2 * linux/drivers/char/mem.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
7 * Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
8 * Shared /dev/zero mmaping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
11 #include <linux/config.h>
13 #include <linux/miscdevice.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mman.h>
17 #include <linux/random.h>
18 #include <linux/init.h>
19 #include <linux/raw.h>
20 #include <linux/tty.h>
21 #include <linux/capability.h>
22 #include <linux/smp_lock.h>
23 #include <linux/devfs_fs_kernel.h>
24 #include <linux/ptrace.h>
25 #include <linux/device.h>
26 #include <linux/highmem.h>
27 #include <linux/crash_dump.h>
28 #include <linux/backing-dev.h>
29 #include <linux/bootmem.h>
31 #include <asm/uaccess.h>
35 # include <linux/efi.h>
39 * Architectures vary in how they handle caching for addresses
40 * outside of main memory.
43 static inline int uncached_access(struct file *file, unsigned long addr)
47 * On the PPro and successors, the MTRRs are used to set
48 * memory types for physical addresses outside main memory,
49 * so blindly setting PCD or PWT on those pages is wrong.
50 * For Pentiums and earlier, the surround logic should disable
51 * caching for the high addresses through the KEN pin, but
52 * we maintain the tradition of paranoia in this code.
54 if (file->f_flags & O_SYNC)
56 return !( test_bit(X86_FEATURE_MTRR, boot_cpu_data.x86_capability) ||
57 test_bit(X86_FEATURE_K6_MTRR, boot_cpu_data.x86_capability) ||
58 test_bit(X86_FEATURE_CYRIX_ARR, boot_cpu_data.x86_capability) ||
59 test_bit(X86_FEATURE_CENTAUR_MCR, boot_cpu_data.x86_capability) )
60 && addr >= __pa(high_memory);
61 #elif defined(__x86_64__)
63 * This is broken because it can generate memory type aliases,
64 * which can cause cache corruptions
65 * But it is only available for root and we have to be bug-to-bug
66 * compatible with i386.
68 if (file->f_flags & O_SYNC)
70 /* same behaviour as i386. PAT always set to cached and MTRRs control the
72 Hopefully a full PAT implementation will fix that soon. */
74 #elif defined(CONFIG_IA64)
76 * On ia64, we ignore O_SYNC because we cannot tolerate memory attribute aliases.
78 return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
81 * Accessing memory above the top the kernel knows about or through a file pointer
82 * that was marked O_SYNC will be done non-cached.
84 if (file->f_flags & O_SYNC)
86 return addr >= __pa(high_memory);
90 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
91 static inline int valid_phys_addr_range(unsigned long addr, size_t *count)
93 unsigned long end_mem;
95 end_mem = __pa(high_memory);
99 if (*count > end_mem - addr)
100 *count = end_mem - addr;
105 static inline int valid_mmap_phys_addr_range(unsigned long addr, size_t *size)
112 * This funcion reads the *physical* memory. The f_pos points directly to the
115 static ssize_t read_mem(struct file * file, char __user * buf,
116 size_t count, loff_t *ppos)
118 unsigned long p = *ppos;
122 if (!valid_phys_addr_range(p, &count))
125 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
126 /* we don't have page 0 mapped on sparc and m68k.. */
132 if (clear_user(buf, sz))
144 * Handle first page in case it's not aligned
146 if (-p & (PAGE_SIZE - 1))
147 sz = -p & (PAGE_SIZE - 1);
151 sz = min_t(unsigned long, sz, count);
154 * On ia64 if a page has been mapped somewhere as
155 * uncached, then it must also be accessed uncached
156 * by the kernel or data corruption may occur
158 ptr = xlate_dev_mem_ptr(p);
160 if (copy_to_user(buf, ptr, sz))
172 static ssize_t write_mem(struct file * file, const char __user * buf,
173 size_t count, loff_t *ppos)
175 unsigned long p = *ppos;
177 unsigned long copied;
180 if (!valid_phys_addr_range(p, &count))
185 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
186 /* we don't have page 0 mapped on sparc and m68k.. */
188 unsigned long sz = PAGE_SIZE - p;
191 /* Hmm. Do something? */
201 * Handle first page in case it's not aligned
203 if (-p & (PAGE_SIZE - 1))
204 sz = -p & (PAGE_SIZE - 1);
208 sz = min_t(unsigned long, sz, count);
211 * On ia64 if a page has been mapped somewhere as
212 * uncached, then it must also be accessed uncached
213 * by the kernel or data corruption may occur
215 ptr = xlate_dev_mem_ptr(p);
217 copied = copy_from_user(ptr, buf, sz);
219 written += sz - copied;
234 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT
235 static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
236 unsigned long size, pgprot_t vma_prot)
238 #ifdef pgprot_noncached
239 unsigned long offset = pfn << PAGE_SHIFT;
241 if (uncached_access(file, offset))
242 return pgprot_noncached(vma_prot);
248 static int mmap_mem(struct file * file, struct vm_area_struct * vma)
250 size_t size = vma->vm_end - vma->vm_start;
252 if (!valid_mmap_phys_addr_range(vma->vm_pgoff << PAGE_SHIFT, &size))
255 vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
259 /* Remap-pfn-range will mark the range VM_IO and VM_RESERVED */
260 if (remap_pfn_range(vma,
269 static int mmap_kmem(struct file * file, struct vm_area_struct * vma)
273 /* Turn a kernel-virtual address into a physical page frame */
274 pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
277 * RED-PEN: on some architectures there is more mapped memory
278 * than available in mem_map which pfn_valid checks
279 * for. Perhaps should add a new macro here.
281 * RED-PEN: vmalloc is not supported right now.
287 return mmap_mem(file, vma);
290 #ifdef CONFIG_CRASH_DUMP
292 * Read memory corresponding to the old kernel.
294 static ssize_t read_oldmem(struct file *file, char __user *buf,
295 size_t count, loff_t *ppos)
297 unsigned long pfn, offset;
298 size_t read = 0, csize;
302 pfn = *ppos / PAGE_SIZE;
303 if (pfn > saved_max_pfn)
306 offset = (unsigned long)(*ppos % PAGE_SIZE);
307 if (count > PAGE_SIZE - offset)
308 csize = PAGE_SIZE - offset;
312 rc = copy_oldmem_page(pfn, buf, csize, offset, 1);
324 extern long vread(char *buf, char *addr, unsigned long count);
325 extern long vwrite(char *buf, char *addr, unsigned long count);
328 * This function reads the *virtual* memory as seen by the kernel.
330 static ssize_t read_kmem(struct file *file, char __user *buf,
331 size_t count, loff_t *ppos)
333 unsigned long p = *ppos;
334 ssize_t low_count, read, sz;
335 char * kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
338 if (p < (unsigned long) high_memory) {
340 if (count > (unsigned long) high_memory - p)
341 low_count = (unsigned long) high_memory - p;
343 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
344 /* we don't have page 0 mapped on sparc and m68k.. */
345 if (p < PAGE_SIZE && low_count > 0) {
346 size_t tmp = PAGE_SIZE - p;
347 if (tmp > low_count) tmp = low_count;
348 if (clear_user(buf, tmp))
357 while (low_count > 0) {
359 * Handle first page in case it's not aligned
361 if (-p & (PAGE_SIZE - 1))
362 sz = -p & (PAGE_SIZE - 1);
366 sz = min_t(unsigned long, sz, low_count);
369 * On ia64 if a page has been mapped somewhere as
370 * uncached, then it must also be accessed uncached
371 * by the kernel or data corruption may occur
373 kbuf = xlate_dev_kmem_ptr((char *)p);
375 if (copy_to_user(buf, kbuf, sz))
386 kbuf = (char *)__get_free_page(GFP_KERNEL);
394 len = vread(kbuf, (char *)p, len);
397 if (copy_to_user(buf, kbuf, len)) {
398 free_page((unsigned long)kbuf);
406 free_page((unsigned long)kbuf);
413 static inline ssize_t
414 do_write_kmem(void *p, unsigned long realp, const char __user * buf,
415 size_t count, loff_t *ppos)
418 unsigned long copied;
421 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
422 /* we don't have page 0 mapped on sparc and m68k.. */
423 if (realp < PAGE_SIZE) {
424 unsigned long sz = PAGE_SIZE - realp;
427 /* Hmm. Do something? */
439 * Handle first page in case it's not aligned
441 if (-realp & (PAGE_SIZE - 1))
442 sz = -realp & (PAGE_SIZE - 1);
446 sz = min_t(unsigned long, sz, count);
449 * On ia64 if a page has been mapped somewhere as
450 * uncached, then it must also be accessed uncached
451 * by the kernel or data corruption may occur
453 ptr = xlate_dev_kmem_ptr(p);
455 copied = copy_from_user(ptr, buf, sz);
457 written += sz - copied;
475 * This function writes to the *virtual* memory as seen by the kernel.
477 static ssize_t write_kmem(struct file * file, const char __user * buf,
478 size_t count, loff_t *ppos)
480 unsigned long p = *ppos;
484 char * kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
486 if (p < (unsigned long) high_memory) {
489 if (count > (unsigned long) high_memory - p)
490 wrote = (unsigned long) high_memory - p;
492 written = do_write_kmem((void*)p, p, buf, wrote, ppos);
493 if (written != wrote)
502 kbuf = (char *)__get_free_page(GFP_KERNEL);
504 return wrote ? wrote : -ENOMEM;
511 written = copy_from_user(kbuf, buf, len);
515 free_page((unsigned long)kbuf);
519 len = vwrite(kbuf, (char *)p, len);
525 free_page((unsigned long)kbuf);
529 return virtr + wrote;
532 #if defined(CONFIG_ISA) || !defined(__mc68000__)
533 static ssize_t read_port(struct file * file, char __user * buf,
534 size_t count, loff_t *ppos)
536 unsigned long i = *ppos;
537 char __user *tmp = buf;
539 if (!access_ok(VERIFY_WRITE, buf, count))
541 while (count-- > 0 && i < 65536) {
542 if (__put_user(inb(i),tmp) < 0)
551 static ssize_t write_port(struct file * file, const char __user * buf,
552 size_t count, loff_t *ppos)
554 unsigned long i = *ppos;
555 const char __user * tmp = buf;
557 if (!access_ok(VERIFY_READ,buf,count))
559 while (count-- > 0 && i < 65536) {
561 if (__get_user(c, tmp)) {
575 static ssize_t read_null(struct file * file, char __user * buf,
576 size_t count, loff_t *ppos)
581 static ssize_t write_null(struct file * file, const char __user * buf,
582 size_t count, loff_t *ppos)
589 * For fun, we are using the MMU for this.
591 static inline size_t read_zero_pagealigned(char __user * buf, size_t size)
593 struct mm_struct *mm;
594 struct vm_area_struct * vma;
595 unsigned long addr=(unsigned long)buf;
598 /* Oops, this was forgotten before. -ben */
599 down_read(&mm->mmap_sem);
601 /* For private mappings, just map in zero pages. */
602 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
605 if (vma->vm_start > addr || (vma->vm_flags & VM_WRITE) == 0)
607 if (vma->vm_flags & (VM_SHARED | VM_HUGETLB))
609 count = vma->vm_end - addr;
613 zap_page_range(vma, addr, count, NULL);
614 zeromap_page_range(vma, addr, count, PAGE_COPY);
623 up_read(&mm->mmap_sem);
625 /* The shared case is hard. Let's do the conventional zeroing. */
627 unsigned long unwritten = clear_user(buf, PAGE_SIZE);
629 return size + unwritten - PAGE_SIZE;
637 up_read(&mm->mmap_sem);
641 static ssize_t read_zero(struct file * file, char __user * buf,
642 size_t count, loff_t *ppos)
644 unsigned long left, unwritten, written = 0;
649 if (!access_ok(VERIFY_WRITE, buf, count))
654 /* do we want to be clever? Arbitrary cut-off */
655 if (count >= PAGE_SIZE*4) {
656 unsigned long partial;
658 /* How much left of the page? */
659 partial = (PAGE_SIZE-1) & -(unsigned long) buf;
660 unwritten = clear_user(buf, partial);
661 written = partial - unwritten;
666 unwritten = read_zero_pagealigned(buf, left & PAGE_MASK);
667 written += (left & PAGE_MASK) - unwritten;
670 buf += left & PAGE_MASK;
673 unwritten = clear_user(buf, left);
674 written += left - unwritten;
676 return written ? written : -EFAULT;
679 static int mmap_zero(struct file * file, struct vm_area_struct * vma)
681 if (vma->vm_flags & VM_SHARED)
682 return shmem_zero_setup(vma);
683 if (zeromap_page_range(vma, vma->vm_start, vma->vm_end - vma->vm_start, vma->vm_page_prot))
687 #else /* CONFIG_MMU */
688 static ssize_t read_zero(struct file * file, char * buf,
689 size_t count, loff_t *ppos)
697 chunk = 4096; /* Just for latency reasons */
698 if (clear_user(buf, chunk))
707 static int mmap_zero(struct file * file, struct vm_area_struct * vma)
711 #endif /* CONFIG_MMU */
713 static ssize_t write_full(struct file * file, const char __user * buf,
714 size_t count, loff_t *ppos)
720 * Special lseek() function for /dev/null and /dev/zero. Most notably, you
721 * can fopen() both devices with "a" now. This was previously impossible.
725 static loff_t null_lseek(struct file * file, loff_t offset, int orig)
727 return file->f_pos = 0;
731 * The memory devices use the full 32/64 bits of the offset, and so we cannot
732 * check against negative addresses: they are ok. The return value is weird,
733 * though, in that case (0).
735 * also note that seeking relative to the "end of file" isn't supported:
736 * it has no meaning, so it returns -EINVAL.
738 static loff_t memory_lseek(struct file * file, loff_t offset, int orig)
742 mutex_lock(&file->f_dentry->d_inode->i_mutex);
745 file->f_pos = offset;
747 force_successful_syscall_return();
750 file->f_pos += offset;
752 force_successful_syscall_return();
757 mutex_unlock(&file->f_dentry->d_inode->i_mutex);
761 static int open_port(struct inode * inode, struct file * filp)
763 return capable(CAP_SYS_RAWIO) ? 0 : -EPERM;
766 #define zero_lseek null_lseek
767 #define full_lseek null_lseek
768 #define write_zero write_null
769 #define read_full read_zero
770 #define open_mem open_port
771 #define open_kmem open_mem
772 #define open_oldmem open_mem
774 static struct file_operations mem_fops = {
775 .llseek = memory_lseek,
782 static struct file_operations kmem_fops = {
783 .llseek = memory_lseek,
790 static struct file_operations null_fops = {
791 .llseek = null_lseek,
796 #if defined(CONFIG_ISA) || !defined(__mc68000__)
797 static struct file_operations port_fops = {
798 .llseek = memory_lseek,
805 static struct file_operations zero_fops = {
806 .llseek = zero_lseek,
812 static struct backing_dev_info zero_bdi = {
813 .capabilities = BDI_CAP_MAP_COPY,
816 static struct file_operations full_fops = {
817 .llseek = full_lseek,
822 #ifdef CONFIG_CRASH_DUMP
823 static struct file_operations oldmem_fops = {
829 static ssize_t kmsg_write(struct file * file, const char __user * buf,
830 size_t count, loff_t *ppos)
835 tmp = kmalloc(count + 1, GFP_KERNEL);
839 if (!copy_from_user(tmp, buf, count)) {
841 ret = printk("%s", tmp);
843 /* printk can add a prefix */
850 static struct file_operations kmsg_fops = {
854 static int memory_open(struct inode * inode, struct file * filp)
856 switch (iminor(inode)) {
858 filp->f_op = &mem_fops;
861 filp->f_op = &kmem_fops;
864 filp->f_op = &null_fops;
866 #if defined(CONFIG_ISA) || !defined(__mc68000__)
868 filp->f_op = &port_fops;
872 filp->f_mapping->backing_dev_info = &zero_bdi;
873 filp->f_op = &zero_fops;
876 filp->f_op = &full_fops;
879 filp->f_op = &random_fops;
882 filp->f_op = &urandom_fops;
885 filp->f_op = &kmsg_fops;
887 #ifdef CONFIG_CRASH_DUMP
889 filp->f_op = &oldmem_fops;
895 if (filp->f_op && filp->f_op->open)
896 return filp->f_op->open(inode,filp);
900 static struct file_operations memory_fops = {
901 .open = memory_open, /* just a selector for the real open */
904 static const struct {
908 struct file_operations *fops;
909 } devlist[] = { /* list of minor devices */
910 {1, "mem", S_IRUSR | S_IWUSR | S_IRGRP, &mem_fops},
911 {2, "kmem", S_IRUSR | S_IWUSR | S_IRGRP, &kmem_fops},
912 {3, "null", S_IRUGO | S_IWUGO, &null_fops},
913 #if defined(CONFIG_ISA) || !defined(__mc68000__)
914 {4, "port", S_IRUSR | S_IWUSR | S_IRGRP, &port_fops},
916 {5, "zero", S_IRUGO | S_IWUGO, &zero_fops},
917 {7, "full", S_IRUGO | S_IWUGO, &full_fops},
918 {8, "random", S_IRUGO | S_IWUSR, &random_fops},
919 {9, "urandom", S_IRUGO | S_IWUSR, &urandom_fops},
920 {11,"kmsg", S_IRUGO | S_IWUSR, &kmsg_fops},
921 #ifdef CONFIG_CRASH_DUMP
922 {12,"oldmem", S_IRUSR | S_IWUSR | S_IRGRP, &oldmem_fops},
926 static struct class *mem_class;
928 static int __init chr_dev_init(void)
932 if (register_chrdev(MEM_MAJOR,"mem",&memory_fops))
933 printk("unable to get major %d for memory devs\n", MEM_MAJOR);
935 mem_class = class_create(THIS_MODULE, "mem");
936 for (i = 0; i < ARRAY_SIZE(devlist); i++) {
937 class_device_create(mem_class, NULL,
938 MKDEV(MEM_MAJOR, devlist[i].minor),
939 NULL, devlist[i].name);
940 devfs_mk_cdev(MKDEV(MEM_MAJOR, devlist[i].minor),
941 S_IFCHR | devlist[i].mode, devlist[i].name);
947 fs_initcall(chr_dev_init);