Merge branch 'linus' into x86/gart
[linux-2.6] / drivers / media / common / tuners / xc5000.c
1 /*
2  *  Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
3  *
4  *  Copyright (c) 2007 Xceive Corporation
5  *  Copyright (c) 2007 Steven Toth <stoth@hauppauge.com>
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/videodev2.h>
26 #include <linux/delay.h>
27 #include <linux/dvb/frontend.h>
28 #include <linux/i2c.h>
29
30 #include "dvb_frontend.h"
31
32 #include "xc5000.h"
33 #include "xc5000_priv.h"
34
35 static int debug;
36 module_param(debug, int, 0644);
37 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
38
39 #define dprintk(level,fmt, arg...) if (debug >= level) \
40         printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
41
42 #define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.1.fw"
43 #define XC5000_DEFAULT_FIRMWARE_SIZE 12332
44
45 /* Misc Defines */
46 #define MAX_TV_STANDARD                 23
47 #define XC_MAX_I2C_WRITE_LENGTH         64
48
49 /* Signal Types */
50 #define XC_RF_MODE_AIR                  0
51 #define XC_RF_MODE_CABLE                1
52
53 /* Result codes */
54 #define XC_RESULT_SUCCESS               0
55 #define XC_RESULT_RESET_FAILURE         1
56 #define XC_RESULT_I2C_WRITE_FAILURE     2
57 #define XC_RESULT_I2C_READ_FAILURE      3
58 #define XC_RESULT_OUT_OF_RANGE          5
59
60 /* Product id */
61 #define XC_PRODUCT_ID_FW_NOT_LOADED     0x2000
62 #define XC_PRODUCT_ID_FW_LOADED         0x1388
63
64 /* Registers */
65 #define XREG_INIT         0x00
66 #define XREG_VIDEO_MODE   0x01
67 #define XREG_AUDIO_MODE   0x02
68 #define XREG_RF_FREQ      0x03
69 #define XREG_D_CODE       0x04
70 #define XREG_IF_OUT       0x05
71 #define XREG_SEEK_MODE    0x07
72 #define XREG_POWER_DOWN   0x0A
73 #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
74 #define XREG_SMOOTHEDCVBS 0x0E
75 #define XREG_XTALFREQ     0x0F
76 #define XREG_FINERFFREQ   0x10
77 #define XREG_DDIMODE      0x11
78
79 #define XREG_ADC_ENV      0x00
80 #define XREG_QUALITY      0x01
81 #define XREG_FRAME_LINES  0x02
82 #define XREG_HSYNC_FREQ   0x03
83 #define XREG_LOCK         0x04
84 #define XREG_FREQ_ERROR   0x05
85 #define XREG_SNR          0x06
86 #define XREG_VERSION      0x07
87 #define XREG_PRODUCT_ID   0x08
88 #define XREG_BUSY         0x09
89
90 /*
91    Basic firmware description. This will remain with
92    the driver for documentation purposes.
93
94    This represents an I2C firmware file encoded as a
95    string of unsigned char. Format is as follows:
96
97    char[0  ]=len0_MSB  -> len = len_MSB * 256 + len_LSB
98    char[1  ]=len0_LSB  -> length of first write transaction
99    char[2  ]=data0 -> first byte to be sent
100    char[3  ]=data1
101    char[4  ]=data2
102    char[   ]=...
103    char[M  ]=dataN  -> last byte to be sent
104    char[M+1]=len1_MSB  -> len = len_MSB * 256 + len_LSB
105    char[M+2]=len1_LSB  -> length of second write transaction
106    char[M+3]=data0
107    char[M+4]=data1
108    ...
109    etc.
110
111    The [len] value should be interpreted as follows:
112
113    len= len_MSB _ len_LSB
114    len=1111_1111_1111_1111   : End of I2C_SEQUENCE
115    len=0000_0000_0000_0000   : Reset command: Do hardware reset
116    len=0NNN_NNNN_NNNN_NNNN   : Normal transaction: number of bytes = {1:32767)
117    len=1WWW_WWWW_WWWW_WWWW   : Wait command: wait for {1:32767} ms
118
119    For the RESET and WAIT commands, the two following bytes will contain
120    immediately the length of the following transaction.
121
122 */
123 typedef struct {
124         char *Name;
125         u16 AudioMode;
126         u16 VideoMode;
127 } XC_TV_STANDARD;
128
129 /* Tuner standards */
130 #define MN_NTSC_PAL_BTSC        0
131 #define MN_NTSC_PAL_A2          1
132 #define MN_NTSC_PAL_EIAJ        2
133 #define MN_NTSC_PAL_Mono        3
134 #define BG_PAL_A2               4
135 #define BG_PAL_NICAM            5
136 #define BG_PAL_MONO             6
137 #define I_PAL_NICAM             7
138 #define I_PAL_NICAM_MONO        8
139 #define DK_PAL_A2               9
140 #define DK_PAL_NICAM            10
141 #define DK_PAL_MONO             11
142 #define DK_SECAM_A2DK1          12
143 #define DK_SECAM_A2LDK3         13
144 #define DK_SECAM_A2MONO         14
145 #define L_SECAM_NICAM           15
146 #define LC_SECAM_NICAM          16
147 #define DTV6                    17
148 #define DTV8                    18
149 #define DTV7_8                  19
150 #define DTV7                    20
151 #define FM_Radio_INPUT2         21
152 #define FM_Radio_INPUT1         22
153
154 static XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
155         {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
156         {"M/N-NTSC/PAL-A2",   0x0600, 0x8020},
157         {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
158         {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
159         {"B/G-PAL-A2",        0x0A00, 0x8049},
160         {"B/G-PAL-NICAM",     0x0C04, 0x8049},
161         {"B/G-PAL-MONO",      0x0878, 0x8059},
162         {"I-PAL-NICAM",       0x1080, 0x8009},
163         {"I-PAL-NICAM-MONO",  0x0E78, 0x8009},
164         {"D/K-PAL-A2",        0x1600, 0x8009},
165         {"D/K-PAL-NICAM",     0x0E80, 0x8009},
166         {"D/K-PAL-MONO",      0x1478, 0x8009},
167         {"D/K-SECAM-A2 DK1",  0x1200, 0x8009},
168         {"D/K-SECAM-A2 L/DK3",0x0E00, 0x8009},
169         {"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
170         {"L-SECAM-NICAM",     0x8E82, 0x0009},
171         {"L'-SECAM-NICAM",    0x8E82, 0x4009},
172         {"DTV6",              0x00C0, 0x8002},
173         {"DTV8",              0x00C0, 0x800B},
174         {"DTV7/8",            0x00C0, 0x801B},
175         {"DTV7",              0x00C0, 0x8007},
176         {"FM Radio-INPUT2",   0x9802, 0x9002},
177         {"FM Radio-INPUT1",   0x0208, 0x9002}
178 };
179
180 static int  xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len);
181 static int  xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len);
182 static void xc5000_TunerReset(struct dvb_frontend *fe);
183
184 static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
185 {
186         return xc5000_writeregs(priv, buf, len)
187                 ? XC_RESULT_I2C_WRITE_FAILURE : XC_RESULT_SUCCESS;
188 }
189
190 static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
191 {
192         return xc5000_readregs(priv, buf, len)
193                 ? XC_RESULT_I2C_READ_FAILURE : XC_RESULT_SUCCESS;
194 }
195
196 static int xc_reset(struct dvb_frontend *fe)
197 {
198         xc5000_TunerReset(fe);
199         return XC_RESULT_SUCCESS;
200 }
201
202 static void xc_wait(int wait_ms)
203 {
204         msleep(wait_ms);
205 }
206
207 static void xc5000_TunerReset(struct dvb_frontend *fe)
208 {
209         struct xc5000_priv *priv = fe->tuner_priv;
210         int ret;
211
212         dprintk(1, "%s()\n", __func__);
213
214         if (priv->cfg->tuner_callback) {
215                 ret = priv->cfg->tuner_callback(priv->devptr,
216                                                 XC5000_TUNER_RESET, 0);
217                 if (ret)
218                         printk(KERN_ERR "xc5000: reset failed\n");
219         } else
220                 printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
221 }
222
223 static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
224 {
225         u8 buf[4];
226         int WatchDogTimer = 5;
227         int result;
228
229         buf[0] = (regAddr >> 8) & 0xFF;
230         buf[1] = regAddr & 0xFF;
231         buf[2] = (i2cData >> 8) & 0xFF;
232         buf[3] = i2cData & 0xFF;
233         result = xc_send_i2c_data(priv, buf, 4);
234         if (result == XC_RESULT_SUCCESS) {
235                 /* wait for busy flag to clear */
236                 while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
237                         buf[0] = 0;
238                         buf[1] = XREG_BUSY;
239
240                         result = xc_send_i2c_data(priv, buf, 2);
241                         if (result == XC_RESULT_SUCCESS) {
242                                 result = xc_read_i2c_data(priv, buf, 2);
243                                 if (result == XC_RESULT_SUCCESS) {
244                                         if ((buf[0] == 0) && (buf[1] == 0)) {
245                                                 /* busy flag cleared */
246                                         break;
247                                         } else {
248                                                 xc_wait(100); /* wait 5 ms */
249                                                 WatchDogTimer--;
250                                         }
251                                 }
252                         }
253                 }
254         }
255         if (WatchDogTimer < 0)
256                 result = XC_RESULT_I2C_WRITE_FAILURE;
257
258         return result;
259 }
260
261 static int xc_read_reg(struct xc5000_priv *priv, u16 regAddr, u16 *i2cData)
262 {
263         u8 buf[2];
264         int result;
265
266         buf[0] = (regAddr >> 8) & 0xFF;
267         buf[1] = regAddr & 0xFF;
268         result = xc_send_i2c_data(priv, buf, 2);
269         if (result != XC_RESULT_SUCCESS)
270                 return result;
271
272         result = xc_read_i2c_data(priv, buf, 2);
273         if (result != XC_RESULT_SUCCESS)
274                 return result;
275
276         *i2cData = buf[0] * 256 + buf[1];
277         return result;
278 }
279
280 static int xc_load_i2c_sequence(struct dvb_frontend *fe, u8 i2c_sequence[])
281 {
282         struct xc5000_priv *priv = fe->tuner_priv;
283
284         int i, nbytes_to_send, result;
285         unsigned int len, pos, index;
286         u8 buf[XC_MAX_I2C_WRITE_LENGTH];
287
288         index=0;
289         while ((i2c_sequence[index]!=0xFF) || (i2c_sequence[index+1]!=0xFF)) {
290                 len = i2c_sequence[index]* 256 + i2c_sequence[index+1];
291                 if (len == 0x0000) {
292                         /* RESET command */
293                         result = xc_reset(fe);
294                         index += 2;
295                         if (result != XC_RESULT_SUCCESS)
296                                 return result;
297                 } else if (len & 0x8000) {
298                         /* WAIT command */
299                         xc_wait(len & 0x7FFF);
300                         index += 2;
301                 } else {
302                         /* Send i2c data whilst ensuring individual transactions
303                          * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
304                          */
305                         index += 2;
306                         buf[0] = i2c_sequence[index];
307                         buf[1] = i2c_sequence[index + 1];
308                         pos = 2;
309                         while (pos < len) {
310                                 if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2) {
311                                         nbytes_to_send = XC_MAX_I2C_WRITE_LENGTH;
312                                 } else {
313                                         nbytes_to_send = (len - pos + 2);
314                                 }
315                                 for (i=2; i<nbytes_to_send; i++) {
316                                         buf[i] = i2c_sequence[index + pos + i - 2];
317                                 }
318                                 result = xc_send_i2c_data(priv, buf, nbytes_to_send);
319
320                                 if (result != XC_RESULT_SUCCESS)
321                                         return result;
322
323                                 pos += nbytes_to_send - 2;
324                         }
325                         index += len;
326                 }
327         }
328         return XC_RESULT_SUCCESS;
329 }
330
331 static int xc_initialize(struct xc5000_priv *priv)
332 {
333         dprintk(1, "%s()\n", __func__);
334         return xc_write_reg(priv, XREG_INIT, 0);
335 }
336
337 static int xc_SetTVStandard(struct xc5000_priv *priv,
338         u16 VideoMode, u16 AudioMode)
339 {
340         int ret;
341         dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
342         dprintk(1, "%s() Standard = %s\n",
343                 __func__,
344                 XC5000_Standard[priv->video_standard].Name);
345
346         ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
347         if (ret == XC_RESULT_SUCCESS)
348                 ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);
349
350         return ret;
351 }
352
353 static int xc_shutdown(struct xc5000_priv *priv)
354 {
355         return 0;
356         /* Fixme: cannot bring tuner back alive once shutdown
357          *        without reloading the driver modules.
358          *    return xc_write_reg(priv, XREG_POWER_DOWN, 0);
359          */
360 }
361
362 static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
363 {
364         dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
365                 rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
366
367         if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE))
368         {
369                 rf_mode = XC_RF_MODE_CABLE;
370                 printk(KERN_ERR
371                         "%s(), Invalid mode, defaulting to CABLE",
372                         __func__);
373         }
374         return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
375 }
376
377 static const struct dvb_tuner_ops xc5000_tuner_ops;
378
379 static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
380 {
381         u16 freq_code;
382
383         dprintk(1, "%s(%u)\n", __func__, freq_hz);
384
385         if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
386                 (freq_hz < xc5000_tuner_ops.info.frequency_min))
387                 return XC_RESULT_OUT_OF_RANGE;
388
389         freq_code = (u16)(freq_hz / 15625);
390
391         return xc_write_reg(priv, XREG_RF_FREQ, freq_code);
392 }
393
394
395 static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
396 {
397         u32 freq_code = (freq_khz * 1024)/1000;
398         dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
399                 __func__, freq_khz, freq_code);
400
401         return xc_write_reg(priv, XREG_IF_OUT, freq_code);
402 }
403
404
405 static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
406 {
407         return xc_read_reg(priv, XREG_ADC_ENV, adc_envelope);
408 }
409
410 static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
411 {
412         int result;
413         u16 regData;
414         u32 tmp;
415
416         result = xc_read_reg(priv, XREG_FREQ_ERROR, &regData);
417         if (result)
418                 return result;
419
420         tmp = (u32)regData;
421         (*freq_error_hz) = (tmp * 15625) / 1000;
422         return result;
423 }
424
425 static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
426 {
427         return xc_read_reg(priv, XREG_LOCK, lock_status);
428 }
429
430 static int xc_get_version(struct xc5000_priv *priv,
431         u8 *hw_majorversion, u8 *hw_minorversion,
432         u8 *fw_majorversion, u8 *fw_minorversion)
433 {
434         u16 data;
435         int result;
436
437         result = xc_read_reg(priv, XREG_VERSION, &data);
438         if (result)
439                 return result;
440
441         (*hw_majorversion) = (data >> 12) & 0x0F;
442         (*hw_minorversion) = (data >>  8) & 0x0F;
443         (*fw_majorversion) = (data >>  4) & 0x0F;
444         (*fw_minorversion) = data & 0x0F;
445
446         return 0;
447 }
448
449 static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
450 {
451         u16 regData;
452         int result;
453
454         result = xc_read_reg(priv, XREG_HSYNC_FREQ, &regData);
455         if (result)
456                 return result;
457
458         (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
459         return result;
460 }
461
462 static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
463 {
464         return xc_read_reg(priv, XREG_FRAME_LINES, frame_lines);
465 }
466
467 static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
468 {
469         return xc_read_reg(priv, XREG_QUALITY, quality);
470 }
471
472 static u16 WaitForLock(struct xc5000_priv *priv)
473 {
474         u16 lockState = 0;
475         int watchDogCount = 40;
476
477         while ((lockState == 0) && (watchDogCount > 0)) {
478                 xc_get_lock_status(priv, &lockState);
479                 if (lockState != 1) {
480                         xc_wait(5);
481                         watchDogCount--;
482                 }
483         }
484         return lockState;
485 }
486
487 static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz)
488 {
489         int found = 0;
490
491         dprintk(1, "%s(%u)\n", __func__, freq_hz);
492
493         if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
494                 return 0;
495
496         if (WaitForLock(priv) == 1)
497                 found = 1;
498
499         return found;
500 }
501
502 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
503 {
504         u8 buf[2] = { reg >> 8, reg & 0xff };
505         u8 bval[2] = { 0, 0 };
506         struct i2c_msg msg[2] = {
507                 { .addr = priv->cfg->i2c_address,
508                         .flags = 0, .buf = &buf[0], .len = 2 },
509                 { .addr = priv->cfg->i2c_address,
510                         .flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
511         };
512
513         if (i2c_transfer(priv->i2c, msg, 2) != 2) {
514                 printk(KERN_WARNING "xc5000: I2C read failed\n");
515                 return -EREMOTEIO;
516         }
517
518         *val = (bval[0] << 8) | bval[1];
519         return 0;
520 }
521
522 static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len)
523 {
524         struct i2c_msg msg = { .addr = priv->cfg->i2c_address,
525                 .flags = 0, .buf = buf, .len = len };
526
527         if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
528                 printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n",
529                         (int)len);
530                 return -EREMOTEIO;
531         }
532         return 0;
533 }
534
535 static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len)
536 {
537         struct i2c_msg msg = { .addr = priv->cfg->i2c_address,
538                 .flags = I2C_M_RD, .buf = buf, .len = len };
539
540         if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
541                 printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n",(int)len);
542                 return -EREMOTEIO;
543         }
544         return 0;
545 }
546
547 static int xc5000_fwupload(struct dvb_frontend* fe)
548 {
549         struct xc5000_priv *priv = fe->tuner_priv;
550         const struct firmware *fw;
551         int ret;
552
553         /* request the firmware, this will block and timeout */
554         printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
555                 XC5000_DEFAULT_FIRMWARE);
556
557         ret = request_firmware(&fw, XC5000_DEFAULT_FIRMWARE, &priv->i2c->dev);
558         if (ret) {
559                 printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
560                 ret = XC_RESULT_RESET_FAILURE;
561                 goto out;
562         } else {
563                 printk(KERN_INFO "xc5000: firmware read %Zu bytes.\n",
564                        fw->size);
565                 ret = XC_RESULT_SUCCESS;
566         }
567
568         if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) {
569                 printk(KERN_ERR "xc5000: firmware incorrect size\n");
570                 ret = XC_RESULT_RESET_FAILURE;
571         } else {
572                 printk(KERN_INFO "xc5000: firmware upload\n");
573                 ret = xc_load_i2c_sequence(fe,  fw->data );
574         }
575
576 out:
577         release_firmware(fw);
578         return ret;
579 }
580
581 static void xc_debug_dump(struct xc5000_priv *priv)
582 {
583         u16 adc_envelope;
584         u32 freq_error_hz = 0;
585         u16 lock_status;
586         u32 hsync_freq_hz = 0;
587         u16 frame_lines;
588         u16 quality;
589         u8 hw_majorversion = 0, hw_minorversion = 0;
590         u8 fw_majorversion = 0, fw_minorversion = 0;
591
592         /* Wait for stats to stabilize.
593          * Frame Lines needs two frame times after initial lock
594          * before it is valid.
595          */
596         xc_wait(100);
597
598         xc_get_ADC_Envelope(priv,  &adc_envelope);
599         dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
600
601         xc_get_frequency_error(priv, &freq_error_hz);
602         dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
603
604         xc_get_lock_status(priv,  &lock_status);
605         dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
606                 lock_status);
607
608         xc_get_version(priv,  &hw_majorversion, &hw_minorversion,
609                 &fw_majorversion, &fw_minorversion);
610         dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
611                 hw_majorversion, hw_minorversion,
612                 fw_majorversion, fw_minorversion);
613
614         xc_get_hsync_freq(priv,  &hsync_freq_hz);
615         dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
616
617         xc_get_frame_lines(priv,  &frame_lines);
618         dprintk(1, "*** Frame lines = %d\n", frame_lines);
619
620         xc_get_quality(priv,  &quality);
621         dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
622 }
623
624 static int xc5000_set_params(struct dvb_frontend *fe,
625         struct dvb_frontend_parameters *params)
626 {
627         struct xc5000_priv *priv = fe->tuner_priv;
628         int ret;
629
630         dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency);
631
632         switch(params->u.vsb.modulation) {
633         case VSB_8:
634         case VSB_16:
635                 dprintk(1, "%s() VSB modulation\n", __func__);
636                 priv->rf_mode = XC_RF_MODE_AIR;
637                 priv->freq_hz = params->frequency - 1750000;
638                 priv->bandwidth = BANDWIDTH_6_MHZ;
639                 priv->video_standard = DTV6;
640                 break;
641         case QAM_64:
642         case QAM_256:
643         case QAM_AUTO:
644                 dprintk(1, "%s() QAM modulation\n", __func__);
645                 priv->rf_mode = XC_RF_MODE_CABLE;
646                 priv->freq_hz = params->frequency - 1750000;
647                 priv->bandwidth = BANDWIDTH_6_MHZ;
648                 priv->video_standard = DTV6;
649                 break;
650         default:
651                 return -EINVAL;
652         }
653
654         dprintk(1, "%s() frequency=%d (compensated)\n",
655                 __func__, priv->freq_hz);
656
657         ret = xc_SetSignalSource(priv, priv->rf_mode);
658         if (ret != XC_RESULT_SUCCESS) {
659                 printk(KERN_ERR
660                         "xc5000: xc_SetSignalSource(%d) failed\n",
661                         priv->rf_mode);
662                 return -EREMOTEIO;
663         }
664
665         ret = xc_SetTVStandard(priv,
666                 XC5000_Standard[priv->video_standard].VideoMode,
667                 XC5000_Standard[priv->video_standard].AudioMode);
668         if (ret != XC_RESULT_SUCCESS) {
669                 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
670                 return -EREMOTEIO;
671         }
672
673         ret = xc_set_IF_frequency(priv, priv->cfg->if_khz);
674         if (ret != XC_RESULT_SUCCESS) {
675                 printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
676                         priv->cfg->if_khz);
677                 return -EIO;
678         }
679
680         xc_tune_channel(priv, priv->freq_hz);
681
682         if (debug)
683                 xc_debug_dump(priv);
684
685         return 0;
686 }
687
688 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);
689
690 static int xc5000_set_analog_params(struct dvb_frontend *fe,
691         struct analog_parameters *params)
692 {
693         struct xc5000_priv *priv = fe->tuner_priv;
694         int ret;
695
696         if(priv->fwloaded == 0)
697                 xc_load_fw_and_init_tuner(fe);
698
699         dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
700                 __func__, params->frequency);
701
702         priv->rf_mode = XC_RF_MODE_CABLE; /* Fix me: it could be air. */
703
704         /* params->frequency is in units of 62.5khz */
705         priv->freq_hz = params->frequency * 62500;
706
707         /* FIX ME: Some video standards may have several possible audio
708                    standards. We simply default to one of them here.
709          */
710         if(params->std & V4L2_STD_MN) {
711                 /* default to BTSC audio standard */
712                 priv->video_standard = MN_NTSC_PAL_BTSC;
713                 goto tune_channel;
714         }
715
716         if(params->std & V4L2_STD_PAL_BG) {
717                 /* default to NICAM audio standard */
718                 priv->video_standard = BG_PAL_NICAM;
719                 goto tune_channel;
720         }
721
722         if(params->std & V4L2_STD_PAL_I) {
723                 /* default to NICAM audio standard */
724                 priv->video_standard = I_PAL_NICAM;
725                 goto tune_channel;
726         }
727
728         if(params->std & V4L2_STD_PAL_DK) {
729                 /* default to NICAM audio standard */
730                 priv->video_standard = DK_PAL_NICAM;
731                 goto tune_channel;
732         }
733
734         if(params->std & V4L2_STD_SECAM_DK) {
735                 /* default to A2 DK1 audio standard */
736                 priv->video_standard = DK_SECAM_A2DK1;
737                 goto tune_channel;
738         }
739
740         if(params->std & V4L2_STD_SECAM_L) {
741                 priv->video_standard = L_SECAM_NICAM;
742                 goto tune_channel;
743         }
744
745         if(params->std & V4L2_STD_SECAM_LC) {
746                 priv->video_standard = LC_SECAM_NICAM;
747                 goto tune_channel;
748         }
749
750 tune_channel:
751         ret = xc_SetSignalSource(priv, priv->rf_mode);
752         if (ret != XC_RESULT_SUCCESS) {
753         printk(KERN_ERR
754                         "xc5000: xc_SetSignalSource(%d) failed\n",
755                         priv->rf_mode);
756                 return -EREMOTEIO;
757         }
758
759         ret = xc_SetTVStandard(priv,
760                 XC5000_Standard[priv->video_standard].VideoMode,
761                 XC5000_Standard[priv->video_standard].AudioMode);
762         if (ret != XC_RESULT_SUCCESS) {
763                 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
764                 return -EREMOTEIO;
765         }
766
767         xc_tune_channel(priv, priv->freq_hz);
768
769         if (debug)
770                 xc_debug_dump(priv);
771
772         return 0;
773 }
774
775 static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
776 {
777         struct xc5000_priv *priv = fe->tuner_priv;
778         dprintk(1, "%s()\n", __func__);
779         *freq = priv->freq_hz;
780         return 0;
781 }
782
783 static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
784 {
785         struct xc5000_priv *priv = fe->tuner_priv;
786         dprintk(1, "%s()\n", __func__);
787
788         *bw = priv->bandwidth;
789         return 0;
790 }
791
792 static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
793 {
794         struct xc5000_priv *priv = fe->tuner_priv;
795         u16 lock_status = 0;
796
797         xc_get_lock_status(priv, &lock_status);
798
799         dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
800
801         *status = lock_status;
802
803         return 0;
804 }
805
806 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
807 {
808         struct xc5000_priv *priv = fe->tuner_priv;
809         int ret = 0;
810
811         if (priv->fwloaded == 0) {
812                 ret = xc5000_fwupload(fe);
813                 if (ret != XC_RESULT_SUCCESS)
814                         return ret;
815                 priv->fwloaded = 1;
816         }
817
818         /* Start the tuner self-calibration process */
819         ret |= xc_initialize(priv);
820
821         /* Wait for calibration to complete.
822          * We could continue but XC5000 will clock stretch subsequent
823          * I2C transactions until calibration is complete.  This way we
824          * don't have to rely on clock stretching working.
825          */
826         xc_wait( 100 );
827
828         /* Default to "CABLE" mode */
829         ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
830
831         return ret;
832 }
833
834 static int xc5000_sleep(struct dvb_frontend *fe)
835 {
836         struct xc5000_priv *priv = fe->tuner_priv;
837         int ret;
838
839         dprintk(1, "%s()\n", __func__);
840
841         /* On Pinnacle PCTV HD 800i, the tuner cannot be reinitialized
842          * once shutdown without reloading the driver. Maybe I am not
843          * doing something right.
844          *
845          */
846
847         ret = xc_shutdown(priv);
848         if(ret != XC_RESULT_SUCCESS) {
849                 printk(KERN_ERR
850                         "xc5000: %s() unable to shutdown tuner\n",
851                         __func__);
852                 return -EREMOTEIO;
853         }
854         else {
855                 /* priv->fwloaded = 0; */
856                 return XC_RESULT_SUCCESS;
857         }
858 }
859
860 static int xc5000_init(struct dvb_frontend *fe)
861 {
862         struct xc5000_priv *priv = fe->tuner_priv;
863         dprintk(1, "%s()\n", __func__);
864
865         if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
866                 printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
867                 return -EREMOTEIO;
868         }
869
870         if (debug)
871                 xc_debug_dump(priv);
872
873         return 0;
874 }
875
876 static int xc5000_release(struct dvb_frontend *fe)
877 {
878         dprintk(1, "%s()\n", __func__);
879         kfree(fe->tuner_priv);
880         fe->tuner_priv = NULL;
881         return 0;
882 }
883
884 static const struct dvb_tuner_ops xc5000_tuner_ops = {
885         .info = {
886                 .name           = "Xceive XC5000",
887                 .frequency_min  =    1000000,
888                 .frequency_max  = 1023000000,
889                 .frequency_step =      50000,
890         },
891
892         .release           = xc5000_release,
893         .init              = xc5000_init,
894         .sleep             = xc5000_sleep,
895
896         .set_params        = xc5000_set_params,
897         .set_analog_params = xc5000_set_analog_params,
898         .get_frequency     = xc5000_get_frequency,
899         .get_bandwidth     = xc5000_get_bandwidth,
900         .get_status        = xc5000_get_status
901 };
902
903 struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
904                                    struct i2c_adapter *i2c,
905                                    struct xc5000_config *cfg, void *devptr)
906 {
907         struct xc5000_priv *priv = NULL;
908         u16 id = 0;
909
910         dprintk(1, "%s()\n", __func__);
911
912         priv = kzalloc(sizeof(struct xc5000_priv), GFP_KERNEL);
913         if (priv == NULL)
914                 return NULL;
915
916         priv->cfg = cfg;
917         priv->bandwidth = BANDWIDTH_6_MHZ;
918         priv->i2c = i2c;
919         priv->devptr = devptr;
920
921         /* Check if firmware has been loaded. It is possible that another
922            instance of the driver has loaded the firmware.
923          */
924         if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0) {
925                 kfree(priv);
926                 return NULL;
927         }
928
929         switch(id) {
930         case XC_PRODUCT_ID_FW_LOADED:
931                 printk(KERN_INFO
932                         "xc5000: Successfully identified at address 0x%02x\n",
933                         cfg->i2c_address);
934                 printk(KERN_INFO
935                         "xc5000: Firmware has been loaded previously\n");
936                 priv->fwloaded = 1;
937                 break;
938         case XC_PRODUCT_ID_FW_NOT_LOADED:
939                 printk(KERN_INFO
940                         "xc5000: Successfully identified at address 0x%02x\n",
941                         cfg->i2c_address);
942                 printk(KERN_INFO
943                         "xc5000: Firmware has not been loaded previously\n");
944                 priv->fwloaded = 0;
945                 break;
946         default:
947                 printk(KERN_ERR
948                         "xc5000: Device not found at addr 0x%02x (0x%x)\n",
949                         cfg->i2c_address, id);
950                 kfree(priv);
951                 return NULL;
952         }
953
954         memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
955                 sizeof(struct dvb_tuner_ops));
956
957         fe->tuner_priv = priv;
958
959         return fe;
960 }
961 EXPORT_SYMBOL(xc5000_attach);
962
963 MODULE_AUTHOR("Steven Toth");
964 MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
965 MODULE_LICENSE("GPL");