Merge with /pub/scm/linux/kernel/git/torvalds/linux-2.6.git
[linux-2.6] / drivers / macintosh / via-pmu.c
1 /*
2  * Device driver for the via-pmu on Apple Powermacs.
3  *
4  * The VIA (versatile interface adapter) interfaces to the PMU,
5  * a 6805 microprocessor core whose primary function is to control
6  * battery charging and system power on the PowerBook 3400 and 2400.
7  * The PMU also controls the ADB (Apple Desktop Bus) which connects
8  * to the keyboard and mouse, as well as the non-volatile RAM
9  * and the RTC (real time clock) chip.
10  *
11  * Copyright (C) 1998 Paul Mackerras and Fabio Riccardi.
12  * Copyright (C) 2001-2002 Benjamin Herrenschmidt
13  *
14  * THIS DRIVER IS BECOMING A TOTAL MESS !
15  *  - Cleanup atomically disabling reply to PMU events after
16  *    a sleep or a freq. switch
17  *  - Move sleep code out of here to pmac_pm, merge into new
18  *    common PM infrastructure
19  *  - Move backlight code out as well
20  *  - Save/Restore PCI space properly
21  *
22  */
23 #include <stdarg.h>
24 #include <linux/config.h>
25 #include <linux/types.h>
26 #include <linux/errno.h>
27 #include <linux/kernel.h>
28 #include <linux/delay.h>
29 #include <linux/sched.h>
30 #include <linux/miscdevice.h>
31 #include <linux/blkdev.h>
32 #include <linux/pci.h>
33 #include <linux/slab.h>
34 #include <linux/poll.h>
35 #include <linux/adb.h>
36 #include <linux/pmu.h>
37 #include <linux/cuda.h>
38 #include <linux/smp_lock.h>
39 #include <linux/module.h>
40 #include <linux/spinlock.h>
41 #include <linux/pm.h>
42 #include <linux/proc_fs.h>
43 #include <linux/init.h>
44 #include <linux/interrupt.h>
45 #include <linux/device.h>
46 #include <linux/sysdev.h>
47 #include <linux/suspend.h>
48 #include <linux/syscalls.h>
49 #include <linux/cpu.h>
50 #include <asm/prom.h>
51 #include <asm/machdep.h>
52 #include <asm/io.h>
53 #include <asm/pgtable.h>
54 #include <asm/system.h>
55 #include <asm/sections.h>
56 #include <asm/irq.h>
57 #include <asm/pmac_feature.h>
58 #include <asm/uaccess.h>
59 #include <asm/mmu_context.h>
60 #include <asm/cputable.h>
61 #include <asm/time.h>
62 #ifdef CONFIG_PMAC_BACKLIGHT
63 #include <asm/backlight.h>
64 #endif
65
66 #ifdef CONFIG_PPC32
67 #include <asm/open_pic.h>
68 #endif
69
70 /* Some compile options */
71 #undef SUSPEND_USES_PMU
72 #define DEBUG_SLEEP
73 #undef HACKED_PCI_SAVE
74
75 /* Misc minor number allocated for /dev/pmu */
76 #define PMU_MINOR               154
77
78 /* How many iterations between battery polls */
79 #define BATTERY_POLLING_COUNT   2
80
81 static volatile unsigned char __iomem *via;
82
83 /* VIA registers - spaced 0x200 bytes apart */
84 #define RS              0x200           /* skip between registers */
85 #define B               0               /* B-side data */
86 #define A               RS              /* A-side data */
87 #define DIRB            (2*RS)          /* B-side direction (1=output) */
88 #define DIRA            (3*RS)          /* A-side direction (1=output) */
89 #define T1CL            (4*RS)          /* Timer 1 ctr/latch (low 8 bits) */
90 #define T1CH            (5*RS)          /* Timer 1 counter (high 8 bits) */
91 #define T1LL            (6*RS)          /* Timer 1 latch (low 8 bits) */
92 #define T1LH            (7*RS)          /* Timer 1 latch (high 8 bits) */
93 #define T2CL            (8*RS)          /* Timer 2 ctr/latch (low 8 bits) */
94 #define T2CH            (9*RS)          /* Timer 2 counter (high 8 bits) */
95 #define SR              (10*RS)         /* Shift register */
96 #define ACR             (11*RS)         /* Auxiliary control register */
97 #define PCR             (12*RS)         /* Peripheral control register */
98 #define IFR             (13*RS)         /* Interrupt flag register */
99 #define IER             (14*RS)         /* Interrupt enable register */
100 #define ANH             (15*RS)         /* A-side data, no handshake */
101
102 /* Bits in B data register: both active low */
103 #define TACK            0x08            /* Transfer acknowledge (input) */
104 #define TREQ            0x10            /* Transfer request (output) */
105
106 /* Bits in ACR */
107 #define SR_CTRL         0x1c            /* Shift register control bits */
108 #define SR_EXT          0x0c            /* Shift on external clock */
109 #define SR_OUT          0x10            /* Shift out if 1 */
110
111 /* Bits in IFR and IER */
112 #define IER_SET         0x80            /* set bits in IER */
113 #define IER_CLR         0               /* clear bits in IER */
114 #define SR_INT          0x04            /* Shift register full/empty */
115 #define CB2_INT         0x08
116 #define CB1_INT         0x10            /* transition on CB1 input */
117
118 static volatile enum pmu_state {
119         idle,
120         sending,
121         intack,
122         reading,
123         reading_intr,
124         locked,
125 } pmu_state;
126
127 static volatile enum int_data_state {
128         int_data_empty,
129         int_data_fill,
130         int_data_ready,
131         int_data_flush
132 } int_data_state[2] = { int_data_empty, int_data_empty };
133
134 static struct adb_request *current_req;
135 static struct adb_request *last_req;
136 static struct adb_request *req_awaiting_reply;
137 static unsigned char interrupt_data[2][32];
138 static int interrupt_data_len[2];
139 static int int_data_last;
140 static unsigned char *reply_ptr;
141 static int data_index;
142 static int data_len;
143 static volatile int adb_int_pending;
144 static volatile int disable_poll;
145 static struct adb_request bright_req_1, bright_req_2;
146 static struct device_node *vias;
147 static int pmu_kind = PMU_UNKNOWN;
148 static int pmu_fully_inited = 0;
149 static int pmu_has_adb;
150 static unsigned char __iomem *gpio_reg = NULL;
151 static int gpio_irq = -1;
152 static int gpio_irq_enabled = -1;
153 static volatile int pmu_suspended = 0;
154 static spinlock_t pmu_lock;
155 static u8 pmu_intr_mask;
156 static int pmu_version;
157 static int drop_interrupts;
158 #ifdef CONFIG_PM
159 static int option_lid_wakeup = 1;
160 static int sleep_in_progress;
161 #endif /* CONFIG_PM */
162 static unsigned long async_req_locks;
163 static unsigned int pmu_irq_stats[11];
164
165 static struct proc_dir_entry *proc_pmu_root;
166 static struct proc_dir_entry *proc_pmu_info;
167 static struct proc_dir_entry *proc_pmu_irqstats;
168 static struct proc_dir_entry *proc_pmu_options;
169 static int option_server_mode;
170
171 int pmu_battery_count;
172 int pmu_cur_battery;
173 unsigned int pmu_power_flags;
174 struct pmu_battery_info pmu_batteries[PMU_MAX_BATTERIES];
175 static int query_batt_timer = BATTERY_POLLING_COUNT;
176 static struct adb_request batt_req;
177 static struct proc_dir_entry *proc_pmu_batt[PMU_MAX_BATTERIES];
178
179 #if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT)
180 extern int disable_kernel_backlight;
181 #endif /* defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT) */
182
183 int __fake_sleep;
184 int asleep;
185 struct notifier_block *sleep_notifier_list;
186
187 #ifdef CONFIG_ADB
188 static int adb_dev_map = 0;
189 static int pmu_adb_flags;
190
191 static int pmu_probe(void);
192 static int pmu_init(void);
193 static int pmu_send_request(struct adb_request *req, int sync);
194 static int pmu_adb_autopoll(int devs);
195 static int pmu_adb_reset_bus(void);
196 #endif /* CONFIG_ADB */
197
198 static int init_pmu(void);
199 static int pmu_queue_request(struct adb_request *req);
200 static void pmu_start(void);
201 static irqreturn_t via_pmu_interrupt(int irq, void *arg, struct pt_regs *regs);
202 static irqreturn_t gpio1_interrupt(int irq, void *arg, struct pt_regs *regs);
203 static int proc_get_info(char *page, char **start, off_t off,
204                           int count, int *eof, void *data);
205 static int proc_get_irqstats(char *page, char **start, off_t off,
206                           int count, int *eof, void *data);
207 #ifdef CONFIG_PMAC_BACKLIGHT
208 static int pmu_set_backlight_level(int level, void* data);
209 static int pmu_set_backlight_enable(int on, int level, void* data);
210 #endif /* CONFIG_PMAC_BACKLIGHT */
211 static void pmu_pass_intr(unsigned char *data, int len);
212 static int proc_get_batt(char *page, char **start, off_t off,
213                         int count, int *eof, void *data);
214 static int proc_read_options(char *page, char **start, off_t off,
215                         int count, int *eof, void *data);
216 static int proc_write_options(struct file *file, const char __user *buffer,
217                         unsigned long count, void *data);
218
219 #ifdef CONFIG_ADB
220 struct adb_driver via_pmu_driver = {
221         "PMU",
222         pmu_probe,
223         pmu_init,
224         pmu_send_request,
225         pmu_adb_autopoll,
226         pmu_poll_adb,
227         pmu_adb_reset_bus
228 };
229 #endif /* CONFIG_ADB */
230
231 extern void low_sleep_handler(void);
232 extern void enable_kernel_altivec(void);
233 extern void enable_kernel_fp(void);
234
235 #ifdef DEBUG_SLEEP
236 int pmu_polled_request(struct adb_request *req);
237 int pmu_wink(struct adb_request *req);
238 #endif
239
240 /*
241  * This table indicates for each PMU opcode:
242  * - the number of data bytes to be sent with the command, or -1
243  *   if a length byte should be sent,
244  * - the number of response bytes which the PMU will return, or
245  *   -1 if it will send a length byte.
246  */
247 static const s8 pmu_data_len[256][2] = {
248 /*         0       1       2       3       4       5       6       7  */
249 /*00*/  {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
250 /*08*/  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
251 /*10*/  { 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
252 /*18*/  { 0, 1},{ 0, 1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{ 0, 0},
253 /*20*/  {-1, 0},{ 0, 0},{ 2, 0},{ 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},
254 /*28*/  { 0,-1},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{ 0,-1},
255 /*30*/  { 4, 0},{20, 0},{-1, 0},{ 3, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
256 /*38*/  { 0, 4},{ 0,20},{ 2,-1},{ 2, 1},{ 3,-1},{-1,-1},{-1,-1},{ 4, 0},
257 /*40*/  { 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
258 /*48*/  { 0, 1},{ 0, 1},{-1,-1},{ 1, 0},{ 1, 0},{-1,-1},{-1,-1},{-1,-1},
259 /*50*/  { 1, 0},{ 0, 0},{ 2, 0},{ 2, 0},{-1, 0},{ 1, 0},{ 3, 0},{ 1, 0},
260 /*58*/  { 0, 1},{ 1, 0},{ 0, 2},{ 0, 2},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},
261 /*60*/  { 2, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
262 /*68*/  { 0, 3},{ 0, 3},{ 0, 2},{ 0, 8},{ 0,-1},{ 0,-1},{-1,-1},{-1,-1},
263 /*70*/  { 1, 0},{ 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
264 /*78*/  { 0,-1},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},{ 5, 1},{ 4, 1},{ 4, 1},
265 /*80*/  { 4, 0},{-1, 0},{ 0, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
266 /*88*/  { 0, 5},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
267 /*90*/  { 1, 0},{ 2, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
268 /*98*/  { 0, 1},{ 0, 1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
269 /*a0*/  { 2, 0},{ 2, 0},{ 2, 0},{ 4, 0},{-1, 0},{ 0, 0},{-1, 0},{-1, 0},
270 /*a8*/  { 1, 1},{ 1, 0},{ 3, 0},{ 2, 0},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
271 /*b0*/  {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
272 /*b8*/  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
273 /*c0*/  {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
274 /*c8*/  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
275 /*d0*/  { 0, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
276 /*d8*/  { 1, 1},{ 1, 1},{-1,-1},{-1,-1},{ 0, 1},{ 0,-1},{-1,-1},{-1,-1},
277 /*e0*/  {-1, 0},{ 4, 0},{ 0, 1},{-1, 0},{-1, 0},{ 4, 0},{-1, 0},{-1, 0},
278 /*e8*/  { 3,-1},{-1,-1},{ 0, 1},{-1,-1},{ 0,-1},{-1,-1},{-1,-1},{ 0, 0},
279 /*f0*/  {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
280 /*f8*/  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
281 };
282
283 static char *pbook_type[] = {
284         "Unknown PowerBook",
285         "PowerBook 2400/3400/3500(G3)",
286         "PowerBook G3 Series",
287         "1999 PowerBook G3",
288         "Core99"
289 };
290
291 #ifdef CONFIG_PMAC_BACKLIGHT
292 static struct backlight_controller pmu_backlight_controller = {
293         pmu_set_backlight_enable,
294         pmu_set_backlight_level
295 };
296 #endif /* CONFIG_PMAC_BACKLIGHT */
297
298 int
299 find_via_pmu(void)
300 {
301         if (via != 0)
302                 return 1;
303         vias = find_devices("via-pmu");
304         if (vias == 0)
305                 return 0;
306         if (vias->next != 0)
307                 printk(KERN_WARNING "Warning: only using 1st via-pmu\n");
308
309         if (vias->n_addrs < 1 || vias->n_intrs < 1) {
310                 printk(KERN_ERR "via-pmu: %d addresses, %d interrupts!\n",
311                        vias->n_addrs, vias->n_intrs);
312                 if (vias->n_addrs < 1 || vias->n_intrs < 1)
313                         return 0;
314         }
315
316         spin_lock_init(&pmu_lock);
317
318         pmu_has_adb = 1;
319
320         pmu_intr_mask = PMU_INT_PCEJECT |
321                         PMU_INT_SNDBRT |
322                         PMU_INT_ADB |
323                         PMU_INT_TICK;
324         
325         if (vias->parent->name && ((strcmp(vias->parent->name, "ohare") == 0)
326             || device_is_compatible(vias->parent, "ohare")))
327                 pmu_kind = PMU_OHARE_BASED;
328         else if (device_is_compatible(vias->parent, "paddington"))
329                 pmu_kind = PMU_PADDINGTON_BASED;
330         else if (device_is_compatible(vias->parent, "heathrow"))
331                 pmu_kind = PMU_HEATHROW_BASED;
332         else if (device_is_compatible(vias->parent, "Keylargo")
333                  || device_is_compatible(vias->parent, "K2-Keylargo")) {
334                 struct device_node *gpio, *gpiop;
335
336                 pmu_kind = PMU_KEYLARGO_BASED;
337                 pmu_has_adb = (find_type_devices("adb") != NULL);
338                 pmu_intr_mask = PMU_INT_PCEJECT |
339                                 PMU_INT_SNDBRT |
340                                 PMU_INT_ADB |
341                                 PMU_INT_TICK |
342                                 PMU_INT_ENVIRONMENT;
343                 
344                 gpiop = find_devices("gpio");
345                 if (gpiop && gpiop->n_addrs) {
346                         gpio_reg = ioremap(gpiop->addrs->address, 0x10);
347                         gpio = find_devices("extint-gpio1");
348                         if (gpio == NULL)
349                                 gpio = find_devices("pmu-interrupt");
350                         if (gpio && gpio->parent == gpiop && gpio->n_intrs)
351                                 gpio_irq = gpio->intrs[0].line;
352                 }
353         } else
354                 pmu_kind = PMU_UNKNOWN;
355
356         via = ioremap(vias->addrs->address, 0x2000);
357         
358         out_8(&via[IER], IER_CLR | 0x7f);       /* disable all intrs */
359         out_8(&via[IFR], 0x7f);                 /* clear IFR */
360
361         pmu_state = idle;
362
363         if (!init_pmu()) {
364                 via = NULL;
365                 return 0;
366         }
367
368         printk(KERN_INFO "PMU driver %d initialized for %s, firmware: %02x\n",
369                PMU_DRIVER_VERSION, pbook_type[pmu_kind], pmu_version);
370                
371         sys_ctrler = SYS_CTRLER_PMU;
372         
373         return 1;
374 }
375
376 #ifdef CONFIG_ADB
377 static int
378 pmu_probe(void)
379 {
380         return vias == NULL? -ENODEV: 0;
381 }
382
383 static int __init
384 pmu_init(void)
385 {
386         if (vias == NULL)
387                 return -ENODEV;
388         return 0;
389 }
390 #endif /* CONFIG_ADB */
391
392 /*
393  * We can't wait until pmu_init gets called, that happens too late.
394  * It happens after IDE and SCSI initialization, which can take a few
395  * seconds, and by that time the PMU could have given up on us and
396  * turned us off.
397  * Thus this is called with arch_initcall rather than device_initcall.
398  */
399 static int __init via_pmu_start(void)
400 {
401         if (vias == NULL)
402                 return -ENODEV;
403
404         bright_req_1.complete = 1;
405         bright_req_2.complete = 1;
406         batt_req.complete = 1;
407
408 #if defined(CONFIG_PPC32) && !defined(CONFIG_PPC_MERGE)
409         if (pmu_kind == PMU_KEYLARGO_BASED)
410                 openpic_set_irq_priority(vias->intrs[0].line,
411                                          OPENPIC_PRIORITY_DEFAULT + 1);
412 #endif
413
414         if (request_irq(vias->intrs[0].line, via_pmu_interrupt, 0, "VIA-PMU",
415                         (void *)0)) {
416                 printk(KERN_ERR "VIA-PMU: can't get irq %d\n",
417                        vias->intrs[0].line);
418                 return -EAGAIN;
419         }
420
421         if (pmu_kind == PMU_KEYLARGO_BASED && gpio_irq != -1) {
422                 if (request_irq(gpio_irq, gpio1_interrupt, 0, "GPIO1 ADB", (void *)0))
423                         printk(KERN_ERR "pmu: can't get irq %d (GPIO1)\n", gpio_irq);
424                 gpio_irq_enabled = 1;
425         }
426
427         /* Enable interrupts */
428         out_8(&via[IER], IER_SET | SR_INT | CB1_INT);
429
430         pmu_fully_inited = 1;
431
432         /* Make sure PMU settle down before continuing. This is _very_ important
433          * since the IDE probe may shut interrupts down for quite a bit of time. If
434          * a PMU communication is pending while this happens, the PMU may timeout
435          * Not that on Core99 machines, the PMU keeps sending us environement
436          * messages, we should find a way to either fix IDE or make it call
437          * pmu_suspend() before masking interrupts. This can also happens while
438          * scolling with some fbdevs.
439          */
440         do {
441                 pmu_poll();
442         } while (pmu_state != idle);
443
444         return 0;
445 }
446
447 arch_initcall(via_pmu_start);
448
449 /*
450  * This has to be done after pci_init, which is a subsys_initcall.
451  */
452 static int __init via_pmu_dev_init(void)
453 {
454         if (vias == NULL)
455                 return -ENODEV;
456
457 #ifndef CONFIG_PPC64
458         request_OF_resource(vias, 0, NULL);
459 #endif
460 #ifdef CONFIG_PMAC_BACKLIGHT
461         /* Enable backlight */
462         register_backlight_controller(&pmu_backlight_controller, NULL, "pmu");
463 #endif /* CONFIG_PMAC_BACKLIGHT */
464
465 #ifdef CONFIG_PPC32
466         if (machine_is_compatible("AAPL,3400/2400") ||
467                 machine_is_compatible("AAPL,3500")) {
468                 int mb = pmac_call_feature(PMAC_FTR_GET_MB_INFO,
469                         NULL, PMAC_MB_INFO_MODEL, 0);
470                 pmu_battery_count = 1;
471                 if (mb == PMAC_TYPE_COMET)
472                         pmu_batteries[0].flags |= PMU_BATT_TYPE_COMET;
473                 else
474                         pmu_batteries[0].flags |= PMU_BATT_TYPE_HOOPER;
475         } else if (machine_is_compatible("AAPL,PowerBook1998") ||
476                 machine_is_compatible("PowerBook1,1")) {
477                 pmu_battery_count = 2;
478                 pmu_batteries[0].flags |= PMU_BATT_TYPE_SMART;
479                 pmu_batteries[1].flags |= PMU_BATT_TYPE_SMART;
480         } else {
481                 struct device_node* prim = find_devices("power-mgt");
482                 u32 *prim_info = NULL;
483                 if (prim)
484                         prim_info = (u32 *)get_property(prim, "prim-info", NULL);
485                 if (prim_info) {
486                         /* Other stuffs here yet unknown */
487                         pmu_battery_count = (prim_info[6] >> 16) & 0xff;
488                         pmu_batteries[0].flags |= PMU_BATT_TYPE_SMART;
489                         if (pmu_battery_count > 1)
490                                 pmu_batteries[1].flags |= PMU_BATT_TYPE_SMART;
491                 }
492         }
493 #endif /* CONFIG_PPC32 */
494
495         /* Create /proc/pmu */
496         proc_pmu_root = proc_mkdir("pmu", NULL);
497         if (proc_pmu_root) {
498                 long i;
499
500                 for (i=0; i<pmu_battery_count; i++) {
501                         char title[16];
502                         sprintf(title, "battery_%ld", i);
503                         proc_pmu_batt[i] = create_proc_read_entry(title, 0, proc_pmu_root,
504                                                 proc_get_batt, (void *)i);
505                 }
506
507                 proc_pmu_info = create_proc_read_entry("info", 0, proc_pmu_root,
508                                         proc_get_info, NULL);
509                 proc_pmu_irqstats = create_proc_read_entry("interrupts", 0, proc_pmu_root,
510                                         proc_get_irqstats, NULL);
511                 proc_pmu_options = create_proc_entry("options", 0600, proc_pmu_root);
512                 if (proc_pmu_options) {
513                         proc_pmu_options->nlink = 1;
514                         proc_pmu_options->read_proc = proc_read_options;
515                         proc_pmu_options->write_proc = proc_write_options;
516                 }
517         }
518         return 0;
519 }
520
521 device_initcall(via_pmu_dev_init);
522
523 static int
524 init_pmu(void)
525 {
526         int timeout;
527         struct adb_request req;
528
529         out_8(&via[B], via[B] | TREQ);                  /* negate TREQ */
530         out_8(&via[DIRB], (via[DIRB] | TREQ) & ~TACK);  /* TACK in, TREQ out */
531
532         pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask);
533         timeout =  100000;
534         while (!req.complete) {
535                 if (--timeout < 0) {
536                         printk(KERN_ERR "init_pmu: no response from PMU\n");
537                         return 0;
538                 }
539                 udelay(10);
540                 pmu_poll();
541         }
542
543         /* ack all pending interrupts */
544         timeout = 100000;
545         interrupt_data[0][0] = 1;
546         while (interrupt_data[0][0] || pmu_state != idle) {
547                 if (--timeout < 0) {
548                         printk(KERN_ERR "init_pmu: timed out acking intrs\n");
549                         return 0;
550                 }
551                 if (pmu_state == idle)
552                         adb_int_pending = 1;
553                 via_pmu_interrupt(0, NULL, NULL);
554                 udelay(10);
555         }
556
557         /* Tell PMU we are ready.  */
558         if (pmu_kind == PMU_KEYLARGO_BASED) {
559                 pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2);
560                 while (!req.complete)
561                         pmu_poll();
562         }
563
564         /* Read PMU version */
565         pmu_request(&req, NULL, 1, PMU_GET_VERSION);
566         pmu_wait_complete(&req);
567         if (req.reply_len > 0)
568                 pmu_version = req.reply[0];
569         
570         /* Read server mode setting */
571         if (pmu_kind == PMU_KEYLARGO_BASED) {
572                 pmu_request(&req, NULL, 2, PMU_POWER_EVENTS,
573                             PMU_PWR_GET_POWERUP_EVENTS);
574                 pmu_wait_complete(&req);
575                 if (req.reply_len == 2) {
576                         if (req.reply[1] & PMU_PWR_WAKEUP_AC_INSERT)
577                                 option_server_mode = 1;
578                         printk(KERN_INFO "via-pmu: Server Mode is %s\n",
579                                option_server_mode ? "enabled" : "disabled");
580                 }
581         }
582         return 1;
583 }
584
585 int
586 pmu_get_model(void)
587 {
588         return pmu_kind;
589 }
590
591 static void pmu_set_server_mode(int server_mode)
592 {
593         struct adb_request req;
594
595         if (pmu_kind != PMU_KEYLARGO_BASED)
596                 return;
597
598         option_server_mode = server_mode;
599         pmu_request(&req, NULL, 2, PMU_POWER_EVENTS, PMU_PWR_GET_POWERUP_EVENTS);
600         pmu_wait_complete(&req);
601         if (req.reply_len < 2)
602                 return;
603         if (server_mode)
604                 pmu_request(&req, NULL, 4, PMU_POWER_EVENTS,
605                             PMU_PWR_SET_POWERUP_EVENTS,
606                             req.reply[0], PMU_PWR_WAKEUP_AC_INSERT); 
607         else
608                 pmu_request(&req, NULL, 4, PMU_POWER_EVENTS,
609                             PMU_PWR_CLR_POWERUP_EVENTS,
610                             req.reply[0], PMU_PWR_WAKEUP_AC_INSERT); 
611         pmu_wait_complete(&req);
612 }
613
614 /* This new version of the code for 2400/3400/3500 powerbooks
615  * is inspired from the implementation in gkrellm-pmu
616  */
617 static void
618 done_battery_state_ohare(struct adb_request* req)
619 {
620         /* format:
621          *  [0]    :  flags
622          *    0x01 :  AC indicator
623          *    0x02 :  charging
624          *    0x04 :  battery exist
625          *    0x08 :  
626          *    0x10 :  
627          *    0x20 :  full charged
628          *    0x40 :  pcharge reset
629          *    0x80 :  battery exist
630          *
631          *  [1][2] :  battery voltage
632          *  [3]    :  CPU temperature
633          *  [4]    :  battery temperature
634          *  [5]    :  current
635          *  [6][7] :  pcharge
636          *              --tkoba
637          */
638         unsigned int bat_flags = PMU_BATT_TYPE_HOOPER;
639         long pcharge, charge, vb, vmax, lmax;
640         long vmax_charging, vmax_charged;
641         long amperage, voltage, time, max;
642         int mb = pmac_call_feature(PMAC_FTR_GET_MB_INFO,
643                         NULL, PMAC_MB_INFO_MODEL, 0);
644
645         if (req->reply[0] & 0x01)
646                 pmu_power_flags |= PMU_PWR_AC_PRESENT;
647         else
648                 pmu_power_flags &= ~PMU_PWR_AC_PRESENT;
649         
650         if (mb == PMAC_TYPE_COMET) {
651                 vmax_charged = 189;
652                 vmax_charging = 213;
653                 lmax = 6500;
654         } else {
655                 vmax_charged = 330;
656                 vmax_charging = 330;
657                 lmax = 6500;
658         }
659         vmax = vmax_charged;
660
661         /* If battery installed */
662         if (req->reply[0] & 0x04) {
663                 bat_flags |= PMU_BATT_PRESENT;
664                 if (req->reply[0] & 0x02)
665                         bat_flags |= PMU_BATT_CHARGING;
666                 vb = (req->reply[1] << 8) | req->reply[2];
667                 voltage = (vb * 265 + 72665) / 10;
668                 amperage = req->reply[5];
669                 if ((req->reply[0] & 0x01) == 0) {
670                         if (amperage > 200)
671                                 vb += ((amperage - 200) * 15)/100;
672                 } else if (req->reply[0] & 0x02) {
673                         vb = (vb * 97) / 100;
674                         vmax = vmax_charging;
675                 }
676                 charge = (100 * vb) / vmax;
677                 if (req->reply[0] & 0x40) {
678                         pcharge = (req->reply[6] << 8) + req->reply[7];
679                         if (pcharge > lmax)
680                                 pcharge = lmax;
681                         pcharge *= 100;
682                         pcharge = 100 - pcharge / lmax;
683                         if (pcharge < charge)
684                                 charge = pcharge;
685                 }
686                 if (amperage > 0)
687                         time = (charge * 16440) / amperage;
688                 else
689                         time = 0;
690                 max = 100;
691                 amperage = -amperage;
692         } else
693                 charge = max = amperage = voltage = time = 0;
694
695         pmu_batteries[pmu_cur_battery].flags = bat_flags;
696         pmu_batteries[pmu_cur_battery].charge = charge;
697         pmu_batteries[pmu_cur_battery].max_charge = max;
698         pmu_batteries[pmu_cur_battery].amperage = amperage;
699         pmu_batteries[pmu_cur_battery].voltage = voltage;
700         pmu_batteries[pmu_cur_battery].time_remaining = time;
701
702         clear_bit(0, &async_req_locks);
703 }
704
705 static void
706 done_battery_state_smart(struct adb_request* req)
707 {
708         /* format:
709          *  [0] : format of this structure (known: 3,4,5)
710          *  [1] : flags
711          *  
712          *  format 3 & 4:
713          *  
714          *  [2] : charge
715          *  [3] : max charge
716          *  [4] : current
717          *  [5] : voltage
718          *  
719          *  format 5:
720          *  
721          *  [2][3] : charge
722          *  [4][5] : max charge
723          *  [6][7] : current
724          *  [8][9] : voltage
725          */
726          
727         unsigned int bat_flags = PMU_BATT_TYPE_SMART;
728         int amperage;
729         unsigned int capa, max, voltage;
730         
731         if (req->reply[1] & 0x01)
732                 pmu_power_flags |= PMU_PWR_AC_PRESENT;
733         else
734                 pmu_power_flags &= ~PMU_PWR_AC_PRESENT;
735
736
737         capa = max = amperage = voltage = 0;
738         
739         if (req->reply[1] & 0x04) {
740                 bat_flags |= PMU_BATT_PRESENT;
741                 switch(req->reply[0]) {
742                         case 3:
743                         case 4: capa = req->reply[2];
744                                 max = req->reply[3];
745                                 amperage = *((signed char *)&req->reply[4]);
746                                 voltage = req->reply[5];
747                                 break;
748                         case 5: capa = (req->reply[2] << 8) | req->reply[3];
749                                 max = (req->reply[4] << 8) | req->reply[5];
750                                 amperage = *((signed short *)&req->reply[6]);
751                                 voltage = (req->reply[8] << 8) | req->reply[9];
752                                 break;
753                         default:
754                                 printk(KERN_WARNING "pmu.c : unrecognized battery info, len: %d, %02x %02x %02x %02x\n",
755                                         req->reply_len, req->reply[0], req->reply[1], req->reply[2], req->reply[3]);
756                                 break;
757                 }
758         }
759
760         if ((req->reply[1] & 0x01) && (amperage > 0))
761                 bat_flags |= PMU_BATT_CHARGING;
762
763         pmu_batteries[pmu_cur_battery].flags = bat_flags;
764         pmu_batteries[pmu_cur_battery].charge = capa;
765         pmu_batteries[pmu_cur_battery].max_charge = max;
766         pmu_batteries[pmu_cur_battery].amperage = amperage;
767         pmu_batteries[pmu_cur_battery].voltage = voltage;
768         if (amperage) {
769                 if ((req->reply[1] & 0x01) && (amperage > 0))
770                         pmu_batteries[pmu_cur_battery].time_remaining
771                                 = ((max-capa) * 3600) / amperage;
772                 else
773                         pmu_batteries[pmu_cur_battery].time_remaining
774                                 = (capa * 3600) / (-amperage);
775         } else
776                 pmu_batteries[pmu_cur_battery].time_remaining = 0;
777
778         pmu_cur_battery = (pmu_cur_battery + 1) % pmu_battery_count;
779
780         clear_bit(0, &async_req_locks);
781 }
782
783 static void
784 query_battery_state(void)
785 {
786         if (test_and_set_bit(0, &async_req_locks))
787                 return;
788         if (pmu_kind == PMU_OHARE_BASED)
789                 pmu_request(&batt_req, done_battery_state_ohare,
790                         1, PMU_BATTERY_STATE);
791         else
792                 pmu_request(&batt_req, done_battery_state_smart,
793                         2, PMU_SMART_BATTERY_STATE, pmu_cur_battery+1);
794 }
795
796 static int
797 proc_get_info(char *page, char **start, off_t off,
798                 int count, int *eof, void *data)
799 {
800         char* p = page;
801
802         p += sprintf(p, "PMU driver version     : %d\n", PMU_DRIVER_VERSION);
803         p += sprintf(p, "PMU firmware version   : %02x\n", pmu_version);
804         p += sprintf(p, "AC Power               : %d\n",
805                 ((pmu_power_flags & PMU_PWR_AC_PRESENT) != 0));
806         p += sprintf(p, "Battery count          : %d\n", pmu_battery_count);
807
808         return p - page;
809 }
810
811 static int
812 proc_get_irqstats(char *page, char **start, off_t off,
813                   int count, int *eof, void *data)
814 {
815         int i;
816         char* p = page;
817         static const char *irq_names[] = {
818                 "Total CB1 triggered events",
819                 "Total GPIO1 triggered events",
820                 "PC-Card eject button",
821                 "Sound/Brightness button",
822                 "ADB message",
823                 "Battery state change",
824                 "Environment interrupt",
825                 "Tick timer",
826                 "Ghost interrupt (zero len)",
827                 "Empty interrupt (empty mask)",
828                 "Max irqs in a row"
829         };
830
831         for (i=0; i<11; i++) {
832                 p += sprintf(p, " %2u: %10u (%s)\n",
833                              i, pmu_irq_stats[i], irq_names[i]);
834         }
835         return p - page;
836 }
837
838 static int
839 proc_get_batt(char *page, char **start, off_t off,
840                 int count, int *eof, void *data)
841 {
842         long batnum = (long)data;
843         char *p = page;
844         
845         p += sprintf(p, "\n");
846         p += sprintf(p, "flags      : %08x\n",
847                 pmu_batteries[batnum].flags);
848         p += sprintf(p, "charge     : %d\n",
849                 pmu_batteries[batnum].charge);
850         p += sprintf(p, "max_charge : %d\n",
851                 pmu_batteries[batnum].max_charge);
852         p += sprintf(p, "current    : %d\n",
853                 pmu_batteries[batnum].amperage);
854         p += sprintf(p, "voltage    : %d\n",
855                 pmu_batteries[batnum].voltage);
856         p += sprintf(p, "time rem.  : %d\n",
857                 pmu_batteries[batnum].time_remaining);
858
859         return p - page;
860 }
861
862 static int
863 proc_read_options(char *page, char **start, off_t off,
864                         int count, int *eof, void *data)
865 {
866         char *p = page;
867
868 #ifdef CONFIG_PM
869         if (pmu_kind == PMU_KEYLARGO_BASED &&
870             pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) >= 0)
871                 p += sprintf(p, "lid_wakeup=%d\n", option_lid_wakeup);
872 #endif
873         if (pmu_kind == PMU_KEYLARGO_BASED)
874                 p += sprintf(p, "server_mode=%d\n", option_server_mode);
875
876         return p - page;
877 }
878                         
879 static int
880 proc_write_options(struct file *file, const char __user *buffer,
881                         unsigned long count, void *data)
882 {
883         char tmp[33];
884         char *label, *val;
885         unsigned long fcount = count;
886         
887         if (!count)
888                 return -EINVAL;
889         if (count > 32)
890                 count = 32;
891         if (copy_from_user(tmp, buffer, count))
892                 return -EFAULT;
893         tmp[count] = 0;
894
895         label = tmp;
896         while(*label == ' ')
897                 label++;
898         val = label;
899         while(*val && (*val != '=')) {
900                 if (*val == ' ')
901                         *val = 0;
902                 val++;
903         }
904         if ((*val) == 0)
905                 return -EINVAL;
906         *(val++) = 0;
907         while(*val == ' ')
908                 val++;
909 #ifdef CONFIG_PM
910         if (pmu_kind == PMU_KEYLARGO_BASED &&
911             pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) >= 0)
912                 if (!strcmp(label, "lid_wakeup"))
913                         option_lid_wakeup = ((*val) == '1');
914 #endif
915         if (pmu_kind == PMU_KEYLARGO_BASED && !strcmp(label, "server_mode")) {
916                 int new_value;
917                 new_value = ((*val) == '1');
918                 if (new_value != option_server_mode)
919                         pmu_set_server_mode(new_value);
920         }
921         return fcount;
922 }
923
924 #ifdef CONFIG_ADB
925 /* Send an ADB command */
926 static int
927 pmu_send_request(struct adb_request *req, int sync)
928 {
929         int i, ret;
930
931         if ((vias == NULL) || (!pmu_fully_inited)) {
932                 req->complete = 1;
933                 return -ENXIO;
934         }
935
936         ret = -EINVAL;
937
938         switch (req->data[0]) {
939         case PMU_PACKET:
940                 for (i = 0; i < req->nbytes - 1; ++i)
941                         req->data[i] = req->data[i+1];
942                 --req->nbytes;
943                 if (pmu_data_len[req->data[0]][1] != 0) {
944                         req->reply[0] = ADB_RET_OK;
945                         req->reply_len = 1;
946                 } else
947                         req->reply_len = 0;
948                 ret = pmu_queue_request(req);
949                 break;
950         case CUDA_PACKET:
951                 switch (req->data[1]) {
952                 case CUDA_GET_TIME:
953                         if (req->nbytes != 2)
954                                 break;
955                         req->data[0] = PMU_READ_RTC;
956                         req->nbytes = 1;
957                         req->reply_len = 3;
958                         req->reply[0] = CUDA_PACKET;
959                         req->reply[1] = 0;
960                         req->reply[2] = CUDA_GET_TIME;
961                         ret = pmu_queue_request(req);
962                         break;
963                 case CUDA_SET_TIME:
964                         if (req->nbytes != 6)
965                                 break;
966                         req->data[0] = PMU_SET_RTC;
967                         req->nbytes = 5;
968                         for (i = 1; i <= 4; ++i)
969                                 req->data[i] = req->data[i+1];
970                         req->reply_len = 3;
971                         req->reply[0] = CUDA_PACKET;
972                         req->reply[1] = 0;
973                         req->reply[2] = CUDA_SET_TIME;
974                         ret = pmu_queue_request(req);
975                         break;
976                 }
977                 break;
978         case ADB_PACKET:
979                 if (!pmu_has_adb)
980                         return -ENXIO;
981                 for (i = req->nbytes - 1; i > 1; --i)
982                         req->data[i+2] = req->data[i];
983                 req->data[3] = req->nbytes - 2;
984                 req->data[2] = pmu_adb_flags;
985                 /*req->data[1] = req->data[1];*/
986                 req->data[0] = PMU_ADB_CMD;
987                 req->nbytes += 2;
988                 req->reply_expected = 1;
989                 req->reply_len = 0;
990                 ret = pmu_queue_request(req);
991                 break;
992         }
993         if (ret) {
994                 req->complete = 1;
995                 return ret;
996         }
997
998         if (sync)
999                 while (!req->complete)
1000                         pmu_poll();
1001
1002         return 0;
1003 }
1004
1005 /* Enable/disable autopolling */
1006 static int
1007 pmu_adb_autopoll(int devs)
1008 {
1009         struct adb_request req;
1010
1011         if ((vias == NULL) || (!pmu_fully_inited) || !pmu_has_adb)
1012                 return -ENXIO;
1013
1014         if (devs) {
1015                 adb_dev_map = devs;
1016                 pmu_request(&req, NULL, 5, PMU_ADB_CMD, 0, 0x86,
1017                             adb_dev_map >> 8, adb_dev_map);
1018                 pmu_adb_flags = 2;
1019         } else {
1020                 pmu_request(&req, NULL, 1, PMU_ADB_POLL_OFF);
1021                 pmu_adb_flags = 0;
1022         }
1023         while (!req.complete)
1024                 pmu_poll();
1025         return 0;
1026 }
1027
1028 /* Reset the ADB bus */
1029 static int
1030 pmu_adb_reset_bus(void)
1031 {
1032         struct adb_request req;
1033         int save_autopoll = adb_dev_map;
1034
1035         if ((vias == NULL) || (!pmu_fully_inited) || !pmu_has_adb)
1036                 return -ENXIO;
1037
1038         /* anyone got a better idea?? */
1039         pmu_adb_autopoll(0);
1040
1041         req.nbytes = 5;
1042         req.done = NULL;
1043         req.data[0] = PMU_ADB_CMD;
1044         req.data[1] = 0;
1045         req.data[2] = ADB_BUSRESET;
1046         req.data[3] = 0;
1047         req.data[4] = 0;
1048         req.reply_len = 0;
1049         req.reply_expected = 1;
1050         if (pmu_queue_request(&req) != 0) {
1051                 printk(KERN_ERR "pmu_adb_reset_bus: pmu_queue_request failed\n");
1052                 return -EIO;
1053         }
1054         pmu_wait_complete(&req);
1055
1056         if (save_autopoll != 0)
1057                 pmu_adb_autopoll(save_autopoll);
1058
1059         return 0;
1060 }
1061 #endif /* CONFIG_ADB */
1062
1063 /* Construct and send a pmu request */
1064 int
1065 pmu_request(struct adb_request *req, void (*done)(struct adb_request *),
1066             int nbytes, ...)
1067 {
1068         va_list list;
1069         int i;
1070
1071         if (vias == NULL)
1072                 return -ENXIO;
1073
1074         if (nbytes < 0 || nbytes > 32) {
1075                 printk(KERN_ERR "pmu_request: bad nbytes (%d)\n", nbytes);
1076                 req->complete = 1;
1077                 return -EINVAL;
1078         }
1079         req->nbytes = nbytes;
1080         req->done = done;
1081         va_start(list, nbytes);
1082         for (i = 0; i < nbytes; ++i)
1083                 req->data[i] = va_arg(list, int);
1084         va_end(list);
1085         req->reply_len = 0;
1086         req->reply_expected = 0;
1087         return pmu_queue_request(req);
1088 }
1089
1090 int
1091 pmu_queue_request(struct adb_request *req)
1092 {
1093         unsigned long flags;
1094         int nsend;
1095
1096         if (via == NULL) {
1097                 req->complete = 1;
1098                 return -ENXIO;
1099         }
1100         if (req->nbytes <= 0) {
1101                 req->complete = 1;
1102                 return 0;
1103         }
1104         nsend = pmu_data_len[req->data[0]][0];
1105         if (nsend >= 0 && req->nbytes != nsend + 1) {
1106                 req->complete = 1;
1107                 return -EINVAL;
1108         }
1109
1110         req->next = NULL;
1111         req->sent = 0;
1112         req->complete = 0;
1113
1114         spin_lock_irqsave(&pmu_lock, flags);
1115         if (current_req != 0) {
1116                 last_req->next = req;
1117                 last_req = req;
1118         } else {
1119                 current_req = req;
1120                 last_req = req;
1121                 if (pmu_state == idle)
1122                         pmu_start();
1123         }
1124         spin_unlock_irqrestore(&pmu_lock, flags);
1125
1126         return 0;
1127 }
1128
1129 static inline void
1130 wait_for_ack(void)
1131 {
1132         /* Sightly increased the delay, I had one occurrence of the message
1133          * reported
1134          */
1135         int timeout = 4000;
1136         while ((in_8(&via[B]) & TACK) == 0) {
1137                 if (--timeout < 0) {
1138                         printk(KERN_ERR "PMU not responding (!ack)\n");
1139                         return;
1140                 }
1141                 udelay(10);
1142         }
1143 }
1144
1145 /* New PMU seems to be very sensitive to those timings, so we make sure
1146  * PCI is flushed immediately */
1147 static inline void
1148 send_byte(int x)
1149 {
1150         volatile unsigned char __iomem *v = via;
1151
1152         out_8(&v[ACR], in_8(&v[ACR]) | SR_OUT | SR_EXT);
1153         out_8(&v[SR], x);
1154         out_8(&v[B], in_8(&v[B]) & ~TREQ);              /* assert TREQ */
1155         (void)in_8(&v[B]);
1156 }
1157
1158 static inline void
1159 recv_byte(void)
1160 {
1161         volatile unsigned char __iomem *v = via;
1162
1163         out_8(&v[ACR], (in_8(&v[ACR]) & ~SR_OUT) | SR_EXT);
1164         in_8(&v[SR]);           /* resets SR */
1165         out_8(&v[B], in_8(&v[B]) & ~TREQ);
1166         (void)in_8(&v[B]);
1167 }
1168
1169 static inline void
1170 pmu_done(struct adb_request *req)
1171 {
1172         void (*done)(struct adb_request *) = req->done;
1173         mb();
1174         req->complete = 1;
1175         /* Here, we assume that if the request has a done member, the
1176          * struct request will survive to setting req->complete to 1
1177          */
1178         if (done)
1179                 (*done)(req);
1180 }
1181
1182 static void
1183 pmu_start(void)
1184 {
1185         struct adb_request *req;
1186
1187         /* assert pmu_state == idle */
1188         /* get the packet to send */
1189         req = current_req;
1190         if (req == 0 || pmu_state != idle
1191             || (/*req->reply_expected && */req_awaiting_reply))
1192                 return;
1193
1194         pmu_state = sending;
1195         data_index = 1;
1196         data_len = pmu_data_len[req->data[0]][0];
1197
1198         /* Sounds safer to make sure ACK is high before writing. This helped
1199          * kill a problem with ADB and some iBooks
1200          */
1201         wait_for_ack();
1202         /* set the shift register to shift out and send a byte */
1203         send_byte(req->data[0]);
1204 }
1205
1206 void
1207 pmu_poll(void)
1208 {
1209         if (!via)
1210                 return;
1211         if (disable_poll)
1212                 return;
1213         via_pmu_interrupt(0, NULL, NULL);
1214 }
1215
1216 void
1217 pmu_poll_adb(void)
1218 {
1219         if (!via)
1220                 return;
1221         if (disable_poll)
1222                 return;
1223         /* Kicks ADB read when PMU is suspended */
1224         adb_int_pending = 1;
1225         do {
1226                 via_pmu_interrupt(0, NULL, NULL);
1227         } while (pmu_suspended && (adb_int_pending || pmu_state != idle
1228                 || req_awaiting_reply));
1229 }
1230
1231 void
1232 pmu_wait_complete(struct adb_request *req)
1233 {
1234         if (!via)
1235                 return;
1236         while((pmu_state != idle && pmu_state != locked) || !req->complete)
1237                 via_pmu_interrupt(0, NULL, NULL);
1238 }
1239
1240 /* This function loops until the PMU is idle and prevents it from
1241  * anwsering to ADB interrupts. pmu_request can still be called.
1242  * This is done to avoid spurrious shutdowns when we know we'll have
1243  * interrupts switched off for a long time
1244  */
1245 void
1246 pmu_suspend(void)
1247 {
1248         unsigned long flags;
1249 #ifdef SUSPEND_USES_PMU
1250         struct adb_request *req;
1251 #endif
1252         if (!via)
1253                 return;
1254         
1255         spin_lock_irqsave(&pmu_lock, flags);
1256         pmu_suspended++;
1257         if (pmu_suspended > 1) {
1258                 spin_unlock_irqrestore(&pmu_lock, flags);
1259                 return;
1260         }
1261
1262         do {
1263                 spin_unlock_irqrestore(&pmu_lock, flags);
1264                 if (req_awaiting_reply)
1265                         adb_int_pending = 1;
1266                 via_pmu_interrupt(0, NULL, NULL);
1267                 spin_lock_irqsave(&pmu_lock, flags);
1268                 if (!adb_int_pending && pmu_state == idle && !req_awaiting_reply) {
1269 #ifdef SUSPEND_USES_PMU
1270                         pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, 0);
1271                         spin_unlock_irqrestore(&pmu_lock, flags);
1272                         while(!req.complete)
1273                                 pmu_poll();
1274 #else /* SUSPEND_USES_PMU */
1275                         if (gpio_irq >= 0)
1276                                 disable_irq_nosync(gpio_irq);
1277                         out_8(&via[IER], CB1_INT | IER_CLR);
1278                         spin_unlock_irqrestore(&pmu_lock, flags);
1279 #endif /* SUSPEND_USES_PMU */
1280                         break;
1281                 }
1282         } while (1);
1283 }
1284
1285 void
1286 pmu_resume(void)
1287 {
1288         unsigned long flags;
1289
1290         if (!via || (pmu_suspended < 1))
1291                 return;
1292
1293         spin_lock_irqsave(&pmu_lock, flags);
1294         pmu_suspended--;
1295         if (pmu_suspended > 0) {
1296                 spin_unlock_irqrestore(&pmu_lock, flags);
1297                 return;
1298         }
1299         adb_int_pending = 1;
1300 #ifdef SUSPEND_USES_PMU
1301         pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask);
1302         spin_unlock_irqrestore(&pmu_lock, flags);
1303         while(!req.complete)
1304                 pmu_poll();
1305 #else /* SUSPEND_USES_PMU */
1306         if (gpio_irq >= 0)
1307                 enable_irq(gpio_irq);
1308         out_8(&via[IER], CB1_INT | IER_SET);
1309         spin_unlock_irqrestore(&pmu_lock, flags);
1310         pmu_poll();
1311 #endif /* SUSPEND_USES_PMU */
1312 }
1313
1314 /* Interrupt data could be the result data from an ADB cmd */
1315 static void
1316 pmu_handle_data(unsigned char *data, int len, struct pt_regs *regs)
1317 {
1318         unsigned char ints, pirq;
1319         int i = 0;
1320
1321         asleep = 0;
1322         if (drop_interrupts || len < 1) {
1323                 adb_int_pending = 0;
1324                 pmu_irq_stats[8]++;
1325                 return;
1326         }
1327
1328         /* Get PMU interrupt mask */
1329         ints = data[0];
1330
1331         /* Record zero interrupts for stats */
1332         if (ints == 0)
1333                 pmu_irq_stats[9]++;
1334
1335         /* Hack to deal with ADB autopoll flag */
1336         if (ints & PMU_INT_ADB)
1337                 ints &= ~(PMU_INT_ADB_AUTO | PMU_INT_AUTO_SRQ_POLL);
1338
1339 next:
1340
1341         if (ints == 0) {
1342                 if (i > pmu_irq_stats[10])
1343                         pmu_irq_stats[10] = i;
1344                 return;
1345         }
1346
1347         for (pirq = 0; pirq < 8; pirq++)
1348                 if (ints & (1 << pirq))
1349                         break;
1350         pmu_irq_stats[pirq]++;
1351         i++;
1352         ints &= ~(1 << pirq);
1353
1354         /* Note: for some reason, we get an interrupt with len=1,
1355          * data[0]==0 after each normal ADB interrupt, at least
1356          * on the Pismo. Still investigating...  --BenH
1357          */
1358         if ((1 << pirq) & PMU_INT_ADB) {
1359                 if ((data[0] & PMU_INT_ADB_AUTO) == 0) {
1360                         struct adb_request *req = req_awaiting_reply;
1361                         if (req == 0) {
1362                                 printk(KERN_ERR "PMU: extra ADB reply\n");
1363                                 return;
1364                         }
1365                         req_awaiting_reply = NULL;
1366                         if (len <= 2)
1367                                 req->reply_len = 0;
1368                         else {
1369                                 memcpy(req->reply, data + 1, len - 1);
1370                                 req->reply_len = len - 1;
1371                         }
1372                         pmu_done(req);
1373                 } else {
1374 #if defined(CONFIG_XMON) && !defined(CONFIG_PPC64)
1375                         if (len == 4 && data[1] == 0x2c) {
1376                                 extern int xmon_wants_key, xmon_adb_keycode;
1377                                 if (xmon_wants_key) {
1378                                         xmon_adb_keycode = data[2];
1379                                         return;
1380                                 }
1381                         }
1382 #endif /* defined(CONFIG_XMON) && !defined(CONFIG_PPC64) */
1383 #ifdef CONFIG_ADB
1384                         /*
1385                          * XXX On the [23]400 the PMU gives us an up
1386                          * event for keycodes 0x74 or 0x75 when the PC
1387                          * card eject buttons are released, so we
1388                          * ignore those events.
1389                          */
1390                         if (!(pmu_kind == PMU_OHARE_BASED && len == 4
1391                               && data[1] == 0x2c && data[3] == 0xff
1392                               && (data[2] & ~1) == 0xf4))
1393                                 adb_input(data+1, len-1, regs, 1);
1394 #endif /* CONFIG_ADB */         
1395                 }
1396         }
1397         /* Sound/brightness button pressed */
1398         else if ((1 << pirq) & PMU_INT_SNDBRT) {
1399 #ifdef CONFIG_PMAC_BACKLIGHT
1400                 if (len == 3)
1401 #ifdef CONFIG_INPUT_ADBHID
1402                         if (!disable_kernel_backlight)
1403 #endif /* CONFIG_INPUT_ADBHID */
1404                                 set_backlight_level(data[1] >> 4);
1405 #endif /* CONFIG_PMAC_BACKLIGHT */
1406         }
1407         /* Tick interrupt */
1408         else if ((1 << pirq) & PMU_INT_TICK) {
1409                 /* Environement or tick interrupt, query batteries */
1410                 if (pmu_battery_count) {
1411                         if ((--query_batt_timer) == 0) {
1412                                 query_battery_state();
1413                                 query_batt_timer = BATTERY_POLLING_COUNT;
1414                         }
1415                 }
1416         }
1417         else if ((1 << pirq) & PMU_INT_ENVIRONMENT) {
1418                 if (pmu_battery_count)
1419                         query_battery_state();
1420                 pmu_pass_intr(data, len);
1421         } else {
1422                pmu_pass_intr(data, len);
1423         }
1424         goto next;
1425 }
1426
1427 static struct adb_request*
1428 pmu_sr_intr(struct pt_regs *regs)
1429 {
1430         struct adb_request *req;
1431         int bite = 0;
1432
1433         if (via[B] & TREQ) {
1434                 printk(KERN_ERR "PMU: spurious SR intr (%x)\n", via[B]);
1435                 out_8(&via[IFR], SR_INT);
1436                 return NULL;
1437         }
1438         /* The ack may not yet be low when we get the interrupt */
1439         while ((in_8(&via[B]) & TACK) != 0)
1440                         ;
1441
1442         /* if reading grab the byte, and reset the interrupt */
1443         if (pmu_state == reading || pmu_state == reading_intr)
1444                 bite = in_8(&via[SR]);
1445
1446         /* reset TREQ and wait for TACK to go high */
1447         out_8(&via[B], in_8(&via[B]) | TREQ);
1448         wait_for_ack();
1449
1450         switch (pmu_state) {
1451         case sending:
1452                 req = current_req;
1453                 if (data_len < 0) {
1454                         data_len = req->nbytes - 1;
1455                         send_byte(data_len);
1456                         break;
1457                 }
1458                 if (data_index <= data_len) {
1459                         send_byte(req->data[data_index++]);
1460                         break;
1461                 }
1462                 req->sent = 1;
1463                 data_len = pmu_data_len[req->data[0]][1];
1464                 if (data_len == 0) {
1465                         pmu_state = idle;
1466                         current_req = req->next;
1467                         if (req->reply_expected)
1468                                 req_awaiting_reply = req;
1469                         else
1470                                 return req;
1471                 } else {
1472                         pmu_state = reading;
1473                         data_index = 0;
1474                         reply_ptr = req->reply + req->reply_len;
1475                         recv_byte();
1476                 }
1477                 break;
1478
1479         case intack:
1480                 data_index = 0;
1481                 data_len = -1;
1482                 pmu_state = reading_intr;
1483                 reply_ptr = interrupt_data[int_data_last];
1484                 recv_byte();
1485                 if (gpio_irq >= 0 && !gpio_irq_enabled) {
1486                         enable_irq(gpio_irq);
1487                         gpio_irq_enabled = 1;
1488                 }
1489                 break;
1490
1491         case reading:
1492         case reading_intr:
1493                 if (data_len == -1) {
1494                         data_len = bite;
1495                         if (bite > 32)
1496                                 printk(KERN_ERR "PMU: bad reply len %d\n", bite);
1497                 } else if (data_index < 32) {
1498                         reply_ptr[data_index++] = bite;
1499                 }
1500                 if (data_index < data_len) {
1501                         recv_byte();
1502                         break;
1503                 }
1504
1505                 if (pmu_state == reading_intr) {
1506                         pmu_state = idle;
1507                         int_data_state[int_data_last] = int_data_ready;
1508                         interrupt_data_len[int_data_last] = data_len;
1509                 } else {
1510                         req = current_req;
1511                         /* 
1512                          * For PMU sleep and freq change requests, we lock the
1513                          * PMU until it's explicitely unlocked. This avoids any
1514                          * spurrious event polling getting in
1515                          */
1516                         current_req = req->next;
1517                         req->reply_len += data_index;
1518                         if (req->data[0] == PMU_SLEEP || req->data[0] == PMU_CPU_SPEED)
1519                                 pmu_state = locked;
1520                         else
1521                                 pmu_state = idle;
1522                         return req;
1523                 }
1524                 break;
1525
1526         default:
1527                 printk(KERN_ERR "via_pmu_interrupt: unknown state %d?\n",
1528                        pmu_state);
1529         }
1530         return NULL;
1531 }
1532
1533 static irqreturn_t
1534 via_pmu_interrupt(int irq, void *arg, struct pt_regs *regs)
1535 {
1536         unsigned long flags;
1537         int intr;
1538         int nloop = 0;
1539         int int_data = -1;
1540         struct adb_request *req = NULL;
1541         int handled = 0;
1542
1543         /* This is a bit brutal, we can probably do better */
1544         spin_lock_irqsave(&pmu_lock, flags);
1545         ++disable_poll;
1546         
1547         for (;;) {
1548                 intr = in_8(&via[IFR]) & (SR_INT | CB1_INT);
1549                 if (intr == 0)
1550                         break;
1551                 handled = 1;
1552                 if (++nloop > 1000) {
1553                         printk(KERN_DEBUG "PMU: stuck in intr loop, "
1554                                "intr=%x, ier=%x pmu_state=%d\n",
1555                                intr, in_8(&via[IER]), pmu_state);
1556                         break;
1557                 }
1558                 out_8(&via[IFR], intr);
1559                 if (intr & CB1_INT) {
1560                         adb_int_pending = 1;
1561                         pmu_irq_stats[0]++;
1562                 }
1563                 if (intr & SR_INT) {
1564                         req = pmu_sr_intr(regs);
1565                         if (req)
1566                                 break;
1567                 }
1568         }
1569
1570 recheck:
1571         if (pmu_state == idle) {
1572                 if (adb_int_pending) {
1573                         if (int_data_state[0] == int_data_empty)
1574                                 int_data_last = 0;
1575                         else if (int_data_state[1] == int_data_empty)
1576                                 int_data_last = 1;
1577                         else
1578                                 goto no_free_slot;
1579                         pmu_state = intack;
1580                         int_data_state[int_data_last] = int_data_fill;
1581                         /* Sounds safer to make sure ACK is high before writing.
1582                          * This helped kill a problem with ADB and some iBooks
1583                          */
1584                         wait_for_ack();
1585                         send_byte(PMU_INT_ACK);
1586                         adb_int_pending = 0;
1587                 } else if (current_req)
1588                         pmu_start();
1589         }
1590 no_free_slot:                   
1591         /* Mark the oldest buffer for flushing */
1592         if (int_data_state[!int_data_last] == int_data_ready) {
1593                 int_data_state[!int_data_last] = int_data_flush;
1594                 int_data = !int_data_last;
1595         } else if (int_data_state[int_data_last] == int_data_ready) {
1596                 int_data_state[int_data_last] = int_data_flush;
1597                 int_data = int_data_last;
1598         }
1599         --disable_poll;
1600         spin_unlock_irqrestore(&pmu_lock, flags);
1601
1602         /* Deal with completed PMU requests outside of the lock */
1603         if (req) {
1604                 pmu_done(req);
1605                 req = NULL;
1606         }
1607                 
1608         /* Deal with interrupt datas outside of the lock */
1609         if (int_data >= 0) {
1610                 pmu_handle_data(interrupt_data[int_data], interrupt_data_len[int_data], regs);
1611                 spin_lock_irqsave(&pmu_lock, flags);
1612                 ++disable_poll;
1613                 int_data_state[int_data] = int_data_empty;
1614                 int_data = -1;
1615                 goto recheck;
1616         }
1617
1618         return IRQ_RETVAL(handled);
1619 }
1620
1621 void
1622 pmu_unlock(void)
1623 {
1624         unsigned long flags;
1625
1626         spin_lock_irqsave(&pmu_lock, flags);
1627         if (pmu_state == locked)
1628                 pmu_state = idle;
1629         adb_int_pending = 1;
1630         spin_unlock_irqrestore(&pmu_lock, flags);
1631 }
1632
1633
1634 static irqreturn_t
1635 gpio1_interrupt(int irq, void *arg, struct pt_regs *regs)
1636 {
1637         unsigned long flags;
1638
1639         if ((in_8(gpio_reg + 0x9) & 0x02) == 0) {
1640                 spin_lock_irqsave(&pmu_lock, flags);
1641                 if (gpio_irq_enabled > 0) {
1642                         disable_irq_nosync(gpio_irq);
1643                         gpio_irq_enabled = 0;
1644                 }
1645                 pmu_irq_stats[1]++;
1646                 adb_int_pending = 1;
1647                 spin_unlock_irqrestore(&pmu_lock, flags);
1648                 via_pmu_interrupt(0, NULL, NULL);
1649                 return IRQ_HANDLED;
1650         }
1651         return IRQ_NONE;
1652 }
1653
1654 #ifdef CONFIG_PMAC_BACKLIGHT
1655 static int backlight_to_bright[] = {
1656         0x7f, 0x46, 0x42, 0x3e, 0x3a, 0x36, 0x32, 0x2e,
1657         0x2a, 0x26, 0x22, 0x1e, 0x1a, 0x16, 0x12, 0x0e
1658 };
1659  
1660 static int
1661 pmu_set_backlight_enable(int on, int level, void* data)
1662 {
1663         struct adb_request req;
1664         
1665         if (vias == NULL)
1666                 return -ENODEV;
1667
1668         if (on) {
1669                 pmu_request(&req, NULL, 2, PMU_BACKLIGHT_BRIGHT,
1670                             backlight_to_bright[level]);
1671                 pmu_wait_complete(&req);
1672         }
1673         pmu_request(&req, NULL, 2, PMU_POWER_CTRL,
1674                     PMU_POW_BACKLIGHT | (on ? PMU_POW_ON : PMU_POW_OFF));
1675         pmu_wait_complete(&req);
1676
1677         return 0;
1678 }
1679
1680 static void
1681 pmu_bright_complete(struct adb_request *req)
1682 {
1683         if (req == &bright_req_1)
1684                 clear_bit(1, &async_req_locks);
1685         if (req == &bright_req_2)
1686                 clear_bit(2, &async_req_locks);
1687 }
1688
1689 static int
1690 pmu_set_backlight_level(int level, void* data)
1691 {
1692         if (vias == NULL)
1693                 return -ENODEV;
1694
1695         if (test_and_set_bit(1, &async_req_locks))
1696                 return -EAGAIN;
1697         pmu_request(&bright_req_1, pmu_bright_complete, 2, PMU_BACKLIGHT_BRIGHT,
1698                 backlight_to_bright[level]);
1699         if (test_and_set_bit(2, &async_req_locks))
1700                 return -EAGAIN;
1701         pmu_request(&bright_req_2, pmu_bright_complete, 2, PMU_POWER_CTRL,
1702                     PMU_POW_BACKLIGHT | (level > BACKLIGHT_OFF ?
1703                                          PMU_POW_ON : PMU_POW_OFF));
1704
1705         return 0;
1706 }
1707 #endif /* CONFIG_PMAC_BACKLIGHT */
1708
1709 void
1710 pmu_enable_irled(int on)
1711 {
1712         struct adb_request req;
1713
1714         if (vias == NULL)
1715                 return ;
1716         if (pmu_kind == PMU_KEYLARGO_BASED)
1717                 return ;
1718
1719         pmu_request(&req, NULL, 2, PMU_POWER_CTRL, PMU_POW_IRLED |
1720             (on ? PMU_POW_ON : PMU_POW_OFF));
1721         pmu_wait_complete(&req);
1722 }
1723
1724 void
1725 pmu_restart(void)
1726 {
1727         struct adb_request req;
1728
1729         if (via == NULL)
1730                 return;
1731
1732         local_irq_disable();
1733
1734         drop_interrupts = 1;
1735         
1736         if (pmu_kind != PMU_KEYLARGO_BASED) {
1737                 pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, PMU_INT_ADB |
1738                                                 PMU_INT_TICK );
1739                 while(!req.complete)
1740                         pmu_poll();
1741         }
1742
1743         pmu_request(&req, NULL, 1, PMU_RESET);
1744         pmu_wait_complete(&req);
1745         for (;;)
1746                 ;
1747 }
1748
1749 void
1750 pmu_shutdown(void)
1751 {
1752         struct adb_request req;
1753
1754         if (via == NULL)
1755                 return;
1756
1757         local_irq_disable();
1758
1759         drop_interrupts = 1;
1760
1761         if (pmu_kind != PMU_KEYLARGO_BASED) {
1762                 pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, PMU_INT_ADB |
1763                                                 PMU_INT_TICK );
1764                 pmu_wait_complete(&req);
1765         } else {
1766                 /* Disable server mode on shutdown or we'll just
1767                  * wake up again
1768                  */
1769                 pmu_set_server_mode(0);
1770         }
1771
1772         pmu_request(&req, NULL, 5, PMU_SHUTDOWN,
1773                     'M', 'A', 'T', 'T');
1774         pmu_wait_complete(&req);
1775         for (;;)
1776                 ;
1777 }
1778
1779 int
1780 pmu_present(void)
1781 {
1782         return via != 0;
1783 }
1784
1785 struct pmu_i2c_hdr {
1786         u8      bus;
1787         u8      mode;
1788         u8      bus2;
1789         u8      address;
1790         u8      sub_addr;
1791         u8      comb_addr;
1792         u8      count;
1793 };
1794
1795 int
1796 pmu_i2c_combined_read(int bus, int addr, int subaddr,  u8* data, int len)
1797 {
1798         struct adb_request      req;
1799         struct pmu_i2c_hdr      *hdr = (struct pmu_i2c_hdr *)&req.data[1];
1800         int retry;
1801         int rc;
1802
1803         for (retry=0; retry<16; retry++) {
1804                 memset(&req, 0, sizeof(req));
1805
1806                 hdr->bus = bus;
1807                 hdr->address = addr & 0xfe;
1808                 hdr->mode = PMU_I2C_MODE_COMBINED;
1809                 hdr->bus2 = 0;
1810                 hdr->sub_addr = subaddr;
1811                 hdr->comb_addr = addr | 1;
1812                 hdr->count = len;
1813                 
1814                 req.nbytes = sizeof(struct pmu_i2c_hdr) + 1;
1815                 req.reply_expected = 0;
1816                 req.reply_len = 0;
1817                 req.data[0] = PMU_I2C_CMD;
1818                 req.reply[0] = 0xff;
1819                 rc = pmu_queue_request(&req);
1820                 if (rc)
1821                         return rc;
1822                 while(!req.complete)
1823                         pmu_poll();
1824                 if (req.reply[0] == PMU_I2C_STATUS_OK)
1825                         break;
1826                 mdelay(15);
1827         }
1828         if (req.reply[0] != PMU_I2C_STATUS_OK)
1829                 return -1;
1830
1831         for (retry=0; retry<16; retry++) {
1832                 memset(&req, 0, sizeof(req));
1833
1834                 mdelay(15);
1835
1836                 hdr->bus = PMU_I2C_BUS_STATUS;
1837                 req.reply[0] = 0xff;
1838                 
1839                 req.nbytes = 2;
1840                 req.reply_expected = 0;
1841                 req.reply_len = 0;
1842                 req.data[0] = PMU_I2C_CMD;
1843                 rc = pmu_queue_request(&req);
1844                 if (rc)
1845                         return rc;
1846                 while(!req.complete)
1847                         pmu_poll();
1848                 if (req.reply[0] == PMU_I2C_STATUS_DATAREAD) {
1849                         memcpy(data, &req.reply[1], req.reply_len - 1);
1850                         return req.reply_len - 1;
1851                 }
1852         }
1853         return -1;
1854 }
1855
1856 int
1857 pmu_i2c_stdsub_write(int bus, int addr, int subaddr,  u8* data, int len)
1858 {
1859         struct adb_request      req;
1860         struct pmu_i2c_hdr      *hdr = (struct pmu_i2c_hdr *)&req.data[1];
1861         int retry;
1862         int rc;
1863
1864         for (retry=0; retry<16; retry++) {
1865                 memset(&req, 0, sizeof(req));
1866
1867                 hdr->bus = bus;
1868                 hdr->address = addr & 0xfe;
1869                 hdr->mode = PMU_I2C_MODE_STDSUB;
1870                 hdr->bus2 = 0;
1871                 hdr->sub_addr = subaddr;
1872                 hdr->comb_addr = addr & 0xfe;
1873                 hdr->count = len;
1874
1875                 req.data[0] = PMU_I2C_CMD;
1876                 memcpy(&req.data[sizeof(struct pmu_i2c_hdr) + 1], data, len);
1877                 req.nbytes = sizeof(struct pmu_i2c_hdr) + len + 1;
1878                 req.reply_expected = 0;
1879                 req.reply_len = 0;
1880                 req.reply[0] = 0xff;
1881                 rc = pmu_queue_request(&req);
1882                 if (rc)
1883                         return rc;
1884                 while(!req.complete)
1885                         pmu_poll();
1886                 if (req.reply[0] == PMU_I2C_STATUS_OK)
1887                         break;
1888                 mdelay(15);
1889         }
1890         if (req.reply[0] != PMU_I2C_STATUS_OK)
1891                 return -1;
1892
1893         for (retry=0; retry<16; retry++) {
1894                 memset(&req, 0, sizeof(req));
1895
1896                 mdelay(15);
1897
1898                 hdr->bus = PMU_I2C_BUS_STATUS;
1899                 req.reply[0] = 0xff;
1900                 
1901                 req.nbytes = 2;
1902                 req.reply_expected = 0;
1903                 req.reply_len = 0;
1904                 req.data[0] = PMU_I2C_CMD;
1905                 rc = pmu_queue_request(&req);
1906                 if (rc)
1907                         return rc;
1908                 while(!req.complete)
1909                         pmu_poll();
1910                 if (req.reply[0] == PMU_I2C_STATUS_OK)
1911                         return len;
1912         }
1913         return -1;
1914 }
1915
1916 int
1917 pmu_i2c_simple_read(int bus, int addr,  u8* data, int len)
1918 {
1919         struct adb_request      req;
1920         struct pmu_i2c_hdr      *hdr = (struct pmu_i2c_hdr *)&req.data[1];
1921         int retry;
1922         int rc;
1923
1924         for (retry=0; retry<16; retry++) {
1925                 memset(&req, 0, sizeof(req));
1926
1927                 hdr->bus = bus;
1928                 hdr->address = addr | 1;
1929                 hdr->mode = PMU_I2C_MODE_SIMPLE;
1930                 hdr->bus2 = 0;
1931                 hdr->sub_addr = 0;
1932                 hdr->comb_addr = 0;
1933                 hdr->count = len;
1934
1935                 req.data[0] = PMU_I2C_CMD;
1936                 req.nbytes = sizeof(struct pmu_i2c_hdr) + 1;
1937                 req.reply_expected = 0;
1938                 req.reply_len = 0;
1939                 req.reply[0] = 0xff;
1940                 rc = pmu_queue_request(&req);
1941                 if (rc)
1942                         return rc;
1943                 while(!req.complete)
1944                         pmu_poll();
1945                 if (req.reply[0] == PMU_I2C_STATUS_OK)
1946                         break;
1947                 mdelay(15);
1948         }
1949         if (req.reply[0] != PMU_I2C_STATUS_OK)
1950                 return -1;
1951
1952         for (retry=0; retry<16; retry++) {
1953                 memset(&req, 0, sizeof(req));
1954
1955                 mdelay(15);
1956
1957                 hdr->bus = PMU_I2C_BUS_STATUS;
1958                 req.reply[0] = 0xff;
1959                 
1960                 req.nbytes = 2;
1961                 req.reply_expected = 0;
1962                 req.reply_len = 0;
1963                 req.data[0] = PMU_I2C_CMD;
1964                 rc = pmu_queue_request(&req);
1965                 if (rc)
1966                         return rc;
1967                 while(!req.complete)
1968                         pmu_poll();
1969                 if (req.reply[0] == PMU_I2C_STATUS_DATAREAD) {
1970                         memcpy(data, &req.reply[1], req.reply_len - 1);
1971                         return req.reply_len - 1;
1972                 }
1973         }
1974         return -1;
1975 }
1976
1977 int
1978 pmu_i2c_simple_write(int bus, int addr,  u8* data, int len)
1979 {
1980         struct adb_request      req;
1981         struct pmu_i2c_hdr      *hdr = (struct pmu_i2c_hdr *)&req.data[1];
1982         int retry;
1983         int rc;
1984
1985         for (retry=0; retry<16; retry++) {
1986                 memset(&req, 0, sizeof(req));
1987
1988                 hdr->bus = bus;
1989                 hdr->address = addr & 0xfe;
1990                 hdr->mode = PMU_I2C_MODE_SIMPLE;
1991                 hdr->bus2 = 0;
1992                 hdr->sub_addr = 0;
1993                 hdr->comb_addr = 0;
1994                 hdr->count = len;
1995
1996                 req.data[0] = PMU_I2C_CMD;
1997                 memcpy(&req.data[sizeof(struct pmu_i2c_hdr) + 1], data, len);
1998                 req.nbytes = sizeof(struct pmu_i2c_hdr) + len + 1;
1999                 req.reply_expected = 0;
2000                 req.reply_len = 0;
2001                 req.reply[0] = 0xff;
2002                 rc = pmu_queue_request(&req);
2003                 if (rc)
2004                         return rc;
2005                 while(!req.complete)
2006                         pmu_poll();
2007                 if (req.reply[0] == PMU_I2C_STATUS_OK)
2008                         break;
2009                 mdelay(15);
2010         }
2011         if (req.reply[0] != PMU_I2C_STATUS_OK)
2012                 return -1;
2013
2014         for (retry=0; retry<16; retry++) {
2015                 memset(&req, 0, sizeof(req));
2016
2017                 mdelay(15);
2018
2019                 hdr->bus = PMU_I2C_BUS_STATUS;
2020                 req.reply[0] = 0xff;
2021                 
2022                 req.nbytes = 2;
2023                 req.reply_expected = 0;
2024                 req.reply_len = 0;
2025                 req.data[0] = PMU_I2C_CMD;
2026                 rc = pmu_queue_request(&req);
2027                 if (rc)
2028                         return rc;
2029                 while(!req.complete)
2030                         pmu_poll();
2031                 if (req.reply[0] == PMU_I2C_STATUS_OK)
2032                         return len;
2033         }
2034         return -1;
2035 }
2036
2037 #ifdef CONFIG_PM
2038
2039 static LIST_HEAD(sleep_notifiers);
2040
2041 int
2042 pmu_register_sleep_notifier(struct pmu_sleep_notifier *n)
2043 {
2044         struct list_head *list;
2045         struct pmu_sleep_notifier *notifier;
2046
2047         for (list = sleep_notifiers.next; list != &sleep_notifiers;
2048              list = list->next) {
2049                 notifier = list_entry(list, struct pmu_sleep_notifier, list);
2050                 if (n->priority > notifier->priority)
2051                         break;
2052         }
2053         __list_add(&n->list, list->prev, list);
2054         return 0;
2055 }
2056
2057 int
2058 pmu_unregister_sleep_notifier(struct pmu_sleep_notifier* n)
2059 {
2060         if (n->list.next == 0)
2061                 return -ENOENT;
2062         list_del(&n->list);
2063         n->list.next = NULL;
2064         return 0;
2065 }
2066
2067 /* Sleep is broadcast last-to-first */
2068 static int
2069 broadcast_sleep(int when, int fallback)
2070 {
2071         int ret = PBOOK_SLEEP_OK;
2072         struct list_head *list;
2073         struct pmu_sleep_notifier *notifier;
2074
2075         for (list = sleep_notifiers.prev; list != &sleep_notifiers;
2076              list = list->prev) {
2077                 notifier = list_entry(list, struct pmu_sleep_notifier, list);
2078                 ret = notifier->notifier_call(notifier, when);
2079                 if (ret != PBOOK_SLEEP_OK) {
2080                         printk(KERN_DEBUG "sleep %d rejected by %p (%p)\n",
2081                                when, notifier, notifier->notifier_call);
2082                         for (; list != &sleep_notifiers; list = list->next) {
2083                                 notifier = list_entry(list, struct pmu_sleep_notifier, list);
2084                                 notifier->notifier_call(notifier, fallback);
2085                         }
2086                         return ret;
2087                 }
2088         }
2089         return ret;
2090 }
2091
2092 /* Wake is broadcast first-to-last */
2093 static int
2094 broadcast_wake(void)
2095 {
2096         int ret = PBOOK_SLEEP_OK;
2097         struct list_head *list;
2098         struct pmu_sleep_notifier *notifier;
2099
2100         for (list = sleep_notifiers.next; list != &sleep_notifiers;
2101              list = list->next) {
2102                 notifier = list_entry(list, struct pmu_sleep_notifier, list);
2103                 notifier->notifier_call(notifier, PBOOK_WAKE);
2104         }
2105         return ret;
2106 }
2107
2108 /*
2109  * This struct is used to store config register values for
2110  * PCI devices which may get powered off when we sleep.
2111  */
2112 static struct pci_save {
2113 #ifndef HACKED_PCI_SAVE
2114         u16     command;
2115         u16     cache_lat;
2116         u16     intr;
2117         u32     rom_address;
2118 #else
2119         u32     config[16];
2120 #endif  
2121 } *pbook_pci_saves;
2122 static int pbook_npci_saves;
2123
2124 static void
2125 pbook_alloc_pci_save(void)
2126 {
2127         int npci;
2128         struct pci_dev *pd = NULL;
2129
2130         npci = 0;
2131         while ((pd = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pd)) != NULL) {
2132                 ++npci;
2133         }
2134         if (npci == 0)
2135                 return;
2136         pbook_pci_saves = (struct pci_save *)
2137                 kmalloc(npci * sizeof(struct pci_save), GFP_KERNEL);
2138         pbook_npci_saves = npci;
2139 }
2140
2141 static void
2142 pbook_free_pci_save(void)
2143 {
2144         if (pbook_pci_saves == NULL)
2145                 return;
2146         kfree(pbook_pci_saves);
2147         pbook_pci_saves = NULL;
2148         pbook_npci_saves = 0;
2149 }
2150
2151 static void
2152 pbook_pci_save(void)
2153 {
2154         struct pci_save *ps = pbook_pci_saves;
2155         struct pci_dev *pd = NULL;
2156         int npci = pbook_npci_saves;
2157         
2158         if (ps == NULL)
2159                 return;
2160
2161         while ((pd = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pd)) != NULL) {
2162                 if (npci-- == 0)
2163                         return;
2164 #ifndef HACKED_PCI_SAVE
2165                 pci_read_config_word(pd, PCI_COMMAND, &ps->command);
2166                 pci_read_config_word(pd, PCI_CACHE_LINE_SIZE, &ps->cache_lat);
2167                 pci_read_config_word(pd, PCI_INTERRUPT_LINE, &ps->intr);
2168                 pci_read_config_dword(pd, PCI_ROM_ADDRESS, &ps->rom_address);
2169 #else
2170                 int i;
2171                 for (i=1;i<16;i++)
2172                         pci_read_config_dword(pd, i<<4, &ps->config[i]);
2173 #endif
2174                 ++ps;
2175         }
2176 }
2177
2178 /* For this to work, we must take care of a few things: If gmac was enabled
2179  * during boot, it will be in the pci dev list. If it's disabled at this point
2180  * (and it will probably be), then you can't access it's config space.
2181  */
2182 static void
2183 pbook_pci_restore(void)
2184 {
2185         u16 cmd;
2186         struct pci_save *ps = pbook_pci_saves - 1;
2187         struct pci_dev *pd = NULL;
2188         int npci = pbook_npci_saves;
2189         int j;
2190
2191         while ((pd = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pd)) != NULL) {
2192 #ifdef HACKED_PCI_SAVE
2193                 int i;
2194                 if (npci-- == 0)
2195                         return;
2196                 ps++;
2197                 for (i=2;i<16;i++)
2198                         pci_write_config_dword(pd, i<<4, ps->config[i]);
2199                 pci_write_config_dword(pd, 4, ps->config[1]);
2200 #else
2201                 if (npci-- == 0)
2202                         return;
2203                 ps++;
2204                 if (ps->command == 0)
2205                         continue;
2206                 pci_read_config_word(pd, PCI_COMMAND, &cmd);
2207                 if ((ps->command & ~cmd) == 0)
2208                         continue;
2209                 switch (pd->hdr_type) {
2210                 case PCI_HEADER_TYPE_NORMAL:
2211                         for (j = 0; j < 6; ++j)
2212                                 pci_write_config_dword(pd,
2213                                         PCI_BASE_ADDRESS_0 + j*4,
2214                                         pd->resource[j].start);
2215                         pci_write_config_dword(pd, PCI_ROM_ADDRESS,
2216                                 ps->rom_address);
2217                         pci_write_config_word(pd, PCI_CACHE_LINE_SIZE,
2218                                 ps->cache_lat);
2219                         pci_write_config_word(pd, PCI_INTERRUPT_LINE,
2220                                 ps->intr);
2221                         pci_write_config_word(pd, PCI_COMMAND, ps->command);
2222                         break;
2223                 }
2224 #endif  
2225         }
2226 }
2227
2228 #ifdef DEBUG_SLEEP
2229 /* N.B. This doesn't work on the 3400 */
2230 void 
2231 pmu_blink(int n)
2232 {
2233         struct adb_request req;
2234
2235         memset(&req, 0, sizeof(req));
2236
2237         for (; n > 0; --n) {
2238                 req.nbytes = 4;
2239                 req.done = NULL;
2240                 req.data[0] = 0xee;
2241                 req.data[1] = 4;
2242                 req.data[2] = 0;
2243                 req.data[3] = 1;
2244                 req.reply[0] = ADB_RET_OK;
2245                 req.reply_len = 1;
2246                 req.reply_expected = 0;
2247                 pmu_polled_request(&req);
2248                 mdelay(50);
2249                 req.nbytes = 4;
2250                 req.done = NULL;
2251                 req.data[0] = 0xee;
2252                 req.data[1] = 4;
2253                 req.data[2] = 0;
2254                 req.data[3] = 0;
2255                 req.reply[0] = ADB_RET_OK;
2256                 req.reply_len = 1;
2257                 req.reply_expected = 0;
2258                 pmu_polled_request(&req);
2259                 mdelay(50);
2260         }
2261         mdelay(50);
2262 }
2263 #endif
2264
2265 /*
2266  * Put the powerbook to sleep.
2267  */
2268  
2269 static u32 save_via[8];
2270
2271 static void
2272 save_via_state(void)
2273 {
2274         save_via[0] = in_8(&via[ANH]);
2275         save_via[1] = in_8(&via[DIRA]);
2276         save_via[2] = in_8(&via[B]);
2277         save_via[3] = in_8(&via[DIRB]);
2278         save_via[4] = in_8(&via[PCR]);
2279         save_via[5] = in_8(&via[ACR]);
2280         save_via[6] = in_8(&via[T1CL]);
2281         save_via[7] = in_8(&via[T1CH]);
2282 }
2283 static void
2284 restore_via_state(void)
2285 {
2286         out_8(&via[ANH], save_via[0]);
2287         out_8(&via[DIRA], save_via[1]);
2288         out_8(&via[B], save_via[2]);
2289         out_8(&via[DIRB], save_via[3]);
2290         out_8(&via[PCR], save_via[4]);
2291         out_8(&via[ACR], save_via[5]);
2292         out_8(&via[T1CL], save_via[6]);
2293         out_8(&via[T1CH], save_via[7]);
2294         out_8(&via[IER], IER_CLR | 0x7f);       /* disable all intrs */
2295         out_8(&via[IFR], 0x7f);                         /* clear IFR */
2296         out_8(&via[IER], IER_SET | SR_INT | CB1_INT);
2297 }
2298
2299 static int
2300 pmac_suspend_devices(void)
2301 {
2302         int ret;
2303
2304         pm_prepare_console();
2305         
2306         /* Notify old-style device drivers & userland */
2307         ret = broadcast_sleep(PBOOK_SLEEP_REQUEST, PBOOK_SLEEP_REJECT);
2308         if (ret != PBOOK_SLEEP_OK) {
2309                 printk(KERN_ERR "Sleep rejected by drivers\n");
2310                 return -EBUSY;
2311         }
2312
2313         /* Sync the disks. */
2314         /* XXX It would be nice to have some way to ensure that
2315          * nobody is dirtying any new buffers while we wait. That
2316          * could be achieved using the refrigerator for processes
2317          * that swsusp uses
2318          */
2319         sys_sync();
2320
2321         /* Sleep can fail now. May not be very robust but useful for debugging */
2322         ret = broadcast_sleep(PBOOK_SLEEP_NOW, PBOOK_WAKE);
2323         if (ret != PBOOK_SLEEP_OK) {
2324                 printk(KERN_ERR "Driver sleep failed\n");
2325                 return -EBUSY;
2326         }
2327
2328         /* Send suspend call to devices, hold the device core's dpm_sem */
2329         ret = device_suspend(PMSG_SUSPEND);
2330         if (ret) {
2331                 broadcast_wake();
2332                 printk(KERN_ERR "Driver sleep failed\n");
2333                 return -EBUSY;
2334         }
2335
2336         /* Disable clock spreading on some machines */
2337         pmac_tweak_clock_spreading(0);
2338
2339         /* Stop preemption */
2340         preempt_disable();
2341
2342         /* Make sure the decrementer won't interrupt us */
2343         asm volatile("mtdec %0" : : "r" (0x7fffffff));
2344         /* Make sure any pending DEC interrupt occurring while we did
2345          * the above didn't re-enable the DEC */
2346         mb();
2347         asm volatile("mtdec %0" : : "r" (0x7fffffff));
2348
2349         /* We can now disable MSR_EE. This code of course works properly only
2350          * on UP machines... For SMP, if we ever implement sleep, we'll have to
2351          * stop the "other" CPUs way before we do all that stuff.
2352          */
2353         local_irq_disable();
2354
2355         /* Broadcast power down irq
2356          * This isn't that useful in most cases (only directly wired devices can
2357          * use this but still... This will take care of sysdev's as well, so
2358          * we exit from here with local irqs disabled and PIC off.
2359          */
2360         ret = device_power_down(PMSG_SUSPEND);
2361         if (ret) {
2362                 wakeup_decrementer();
2363                 local_irq_enable();
2364                 preempt_enable();
2365                 device_resume();
2366                 broadcast_wake();
2367                 printk(KERN_ERR "Driver powerdown failed\n");
2368                 return -EBUSY;
2369         }
2370
2371         /* Wait for completion of async backlight requests */
2372         while (!bright_req_1.complete || !bright_req_2.complete ||
2373                         !batt_req.complete)
2374                 pmu_poll();
2375
2376         /* Giveup the lazy FPU & vec so we don't have to back them
2377          * up from the low level code
2378          */
2379         enable_kernel_fp();
2380
2381 #ifdef CONFIG_ALTIVEC
2382         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2383                 enable_kernel_altivec();
2384 #endif /* CONFIG_ALTIVEC */
2385
2386         return 0;
2387 }
2388
2389 static int
2390 pmac_wakeup_devices(void)
2391 {
2392         mdelay(100);
2393
2394         /* Power back up system devices (including the PIC) */
2395         device_power_up();
2396
2397         /* Force a poll of ADB interrupts */
2398         adb_int_pending = 1;
2399         via_pmu_interrupt(0, NULL, NULL);
2400
2401         /* Restart jiffies & scheduling */
2402         wakeup_decrementer();
2403
2404         /* Re-enable local CPU interrupts */
2405         local_irq_enable();
2406         mdelay(10);
2407         preempt_enable();
2408
2409         /* Re-enable clock spreading on some machines */
2410         pmac_tweak_clock_spreading(1);
2411
2412         /* Resume devices */
2413         device_resume();
2414
2415         /* Notify old style drivers */
2416         broadcast_wake();
2417
2418         pm_restore_console();
2419
2420         return 0;
2421 }
2422
2423 #define GRACKLE_PM      (1<<7)
2424 #define GRACKLE_DOZE    (1<<5)
2425 #define GRACKLE_NAP     (1<<4)
2426 #define GRACKLE_SLEEP   (1<<3)
2427
2428 int
2429 powerbook_sleep_grackle(void)
2430 {
2431         unsigned long save_l2cr;
2432         unsigned short pmcr1;
2433         struct adb_request req;
2434         int ret;
2435         struct pci_dev *grackle;
2436
2437         grackle = pci_find_slot(0, 0);
2438         if (!grackle)
2439                 return -ENODEV;
2440
2441         ret = pmac_suspend_devices();
2442         if (ret) {
2443                 printk(KERN_ERR "Sleep rejected by devices\n");
2444                 return ret;
2445         }
2446         
2447         /* Turn off various things. Darwin does some retry tests here... */
2448         pmu_request(&req, NULL, 2, PMU_POWER_CTRL0, PMU_POW0_OFF|PMU_POW0_HARD_DRIVE);
2449         pmu_wait_complete(&req);
2450         pmu_request(&req, NULL, 2, PMU_POWER_CTRL,
2451                 PMU_POW_OFF|PMU_POW_BACKLIGHT|PMU_POW_IRLED|PMU_POW_MEDIABAY);
2452         pmu_wait_complete(&req);
2453
2454         /* For 750, save backside cache setting and disable it */
2455         save_l2cr = _get_L2CR();        /* (returns -1 if not available) */
2456
2457         if (!__fake_sleep) {
2458                 /* Ask the PMU to put us to sleep */
2459                 pmu_request(&req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T');
2460                 pmu_wait_complete(&req);
2461         }
2462
2463         /* The VIA is supposed not to be restored correctly*/
2464         save_via_state();
2465         /* We shut down some HW */
2466         pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,1);
2467
2468         pci_read_config_word(grackle, 0x70, &pmcr1);
2469         /* Apparently, MacOS uses NAP mode for Grackle ??? */
2470         pmcr1 &= ~(GRACKLE_DOZE|GRACKLE_SLEEP); 
2471         pmcr1 |= GRACKLE_PM|GRACKLE_NAP;
2472         pci_write_config_word(grackle, 0x70, pmcr1);
2473
2474         /* Call low-level ASM sleep handler */
2475         if (__fake_sleep)
2476                 mdelay(5000);
2477         else
2478                 low_sleep_handler();
2479
2480         /* We're awake again, stop grackle PM */
2481         pci_read_config_word(grackle, 0x70, &pmcr1);
2482         pmcr1 &= ~(GRACKLE_PM|GRACKLE_DOZE|GRACKLE_SLEEP|GRACKLE_NAP); 
2483         pci_write_config_word(grackle, 0x70, pmcr1);
2484
2485         /* Make sure the PMU is idle */
2486         pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,0);
2487         restore_via_state();
2488         
2489         /* Restore L2 cache */
2490         if (save_l2cr != 0xffffffff && (save_l2cr & L2CR_L2E) != 0)
2491                 _set_L2CR(save_l2cr);
2492         
2493         /* Restore userland MMU context */
2494         set_context(current->active_mm->context, current->active_mm->pgd);
2495
2496         /* Power things up */
2497         pmu_unlock();
2498         pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask);
2499         pmu_wait_complete(&req);
2500         pmu_request(&req, NULL, 2, PMU_POWER_CTRL0,
2501                         PMU_POW0_ON|PMU_POW0_HARD_DRIVE);
2502         pmu_wait_complete(&req);
2503         pmu_request(&req, NULL, 2, PMU_POWER_CTRL,
2504                         PMU_POW_ON|PMU_POW_BACKLIGHT|PMU_POW_CHARGER|PMU_POW_IRLED|PMU_POW_MEDIABAY);
2505         pmu_wait_complete(&req);
2506
2507         pmac_wakeup_devices();
2508
2509         return 0;
2510 }
2511
2512 static int
2513 powerbook_sleep_Core99(void)
2514 {
2515         unsigned long save_l2cr;
2516         unsigned long save_l3cr;
2517         struct adb_request req;
2518         int ret;
2519         
2520         if (pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) < 0) {
2521                 printk(KERN_ERR "Sleep mode not supported on this machine\n");
2522                 return -ENOSYS;
2523         }
2524
2525         if (num_online_cpus() > 1 || cpu_is_offline(0))
2526                 return -EAGAIN;
2527
2528         ret = pmac_suspend_devices();
2529         if (ret) {
2530                 printk(KERN_ERR "Sleep rejected by devices\n");
2531                 return ret;
2532         }
2533
2534         /* Stop environment and ADB interrupts */
2535         pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, 0);
2536         pmu_wait_complete(&req);
2537
2538         /* Tell PMU what events will wake us up */
2539         pmu_request(&req, NULL, 4, PMU_POWER_EVENTS, PMU_PWR_CLR_WAKEUP_EVENTS,
2540                 0xff, 0xff);
2541         pmu_wait_complete(&req);
2542         pmu_request(&req, NULL, 4, PMU_POWER_EVENTS, PMU_PWR_SET_WAKEUP_EVENTS,
2543                 0, PMU_PWR_WAKEUP_KEY |
2544                 (option_lid_wakeup ? PMU_PWR_WAKEUP_LID_OPEN : 0));
2545         pmu_wait_complete(&req);
2546
2547         /* Save the state of the L2 and L3 caches */
2548         save_l3cr = _get_L3CR();        /* (returns -1 if not available) */
2549         save_l2cr = _get_L2CR();        /* (returns -1 if not available) */
2550
2551         if (!__fake_sleep) {
2552                 /* Ask the PMU to put us to sleep */
2553                 pmu_request(&req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T');
2554                 pmu_wait_complete(&req);
2555         }
2556
2557         /* The VIA is supposed not to be restored correctly*/
2558         save_via_state();
2559
2560         /* Shut down various ASICs. There's a chance that we can no longer
2561          * talk to the PMU after this, so I moved it to _after_ sending the
2562          * sleep command to it. Still need to be checked.
2563          */
2564         pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, 1);
2565
2566         /* Call low-level ASM sleep handler */
2567         if (__fake_sleep)
2568                 mdelay(5000);
2569         else
2570                 low_sleep_handler();
2571
2572         /* Restore Apple core ASICs state */
2573         pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, 0);
2574
2575         /* Restore VIA */
2576         restore_via_state();
2577
2578         /* tweak LPJ before cpufreq is there */
2579         loops_per_jiffy *= 2;
2580
2581         /* Restore video */
2582         pmac_call_early_video_resume();
2583
2584         /* Restore L2 cache */
2585         if (save_l2cr != 0xffffffff && (save_l2cr & L2CR_L2E) != 0)
2586                 _set_L2CR(save_l2cr);
2587         /* Restore L3 cache */
2588         if (save_l3cr != 0xffffffff && (save_l3cr & L3CR_L3E) != 0)
2589                 _set_L3CR(save_l3cr);
2590         
2591         /* Restore userland MMU context */
2592         set_context(current->active_mm->context, current->active_mm->pgd);
2593
2594         /* Tell PMU we are ready */
2595         pmu_unlock();
2596         pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2);
2597         pmu_wait_complete(&req);
2598         pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask);
2599         pmu_wait_complete(&req);
2600
2601         /* Restore LPJ, cpufreq will adjust the cpu frequency */
2602         loops_per_jiffy /= 2;
2603
2604         pmac_wakeup_devices();
2605
2606         return 0;
2607 }
2608
2609 #define PB3400_MEM_CTRL         0xf8000000
2610 #define PB3400_MEM_CTRL_SLEEP   0x70
2611
2612 static int
2613 powerbook_sleep_3400(void)
2614 {
2615         int ret, i, x;
2616         unsigned int hid0;
2617         unsigned long p;
2618         struct adb_request sleep_req;
2619         void __iomem *mem_ctrl;
2620         unsigned int __iomem *mem_ctrl_sleep;
2621
2622         /* first map in the memory controller registers */
2623         mem_ctrl = ioremap(PB3400_MEM_CTRL, 0x100);
2624         if (mem_ctrl == NULL) {
2625                 printk("powerbook_sleep_3400: ioremap failed\n");
2626                 return -ENOMEM;
2627         }
2628         mem_ctrl_sleep = mem_ctrl + PB3400_MEM_CTRL_SLEEP;
2629
2630         /* Allocate room for PCI save */
2631         pbook_alloc_pci_save();
2632
2633         ret = pmac_suspend_devices();
2634         if (ret) {
2635                 pbook_free_pci_save();
2636                 printk(KERN_ERR "Sleep rejected by devices\n");
2637                 return ret;
2638         }
2639
2640         /* Save the state of PCI config space for some slots */
2641         pbook_pci_save();
2642
2643         /* Set the memory controller to keep the memory refreshed
2644            while we're asleep */
2645         for (i = 0x403f; i >= 0x4000; --i) {
2646                 out_be32(mem_ctrl_sleep, i);
2647                 do {
2648                         x = (in_be32(mem_ctrl_sleep) >> 16) & 0x3ff;
2649                 } while (x == 0);
2650                 if (x >= 0x100)
2651                         break;
2652         }
2653
2654         /* Ask the PMU to put us to sleep */
2655         pmu_request(&sleep_req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T');
2656         while (!sleep_req.complete)
2657                 mb();
2658
2659         pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,1);
2660
2661         /* displacement-flush the L2 cache - necessary? */
2662         for (p = KERNELBASE; p < KERNELBASE + 0x100000; p += 0x1000)
2663                 i = *(volatile int *)p;
2664         asleep = 1;
2665
2666         /* Put the CPU into sleep mode */
2667         asm volatile("mfspr %0,1008" : "=r" (hid0) :);
2668         hid0 = (hid0 & ~(HID0_NAP | HID0_DOZE)) | HID0_SLEEP;
2669         asm volatile("mtspr 1008,%0" : : "r" (hid0));
2670         _nmask_and_or_msr(0, MSR_POW | MSR_EE);
2671         udelay(10);
2672
2673         /* OK, we're awake again, start restoring things */
2674         out_be32(mem_ctrl_sleep, 0x3f);
2675         pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,0);
2676         pbook_pci_restore();
2677         pmu_unlock();
2678
2679         /* wait for the PMU interrupt sequence to complete */
2680         while (asleep)
2681                 mb();
2682
2683         pmac_wakeup_devices();
2684         pbook_free_pci_save();
2685         iounmap(mem_ctrl);
2686
2687         return 0;
2688 }
2689
2690 #endif /* CONFIG_PM */
2691
2692 /*
2693  * Support for /dev/pmu device
2694  */
2695 #define RB_SIZE         0x10
2696 struct pmu_private {
2697         struct list_head list;
2698         int     rb_get;
2699         int     rb_put;
2700         struct rb_entry {
2701                 unsigned short len;
2702                 unsigned char data[16];
2703         }       rb_buf[RB_SIZE];
2704         wait_queue_head_t wait;
2705         spinlock_t lock;
2706 #if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT)
2707         int     backlight_locker;
2708 #endif /* defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT) */     
2709 };
2710
2711 static LIST_HEAD(all_pmu_pvt);
2712 static DEFINE_SPINLOCK(all_pvt_lock);
2713
2714 static void
2715 pmu_pass_intr(unsigned char *data, int len)
2716 {
2717         struct pmu_private *pp;
2718         struct list_head *list;
2719         int i;
2720         unsigned long flags;
2721
2722         if (len > sizeof(pp->rb_buf[0].data))
2723                 len = sizeof(pp->rb_buf[0].data);
2724         spin_lock_irqsave(&all_pvt_lock, flags);
2725         for (list = &all_pmu_pvt; (list = list->next) != &all_pmu_pvt; ) {
2726                 pp = list_entry(list, struct pmu_private, list);
2727                 spin_lock(&pp->lock);
2728                 i = pp->rb_put + 1;
2729                 if (i >= RB_SIZE)
2730                         i = 0;
2731                 if (i != pp->rb_get) {
2732                         struct rb_entry *rp = &pp->rb_buf[pp->rb_put];
2733                         rp->len = len;
2734                         memcpy(rp->data, data, len);
2735                         pp->rb_put = i;
2736                         wake_up_interruptible(&pp->wait);
2737                 }
2738                 spin_unlock(&pp->lock);
2739         }
2740         spin_unlock_irqrestore(&all_pvt_lock, flags);
2741 }
2742
2743 static int
2744 pmu_open(struct inode *inode, struct file *file)
2745 {
2746         struct pmu_private *pp;
2747         unsigned long flags;
2748
2749         pp = kmalloc(sizeof(struct pmu_private), GFP_KERNEL);
2750         if (pp == 0)
2751                 return -ENOMEM;
2752         pp->rb_get = pp->rb_put = 0;
2753         spin_lock_init(&pp->lock);
2754         init_waitqueue_head(&pp->wait);
2755         spin_lock_irqsave(&all_pvt_lock, flags);
2756 #if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT)
2757         pp->backlight_locker = 0;
2758 #endif /* defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT) */     
2759         list_add(&pp->list, &all_pmu_pvt);
2760         spin_unlock_irqrestore(&all_pvt_lock, flags);
2761         file->private_data = pp;
2762         return 0;
2763 }
2764
2765 static ssize_t 
2766 pmu_read(struct file *file, char __user *buf,
2767                         size_t count, loff_t *ppos)
2768 {
2769         struct pmu_private *pp = file->private_data;
2770         DECLARE_WAITQUEUE(wait, current);
2771         unsigned long flags;
2772         int ret = 0;
2773
2774         if (count < 1 || pp == 0)
2775                 return -EINVAL;
2776         if (!access_ok(VERIFY_WRITE, buf, count))
2777                 return -EFAULT;
2778
2779         spin_lock_irqsave(&pp->lock, flags);
2780         add_wait_queue(&pp->wait, &wait);
2781         current->state = TASK_INTERRUPTIBLE;
2782
2783         for (;;) {
2784                 ret = -EAGAIN;
2785                 if (pp->rb_get != pp->rb_put) {
2786                         int i = pp->rb_get;
2787                         struct rb_entry *rp = &pp->rb_buf[i];
2788                         ret = rp->len;
2789                         spin_unlock_irqrestore(&pp->lock, flags);
2790                         if (ret > count)
2791                                 ret = count;
2792                         if (ret > 0 && copy_to_user(buf, rp->data, ret))
2793                                 ret = -EFAULT;
2794                         if (++i >= RB_SIZE)
2795                                 i = 0;
2796                         spin_lock_irqsave(&pp->lock, flags);
2797                         pp->rb_get = i;
2798                 }
2799                 if (ret >= 0)
2800                         break;
2801                 if (file->f_flags & O_NONBLOCK)
2802                         break;
2803                 ret = -ERESTARTSYS;
2804                 if (signal_pending(current))
2805                         break;
2806                 spin_unlock_irqrestore(&pp->lock, flags);
2807                 schedule();
2808                 spin_lock_irqsave(&pp->lock, flags);
2809         }
2810         current->state = TASK_RUNNING;
2811         remove_wait_queue(&pp->wait, &wait);
2812         spin_unlock_irqrestore(&pp->lock, flags);
2813         
2814         return ret;
2815 }
2816
2817 static ssize_t
2818 pmu_write(struct file *file, const char __user *buf,
2819                          size_t count, loff_t *ppos)
2820 {
2821         return 0;
2822 }
2823
2824 static unsigned int
2825 pmu_fpoll(struct file *filp, poll_table *wait)
2826 {
2827         struct pmu_private *pp = filp->private_data;
2828         unsigned int mask = 0;
2829         unsigned long flags;
2830         
2831         if (pp == 0)
2832                 return 0;
2833         poll_wait(filp, &pp->wait, wait);
2834         spin_lock_irqsave(&pp->lock, flags);
2835         if (pp->rb_get != pp->rb_put)
2836                 mask |= POLLIN;
2837         spin_unlock_irqrestore(&pp->lock, flags);
2838         return mask;
2839 }
2840
2841 static int
2842 pmu_release(struct inode *inode, struct file *file)
2843 {
2844         struct pmu_private *pp = file->private_data;
2845         unsigned long flags;
2846
2847         lock_kernel();
2848         if (pp != 0) {
2849                 file->private_data = NULL;
2850                 spin_lock_irqsave(&all_pvt_lock, flags);
2851                 list_del(&pp->list);
2852                 spin_unlock_irqrestore(&all_pvt_lock, flags);
2853 #if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT)
2854                 if (pp->backlight_locker) {
2855                         spin_lock_irqsave(&pmu_lock, flags);
2856                         disable_kernel_backlight--;
2857                         spin_unlock_irqrestore(&pmu_lock, flags);
2858                 }
2859 #endif /* defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT) */
2860                 kfree(pp);
2861         }
2862         unlock_kernel();
2863         return 0;
2864 }
2865
2866 static int
2867 pmu_ioctl(struct inode * inode, struct file *filp,
2868                      u_int cmd, u_long arg)
2869 {
2870         __u32 __user *argp = (__u32 __user *)arg;
2871         int error = -EINVAL;
2872
2873         switch (cmd) {
2874 #ifdef CONFIG_PM
2875         case PMU_IOC_SLEEP:
2876                 if (!capable(CAP_SYS_ADMIN))
2877                         return -EACCES;
2878                 if (sleep_in_progress)
2879                         return -EBUSY;
2880                 sleep_in_progress = 1;
2881                 switch (pmu_kind) {
2882                 case PMU_OHARE_BASED:
2883                         error = powerbook_sleep_3400();
2884                         break;
2885                 case PMU_HEATHROW_BASED:
2886                 case PMU_PADDINGTON_BASED:
2887                         error = powerbook_sleep_grackle();
2888                         break;
2889                 case PMU_KEYLARGO_BASED:
2890                         error = powerbook_sleep_Core99();
2891                         break;
2892                 default:
2893                         error = -ENOSYS;
2894                 }
2895                 sleep_in_progress = 0;
2896                 break;
2897         case PMU_IOC_CAN_SLEEP:
2898                 if (pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) < 0)
2899                         return put_user(0, argp);
2900                 else
2901                         return put_user(1, argp);
2902 #endif /* CONFIG_PM */
2903
2904 #ifdef CONFIG_PMAC_BACKLIGHT
2905         /* Backlight should have its own device or go via
2906          * the fbdev
2907          */
2908         case PMU_IOC_GET_BACKLIGHT:
2909                 if (sleep_in_progress)
2910                         return -EBUSY;
2911                 error = get_backlight_level();
2912                 if (error < 0)
2913                         return error;
2914                 return put_user(error, argp);
2915         case PMU_IOC_SET_BACKLIGHT:
2916         {
2917                 __u32 value;
2918                 if (sleep_in_progress)
2919                         return -EBUSY;
2920                 error = get_user(value, argp);
2921                 if (!error)
2922                         error = set_backlight_level(value);
2923                 break;
2924         }
2925 #ifdef CONFIG_INPUT_ADBHID
2926         case PMU_IOC_GRAB_BACKLIGHT: {
2927                 struct pmu_private *pp = filp->private_data;
2928                 unsigned long flags;
2929
2930                 if (pp->backlight_locker)
2931                         return 0;
2932                 pp->backlight_locker = 1;
2933                 spin_lock_irqsave(&pmu_lock, flags);
2934                 disable_kernel_backlight++;
2935                 spin_unlock_irqrestore(&pmu_lock, flags);
2936                 return 0;
2937         }
2938 #endif /* CONFIG_INPUT_ADBHID */
2939 #endif /* CONFIG_PMAC_BACKLIGHT */
2940         case PMU_IOC_GET_MODEL:
2941                 return put_user(pmu_kind, argp);
2942         case PMU_IOC_HAS_ADB:
2943                 return put_user(pmu_has_adb, argp);
2944         }
2945         return error;
2946 }
2947
2948 static struct file_operations pmu_device_fops = {
2949         .read           = pmu_read,
2950         .write          = pmu_write,
2951         .poll           = pmu_fpoll,
2952         .ioctl          = pmu_ioctl,
2953         .open           = pmu_open,
2954         .release        = pmu_release,
2955 };
2956
2957 static struct miscdevice pmu_device = {
2958         PMU_MINOR, "pmu", &pmu_device_fops
2959 };
2960
2961 static int pmu_device_init(void)
2962 {
2963         if (!via)
2964                 return 0;
2965         if (misc_register(&pmu_device) < 0)
2966                 printk(KERN_ERR "via-pmu: cannot register misc device.\n");
2967         return 0;
2968 }
2969 device_initcall(pmu_device_init);
2970
2971
2972 #ifdef DEBUG_SLEEP
2973 static inline void 
2974 polled_handshake(volatile unsigned char __iomem *via)
2975 {
2976         via[B] &= ~TREQ; eieio();
2977         while ((via[B] & TACK) != 0)
2978                 ;
2979         via[B] |= TREQ; eieio();
2980         while ((via[B] & TACK) == 0)
2981                 ;
2982 }
2983
2984 static inline void 
2985 polled_send_byte(volatile unsigned char __iomem *via, int x)
2986 {
2987         via[ACR] |= SR_OUT | SR_EXT; eieio();
2988         via[SR] = x; eieio();
2989         polled_handshake(via);
2990 }
2991
2992 static inline int
2993 polled_recv_byte(volatile unsigned char __iomem *via)
2994 {
2995         int x;
2996
2997         via[ACR] = (via[ACR] & ~SR_OUT) | SR_EXT; eieio();
2998         x = via[SR]; eieio();
2999         polled_handshake(via);
3000         x = via[SR]; eieio();
3001         return x;
3002 }
3003
3004 int
3005 pmu_polled_request(struct adb_request *req)
3006 {
3007         unsigned long flags;
3008         int i, l, c;
3009         volatile unsigned char __iomem *v = via;
3010
3011         req->complete = 1;
3012         c = req->data[0];
3013         l = pmu_data_len[c][0];
3014         if (l >= 0 && req->nbytes != l + 1)
3015                 return -EINVAL;
3016
3017         local_irq_save(flags);
3018         while (pmu_state != idle)
3019                 pmu_poll();
3020
3021         while ((via[B] & TACK) == 0)
3022                 ;
3023         polled_send_byte(v, c);
3024         if (l < 0) {
3025                 l = req->nbytes - 1;
3026                 polled_send_byte(v, l);
3027         }
3028         for (i = 1; i <= l; ++i)
3029                 polled_send_byte(v, req->data[i]);
3030
3031         l = pmu_data_len[c][1];
3032         if (l < 0)
3033                 l = polled_recv_byte(v);
3034         for (i = 0; i < l; ++i)
3035                 req->reply[i + req->reply_len] = polled_recv_byte(v);
3036
3037         if (req->done)
3038                 (*req->done)(req);
3039
3040         local_irq_restore(flags);
3041         return 0;
3042 }
3043 #endif /* DEBUG_SLEEP */
3044
3045
3046 /* FIXME: This is a temporary set of callbacks to enable us
3047  * to do suspend-to-disk.
3048  */
3049
3050 #ifdef CONFIG_PM
3051
3052 static int pmu_sys_suspended = 0;
3053
3054 static int pmu_sys_suspend(struct sys_device *sysdev, pm_message_t state)
3055 {
3056         if (state.event != PM_EVENT_SUSPEND || pmu_sys_suspended)
3057                 return 0;
3058
3059         /* Suspend PMU event interrupts */
3060         pmu_suspend();
3061
3062         pmu_sys_suspended = 1;
3063         return 0;
3064 }
3065
3066 static int pmu_sys_resume(struct sys_device *sysdev)
3067 {
3068         struct adb_request req;
3069
3070         if (!pmu_sys_suspended)
3071                 return 0;
3072
3073         /* Tell PMU we are ready */
3074         pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2);
3075         pmu_wait_complete(&req);
3076
3077         /* Resume PMU event interrupts */
3078         pmu_resume();
3079
3080         pmu_sys_suspended = 0;
3081
3082         return 0;
3083 }
3084
3085 #endif /* CONFIG_PM */
3086
3087 static struct sysdev_class pmu_sysclass = {
3088         set_kset_name("pmu"),
3089 };
3090
3091 static struct sys_device device_pmu = {
3092         .id             = 0,
3093         .cls            = &pmu_sysclass,
3094 };
3095
3096 static struct sysdev_driver driver_pmu = {
3097 #ifdef CONFIG_PM
3098         .suspend        = &pmu_sys_suspend,
3099         .resume         = &pmu_sys_resume,
3100 #endif /* CONFIG_PM */
3101 };
3102
3103 static int __init init_pmu_sysfs(void)
3104 {
3105         int rc;
3106
3107         rc = sysdev_class_register(&pmu_sysclass);
3108         if (rc) {
3109                 printk(KERN_ERR "Failed registering PMU sys class\n");
3110                 return -ENODEV;
3111         }
3112         rc = sysdev_register(&device_pmu);
3113         if (rc) {
3114                 printk(KERN_ERR "Failed registering PMU sys device\n");
3115                 return -ENODEV;
3116         }
3117         rc = sysdev_driver_register(&pmu_sysclass, &driver_pmu);
3118         if (rc) {
3119                 printk(KERN_ERR "Failed registering PMU sys driver\n");
3120                 return -ENODEV;
3121         }
3122         return 0;
3123 }
3124
3125 subsys_initcall(init_pmu_sysfs);
3126
3127 EXPORT_SYMBOL(pmu_request);
3128 EXPORT_SYMBOL(pmu_poll);
3129 EXPORT_SYMBOL(pmu_poll_adb);
3130 EXPORT_SYMBOL(pmu_wait_complete);
3131 EXPORT_SYMBOL(pmu_suspend);
3132 EXPORT_SYMBOL(pmu_resume);
3133 EXPORT_SYMBOL(pmu_unlock);
3134 EXPORT_SYMBOL(pmu_i2c_combined_read);
3135 EXPORT_SYMBOL(pmu_i2c_stdsub_write);
3136 EXPORT_SYMBOL(pmu_i2c_simple_read);
3137 EXPORT_SYMBOL(pmu_i2c_simple_write);
3138 #ifdef CONFIG_PM
3139 EXPORT_SYMBOL(pmu_register_sleep_notifier);
3140 EXPORT_SYMBOL(pmu_unregister_sleep_notifier);
3141 EXPORT_SYMBOL(pmu_enable_irled);
3142 EXPORT_SYMBOL(pmu_battery_count);
3143 EXPORT_SYMBOL(pmu_batteries);
3144 EXPORT_SYMBOL(pmu_power_flags);
3145 #endif /* CONFIG_PM */
3146