1095
1096 fail:
1097         ath_deinit_leds(sc);
1098 }
1099
1100 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1101
1102 /*******************/
1103 /*      Rfkill     */
1104 /*******************/
1105
1106 static void ath_radio_enable(struct ath_softc *sc)
1107 {
1108         struct ath_hw *ah = sc->sc_ah;
1109         struct ieee80211_channel *channel = sc->hw->conf.channel;
1110         int r;
1111
1112         ath9k_ps_wakeup(sc);
1113         spin_lock_bh(&sc->sc_resetlock);
1114
1115         r = ath9k_hw_reset(ah, ah->curchan, false);
1116
1117         if (r) {
1118                 DPRINTF(sc, ATH_DBG_FATAL,
1119                         "Unable to reset channel %u (%uMhz) ",
1120                         "reset status %u\n",
1121                         channel->center_freq, r);
1122         }
1123         spin_unlock_bh(&sc->sc_resetlock);
1124
1125         ath_update_txpow(sc);
1126         if (ath_startrecv(sc) != 0) {
1127                 DPRINTF(sc, ATH_DBG_FATAL,
1128                         "Unable to restart recv logic\n");
1129                 return;
1130         }
1131
1132         if (sc->sc_flags & SC_OP_BEACONS)
1133                 ath_beacon_config(sc, ATH_IF_ID_ANY);   /* restart beacons */
1134
1135         /* Re-Enable  interrupts */
1136         ath9k_hw_set_interrupts(ah, sc->imask);
1137
1138         /* Enable LED */
1139         ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1140                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1141         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1142
1143         ieee80211_wake_queues(sc->hw);
1144         ath9k_ps_restore(sc);
1145 }
1146
1147 static void ath_radio_disable(struct ath_softc *sc)
1148 {
1149         struct ath_hw *ah = sc->sc_ah;
1150         struct ieee80211_channel *channel = sc->hw->conf.channel;
1151         int r;
1152
1153         ath9k_ps_wakeup(sc);
1154         ieee80211_stop_queues(sc->hw);
1155
1156         /* Disable LED */
1157         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1158         ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1159
1160         /* Disable interrupts */
1161         ath9k_hw_set_interrupts(ah, 0);
1162
1163         ath_drain_all_txq(sc, false);   /* clear pending tx frames */
1164         ath_stoprecv(sc);               /* turn off frame recv */
1165         ath_flushrecv(sc);              /* flush recv queue */
1166
1167         spin_lock_bh(&sc->sc_resetlock);
1168         r = ath9k_hw_reset(ah, ah->curchan, false);
1169         if (r) {
1170                 DPRINTF(sc, ATH_DBG_FATAL,
1171                         "Unable to reset channel %u (%uMhz) "
1172                         "reset status %u\n",
1173                         channel->center_freq, r);
1174         }
1175         spin_unlock_bh(&sc->sc_resetlock);
1176
1177         ath9k_hw_phy_disable(ah);
1178         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1179         ath9k_ps_restore(sc);
1180 }
1181
1182 static bool ath_is_rfkill_set(struct ath_softc *sc)
1183 {
1184         struct ath_hw *ah = sc->sc_ah;
1185
1186         return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1187                                   ah->rfkill_polarity;
1188 }
1189
1190 /* h/w rfkill poll function */
1191 static void ath_rfkill_poll(struct work_struct *work)
1192 {
1193         struct ath_softc *sc = container_of(work, struct ath_softc,
1194                                             rf_kill.rfkill_poll.work);
1195         bool radio_on;
1196
1197         if (sc->sc_flags & SC_OP_INVALID)
1198                 return;
1199
1200         radio_on = !ath_is_rfkill_set(sc);
1201
1202         /*
1203          * enable/disable radio only when there is a
1204          * state change in RF switch
1205          */
1206         if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1207                 enum rfkill_state state;
1208
1209                 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1210                         state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1211                                 : RFKILL_STATE_HARD_BLOCKED;
1212                 } else if (radio_on) {
1213                         ath_radio_enable(sc);
1214                         state = RFKILL_STATE_UNBLOCKED;
1215                 } else {
1216                         ath_radio_disable(sc);
1217                         state = RFKILL_STATE_HARD_BLOCKED;
1218                 }
1219
1220                 if (state == RFKILL_STATE_HARD_BLOCKED)
1221                         sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1222                 else
1223                         sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1224
1225                 rfkill_force_state(sc->rf_kill.rfkill, state);
1226         }
1227
1228         queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1229                            msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1230 }
1231
1232 /* s/w rfkill handler */
1233 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1234 {
1235         struct ath_softc *sc = data;
1236
1237         switch (state) {
1238         case RFKILL_STATE_SOFT_BLOCKED:
1239                 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1240                     SC_OP_RFKILL_SW_BLOCKED)))
1241                         ath_radio_disable(sc);
1242                 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1243                 return 0;
1244         case RFKILL_STATE_UNBLOCKED:
1245                 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1246                         sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1247                         if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1248                                 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1249                                         "radio as it is disabled by h/w\n");
1250                                 return -EPERM;
1251                         }
1252                         ath_radio_enable(sc);
1253                 }
1254                 return 0;
1255         default:
1256                 return -EINVAL;
1257         }
1258 }
1259
1260 /* Init s/w rfkill */
1261 static int ath_init_sw_rfkill(struct ath_softc *sc)
1262 {
1263         sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1264                                              RFKILL_TYPE_WLAN);
1265         if (!sc->rf_kill.rfkill) {
1266                 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1267                 return -ENOMEM;
1268         }
1269
1270         snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1271                 "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
1272         sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1273         sc->rf_kill.rfkill->data = sc;
1274         sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1275         sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1276         sc->rf_kill.rfkill->user_claim_unsupported = 1;
1277
1278         return 0;
1279 }
1280
1281 /* Deinitialize rfkill */
1282 static void ath_deinit_rfkill(struct ath_softc *sc)
1283 {
1284         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1285                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1286
1287         if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1288                 rfkill_unregister(sc->rf_kill.rfkill);
1289                 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1290                 sc->rf_kill.rfkill = NULL;
1291         }
1292 }
1293
1294 static int ath_start_rfkill_poll(struct ath_softc *sc)
1295 {
1296         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1297                 queue_delayed_work(sc->hw->workqueue,
1298                                    &sc->rf_kill.rfkill_poll, 0);
1299
1300         if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1301                 if (rfkill_register(sc->rf_kill.rfkill)) {
1302                         DPRINTF(sc, ATH_DBG_FATAL,
1303                                 "Unable to register rfkill\n");
1304                         rfkill_free(sc->rf_kill.rfkill);
1305
1306                         /* Deinitialize the device */
1307                         ath_cleanup(sc);
1308                         return -EIO;
1309                 } else {
1310                         sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1311                 }
1312         }
1313
1314         return 0;
1315 }
1316 #endif /* CONFIG_RFKILL */
1317
1318 void ath_cleanup(struct ath_softc *sc)
1319 {
1320         ath_detach(sc);
1321         free_irq(sc->irq, sc);
1322         ath_bus_cleanup(sc);
1323         ieee80211_free_hw(sc->hw);
1324 }
1325
1326 void ath_detach(struct ath_softc *sc)
1327 {
1328         struct ieee80211_hw *hw = sc->hw;
1329         int i = 0;
1330
1331         ath9k_ps_wakeup(sc);
1332
1333         DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1334
1335 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1336         ath_deinit_rfkill(sc);
1337 #endif
1338         ath_deinit_leds(sc);
1339
1340         ieee80211_unregister_hw(hw);
1341         ath_rx_cleanup(sc);
1342         ath_tx_cleanup(sc);
1343
1344         tasklet_kill(&sc->intr_tq);
1345         tasklet_kill(&sc->bcon_tasklet);
1346
1347         if (!(sc->sc_flags & SC_OP_INVALID))
1348                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1349
1350         /* cleanup tx queues */
1351         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1352                 if (ATH_TXQ_SETUP(sc, i))
1353                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1354
1355         ath9k_hw_detach(sc->sc_ah);
1356         ath9k_exit_debug(sc);
1357         ath9k_ps_restore(sc);
1358 }
1359
1360 static int ath_init(u16 devid, struct ath_softc *sc)
1361 {
1362         struct ath_hw *ah = NULL;
1363         int status;
1364         int error = 0, i;
1365         int csz = 0;
1366
1367         /* XXX: hardware will not be ready until ath_open() being called */
1368         sc->sc_flags |= SC_OP_INVALID;
1369
1370         if (ath9k_init_debug(sc) < 0)
1371                 printk(KERN_ERR "Unable to create debugfs files\n");
1372
1373         spin_lock_init(&sc->sc_resetlock);
1374         mutex_init(&sc->mutex);
1375         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1376         tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1377                      (unsigned long)sc);
1378
1379         /*
1380          * Cache line size is used to size and align various
1381          * structures used to communicate with the hardware.
1382          */
1383         ath_read_cachesize(sc, &csz);
1384         /* XXX assert csz is non-zero */
1385         sc->cachelsz = csz << 2;        /* convert to bytes */
1386
1387         ah = ath9k_hw_attach(devid, sc, &status);
1388         if (ah == NULL) {
1389                 DPRINTF(sc, ATH_DBG_FATAL,
1390                         "Unable to attach hardware; HAL status %d\n", status);
1391                 error = -ENXIO;
1392                 goto bad;
1393         }
1394         sc->sc_ah = ah;
1395
1396         /* Get the hardware key cache size. */
1397         sc->keymax = ah->caps.keycache_size;
1398         if (sc->keymax > ATH_KEYMAX) {
1399                 DPRINTF(sc, ATH_DBG_KEYCACHE,
1400                         "Warning, using only %u entries in %u key cache\n",
1401                         ATH_KEYMAX, sc->keymax);
1402                 sc->keymax = ATH_KEYMAX;
1403         }
1404
1405         /*
1406          * Reset the key cache since some parts do not
1407          * reset the contents on initial power up.
1408          */
1409         for (i = 0; i < sc->keymax; i++)
1410                 ath9k_hw_keyreset(ah, (u16) i);
1411
1412         if (ath9k_regd_init(sc->sc_ah))
1413                 goto bad;
1414
1415         /* default to MONITOR mode */
1416         sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1417
1418         /* Setup rate tables */
1419
1420         ath_rate_attach(sc);
1421         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1422         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1423
1424         /*
1425          * Allocate hardware transmit queues: one queue for
1426          * beacon frames and one data queue for each QoS
1427          * priority.  Note that the hal handles reseting
1428          * these queues at the needed time.
1429          */
1430         sc->beacon.beaconq = ath_beaconq_setup(ah);
1431         if (sc->beacon.beaconq == -1) {
1432                 DPRINTF(sc, ATH_DBG_FATAL,
1433                         "Unable to setup a beacon xmit queue\n");
1434                 error = -EIO;
1435                 goto bad2;
1436         }
1437         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1438         if (sc->beacon.cabq == NULL) {
1439                 DPRINTF(sc, ATH_DBG_FATAL,
1440                         "Unable to setup CAB xmit queue\n");
1441                 error = -EIO;
1442                 goto bad2;
1443         }
1444
1445         sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1446         ath_cabq_update(sc);
1447
1448         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1449                 sc->tx.hwq_map[i] = -1;
1450
1451         /* Setup data queues */
1452         /* NB: ensure BK queue is the lowest priority h/w queue */
1453         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1454                 DPRINTF(sc, ATH_DBG_FATAL,
1455                         "Unable to setup xmit queue for BK traffic\n");
1456                 error = -EIO;
1457                 goto bad2;
1458         }
1459
1460         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1461                 DPRINTF(sc, ATH_DBG_FATAL,
1462                         "Unable to setup xmit queue for BE traffic\n");
1463                 error = -EIO;
1464                 goto bad2;
1465         }
1466         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1467                 DPRINTF(sc, ATH_DBG_FATAL,
1468                         "Unable to setup xmit queue for VI traffic\n");
1469                 error = -EIO;
1470                 goto bad2;
1471         }
1472         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1473                 DPRINTF(sc, ATH_DBG_FATAL,
1474                         "Unable to setup xmit queue for VO traffic\n");
1475                 error = -EIO;
1476                 goto bad2;
1477         }
1478
1479         /* Initializes the noise floor to a reasonable default value.
1480          * Later on this will be updated during ANI processing. */
1481
1482         sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1483         setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1484
1485         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1486                                    ATH9K_CIPHER_TKIP, NULL)) {
1487                 /*
1488                  * Whether we should enable h/w TKIP MIC.
1489                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1490                  * report WMM capable, so it's always safe to turn on
1491                  * TKIP MIC in this case.
1492                  */
1493                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1494                                        0, 1, NULL);
1495         }
1496
1497         /*
1498          * Check whether the separate key cache entries
1499          * are required to handle both tx+rx MIC keys.
1500          * With split mic keys the number of stations is limited
1501          * to 27 otherwise 59.
1502          */
1503         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1504                                    ATH9K_CIPHER_TKIP, NULL)
1505             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1506                                       ATH9K_CIPHER_MIC, NULL)
1507             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1508                                       0, NULL))
1509                 sc->splitmic = 1;
1510
1511         /* turn on mcast key search if possible */
1512         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1513                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1514                                              1, NULL);
1515
1516         sc->config.txpowlimit = ATH_TXPOWER_MAX;
1517
1518         /* 11n Capabilities */
1519         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1520                 sc->sc_flags |= SC_OP_TXAGGR;
1521                 sc->sc_flags |= SC_OP_RXAGGR;
1522         }
1523
1524         sc->tx_chainmask = ah->caps.tx_chainmask;
1525         sc->rx_chainmask = ah->caps.rx_chainmask;
1526
1527         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1528         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1529
1530         if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
1531                 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1532                 ATH_SET_VIF_BSSID_MASK(sc->bssidmask);
1533                 ath9k_hw_setbssidmask(sc);
1534         }
1535
1536         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1537
1538         /* initialize beacon slots */
1539         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
1540                 sc->beacon.bslot[i] = ATH_IF_ID_ANY;
1541
1542         /* save MISC configurations */
1543         sc->config.swBeaconProcess = 1;
1544
1545         /* setup channels and rates */
1546
1547         sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1548         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1549                 sc->rates[IEEE80211_BAND_2GHZ];
1550         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1551         sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1552                 ARRAY_SIZE(ath9k_2ghz_chantable);
1553
1554         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1555                 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1556                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1557                         sc->rates[IEEE80211_BAND_5GHZ];
1558                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1559                 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1560                         ARRAY_SIZE(ath9k_5ghz_chantable);
1561         }
1562
1563         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1564                 ath9k_hw_btcoex_enable(sc->sc_ah);
1565
1566         return 0;
1567 bad2:
1568         /* cleanup tx queues */
1569         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1570                 if (ATH_TXQ_SETUP(sc, i))
1571                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1572 bad:
1573         if (ah)
1574                 ath9k_hw_detach(ah);
1575         ath9k_exit_debug(sc);
1576
1577         return error;
1578 }
1579
1580 int ath_attach(u16 devid, struct ath_softc *sc)
1581 {
1582         struct ieee80211_hw *hw = sc->hw;
1583         const struct ieee80211_regdomain *regd;
1584         int error = 0, i;
1585
1586         DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1587
1588         error = ath_init(devid, sc);
1589         if (error != 0)
1590                 return error;
1591
1592         /* get mac address from hardware and set in mac80211 */
1593
1594         SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1595
1596         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1597                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1598                 IEEE80211_HW_SIGNAL_DBM |
1599                 IEEE80211_HW_AMPDU_AGGREGATION |
1600                 IEEE80211_HW_SUPPORTS_PS |
1601                 IEEE80211_HW_PS_NULLFUNC_STACK;
1602
1603         if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1604                 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1605
1606         hw->wiphy->interface_modes =
1607                 BIT(NL80211_IFTYPE_AP) |
1608                 BIT(NL80211_IFTYPE_STATION) |
1609                 BIT(NL80211_IFTYPE_ADHOC);
1610
1611         hw->wiphy->reg_notifier = ath9k_reg_notifier;
1612         hw->wiphy->strict_regulatory = true;
1613
1614         hw->queues = 4;
1615         hw->max_rates = 4;
1616         hw->channel_change_time = 5000;
1617         hw->max_rate_tries = ATH_11N_TXMAXTRY;
1618         hw->sta_data_size = sizeof(struct ath_node);
1619         hw->vif_data_size = sizeof(struct ath_vif);
1620
1621         hw->rate_control_algorithm = "ath9k_rate_control";
1622
1623         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1624                 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1625                 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1626                         setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1627         }
1628
1629         hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ];
1630         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1631                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1632                         &sc->sbands[IEEE80211_BAND_5GHZ];
1633
1634         /* initialize tx/rx engine */
1635         error = ath_tx_init(sc, ATH_TXBUF);
1636         if (error != 0)
1637                 goto error_attach;
1638
1639         error = ath_rx_init(sc, ATH_RXBUF);
1640         if (error != 0)
1641                 goto error_attach;
1642
1643 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1644         /* Initialze h/w Rfkill */
1645         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1646                 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1647
1648         /* Initialize s/w rfkill */
1649         error = ath_init_sw_rfkill(sc);
1650         if (error)
1651                 goto error_attach;
1652 #endif
1653
1654         if (ath9k_is_world_regd(sc->sc_ah)) {
1655                 /* Anything applied here (prior to wiphy registration) gets
1656                  * saved on the wiphy orig_* parameters */
1657                 regd = ath9k_world_regdomain(sc->sc_ah);
1658                 hw->wiphy->custom_regulatory = true;
1659                 hw->wiphy->strict_regulatory = false;
1660         } else {
1661                 /* This gets applied in the case of the absense of CRDA,
1662                  * it's our own custom world regulatory domain, similar to
1663                  * cfg80211's but we enable passive scanning */
1664                 regd = ath9k_default_world_regdomain();
1665         }
1666         wiphy_apply_custom_regulatory(hw->wiphy, regd);
1667         ath9k_reg_apply_radar_flags(hw->wiphy);
1668         ath9k_reg_apply_world_flags(hw->wiphy, REGDOM_SET_BY_INIT);
1669
1670         error = ieee80211_register_hw(hw);
1671
1672         if (!ath9k_is_world_regd(sc->sc_ah)) {
1673                 error = regulatory_hint(hw->wiphy,
1674                         sc->sc_ah->regulatory.alpha2);
1675                 if (error)
1676                         goto error_attach;
1677         }
1678
1679         /* Initialize LED control */
1680         ath_init_leds(sc);
1681
1682
1683         return 0;
1684
1685 error_attach:
1686         /* cleanup tx queues */
1687         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1688                 if (ATH_TXQ_SETUP(sc, i))
1689                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1690
1691         ath9k_hw_detach(sc->sc_ah);
1692         ath9k_exit_debug(sc);
1693
1694         return error;
1695 }
1696
1697 int ath_reset(struct ath_softc *sc, bool retry_tx)
1698 {
1699         struct ath_hw *ah = sc->sc_ah;
1700         struct ieee80211_hw *hw = sc->hw;
1701         int r;
1702
1703         ath9k_hw_set_interrupts(ah, 0);
1704         ath_drain_all_txq(sc, retry_tx);
1705         ath_stoprecv(sc);
1706         ath_flushrecv(sc);
1707
1708         spin_lock_bh(&sc->sc_resetlock);
1709         r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1710         if (r)
1711                 DPRINTF(sc, ATH_DBG_FATAL,
1712                         "Unable to reset hardware; reset status %u\n", r);
1713         spin_unlock_bh(&sc->sc_resetlock);
1714
1715         if (ath_startrecv(sc) != 0)
1716                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1717
1718         /*
1719          * We may be doing a reset in response to a request
1720          * that changes the channel so update any state that
1721          * might change as a result.
1722          */
1723         ath_cache_conf_rate(sc, &hw->conf);
1724
1725         ath_update_txpow(sc);
1726
1727         if (sc->sc_flags & SC_OP_BEACONS)
1728                 ath_beacon_config(sc, ATH_IF_ID_ANY);   /* restart beacons */
1729
1730         ath9k_hw_set_interrupts(ah, sc->imask);
1731
1732         if (retry_tx) {
1733                 int i;
1734                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1735                         if (ATH_TXQ_SETUP(sc, i)) {
1736                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1737                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
1738                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1739                         }
1740                 }
1741         }
1742
1743         return r;
1744 }
1745
1746 /*
1747  *  This function will allocate both the DMA descriptor structure, and the
1748  *  buffers it contains.  These are used to contain the descriptors used
1749  *  by the system.
1750 */
1751 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1752                       struct list_head *head, const char *name,
1753                       int nbuf, int ndesc)
1754 {
1755 #define DS2PHYS(_dd, _ds)                                               \
1756         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1757 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1758 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1759
1760         struct ath_desc *ds;
1761         struct ath_buf *bf;
1762         int i, bsize, error;
1763
1764         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1765                 name, nbuf, ndesc);
1766
1767         /* ath_desc must be a multiple of DWORDs */
1768         if ((sizeof(struct ath_desc) % 4) != 0) {
1769                 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1770                 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1771                 error = -ENOMEM;
1772                 goto fail;
1773         }
1774
1775         dd->dd_name = name;
1776         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1777
1778         /*
1779          * Need additional DMA memory because we can't use
1780          * descriptors that cross the 4K page boundary. Assume
1781          * one skipped descriptor per 4K page.
1782          */
1783         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1784                 u32 ndesc_skipped =
1785                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1786                 u32 dma_len;
1787
1788                 while (ndesc_skipped) {
1789                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
1790                         dd->dd_desc_len += dma_len;
1791
1792                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1793                 };
1794         }
1795
1796         /* allocate descriptors */
1797         dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1798                                          &dd->dd_desc_paddr, GFP_ATOMIC);
1799         if (dd->dd_desc == NULL) {
1800                 error = -ENOMEM;
1801                 goto fail;
1802         }
1803         ds = dd->dd_desc;
1804         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1805                 dd->dd_name, ds, (u32) dd->dd_desc_len,
1806                 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1807
1808         /* allocate buffers */
1809         bsize = sizeof(struct ath_buf) * nbuf;
1810         bf = kmalloc(bsize, GFP_KERNEL);
1811         if (bf == NULL) {
1812                 error = -ENOMEM;
1813                 goto fail2;
1814         }
1815         memset(bf, 0, bsize);
1816         dd->dd_bufptr = bf;
1817
1818         INIT_LIST_HEAD(head);
1819         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1820                 bf->bf_desc = ds;
1821                 bf->bf_daddr = DS2PHYS(dd, ds);
1822
1823                 if (!(sc->sc_ah->caps.hw_caps &
1824                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1825                         /*
1826                          * Skip descriptor addresses which can cause 4KB
1827                          * boundary crossing (addr + length) with a 32 dword
1828                          * descriptor fetch.
1829                          */
1830                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1831                                 ASSERT((caddr_t) bf->bf_desc <
1832                                        ((caddr_t) dd->dd_desc +
1833                                         dd->dd_desc_len));
1834
1835                                 ds += ndesc;
1836                                 bf->bf_desc = ds;
1837                                 bf->bf_daddr = DS2PHYS(dd, ds);
1838                         }
1839                 }
1840                 list_add_tail(&bf->list, head);
1841         }
1842         return 0;
1843 fail2:
1844         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1845                           dd->dd_desc_paddr);
1846 fail:
1847         memset(dd, 0, sizeof(*dd));
1848         return error;
1849 #undef ATH_DESC_4KB_BOUND_CHECK
1850 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1851 #undef DS2PHYS
1852 }
1853
1854 void ath_descdma_cleanup(struct ath_softc *sc,
1855                          struct ath_descdma *dd,
1856                          struct list_head *head)
1857 {
1858         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1859                           dd->dd_desc_paddr);
1860
1861         INIT_LIST_HEAD(head);
1862         kfree(dd->dd_bufptr);
1863         memset(dd, 0, sizeof(*dd));
1864 }
1865
1866 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1867 {
1868         int qnum;
1869
1870         switch (queue) {
1871         case 0:
1872                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1873                 break;
1874         case 1:
1875                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1876                 break;
1877         case 2:
1878                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1879                 break;
1880         case 3:
1881                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1882                 break;
1883         default:
1884                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1885                 break;
1886         }
1887
1888         return qnum;
1889 }
1890
1891 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1892 {
1893         int qnum;
1894
1895         switch (queue) {
1896         case ATH9K_WME_AC_VO:
1897                 qnum = 0;
1898                 break;
1899         case ATH9K_WME_AC_VI:
1900                 qnum = 1;
1901                 break;
1902         case ATH9K_WME_AC_BE:
1903                 qnum = 2;
1904                 break;
1905         case ATH9K_WME_AC_BK:
1906                 qnum = 3;
1907                 break;
1908         default:
1909                 qnum = -1;
1910                 break;
1911         }
1912
1913         return qnum;
1914 }
1915
1916 /* XXX: Remove me once we don't depend on ath9k_channel for all
1917  * this redundant data */
1918 static void ath9k_update_ichannel(struct ath_softc *sc,
1919                           struct ath9k_channel *ichan)
1920 {
1921         struct ieee80211_hw *hw = sc->hw;
1922         struct ieee80211_channel *chan = hw->conf.channel;
1923         struct ieee80211_conf *conf = &hw->conf;
1924
1925         ichan->channel = chan->center_freq;
1926         ichan->chan = chan;
1927
1928         if (chan->band == IEEE80211_BAND_2GHZ) {
1929                 ichan->chanmode = CHANNEL_G;
1930                 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1931         } else {
1932                 ichan->chanmode = CHANNEL_A;
1933                 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1934         }
1935
1936         sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1937
1938         if (conf_is_ht(conf)) {
1939                 if (conf_is_ht40(conf))
1940                         sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1941
1942                 ichan->chanmode = ath_get_extchanmode(sc, chan,
1943                                             conf->channel_type);
1944         }
1945 }
1946
1947 /**********************/
1948 /* mac80211 callbacks */
1949 /**********************/
1950
1951 static int ath9k_start(struct ieee80211_hw *hw)
1952 {
1953         struct ath_softc *sc = hw->priv;
1954         struct ieee80211_channel *curchan = hw->conf.channel;
1955         struct ath9k_channel *init_channel;
1956         int r, pos;
1957
1958         DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1959                 "initial channel: %d MHz\n", curchan->center_freq);
1960
1961         mutex_lock(&sc->mutex);
1962
1963         /* setup initial channel */
1964
1965         pos = curchan->hw_value;
1966
1967         init_channel = &sc->sc_ah->channels[pos];
1968         ath9k_update_ichannel(sc, init_channel);
1969
1970         /* Reset SERDES registers */
1971         ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1972
1973         /*
1974          * The basic interface to setting the hardware in a good
1975          * state is ``reset''.  On return the hardware is known to
1976          * be powered up and with interrupts disabled.  This must
1977          * be followed by initialization of the appropriate bits
1978          * and then setup of the interrupt mask.
1979          */
1980         spin_lock_bh(&sc->sc_resetlock);
1981         r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
1982         if (r) {
1983                 DPRINTF(sc, ATH_DBG_FATAL,
1984                         "Unable to reset hardware; reset status %u "
1985                         "(freq %u MHz)\n", r,
1986                         curchan->center_freq);
1987                 spin_unlock_bh(&sc->sc_resetlock);
1988                 goto mutex_unlock;
1989         }
1990         spin_unlock_bh(&sc->sc_resetlock);
1991
1992         /*
1993          * This is needed only to setup initial state
1994          * but it's best done after a reset.
1995          */
1996         ath_update_txpow(sc);
1997
1998         /*
1999          * Setup the hardware after reset:
2000          * The receive engine is set going.
2001          * Frame transmit is handled entirely
2002          * in the frame output path; there's nothing to do
2003          * here except setup the interrupt mask.
2004          */
2005         if (ath_startrecv(sc) != 0) {
2006                 DPRINTF(sc, ATH_DBG_FATAL,
2007                         "Unable to start recv logic\n");
2008                 r = -EIO;
2009                 goto mutex_unlock;
2010         }
2011
2012         /* Setup our intr mask. */
2013         sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2014                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2015                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2016
2017         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2018                 sc->imask |= ATH9K_INT_GTT;
2019
2020         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2021                 sc->imask |= ATH9K_INT_CST;
2022
2023         ath_cache_conf_rate(sc, &hw->conf);
2024
2025         sc->sc_flags &= ~SC_OP_INVALID;
2026
2027         /* Disable BMISS interrupt when we're not associated */
2028         sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2029         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2030
2031         ieee80211_wake_queues(sc->hw);
2032
2033 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2034         r = ath_start_rfkill_poll(sc);
2035 #endif
2036
2037 mutex_unlock:
2038         mutex_unlock(&sc->mutex);
2039
2040         return r;
2041 }
2042
2043 static int ath9k_tx(struct ieee80211_hw *hw,
2044                     struct sk_buff *skb)
2045 {
2046         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2047         struct ath_softc *sc = hw->priv;
2048         struct ath_tx_control txctl;
2049         int hdrlen, padsize;
2050
2051         memset(&txctl, 0, sizeof(struct ath_tx_control));
2052
2053         /*
2054          * As a temporary workaround, assign seq# here; this will likely need
2055          * to be cleaned up to work better with Beacon transmission and virtual
2056          * BSSes.
2057          */
2058         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2059                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2060                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2061                         sc->tx.seq_no += 0x10;
2062                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2063                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2064         }
2065
2066         /* Add the padding after the header if this is not already done */
2067         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2068         if (hdrlen & 3) {
2069                 padsize = hdrlen % 4;
2070                 if (skb_headroom(skb) < padsize)
2071                         return -1;
2072                 skb_push(skb, padsize);
2073                 memmove(skb->data, skb->data + padsize, hdrlen);
2074         }
2075
2076         /* Check if a tx queue is available */
2077
2078         txctl.txq = ath_test_get_txq(sc, skb);
2079         if (!txctl.txq)
2080                 goto exit;
2081
2082         DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2083
2084         if (ath_tx_start(sc, skb, &txctl) != 0) {
2085                 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2086                 goto exit;
2087         }
2088
2089         return 0;
2090 exit:
2091         dev_kfree_skb_any(skb);
2092         return 0;
2093 }
2094
2095 static void ath9k_stop(struct ieee80211_hw *hw)
2096 {
2097         struct ath_softc *sc = hw->priv;
2098
2099         if (sc->sc_flags & SC_OP_INVALID) {
2100                 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2101                 return;
2102         }
2103
2104         mutex_lock(&sc->mutex);
2105
2106         ieee80211_stop_queues(sc->hw);
2107
2108         /* make sure h/w will not generate any interrupt
2109          * before setting the invalid flag. */
2110         ath9k_hw_set_interrupts(sc->sc_ah, 0);
2111
2112         if (!(sc->sc_flags & SC_OP_INVALID)) {
2113                 ath_drain_all_txq(sc, false);
2114                 ath_stoprecv(sc);
2115                 ath9k_hw_phy_disable(sc->sc_ah);
2116         } else
2117                 sc->rx.rxlink = NULL;
2118
2119 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2120         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2121                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2122 #endif
2123         /* disable HAL and put h/w to sleep */
2124         ath9k_hw_disable(sc->sc_ah);
2125         ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2126
2127         sc->sc_flags |= SC_OP_INVALID;
2128
2129         mutex_unlock(&sc->mutex);
2130
2131         DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2132 }
2133
2134 static int ath9k_add_interface(struct ieee80211_hw *hw,
2135                                struct ieee80211_if_init_conf *conf)
2136 {
2137         struct ath_softc *sc = hw->priv;
2138         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2139         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2140
2141         /* Support only vif for now */
2142
2143         if (sc->nvifs)
2144                 return -ENOBUFS;
2145
2146         mutex_lock(&sc->mutex);
2147
2148         switch (conf->type) {
2149         case NL80211_IFTYPE_STATION:
2150                 ic_opmode = NL80211_IFTYPE_STATION;
2151                 break;
2152         case NL80211_IFTYPE_ADHOC:
2153                 ic_opmode = NL80211_IFTYPE_ADHOC;
2154                 break;
2155         case NL80211_IFTYPE_AP:
2156                 ic_opmode = NL80211_IFTYPE_AP;
2157                 break;
2158         default:
2159                 DPRINTF(sc, ATH_DBG_FATAL,
2160                         "Interface type %d not yet supported\n", conf->type);
2161                 mutex_unlock(&sc->mutex);
2162                 return -EOPNOTSUPP;
2163         }
2164
2165         DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2166
2167         /* Set the VIF opmode */
2168         avp->av_opmode = ic_opmode;
2169         avp->av_bslot = -1;
2170
2171         if (ic_opmode == NL80211_IFTYPE_AP)
2172                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2173
2174         sc->vifs[0] = conf->vif;
2175         sc->nvifs++;
2176
2177         /* Set the device opmode */
2178         sc->sc_ah->opmode = ic_opmode;
2179
2180         /*
2181          * Enable MIB interrupts when there are hardware phy counters.
2182          * Note we only do this (at the moment) for station mode.
2183          */
2184         if ((conf->type == NL80211_IFTYPE_STATION) ||
2185             (conf->type == NL80211_IFTYPE_ADHOC)) {
2186                 if (ath9k_hw_phycounters(sc->sc_ah))
2187                         sc->imask |= ATH9K_INT_MIB;
2188                 sc->imask |= ATH9K_INT_TSFOOR;
2189         }
2190
2191         /*
2192          * Some hardware processes the TIM IE and fires an
2193          * interrupt when the TIM bit is set.  For hardware
2194          * that does, if not overridden by configuration,
2195          * enable the TIM interrupt when operating as station.
2196          */
2197         if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
2198             (conf->type == NL80211_IFTYPE_STATION) &&
2199             !sc->config.swBeaconProcess)
2200                 sc->imask |= ATH9K_INT_TIM;
2201
2202         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2203
2204         if (conf->type == NL80211_IFTYPE_AP) {
2205                 /* TODO: is this a suitable place to start ANI for AP mode? */
2206                 /* Start ANI */
2207                 mod_timer(&sc->ani.timer,
2208                           jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2209         }
2210
2211         mutex_unlock(&sc->mutex);
2212
2213         return 0;
2214 }
2215
2216 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2217                                    struct ieee80211_if_init_conf *conf)
2218 {
2219         struct ath_softc *sc = hw->priv;
2220         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2221
2222         DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2223
2224         mutex_lock(&sc->mutex);
2225
2226         /* Stop ANI */
2227         del_timer_sync(&sc->ani.timer);
2228
2229         /* Reclaim beacon resources */
2230         if (sc->sc_ah->opmode == NL80211_IFTYPE_AP ||
2231             sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) {
2232                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2233                 ath_beacon_return(sc, avp);
2234         }
2235
2236         sc->sc_flags &= ~SC_OP_BEACONS;
2237
2238         sc->vifs[0] = NULL;
2239         sc->nvifs--;
2240
2241         mutex_unlock(&sc->mutex);
2242 }
2243
2244 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2245 {
2246         struct ath_softc *sc = hw->priv;
2247         struct ieee80211_conf *conf = &hw->conf;
2248
2249         mutex_lock(&sc->mutex);
2250
2251         if (changed & IEEE80211_CONF_CHANGE_PS) {
2252                 if (conf->flags & IEEE80211_CONF_PS) {
2253                         if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2254                                 sc->imask |= ATH9K_INT_TIM_TIMER;
2255                                 ath9k_hw_set_interrupts(sc->sc_ah,
2256                                                 sc->imask);
2257                         }
2258                         ath9k_hw_setrxabort(sc->sc_ah, 1);
2259                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2260                 } else {
2261                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2262                         ath9k_hw_setrxabort(sc->sc_ah, 0);
2263                         sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
2264                         if (sc->imask & ATH9K_INT_TIM_TIMER) {
2265                                 sc->imask &= ~ATH9K_INT_TIM_TIMER;
2266                                 ath9k_hw_set_interrupts(sc->sc_ah,
2267                                                 sc->imask);
2268                         }
2269                 }
2270         }
2271
2272         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2273                 struct ieee80211_channel *curchan = hw->conf.channel;
2274                 int pos = curchan->hw_value;
2275
2276                 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2277                         curchan->center_freq);
2278
2279                 /* XXX: remove me eventualy */
2280                 ath9k_update_ichannel(sc, &sc->sc_ah->channels[pos]);
2281
2282                 ath_update_chainmask(sc, conf_is_ht(conf));
2283
2284                 if (ath_set_channel(sc, &sc->sc_ah->channels[pos]) < 0) {
2285                         DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2286                         mutex_unlock(&sc->mutex);
2287                         return -EINVAL;
2288                 }
2289         }
2290
2291         if (changed & IEEE80211_CONF_CHANGE_POWER)
2292                 sc->config.txpowlimit = 2 * conf->power_level;
2293
2294         mutex_unlock(&sc->mutex);
2295
2296         return 0;
2297 }
2298
2299 static int ath9k_config_interface(struct ieee80211_hw *hw,
2300                                   struct ieee80211_vif *vif,
2301                                   struct ieee80211_if_conf *conf)
2302 {
2303         struct ath_softc *sc = hw->priv;
2304         struct ath_hw *ah = sc->sc_ah;
2305         struct ath_vif *avp = (void *)vif->drv_priv;
2306         u32 rfilt = 0;
2307         int error, i;
2308
2309         /* TODO: Need to decide which hw opmode to use for multi-interface
2310          * cases */
2311         if (vif->type == NL80211_IFTYPE_AP &&
2312             ah->opmode != NL80211_IFTYPE_AP) {
2313                 ah->opmode = NL80211_IFTYPE_STATION;
2314                 ath9k_hw_setopmode(ah);
2315                 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2316                 sc->curaid = 0;
2317                 ath9k_hw_write_associd(sc);
2318                 /* Request full reset to get hw opmode changed properly */
2319                 sc->sc_flags |= SC_OP_FULL_RESET;
2320         }
2321
2322         if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2323             !is_zero_ether_addr(conf->bssid)) {
2324                 switch (vif->type) {
2325                 case NL80211_IFTYPE_STATION:
2326                 case NL80211_IFTYPE_ADHOC:
2327                         /* Set BSSID */
2328                         memcpy(sc->curbssid, conf->bssid, ETH_ALEN);
2329                         sc->curaid = 0;
2330                         ath9k_hw_write_associd(sc);
2331
2332                         /* Set aggregation protection mode parameters */
2333                         sc->config.ath_aggr_prot = 0;
2334
2335                         DPRINTF(sc, ATH_DBG_CONFIG,
2336                                 "RX filter 0x%x bssid %pM aid 0x%x\n",
2337                                 rfilt, sc->curbssid, sc->curaid);
2338
2339                         /* need to reconfigure the beacon */
2340                         sc->sc_flags &= ~SC_OP_BEACONS ;
2341
2342                         break;
2343                 default:
2344                         break;
2345                 }
2346         }
2347
2348         if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2349             (vif->type == NL80211_IFTYPE_AP)) {
2350                 if ((conf->changed & IEEE80211_IFCC_BEACON) ||
2351                     (conf->changed & IEEE80211_IFCC_BEACON_ENABLED &&
2352                      conf->enable_beacon)) {
2353                         /*
2354                          * Allocate and setup the beacon frame.
2355                          *
2356                          * Stop any previous beacon DMA.  This may be
2357                          * necessary, for example, when an ibss merge
2358                          * causes reconfiguration; we may be called
2359                          * with beacon transmission active.
2360                          */
2361                         ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2362
2363                         error = ath_beacon_alloc(sc, 0);
2364                         if (error != 0)
2365                                 return error;
2366
2367                         ath_beacon_config(sc, 0);
2368                 }
2369         }
2370
2371         /* Check for WLAN_CAPABILITY_PRIVACY ? */
2372         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2373                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2374                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2375                                 ath9k_hw_keysetmac(sc->sc_ah,
2376                                                    (u16)i,
2377                                                    sc->curbssid);
2378         }
2379
2380         /* Only legacy IBSS for now */
2381         if (vif->type == NL80211_IFTYPE_ADHOC)
2382                 ath_update_chainmask(sc, 0);
2383
2384         return 0;
2385 }
2386
2387 #define SUPPORTED_FILTERS                       \
2388         (FIF_PROMISC_IN_BSS |                   \
2389         FIF_ALLMULTI |                          \
2390         FIF_CONTROL |                           \
2391         FIF_OTHER_BSS |                         \
2392         FIF_BCN_PRBRESP_PROMISC |               \
2393         FIF_FCSFAIL)
2394
2395 /* FIXME: sc->sc_full_reset ? */
2396 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2397                                    unsigned int changed_flags,
2398                                    unsigned int *total_flags,
2399                                    int mc_count,
2400                                    struct dev_mc_list *mclist)
2401 {
2402         struct ath_softc *sc = hw->priv;
2403         u32 rfilt;
2404
2405         changed_flags &= SUPPORTED_FILTERS;
2406         *total_flags &= SUPPORTED_FILTERS;
2407
2408         sc->rx.rxfilter = *total_flags;
2409         rfilt = ath_calcrxfilter(sc);
2410         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2411
2412         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2413 }
2414
2415 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2416                              struct ieee80211_vif *vif,
2417                              enum sta_notify_cmd cmd,
2418                              struct ieee80211_sta *sta)
2419 {
2420         struct ath_softc *sc = hw->priv;
2421
2422         switch (cmd) {
2423         case STA_NOTIFY_ADD:
2424                 ath_node_attach(sc, sta);
2425                 break;
2426         case STA_NOTIFY_REMOVE:
2427                 ath_node_detach(sc, sta);
2428                 break;
2429         default:
2430                 break;
2431         }
2432 }
2433
2434 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2435                          const struct ieee80211_tx_queue_params *params)
2436 {
2437         struct ath_softc *sc = hw->priv;
2438         struct ath9k_tx_queue_info qi;
2439         int ret = 0, qnum;
2440
2441         if (queue >= WME_NUM_AC)
2442                 return 0;
2443
2444         mutex_lock(&sc->mutex);
2445
2446         qi.tqi_aifs = params->aifs;
2447         qi.tqi_cwmin = params->cw_min;
2448         qi.tqi_cwmax = params->cw_max;
2449         qi.tqi_burstTime = params->txop;
2450         qnum = ath_get_hal_qnum(queue, sc);
2451
2452         DPRINTF(sc, ATH_DBG_CONFIG,
2453                 "Configure tx [queue/halq] [%d/%d],  "
2454                 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2455                 queue, qnum, params->aifs, params->cw_min,
2456                 params->cw_max, params->txop);
2457
2458         ret = ath_txq_update(sc, qnum, &qi);
2459         if (ret)
2460                 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2461
2462         mutex_unlock(&sc->mutex);
2463
2464         return ret;
2465 }
2466
2467 static int ath9k_set_key(struct ieee80211_hw *hw,
2468                          enum set_key_cmd cmd,
2469                          struct ieee80211_vif *vif,
2470                          struct ieee80211_sta *sta,
2471                          struct ieee80211_key_conf *key)
2472 {
2473         struct ath_softc *sc = hw->priv;
2474         int ret = 0;
2475
2476         if (modparam_nohwcrypt)
2477                 return -ENOSPC;
2478
2479         mutex_lock(&sc->mutex);
2480         ath9k_ps_wakeup(sc);
2481         DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
2482
2483         switch (cmd) {
2484         case SET_KEY:
2485                 ret = ath_key_config(sc, vif, sta, key);
2486                 if (ret >= 0) {
2487                         key->hw_key_idx = ret;
2488                         /* push IV and Michael MIC generation to stack */
2489                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2490                         if (key->alg == ALG_TKIP)
2491                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2492                         if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2493                                 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2494                         ret = 0;
2495                 }
2496                 break;
2497         case DISABLE_KEY:
2498                 ath_key_delete(sc, key);
2499                 break;
2500         default:
2501                 ret = -EINVAL;
2502         }
2503
2504         ath9k_ps_restore(sc);
2505         mutex_unlock(&sc->mutex);
2506
2507         return ret;
2508 }
2509
2510 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2511                                    struct ieee80211_vif *vif,
2512                                    struct ieee80211_bss_conf *bss_conf,
2513                                    u32 changed)
2514 {
2515         struct ath_softc *sc = hw->priv;
2516
2517         mutex_lock(&sc->mutex);
2518
2519         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2520                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2521                         bss_conf->use_short_preamble);
2522                 if (bss_conf->use_short_preamble)
2523                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2524                 else
2525                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2526         }
2527
2528         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2529                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2530                         bss_conf->use_cts_prot);
2531                 if (bss_conf->use_cts_prot &&
2532                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2533                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2534                 else
2535                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2536         }
2537
2538         if (changed & BSS_CHANGED_ASSOC) {
2539                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2540                         bss_conf->assoc);
2541                 ath9k_bss_assoc_info(sc, vif, bss_conf);
2542         }
2543
2544         mutex_unlock(&sc->mutex);
2545 }
2546
2547 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2548 {
2549         u64 tsf;
2550         struct ath_softc *sc = hw->priv;
2551
2552         mutex_lock(&sc->mutex);
2553         tsf = ath9k_hw_gettsf64(sc->sc_ah);
2554         mutex_unlock(&sc->mutex);
2555
2556         return tsf;
2557 }
2558
2559 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2560 {
2561         struct ath_softc *sc = hw->priv;
2562
2563         mutex_lock(&sc->mutex);
2564         ath9k_hw_settsf64(sc->sc_ah, tsf);
2565         mutex_unlock(&sc->mutex);
2566 }
2567
2568 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2569 {
2570         struct ath_softc *sc = hw->priv;
2571
2572         mutex_lock(&sc->mutex);
2573         ath9k_hw_reset_tsf(sc->sc_ah);
2574         mutex_unlock(&sc->mutex);
2575 }
2576
2577 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2578                               enum ieee80211_ampdu_mlme_action action,
2579                               struct ieee80211_sta *sta,
2580                               u16 tid, u16 *ssn)
2581 {
2582         struct ath_softc *sc = hw->priv;
2583         int ret = 0;
2584
2585         switch (action) {
2586         case IEEE80211_AMPDU_RX_START:
2587                 if (!(sc->sc_flags & SC_OP_RXAGGR))
2588                         ret = -ENOTSUPP;
2589                 break;
2590         case IEEE80211_AMPDU_RX_STOP:
2591                 break;
2592         case IEEE80211_AMPDU_TX_START:
2593                 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2594                 if (ret < 0)
2595                         DPRINTF(sc, ATH_DBG_FATAL,
2596                                 "Unable to start TX aggregation\n");
2597                 else
2598                         ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2599                 break;
2600         case IEEE80211_AMPDU_TX_STOP:
2601                 ret = ath_tx_aggr_stop(sc, sta, tid);
2602                 if (ret < 0)
2603                         DPRINTF(sc, ATH_DBG_FATAL,
2604                                 "Unable to stop TX aggregation\n");
2605
2606                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2607                 break;
2608         case IEEE80211_AMPDU_TX_RESUME:
2609                 ath_tx_aggr_resume(sc, sta, tid);
2610                 break;
2611         default:
2612                 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2613         }
2614
2615         return ret;
2616 }
2617
2618 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2619 {
2620         struct ath_softc *sc = hw->priv;
2621
2622         mutex_lock(&sc->mutex);
2623         sc->sc_flags |= SC_OP_SCANNING;
2624         mutex_unlock(&sc->mutex);
2625 }
2626
2627 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2628 {
2629         struct ath_softc *sc = hw->priv;
2630
2631         mutex_lock(&sc->mutex);
2632         sc->sc_flags &= ~SC_OP_SCANNING;
2633         mutex_unlock(&sc->mutex);
2634 }
2635
2636 struct ieee80211_ops ath9k_ops = {
2637         .tx                 = ath9k_tx,
2638         .start              = ath9k_start,
2639         .stop               = ath9k_stop,
2640         .add_interface      = ath9k_add_interface,
2641         .remove_interface   = ath9k_remove_interface,
2642         .config             = ath9k_config,
2643         .config_interface   = ath9k_config_interface,
2644         .configure_filter   = ath9k_configure_filter,
2645         .sta_notify         = ath9k_sta_notify,
2646         .conf_tx            = ath9k_conf_tx,
2647         .bss_info_changed   = ath9k_bss_info_changed,
2648         .set_key            = ath9k_set_key,
2649         .get_tsf            = ath9k_get_tsf,
2650         .set_tsf            = ath9k_set_tsf,
2651         .reset_tsf          = ath9k_reset_tsf,
2652         .ampdu_action       = ath9k_ampdu_action,
2653         .sw_scan_start      = ath9k_sw_scan_start,
2654         .sw_scan_complete   = ath9k_sw_scan_complete,
2655 };
2656
2657 static struct {
2658         u32 version;
2659         const char * name;
2660 } ath_mac_bb_names[] = {
2661         { AR_SREV_VERSION_5416_PCI,     "5416" },
2662         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2663         { AR_SREV_VERSION_9100,         "9100" },
2664         { AR_SREV_VERSION_9160,         "9160" },
2665         { AR_SREV_VERSION_9280,         "9280" },
2666         { AR_SREV_VERSION_9285,         "9285" }
2667 };
2668
2669 static struct {
2670         u16 version;
2671         const char * name;
2672 } ath_rf_names[] = {
2673         { 0,                            "5133" },
2674         { AR_RAD5133_SREV_MAJOR,        "5133" },
2675         { AR_RAD5122_SREV_MAJOR,        "5122" },
2676         { AR_RAD2133_SREV_MAJOR,        "2133" },
2677         { AR_RAD2122_SREV_MAJOR,        "2122" }
2678 };
2679
2680 /*
2681  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2682  */
2683 const char *
2684 ath_mac_bb_name(u32 mac_bb_version)
2685 {
2686         int i;
2687
2688         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2689                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2690                         return ath_mac_bb_names[i].name;
2691                 }
2692         }
2693
2694         return "????";
2695 }
2696
2697 /*
2698  * Return the RF name. "????" is returned if the RF is unknown.
2699  */
2700 const char *
2701 ath_rf_name(u16 rf_version)
2702 {
2703         int i;
2704
2705         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2706                 if (ath_rf_names[i].version == rf_version) {
2707                         return ath_rf_names[i].name;
2708                 }
2709         }
2710
2711         return "????";
2712 }
2713
2714 static int __init ath9k_init(void)
2715 {
2716         int error;
2717
2718         /* Register rate control algorithm */
2719         error = ath_rate_control_register();
2720         if (error != 0) {
2721                 printk(KERN_ERR
2722                         "ath9k: Unable to register rate control "
2723                         "algorithm: %d\n",
2724                         error);
2725                 goto err_out;
2726         }
2727
2728         error = ath_pci_init();
2729         if (error < 0) {
2730                 printk(KERN_ERR
2731                         "ath9k: No PCI devices found, driver not installed.\n");
2732                 error = -ENODEV;
2733                 goto err_rate_unregister;
2734         }
2735
2736         error = ath_ahb_init();
2737         if (error < 0) {
2738                 error = -ENODEV;
2739                 goto err_pci_exit;
2740         }
2741
2742         return 0;
2743
2744  err_pci_exit:
2745         ath_pci_exit();
2746
2747  err_rate_unregister:
2748         ath_rate_control_unregister();
2749  err_out:
2750         return error;
2751 }
2752 module_init(ath9k_init);
2753
2754 static void __exit ath9k_exit(void)
2755 {
2756         ath_ahb_exit();
2757         ath_pci_exit();
2758         ath_rate_control_unregister();
2759         printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2760 }
2761 module_exit(ath9k_exit);