2 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2005 Anton Altaparmakov
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
23 #include <linux/pagemap.h>
24 #include <linux/pagevec.h>
25 #include <linux/sched.h>
26 #include <linux/swap.h>
27 #include <linux/uio.h>
28 #include <linux/writeback.h>
31 #include <asm/uaccess.h>
43 * ntfs_file_open - called when an inode is about to be opened
44 * @vi: inode to be opened
45 * @filp: file structure describing the inode
47 * Limit file size to the page cache limit on architectures where unsigned long
48 * is 32-bits. This is the most we can do for now without overflowing the page
49 * cache page index. Doing it this way means we don't run into problems because
50 * of existing too large files. It would be better to allow the user to read
51 * the beginning of the file but I doubt very much anyone is going to hit this
52 * check on a 32-bit architecture, so there is no point in adding the extra
53 * complexity required to support this.
55 * On 64-bit architectures, the check is hopefully optimized away by the
58 * After the check passes, just call generic_file_open() to do its work.
60 static int ntfs_file_open(struct inode *vi, struct file *filp)
62 if (sizeof(unsigned long) < 8) {
63 if (i_size_read(vi) > MAX_LFS_FILESIZE)
66 return generic_file_open(vi, filp);
72 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
73 * @ni: ntfs inode of the attribute to extend
74 * @new_init_size: requested new initialized size in bytes
75 * @cached_page: store any allocated but unused page here
76 * @lru_pvec: lru-buffering pagevec of the caller
78 * Extend the initialized size of an attribute described by the ntfs inode @ni
79 * to @new_init_size bytes. This involves zeroing any non-sparse space between
80 * the old initialized size and @new_init_size both in the page cache and on
81 * disk (if relevant complete pages are already uptodate in the page cache then
82 * these are simply marked dirty).
84 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
85 * in the resident attribute case, it is tied to the initialized size and, in
86 * the non-resident attribute case, it may not fall below the initialized size.
88 * Note that if the attribute is resident, we do not need to touch the page
89 * cache at all. This is because if the page cache page is not uptodate we
90 * bring it uptodate later, when doing the write to the mft record since we
91 * then already have the page mapped. And if the page is uptodate, the
92 * non-initialized region will already have been zeroed when the page was
93 * brought uptodate and the region may in fact already have been overwritten
94 * with new data via mmap() based writes, so we cannot just zero it. And since
95 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
96 * is unspecified, we choose not to do zeroing and thus we do not need to touch
97 * the page at all. For a more detailed explanation see ntfs_truncate() in
100 * @cached_page and @lru_pvec are just optimizations for dealing with multiple
103 * Return 0 on success and -errno on error. In the case that an error is
104 * encountered it is possible that the initialized size will already have been
105 * incremented some way towards @new_init_size but it is guaranteed that if
106 * this is the case, the necessary zeroing will also have happened and that all
107 * metadata is self-consistent.
109 * Locking: i_sem on the vfs inode corrseponsind to the ntfs inode @ni must be
110 * held by the caller.
112 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size,
113 struct page **cached_page, struct pagevec *lru_pvec)
117 pgoff_t index, end_index;
119 struct inode *vi = VFS_I(ni);
121 MFT_RECORD *m = NULL;
123 ntfs_attr_search_ctx *ctx = NULL;
124 struct address_space *mapping;
125 struct page *page = NULL;
130 read_lock_irqsave(&ni->size_lock, flags);
131 old_init_size = ni->initialized_size;
132 old_i_size = i_size_read(vi);
133 BUG_ON(new_init_size > ni->allocated_size);
134 read_unlock_irqrestore(&ni->size_lock, flags);
135 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
136 "old_initialized_size 0x%llx, "
137 "new_initialized_size 0x%llx, i_size 0x%llx.",
138 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
139 (unsigned long long)old_init_size,
140 (unsigned long long)new_init_size, old_i_size);
144 base_ni = ni->ext.base_ntfs_ino;
145 /* Use goto to reduce indentation and we need the label below anyway. */
146 if (NInoNonResident(ni))
147 goto do_non_resident_extend;
148 BUG_ON(old_init_size != old_i_size);
149 m = map_mft_record(base_ni);
155 ctx = ntfs_attr_get_search_ctx(base_ni, m);
156 if (unlikely(!ctx)) {
160 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
161 CASE_SENSITIVE, 0, NULL, 0, ctx);
169 BUG_ON(a->non_resident);
170 /* The total length of the attribute value. */
171 attr_len = le32_to_cpu(a->data.resident.value_length);
172 BUG_ON(old_i_size != (loff_t)attr_len);
174 * Do the zeroing in the mft record and update the attribute size in
177 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
178 memset(kattr + attr_len, 0, new_init_size - attr_len);
179 a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
180 /* Finally, update the sizes in the vfs and ntfs inodes. */
181 write_lock_irqsave(&ni->size_lock, flags);
182 i_size_write(vi, new_init_size);
183 ni->initialized_size = new_init_size;
184 write_unlock_irqrestore(&ni->size_lock, flags);
186 do_non_resident_extend:
188 * If the new initialized size @new_init_size exceeds the current file
189 * size (vfs inode->i_size), we need to extend the file size to the
190 * new initialized size.
192 if (new_init_size > old_i_size) {
193 m = map_mft_record(base_ni);
199 ctx = ntfs_attr_get_search_ctx(base_ni, m);
200 if (unlikely(!ctx)) {
204 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
205 CASE_SENSITIVE, 0, NULL, 0, ctx);
213 BUG_ON(!a->non_resident);
214 BUG_ON(old_i_size != (loff_t)
215 sle64_to_cpu(a->data.non_resident.data_size));
216 a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
217 flush_dcache_mft_record_page(ctx->ntfs_ino);
218 mark_mft_record_dirty(ctx->ntfs_ino);
219 /* Update the file size in the vfs inode. */
220 i_size_write(vi, new_init_size);
221 ntfs_attr_put_search_ctx(ctx);
223 unmap_mft_record(base_ni);
226 mapping = vi->i_mapping;
227 index = old_init_size >> PAGE_CACHE_SHIFT;
228 end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
231 * Read the page. If the page is not present, this will zero
232 * the uninitialized regions for us.
234 page = read_cache_page(mapping, index,
235 (filler_t*)mapping->a_ops->readpage, NULL);
240 wait_on_page_locked(page);
241 if (unlikely(!PageUptodate(page) || PageError(page))) {
242 page_cache_release(page);
247 * Update the initialized size in the ntfs inode. This is
248 * enough to make ntfs_writepage() work.
250 write_lock_irqsave(&ni->size_lock, flags);
251 ni->initialized_size = (index + 1) << PAGE_CACHE_SHIFT;
252 if (ni->initialized_size > new_init_size)
253 ni->initialized_size = new_init_size;
254 write_unlock_irqrestore(&ni->size_lock, flags);
255 /* Set the page dirty so it gets written out. */
256 set_page_dirty(page);
257 page_cache_release(page);
259 * Play nice with the vm and the rest of the system. This is
260 * very much needed as we can potentially be modifying the
261 * initialised size from a very small value to a really huge
263 * f = open(somefile, O_TRUNC);
264 * truncate(f, 10GiB);
267 * And this would mean we would be marking dirty hundreds of
268 * thousands of pages or as in the above example more than
269 * two and a half million pages!
271 * TODO: For sparse pages could optimize this workload by using
272 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
273 * would be set in readpage for sparse pages and here we would
274 * not need to mark dirty any pages which have this bit set.
275 * The only caveat is that we have to clear the bit everywhere
276 * where we allocate any clusters that lie in the page or that
279 * TODO: An even greater optimization would be for us to only
280 * call readpage() on pages which are not in sparse regions as
281 * determined from the runlist. This would greatly reduce the
282 * number of pages we read and make dirty in the case of sparse
285 balance_dirty_pages_ratelimited(mapping);
287 } while (++index < end_index);
288 read_lock_irqsave(&ni->size_lock, flags);
289 BUG_ON(ni->initialized_size != new_init_size);
290 read_unlock_irqrestore(&ni->size_lock, flags);
291 /* Now bring in sync the initialized_size in the mft record. */
292 m = map_mft_record(base_ni);
298 ctx = ntfs_attr_get_search_ctx(base_ni, m);
299 if (unlikely(!ctx)) {
303 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
304 CASE_SENSITIVE, 0, NULL, 0, ctx);
312 BUG_ON(!a->non_resident);
313 a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
315 flush_dcache_mft_record_page(ctx->ntfs_ino);
316 mark_mft_record_dirty(ctx->ntfs_ino);
318 ntfs_attr_put_search_ctx(ctx);
320 unmap_mft_record(base_ni);
321 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
322 (unsigned long long)new_init_size, i_size_read(vi));
325 write_lock_irqsave(&ni->size_lock, flags);
326 ni->initialized_size = old_init_size;
327 write_unlock_irqrestore(&ni->size_lock, flags);
330 ntfs_attr_put_search_ctx(ctx);
332 unmap_mft_record(base_ni);
333 ntfs_debug("Failed. Returning error code %i.", err);
338 * ntfs_fault_in_pages_readable -
340 * Fault a number of userspace pages into pagetables.
342 * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
343 * with more than two userspace pages as well as handling the single page case
346 * If you find this difficult to understand, then think of the while loop being
347 * the following code, except that we do without the integer variable ret:
350 * ret = __get_user(c, uaddr);
351 * uaddr += PAGE_SIZE;
352 * } while (!ret && uaddr < end);
354 * Note, the final __get_user() may well run out-of-bounds of the user buffer,
355 * but _not_ out-of-bounds of the page the user buffer belongs to, and since
356 * this is only a read and not a write, and since it is still in the same page,
357 * it should not matter and this makes the code much simpler.
359 static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
362 const char __user *end;
365 /* Set @end to the first byte outside the last page we care about. */
366 end = (const char __user*)PAGE_ALIGN((ptrdiff_t __user)uaddr + bytes);
368 while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
373 * ntfs_fault_in_pages_readable_iovec -
375 * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
377 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
378 size_t iov_ofs, int bytes)
381 const char __user *buf;
384 buf = iov->iov_base + iov_ofs;
385 len = iov->iov_len - iov_ofs;
388 ntfs_fault_in_pages_readable(buf, len);
396 * __ntfs_grab_cache_pages - obtain a number of locked pages
397 * @mapping: address space mapping from which to obtain page cache pages
398 * @index: starting index in @mapping at which to begin obtaining pages
399 * @nr_pages: number of page cache pages to obtain
400 * @pages: array of pages in which to return the obtained page cache pages
401 * @cached_page: allocated but as yet unused page
402 * @lru_pvec: lru-buffering pagevec of caller
404 * Obtain @nr_pages locked page cache pages from the mapping @maping and
405 * starting at index @index.
407 * If a page is newly created, increment its refcount and add it to the
408 * caller's lru-buffering pagevec @lru_pvec.
410 * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages
411 * are obtained at once instead of just one page and that 0 is returned on
412 * success and -errno on error.
414 * Note, the page locks are obtained in ascending page index order.
416 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
417 pgoff_t index, const unsigned nr_pages, struct page **pages,
418 struct page **cached_page, struct pagevec *lru_pvec)
425 pages[nr] = find_lock_page(mapping, index);
428 *cached_page = page_cache_alloc(mapping);
429 if (unlikely(!*cached_page)) {
434 err = add_to_page_cache(*cached_page, mapping, index,
441 pages[nr] = *cached_page;
442 page_cache_get(*cached_page);
443 if (unlikely(!pagevec_add(lru_pvec, *cached_page)))
444 __pagevec_lru_add(lru_pvec);
449 } while (nr < nr_pages);
454 unlock_page(pages[--nr]);
455 page_cache_release(pages[nr]);
460 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
464 bh->b_end_io = end_buffer_read_sync;
465 return submit_bh(READ, bh);
469 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
470 * @pages: array of destination pages
471 * @nr_pages: number of pages in @pages
472 * @pos: byte position in file at which the write begins
473 * @bytes: number of bytes to be written
475 * This is called for non-resident attributes from ntfs_file_buffered_write()
476 * with i_sem held on the inode (@pages[0]->mapping->host). There are
477 * @nr_pages pages in @pages which are locked but not kmap()ped. The source
478 * data has not yet been copied into the @pages.
480 * Need to fill any holes with actual clusters, allocate buffers if necessary,
481 * ensure all the buffers are mapped, and bring uptodate any buffers that are
482 * only partially being written to.
484 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
485 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
486 * the same cluster and that they are the entirety of that cluster, and that
487 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
489 * i_size is not to be modified yet.
491 * Return 0 on success or -errno on error.
493 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
494 unsigned nr_pages, s64 pos, size_t bytes)
496 VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
498 s64 bh_pos, vcn_len, end, initialized_size;
502 ntfs_inode *ni, *base_ni = NULL;
504 runlist_element *rl, *rl2;
505 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
506 ntfs_attr_search_ctx *ctx = NULL;
507 MFT_RECORD *m = NULL;
508 ATTR_RECORD *a = NULL;
510 u32 attr_rec_len = 0;
511 unsigned blocksize, u;
513 BOOL rl_write_locked, was_hole, is_retry;
514 unsigned char blocksize_bits;
517 u8 mft_attr_mapped:1;
520 } status = { 0, 0, 0, 0 };
525 vi = pages[0]->mapping->host;
528 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
529 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
530 vi->i_ino, ni->type, pages[0]->index, nr_pages,
531 (long long)pos, bytes);
532 blocksize_bits = vi->i_blkbits;
533 blocksize = 1 << blocksize_bits;
536 struct page *page = pages[u];
538 * create_empty_buffers() will create uptodate/dirty buffers if
539 * the page is uptodate/dirty.
541 if (!page_has_buffers(page)) {
542 create_empty_buffers(page, blocksize, 0);
543 if (unlikely(!page_has_buffers(page)))
546 } while (++u < nr_pages);
547 rl_write_locked = FALSE;
554 cpos = pos >> vol->cluster_size_bits;
556 cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
558 * Loop over each page and for each page over each buffer. Use goto to
559 * reduce indentation.
564 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
565 bh = head = page_buffers(page);
571 /* Clear buffer_new on all buffers to reinitialise state. */
573 clear_buffer_new(bh);
574 bh_end = bh_pos + blocksize;
575 bh_cpos = bh_pos >> vol->cluster_size_bits;
576 bh_cofs = bh_pos & vol->cluster_size_mask;
577 if (buffer_mapped(bh)) {
579 * The buffer is already mapped. If it is uptodate,
582 if (buffer_uptodate(bh))
585 * The buffer is not uptodate. If the page is uptodate
586 * set the buffer uptodate and otherwise ignore it.
588 if (PageUptodate(page)) {
589 set_buffer_uptodate(bh);
593 * Neither the page nor the buffer are uptodate. If
594 * the buffer is only partially being written to, we
595 * need to read it in before the write, i.e. now.
597 if ((bh_pos < pos && bh_end > pos) ||
598 (bh_pos < end && bh_end > end)) {
600 * If the buffer is fully or partially within
601 * the initialized size, do an actual read.
602 * Otherwise, simply zero the buffer.
604 read_lock_irqsave(&ni->size_lock, flags);
605 initialized_size = ni->initialized_size;
606 read_unlock_irqrestore(&ni->size_lock, flags);
607 if (bh_pos < initialized_size) {
608 ntfs_submit_bh_for_read(bh);
611 u8 *kaddr = kmap_atomic(page, KM_USER0);
612 memset(kaddr + bh_offset(bh), 0,
614 kunmap_atomic(kaddr, KM_USER0);
615 flush_dcache_page(page);
616 set_buffer_uptodate(bh);
621 /* Unmapped buffer. Need to map it. */
622 bh->b_bdev = vol->sb->s_bdev;
624 * If the current buffer is in the same clusters as the map
625 * cache, there is no need to check the runlist again. The
626 * map cache is made up of @vcn, which is the first cached file
627 * cluster, @vcn_len which is the number of cached file
628 * clusters, @lcn is the device cluster corresponding to @vcn,
629 * and @lcn_block is the block number corresponding to @lcn.
631 cdelta = bh_cpos - vcn;
632 if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
635 bh->b_blocknr = lcn_block +
636 (cdelta << (vol->cluster_size_bits -
638 (bh_cofs >> blocksize_bits);
639 set_buffer_mapped(bh);
641 * If the page is uptodate so is the buffer. If the
642 * buffer is fully outside the write, we ignore it if
643 * it was already allocated and we mark it dirty so it
644 * gets written out if we allocated it. On the other
645 * hand, if we allocated the buffer but we are not
646 * marking it dirty we set buffer_new so we can do
649 if (PageUptodate(page)) {
650 if (!buffer_uptodate(bh))
651 set_buffer_uptodate(bh);
652 if (unlikely(was_hole)) {
653 /* We allocated the buffer. */
654 unmap_underlying_metadata(bh->b_bdev,
656 if (bh_end <= pos || bh_pos >= end)
657 mark_buffer_dirty(bh);
663 /* Page is _not_ uptodate. */
664 if (likely(!was_hole)) {
666 * Buffer was already allocated. If it is not
667 * uptodate and is only partially being written
668 * to, we need to read it in before the write,
671 if (!buffer_uptodate(bh) && ((bh_pos < pos &&
676 * If the buffer is fully or partially
677 * within the initialized size, do an
678 * actual read. Otherwise, simply zero
681 read_lock_irqsave(&ni->size_lock,
683 initialized_size = ni->initialized_size;
684 read_unlock_irqrestore(&ni->size_lock,
686 if (bh_pos < initialized_size) {
687 ntfs_submit_bh_for_read(bh);
690 u8 *kaddr = kmap_atomic(page,
692 memset(kaddr + bh_offset(bh),
694 kunmap_atomic(kaddr, KM_USER0);
695 flush_dcache_page(page);
696 set_buffer_uptodate(bh);
701 /* We allocated the buffer. */
702 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
704 * If the buffer is fully outside the write, zero it,
705 * set it uptodate, and mark it dirty so it gets
706 * written out. If it is partially being written to,
707 * zero region surrounding the write but leave it to
708 * commit write to do anything else. Finally, if the
709 * buffer is fully being overwritten, do nothing.
711 if (bh_end <= pos || bh_pos >= end) {
712 if (!buffer_uptodate(bh)) {
713 u8 *kaddr = kmap_atomic(page, KM_USER0);
714 memset(kaddr + bh_offset(bh), 0,
716 kunmap_atomic(kaddr, KM_USER0);
717 flush_dcache_page(page);
718 set_buffer_uptodate(bh);
720 mark_buffer_dirty(bh);
724 if (!buffer_uptodate(bh) &&
725 (bh_pos < pos || bh_end > end)) {
729 kaddr = kmap_atomic(page, KM_USER0);
731 pofs = bh_pos & ~PAGE_CACHE_MASK;
732 memset(kaddr + pofs, 0, pos - bh_pos);
735 pofs = end & ~PAGE_CACHE_MASK;
736 memset(kaddr + pofs, 0, bh_end - end);
738 kunmap_atomic(kaddr, KM_USER0);
739 flush_dcache_page(page);
744 * Slow path: this is the first buffer in the cluster. If it
745 * is outside allocated size and is not uptodate, zero it and
748 read_lock_irqsave(&ni->size_lock, flags);
749 initialized_size = ni->allocated_size;
750 read_unlock_irqrestore(&ni->size_lock, flags);
751 if (bh_pos > initialized_size) {
752 if (PageUptodate(page)) {
753 if (!buffer_uptodate(bh))
754 set_buffer_uptodate(bh);
755 } else if (!buffer_uptodate(bh)) {
756 u8 *kaddr = kmap_atomic(page, KM_USER0);
757 memset(kaddr + bh_offset(bh), 0, blocksize);
758 kunmap_atomic(kaddr, KM_USER0);
759 flush_dcache_page(page);
760 set_buffer_uptodate(bh);
766 down_read(&ni->runlist.lock);
770 if (likely(rl != NULL)) {
771 /* Seek to element containing target cluster. */
772 while (rl->length && rl[1].vcn <= bh_cpos)
774 lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
775 if (likely(lcn >= 0)) {
777 * Successful remap, setup the map cache and
778 * use that to deal with the buffer.
782 vcn_len = rl[1].vcn - vcn;
783 lcn_block = lcn << (vol->cluster_size_bits -
787 * If the number of remaining clusters in the
788 * @pages is smaller or equal to the number of
789 * cached clusters, unlock the runlist as the
790 * map cache will be used from now on.
792 if (likely(vcn + vcn_len >= cend)) {
793 if (rl_write_locked) {
794 up_write(&ni->runlist.lock);
795 rl_write_locked = FALSE;
797 up_read(&ni->runlist.lock);
800 goto map_buffer_cached;
803 lcn = LCN_RL_NOT_MAPPED;
805 * If it is not a hole and not out of bounds, the runlist is
806 * probably unmapped so try to map it now.
808 if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
809 if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
810 /* Attempt to map runlist. */
811 if (!rl_write_locked) {
813 * We need the runlist locked for
814 * writing, so if it is locked for
815 * reading relock it now and retry in
816 * case it changed whilst we dropped
819 up_read(&ni->runlist.lock);
820 down_write(&ni->runlist.lock);
821 rl_write_locked = TRUE;
824 err = ntfs_map_runlist_nolock(ni, bh_cpos,
831 * If @vcn is out of bounds, pretend @lcn is
832 * LCN_ENOENT. As long as the buffer is out
833 * of bounds this will work fine.
835 if (err == -ENOENT) {
838 goto rl_not_mapped_enoent;
842 /* Failed to map the buffer, even after retrying. */
844 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
845 "attribute type 0x%x, vcn 0x%llx, "
846 "vcn offset 0x%x, because its "
847 "location on disk could not be "
848 "determined%s (error code %i).",
849 ni->mft_no, ni->type,
850 (unsigned long long)bh_cpos,
852 vol->cluster_size_mask,
853 is_retry ? " even after retrying" : "",
857 rl_not_mapped_enoent:
859 * The buffer is in a hole or out of bounds. We need to fill
860 * the hole, unless the buffer is in a cluster which is not
861 * touched by the write, in which case we just leave the buffer
862 * unmapped. This can only happen when the cluster size is
863 * less than the page cache size.
865 if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
866 bh_cend = (bh_end + vol->cluster_size - 1) >>
867 vol->cluster_size_bits;
868 if ((bh_cend <= cpos || bh_cpos >= cend)) {
871 * If the buffer is uptodate we skip it. If it
872 * is not but the page is uptodate, we can set
873 * the buffer uptodate. If the page is not
874 * uptodate, we can clear the buffer and set it
875 * uptodate. Whether this is worthwhile is
876 * debatable and this could be removed.
878 if (PageUptodate(page)) {
879 if (!buffer_uptodate(bh))
880 set_buffer_uptodate(bh);
881 } else if (!buffer_uptodate(bh)) {
882 u8 *kaddr = kmap_atomic(page, KM_USER0);
883 memset(kaddr + bh_offset(bh), 0,
885 kunmap_atomic(kaddr, KM_USER0);
886 flush_dcache_page(page);
887 set_buffer_uptodate(bh);
893 * Out of bounds buffer is invalid if it was not really out of
896 BUG_ON(lcn != LCN_HOLE);
898 * We need the runlist locked for writing, so if it is locked
899 * for reading relock it now and retry in case it changed
900 * whilst we dropped the lock.
903 if (!rl_write_locked) {
904 up_read(&ni->runlist.lock);
905 down_write(&ni->runlist.lock);
906 rl_write_locked = TRUE;
909 /* Find the previous last allocated cluster. */
910 BUG_ON(rl->lcn != LCN_HOLE);
913 while (--rl2 >= ni->runlist.rl) {
915 lcn = rl2->lcn + rl2->length;
919 rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
923 ntfs_debug("Failed to allocate cluster, error code %i.",
928 rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
933 if (ntfs_cluster_free_from_rl(vol, rl2)) {
934 ntfs_error(vol->sb, "Failed to release "
935 "allocated cluster in error "
936 "code path. Run chkdsk to "
937 "recover the lost cluster.");
944 status.runlist_merged = 1;
945 ntfs_debug("Allocated cluster, lcn 0x%llx.", lcn);
946 /* Map and lock the mft record and get the attribute record. */
950 base_ni = ni->ext.base_ntfs_ino;
951 m = map_mft_record(base_ni);
956 ctx = ntfs_attr_get_search_ctx(base_ni, m);
957 if (unlikely(!ctx)) {
959 unmap_mft_record(base_ni);
962 status.mft_attr_mapped = 1;
963 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
964 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
973 * Find the runlist element with which the attribute extent
974 * starts. Note, we cannot use the _attr_ version because we
975 * have mapped the mft record. That is ok because we know the
976 * runlist fragment must be mapped already to have ever gotten
977 * here, so we can just use the _rl_ version.
979 vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
980 rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
982 BUG_ON(!rl2->length);
983 BUG_ON(rl2->lcn < LCN_HOLE);
984 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
986 * If @highest_vcn is zero, calculate the real highest_vcn
987 * (which can really be zero).
990 highest_vcn = (sle64_to_cpu(
991 a->data.non_resident.allocated_size) >>
992 vol->cluster_size_bits) - 1;
994 * Determine the size of the mapping pairs array for the new
995 * extent, i.e. the old extent with the hole filled.
997 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
999 if (unlikely(mp_size <= 0)) {
1000 if (!(err = mp_size))
1002 ntfs_debug("Failed to get size for mapping pairs "
1003 "array, error code %i.", err);
1007 * Resize the attribute record to fit the new mapping pairs
1010 attr_rec_len = le32_to_cpu(a->length);
1011 err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
1012 a->data.non_resident.mapping_pairs_offset));
1013 if (unlikely(err)) {
1014 BUG_ON(err != -ENOSPC);
1015 // TODO: Deal with this by using the current attribute
1016 // and fill it with as much of the mapping pairs
1017 // array as possible. Then loop over each attribute
1018 // extent rewriting the mapping pairs arrays as we go
1019 // along and if when we reach the end we have not
1020 // enough space, try to resize the last attribute
1021 // extent and if even that fails, add a new attribute
1023 // We could also try to resize at each step in the hope
1024 // that we will not need to rewrite every single extent.
1025 // Note, we may need to decompress some extents to fill
1026 // the runlist as we are walking the extents...
1027 ntfs_error(vol->sb, "Not enough space in the mft "
1028 "record for the extended attribute "
1029 "record. This case is not "
1030 "implemented yet.");
1034 status.mp_rebuilt = 1;
1036 * Generate the mapping pairs array directly into the attribute
1039 err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1040 a->data.non_resident.mapping_pairs_offset),
1041 mp_size, rl2, vcn, highest_vcn, NULL);
1042 if (unlikely(err)) {
1043 ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1044 "attribute type 0x%x, because building "
1045 "the mapping pairs failed with error "
1046 "code %i.", vi->i_ino,
1047 (unsigned)le32_to_cpu(ni->type), err);
1051 /* Update the highest_vcn but only if it was not set. */
1052 if (unlikely(!a->data.non_resident.highest_vcn))
1053 a->data.non_resident.highest_vcn =
1054 cpu_to_sle64(highest_vcn);
1056 * If the attribute is sparse/compressed, update the compressed
1057 * size in the ntfs_inode structure and the attribute record.
1059 if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1061 * If we are not in the first attribute extent, switch
1062 * to it, but first ensure the changes will make it to
1065 if (a->data.non_resident.lowest_vcn) {
1066 flush_dcache_mft_record_page(ctx->ntfs_ino);
1067 mark_mft_record_dirty(ctx->ntfs_ino);
1068 ntfs_attr_reinit_search_ctx(ctx);
1069 err = ntfs_attr_lookup(ni->type, ni->name,
1070 ni->name_len, CASE_SENSITIVE,
1072 if (unlikely(err)) {
1073 status.attr_switched = 1;
1076 /* @m is not used any more so do not set it. */
1079 write_lock_irqsave(&ni->size_lock, flags);
1080 ni->itype.compressed.size += vol->cluster_size;
1081 a->data.non_resident.compressed_size =
1082 cpu_to_sle64(ni->itype.compressed.size);
1083 write_unlock_irqrestore(&ni->size_lock, flags);
1085 /* Ensure the changes make it to disk. */
1086 flush_dcache_mft_record_page(ctx->ntfs_ino);
1087 mark_mft_record_dirty(ctx->ntfs_ino);
1088 ntfs_attr_put_search_ctx(ctx);
1089 unmap_mft_record(base_ni);
1090 /* Successfully filled the hole. */
1091 status.runlist_merged = 0;
1092 status.mft_attr_mapped = 0;
1093 status.mp_rebuilt = 0;
1094 /* Setup the map cache and use that to deal with the buffer. */
1098 lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1101 * If the number of remaining clusters in the @pages is smaller
1102 * or equal to the number of cached clusters, unlock the
1103 * runlist as the map cache will be used from now on.
1105 if (likely(vcn + vcn_len >= cend)) {
1106 up_write(&ni->runlist.lock);
1107 rl_write_locked = FALSE;
1110 goto map_buffer_cached;
1111 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1112 /* If there are no errors, do the next page. */
1113 if (likely(!err && ++u < nr_pages))
1115 /* If there are no errors, release the runlist lock if we took it. */
1117 if (unlikely(rl_write_locked)) {
1118 up_write(&ni->runlist.lock);
1119 rl_write_locked = FALSE;
1120 } else if (unlikely(rl))
1121 up_read(&ni->runlist.lock);
1124 /* If we issued read requests, let them complete. */
1125 read_lock_irqsave(&ni->size_lock, flags);
1126 initialized_size = ni->initialized_size;
1127 read_unlock_irqrestore(&ni->size_lock, flags);
1128 while (wait_bh > wait) {
1131 if (likely(buffer_uptodate(bh))) {
1133 bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
1136 * If the buffer overflows the initialized size, need
1137 * to zero the overflowing region.
1139 if (unlikely(bh_pos + blocksize > initialized_size)) {
1143 if (likely(bh_pos < initialized_size))
1144 ofs = initialized_size - bh_pos;
1145 kaddr = kmap_atomic(page, KM_USER0);
1146 memset(kaddr + bh_offset(bh) + ofs, 0,
1148 kunmap_atomic(kaddr, KM_USER0);
1149 flush_dcache_page(page);
1151 } else /* if (unlikely(!buffer_uptodate(bh))) */
1155 /* Clear buffer_new on all buffers. */
1158 bh = head = page_buffers(pages[u]);
1161 clear_buffer_new(bh);
1162 } while ((bh = bh->b_this_page) != head);
1163 } while (++u < nr_pages);
1164 ntfs_debug("Done.");
1167 if (status.attr_switched) {
1168 /* Get back to the attribute extent we modified. */
1169 ntfs_attr_reinit_search_ctx(ctx);
1170 if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1171 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1172 ntfs_error(vol->sb, "Failed to find required "
1173 "attribute extent of attribute in "
1174 "error code path. Run chkdsk to "
1176 write_lock_irqsave(&ni->size_lock, flags);
1177 ni->itype.compressed.size += vol->cluster_size;
1178 write_unlock_irqrestore(&ni->size_lock, flags);
1179 flush_dcache_mft_record_page(ctx->ntfs_ino);
1180 mark_mft_record_dirty(ctx->ntfs_ino);
1182 * The only thing that is now wrong is the compressed
1183 * size of the base attribute extent which chkdsk
1184 * should be able to fix.
1190 status.attr_switched = 0;
1194 * If the runlist has been modified, need to restore it by punching a
1195 * hole into it and we then need to deallocate the on-disk cluster as
1196 * well. Note, we only modify the runlist if we are able to generate a
1197 * new mapping pairs array, i.e. only when the mapped attribute extent
1200 if (status.runlist_merged && !status.attr_switched) {
1201 BUG_ON(!rl_write_locked);
1202 /* Make the file cluster we allocated sparse in the runlist. */
1203 if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1204 ntfs_error(vol->sb, "Failed to punch hole into "
1205 "attribute runlist in error code "
1206 "path. Run chkdsk to recover the "
1209 make_bad_inode(VFS_I(base_ni));
1211 } else /* if (success) */ {
1212 status.runlist_merged = 0;
1214 * Deallocate the on-disk cluster we allocated but only
1215 * if we succeeded in punching its vcn out of the
1218 down_write(&vol->lcnbmp_lock);
1219 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1220 ntfs_error(vol->sb, "Failed to release "
1221 "allocated cluster in error "
1222 "code path. Run chkdsk to "
1223 "recover the lost cluster.");
1226 up_write(&vol->lcnbmp_lock);
1230 * Resize the attribute record to its old size and rebuild the mapping
1231 * pairs array. Note, we only can do this if the runlist has been
1232 * restored to its old state which also implies that the mapped
1233 * attribute extent is not switched.
1235 if (status.mp_rebuilt && !status.runlist_merged) {
1236 if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1237 ntfs_error(vol->sb, "Failed to restore attribute "
1238 "record in error code path. Run "
1239 "chkdsk to recover.");
1241 make_bad_inode(VFS_I(base_ni));
1243 } else /* if (success) */ {
1244 if (ntfs_mapping_pairs_build(vol, (u8*)a +
1245 le16_to_cpu(a->data.non_resident.
1246 mapping_pairs_offset), attr_rec_len -
1247 le16_to_cpu(a->data.non_resident.
1248 mapping_pairs_offset), ni->runlist.rl,
1249 vcn, highest_vcn, NULL)) {
1250 ntfs_error(vol->sb, "Failed to restore "
1251 "mapping pairs array in error "
1252 "code path. Run chkdsk to "
1255 make_bad_inode(VFS_I(base_ni));
1258 flush_dcache_mft_record_page(ctx->ntfs_ino);
1259 mark_mft_record_dirty(ctx->ntfs_ino);
1262 /* Release the mft record and the attribute. */
1263 if (status.mft_attr_mapped) {
1264 ntfs_attr_put_search_ctx(ctx);
1265 unmap_mft_record(base_ni);
1267 /* Release the runlist lock. */
1268 if (rl_write_locked)
1269 up_write(&ni->runlist.lock);
1271 up_read(&ni->runlist.lock);
1273 * Zero out any newly allocated blocks to avoid exposing stale data.
1274 * If BH_New is set, we know that the block was newly allocated above
1275 * and that it has not been fully zeroed and marked dirty yet.
1279 end = bh_cpos << vol->cluster_size_bits;
1282 bh = head = page_buffers(page);
1284 if (u == nr_pages &&
1285 ((s64)page->index << PAGE_CACHE_SHIFT) +
1286 bh_offset(bh) >= end)
1288 if (!buffer_new(bh))
1290 clear_buffer_new(bh);
1291 if (!buffer_uptodate(bh)) {
1292 if (PageUptodate(page))
1293 set_buffer_uptodate(bh);
1295 u8 *kaddr = kmap_atomic(page, KM_USER0);
1296 memset(kaddr + bh_offset(bh), 0,
1298 kunmap_atomic(kaddr, KM_USER0);
1299 flush_dcache_page(page);
1300 set_buffer_uptodate(bh);
1303 mark_buffer_dirty(bh);
1304 } while ((bh = bh->b_this_page) != head);
1305 } while (++u <= nr_pages);
1306 ntfs_error(vol->sb, "Failed. Returning error code %i.", err);
1311 * Copy as much as we can into the pages and return the number of bytes which
1312 * were sucessfully copied. If a fault is encountered then clear the pages
1313 * out to (ofs + bytes) and return the number of bytes which were copied.
1315 static inline size_t ntfs_copy_from_user(struct page **pages,
1316 unsigned nr_pages, unsigned ofs, const char __user *buf,
1319 struct page **last_page = pages + nr_pages;
1326 len = PAGE_CACHE_SIZE - ofs;
1329 kaddr = kmap_atomic(*pages, KM_USER0);
1330 left = __copy_from_user_inatomic(kaddr + ofs, buf, len);
1331 kunmap_atomic(kaddr, KM_USER0);
1332 if (unlikely(left)) {
1333 /* Do it the slow way. */
1334 kaddr = kmap(*pages);
1335 left = __copy_from_user(kaddr + ofs, buf, len);
1346 } while (++pages < last_page);
1350 total += len - left;
1351 /* Zero the rest of the target like __copy_from_user(). */
1352 while (++pages < last_page) {
1356 len = PAGE_CACHE_SIZE;
1359 kaddr = kmap_atomic(*pages, KM_USER0);
1360 memset(kaddr, 0, len);
1361 kunmap_atomic(kaddr, KM_USER0);
1366 static size_t __ntfs_copy_from_user_iovec(char *vaddr,
1367 const struct iovec *iov, size_t iov_ofs, size_t bytes)
1372 const char __user *buf = iov->iov_base + iov_ofs;
1376 len = iov->iov_len - iov_ofs;
1379 left = __copy_from_user_inatomic(vaddr, buf, len);
1383 if (unlikely(left)) {
1385 * Zero the rest of the target like __copy_from_user().
1387 memset(vaddr, 0, bytes);
1399 static inline void ntfs_set_next_iovec(const struct iovec **iovp,
1400 size_t *iov_ofsp, size_t bytes)
1402 const struct iovec *iov = *iovp;
1403 size_t iov_ofs = *iov_ofsp;
1408 len = iov->iov_len - iov_ofs;
1413 if (iov->iov_len == iov_ofs) {
1419 *iov_ofsp = iov_ofs;
1423 * This has the same side-effects and return value as ntfs_copy_from_user().
1424 * The difference is that on a fault we need to memset the remainder of the
1425 * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1426 * single-segment behaviour.
1428 * We call the same helper (__ntfs_copy_from_user_iovec()) both when atomic and
1429 * when not atomic. This is ok because __ntfs_copy_from_user_iovec() calls
1430 * __copy_from_user_inatomic() and it is ok to call this when non-atomic. In
1431 * fact, the only difference between __copy_from_user_inatomic() and
1432 * __copy_from_user() is that the latter calls might_sleep(). And on many
1433 * architectures __copy_from_user_inatomic() is just defined to
1434 * __copy_from_user() so it makes no difference at all on those architectures.
1436 static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
1437 unsigned nr_pages, unsigned ofs, const struct iovec **iov,
1438 size_t *iov_ofs, size_t bytes)
1440 struct page **last_page = pages + nr_pages;
1442 size_t copied, len, total = 0;
1445 len = PAGE_CACHE_SIZE - ofs;
1448 kaddr = kmap_atomic(*pages, KM_USER0);
1449 copied = __ntfs_copy_from_user_iovec(kaddr + ofs,
1450 *iov, *iov_ofs, len);
1451 kunmap_atomic(kaddr, KM_USER0);
1452 if (unlikely(copied != len)) {
1453 /* Do it the slow way. */
1454 kaddr = kmap(*pages);
1455 copied = __ntfs_copy_from_user_iovec(kaddr + ofs,
1456 *iov, *iov_ofs, len);
1458 if (unlikely(copied != len))
1465 ntfs_set_next_iovec(iov, iov_ofs, len);
1467 } while (++pages < last_page);
1472 /* Zero the rest of the target like __copy_from_user(). */
1473 while (++pages < last_page) {
1477 len = PAGE_CACHE_SIZE;
1480 kaddr = kmap_atomic(*pages, KM_USER0);
1481 memset(kaddr, 0, len);
1482 kunmap_atomic(kaddr, KM_USER0);
1487 static inline void ntfs_flush_dcache_pages(struct page **pages,
1493 * Warning: Do not do the decrement at the same time as the
1494 * call because flush_dcache_page() is a NULL macro on i386
1495 * and hence the decrement never happens.
1497 flush_dcache_page(pages[nr_pages]);
1498 } while (--nr_pages > 0);
1502 * ntfs_commit_pages_after_non_resident_write - commit the received data
1503 * @pages: array of destination pages
1504 * @nr_pages: number of pages in @pages
1505 * @pos: byte position in file at which the write begins
1506 * @bytes: number of bytes to be written
1508 * See description of ntfs_commit_pages_after_write(), below.
1510 static inline int ntfs_commit_pages_after_non_resident_write(
1511 struct page **pages, const unsigned nr_pages,
1512 s64 pos, size_t bytes)
1514 s64 end, initialized_size;
1516 ntfs_inode *ni, *base_ni;
1517 struct buffer_head *bh, *head;
1518 ntfs_attr_search_ctx *ctx;
1521 unsigned long flags;
1522 unsigned blocksize, u;
1525 vi = pages[0]->mapping->host;
1527 blocksize = 1 << vi->i_blkbits;
1536 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
1537 bh = head = page_buffers(page);
1542 bh_end = bh_pos + blocksize;
1543 if (bh_end <= pos || bh_pos >= end) {
1544 if (!buffer_uptodate(bh))
1547 set_buffer_uptodate(bh);
1548 mark_buffer_dirty(bh);
1550 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1552 * If all buffers are now uptodate but the page is not, set the
1555 if (!partial && !PageUptodate(page))
1556 SetPageUptodate(page);
1557 } while (++u < nr_pages);
1559 * Finally, if we do not need to update initialized_size or i_size we
1562 read_lock_irqsave(&ni->size_lock, flags);
1563 initialized_size = ni->initialized_size;
1564 read_unlock_irqrestore(&ni->size_lock, flags);
1565 if (end <= initialized_size) {
1566 ntfs_debug("Done.");
1570 * Update initialized_size/i_size as appropriate, both in the inode and
1576 base_ni = ni->ext.base_ntfs_ino;
1577 /* Map, pin, and lock the mft record. */
1578 m = map_mft_record(base_ni);
1585 BUG_ON(!NInoNonResident(ni));
1586 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1587 if (unlikely(!ctx)) {
1591 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1592 CASE_SENSITIVE, 0, NULL, 0, ctx);
1593 if (unlikely(err)) {
1599 BUG_ON(!a->non_resident);
1600 write_lock_irqsave(&ni->size_lock, flags);
1601 BUG_ON(end > ni->allocated_size);
1602 ni->initialized_size = end;
1603 a->data.non_resident.initialized_size = cpu_to_sle64(end);
1604 if (end > i_size_read(vi)) {
1605 i_size_write(vi, end);
1606 a->data.non_resident.data_size =
1607 a->data.non_resident.initialized_size;
1609 write_unlock_irqrestore(&ni->size_lock, flags);
1610 /* Mark the mft record dirty, so it gets written back. */
1611 flush_dcache_mft_record_page(ctx->ntfs_ino);
1612 mark_mft_record_dirty(ctx->ntfs_ino);
1613 ntfs_attr_put_search_ctx(ctx);
1614 unmap_mft_record(base_ni);
1615 ntfs_debug("Done.");
1619 ntfs_attr_put_search_ctx(ctx);
1621 unmap_mft_record(base_ni);
1622 ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1624 if (err != -ENOMEM) {
1625 NVolSetErrors(ni->vol);
1626 make_bad_inode(VFS_I(base_ni));
1633 * ntfs_commit_pages_after_write - commit the received data
1634 * @pages: array of destination pages
1635 * @nr_pages: number of pages in @pages
1636 * @pos: byte position in file at which the write begins
1637 * @bytes: number of bytes to be written
1639 * This is called from ntfs_file_buffered_write() with i_sem held on the inode
1640 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
1641 * locked but not kmap()ped. The source data has already been copied into the
1642 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before
1643 * the data was copied (for non-resident attributes only) and it returned
1646 * Need to set uptodate and mark dirty all buffers within the boundary of the
1647 * write. If all buffers in a page are uptodate we set the page uptodate, too.
1649 * Setting the buffers dirty ensures that they get written out later when
1650 * ntfs_writepage() is invoked by the VM.
1652 * Finally, we need to update i_size and initialized_size as appropriate both
1653 * in the inode and the mft record.
1655 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1656 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1657 * page are uptodate, and updates i_size if the end of io is beyond i_size. In
1658 * that case, it also marks the inode dirty.
1660 * If things have gone as outlined in
1661 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1662 * content modifications here for non-resident attributes. For resident
1663 * attributes we need to do the uptodate bringing here which we combine with
1664 * the copying into the mft record which means we save one atomic kmap.
1666 * Return 0 on success or -errno on error.
1668 static int ntfs_commit_pages_after_write(struct page **pages,
1669 const unsigned nr_pages, s64 pos, size_t bytes)
1671 s64 end, initialized_size;
1674 ntfs_inode *ni, *base_ni;
1676 ntfs_attr_search_ctx *ctx;
1679 char *kattr, *kaddr;
1680 unsigned long flags;
1688 vi = page->mapping->host;
1690 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1691 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1692 vi->i_ino, ni->type, page->index, nr_pages,
1693 (long long)pos, bytes);
1694 if (NInoNonResident(ni))
1695 return ntfs_commit_pages_after_non_resident_write(pages,
1696 nr_pages, pos, bytes);
1697 BUG_ON(nr_pages > 1);
1699 * Attribute is resident, implying it is not compressed, encrypted, or
1705 base_ni = ni->ext.base_ntfs_ino;
1706 BUG_ON(NInoNonResident(ni));
1707 /* Map, pin, and lock the mft record. */
1708 m = map_mft_record(base_ni);
1715 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1716 if (unlikely(!ctx)) {
1720 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1721 CASE_SENSITIVE, 0, NULL, 0, ctx);
1722 if (unlikely(err)) {
1728 BUG_ON(a->non_resident);
1729 /* The total length of the attribute value. */
1730 attr_len = le32_to_cpu(a->data.resident.value_length);
1731 i_size = i_size_read(vi);
1732 BUG_ON(attr_len != i_size);
1733 BUG_ON(pos > attr_len);
1735 BUG_ON(end > le32_to_cpu(a->length) -
1736 le16_to_cpu(a->data.resident.value_offset));
1737 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1738 kaddr = kmap_atomic(page, KM_USER0);
1739 /* Copy the received data from the page to the mft record. */
1740 memcpy(kattr + pos, kaddr + pos, bytes);
1741 /* Update the attribute length if necessary. */
1742 if (end > attr_len) {
1744 a->data.resident.value_length = cpu_to_le32(attr_len);
1747 * If the page is not uptodate, bring the out of bounds area(s)
1748 * uptodate by copying data from the mft record to the page.
1750 if (!PageUptodate(page)) {
1752 memcpy(kaddr, kattr, pos);
1754 memcpy(kaddr + end, kattr + end, attr_len - end);
1755 /* Zero the region outside the end of the attribute value. */
1756 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1757 flush_dcache_page(page);
1758 SetPageUptodate(page);
1760 kunmap_atomic(kaddr, KM_USER0);
1761 /* Update initialized_size/i_size if necessary. */
1762 read_lock_irqsave(&ni->size_lock, flags);
1763 initialized_size = ni->initialized_size;
1764 BUG_ON(end > ni->allocated_size);
1765 read_unlock_irqrestore(&ni->size_lock, flags);
1766 BUG_ON(initialized_size != i_size);
1767 if (end > initialized_size) {
1768 unsigned long flags;
1770 write_lock_irqsave(&ni->size_lock, flags);
1771 ni->initialized_size = end;
1772 i_size_write(vi, end);
1773 write_unlock_irqrestore(&ni->size_lock, flags);
1775 /* Mark the mft record dirty, so it gets written back. */
1776 flush_dcache_mft_record_page(ctx->ntfs_ino);
1777 mark_mft_record_dirty(ctx->ntfs_ino);
1778 ntfs_attr_put_search_ctx(ctx);
1779 unmap_mft_record(base_ni);
1780 ntfs_debug("Done.");
1783 if (err == -ENOMEM) {
1784 ntfs_warning(vi->i_sb, "Error allocating memory required to "
1785 "commit the write.");
1786 if (PageUptodate(page)) {
1787 ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1788 "dirty so the write will be retried "
1789 "later on by the VM.");
1791 * Put the page on mapping->dirty_pages, but leave its
1792 * buffers' dirty state as-is.
1794 __set_page_dirty_nobuffers(page);
1797 ntfs_error(vi->i_sb, "Page is not uptodate. Written "
1798 "data has been lost.");
1800 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1801 "with error %i.", err);
1802 NVolSetErrors(ni->vol);
1803 make_bad_inode(VFS_I(base_ni));
1807 ntfs_attr_put_search_ctx(ctx);
1809 unmap_mft_record(base_ni);
1814 * ntfs_file_buffered_write -
1816 * Locking: The vfs is holding ->i_sem on the inode.
1818 static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
1819 const struct iovec *iov, unsigned long nr_segs,
1820 loff_t pos, loff_t *ppos, size_t count)
1822 struct file *file = iocb->ki_filp;
1823 struct address_space *mapping = file->f_mapping;
1824 struct inode *vi = mapping->host;
1825 ntfs_inode *ni = NTFS_I(vi);
1826 ntfs_volume *vol = ni->vol;
1827 struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1828 struct page *cached_page = NULL;
1829 char __user *buf = NULL;
1833 unsigned long flags;
1834 size_t bytes, iov_ofs = 0; /* Offset in the current iovec. */
1835 ssize_t status, written;
1838 struct pagevec lru_pvec;
1840 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1841 "pos 0x%llx, count 0x%lx.",
1842 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
1843 (unsigned long long)pos, (unsigned long)count);
1844 if (unlikely(!count))
1846 BUG_ON(NInoMstProtected(ni));
1848 * If the attribute is not an index root and it is encrypted or
1849 * compressed, we cannot write to it yet. Note we need to check for
1850 * AT_INDEX_ALLOCATION since this is the type of both directory and
1853 if (ni->type != AT_INDEX_ALLOCATION) {
1854 /* If file is encrypted, deny access, just like NT4. */
1855 if (NInoEncrypted(ni)) {
1857 * Reminder for later: Encrypted files are _always_
1858 * non-resident so that the content can always be
1861 ntfs_debug("Denying write access to encrypted file.");
1864 if (NInoCompressed(ni)) {
1865 /* Only unnamed $DATA attribute can be compressed. */
1866 BUG_ON(ni->type != AT_DATA);
1867 BUG_ON(ni->name_len);
1869 * Reminder for later: If resident, the data is not
1870 * actually compressed. Only on the switch to non-
1871 * resident does compression kick in. This is in
1872 * contrast to encrypted files (see above).
1874 ntfs_error(vi->i_sb, "Writing to compressed files is "
1875 "not implemented yet. Sorry.");
1880 * If a previous ntfs_truncate() failed, repeat it and abort if it
1883 if (unlikely(NInoTruncateFailed(ni))) {
1884 down_write(&vi->i_alloc_sem);
1885 err = ntfs_truncate(vi);
1886 up_write(&vi->i_alloc_sem);
1887 if (err || NInoTruncateFailed(ni)) {
1890 ntfs_error(vol->sb, "Cannot perform write to inode "
1891 "0x%lx, attribute type 0x%x, because "
1892 "ntfs_truncate() failed (error code "
1894 (unsigned)le32_to_cpu(ni->type), err);
1898 /* The first byte after the write. */
1901 * If the write goes beyond the allocated size, extend the allocation
1902 * to cover the whole of the write, rounded up to the nearest cluster.
1904 read_lock_irqsave(&ni->size_lock, flags);
1905 ll = ni->allocated_size;
1906 read_unlock_irqrestore(&ni->size_lock, flags);
1908 /* Extend the allocation without changing the data size. */
1909 ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
1910 if (likely(ll >= 0)) {
1912 /* If the extension was partial truncate the write. */
1914 ntfs_debug("Truncating write to inode 0x%lx, "
1915 "attribute type 0x%x, because "
1916 "the allocation was only "
1917 "partially extended.",
1918 vi->i_ino, (unsigned)
1919 le32_to_cpu(ni->type));
1925 read_lock_irqsave(&ni->size_lock, flags);
1926 ll = ni->allocated_size;
1927 read_unlock_irqrestore(&ni->size_lock, flags);
1928 /* Perform a partial write if possible or fail. */
1930 ntfs_debug("Truncating write to inode 0x%lx, "
1931 "attribute type 0x%x, because "
1932 "extending the allocation "
1933 "failed (error code %i).",
1934 vi->i_ino, (unsigned)
1935 le32_to_cpu(ni->type), err);
1939 ntfs_error(vol->sb, "Cannot perform write to "
1940 "inode 0x%lx, attribute type "
1941 "0x%x, because extending the "
1942 "allocation failed (error "
1943 "code %i).", vi->i_ino,
1945 le32_to_cpu(ni->type), err);
1950 pagevec_init(&lru_pvec, 0);
1953 * If the write starts beyond the initialized size, extend it up to the
1954 * beginning of the write and initialize all non-sparse space between
1955 * the old initialized size and the new one. This automatically also
1956 * increments the vfs inode->i_size to keep it above or equal to the
1959 read_lock_irqsave(&ni->size_lock, flags);
1960 ll = ni->initialized_size;
1961 read_unlock_irqrestore(&ni->size_lock, flags);
1963 err = ntfs_attr_extend_initialized(ni, pos, &cached_page,
1966 ntfs_error(vol->sb, "Cannot perform write to inode "
1967 "0x%lx, attribute type 0x%x, because "
1968 "extending the initialized size "
1969 "failed (error code %i).", vi->i_ino,
1970 (unsigned)le32_to_cpu(ni->type), err);
1976 * Determine the number of pages per cluster for non-resident
1980 if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
1981 nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
1982 /* Finally, perform the actual write. */
1984 if (likely(nr_segs == 1))
1985 buf = iov->iov_base;
1988 pgoff_t idx, start_idx;
1989 unsigned ofs, do_pages, u;
1992 start_idx = idx = pos >> PAGE_CACHE_SHIFT;
1993 ofs = pos & ~PAGE_CACHE_MASK;
1994 bytes = PAGE_CACHE_SIZE - ofs;
1997 vcn = pos >> vol->cluster_size_bits;
1998 if (vcn != last_vcn) {
2001 * Get the lcn of the vcn the write is in. If
2002 * it is a hole, need to lock down all pages in
2005 down_read(&ni->runlist.lock);
2006 lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
2007 vol->cluster_size_bits, FALSE);
2008 up_read(&ni->runlist.lock);
2009 if (unlikely(lcn < LCN_HOLE)) {
2011 if (lcn == LCN_ENOMEM)
2014 ntfs_error(vol->sb, "Cannot "
2017 "attribute type 0x%x, "
2018 "because the attribute "
2020 vi->i_ino, (unsigned)
2021 le32_to_cpu(ni->type));
2024 if (lcn == LCN_HOLE) {
2025 start_idx = (pos & ~(s64)
2026 vol->cluster_size_mask)
2027 >> PAGE_CACHE_SHIFT;
2028 bytes = vol->cluster_size - (pos &
2029 vol->cluster_size_mask);
2030 do_pages = nr_pages;
2037 * Bring in the user page(s) that we will copy from _first_.
2038 * Otherwise there is a nasty deadlock on copying from the same
2039 * page(s) as we are writing to, without it/them being marked
2040 * up-to-date. Note, at present there is nothing to stop the
2041 * pages being swapped out between us bringing them into memory
2042 * and doing the actual copying.
2044 if (likely(nr_segs == 1))
2045 ntfs_fault_in_pages_readable(buf, bytes);
2047 ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
2048 /* Get and lock @do_pages starting at index @start_idx. */
2049 status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
2050 pages, &cached_page, &lru_pvec);
2051 if (unlikely(status))
2054 * For non-resident attributes, we need to fill any holes with
2055 * actual clusters and ensure all bufferes are mapped. We also
2056 * need to bring uptodate any buffers that are only partially
2059 if (NInoNonResident(ni)) {
2060 status = ntfs_prepare_pages_for_non_resident_write(
2061 pages, do_pages, pos, bytes);
2062 if (unlikely(status)) {
2066 unlock_page(pages[--do_pages]);
2067 page_cache_release(pages[do_pages]);
2070 * The write preparation may have instantiated
2071 * allocated space outside i_size. Trim this
2072 * off again. We can ignore any errors in this
2073 * case as we will just be waisting a bit of
2074 * allocated space, which is not a disaster.
2076 i_size = i_size_read(vi);
2077 if (pos + bytes > i_size)
2078 vmtruncate(vi, i_size);
2082 u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
2083 if (likely(nr_segs == 1)) {
2084 copied = ntfs_copy_from_user(pages + u, do_pages - u,
2088 copied = ntfs_copy_from_user_iovec(pages + u,
2089 do_pages - u, ofs, &iov, &iov_ofs,
2091 ntfs_flush_dcache_pages(pages + u, do_pages - u);
2092 status = ntfs_commit_pages_after_write(pages, do_pages, pos,
2094 if (likely(!status)) {
2098 if (unlikely(copied != bytes))
2102 unlock_page(pages[--do_pages]);
2103 mark_page_accessed(pages[do_pages]);
2104 page_cache_release(pages[do_pages]);
2106 if (unlikely(status))
2108 balance_dirty_pages_ratelimited(mapping);
2114 page_cache_release(cached_page);
2115 /* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */
2116 if (likely(!status)) {
2117 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(vi))) {
2118 if (!mapping->a_ops->writepage || !is_sync_kiocb(iocb))
2119 status = generic_osync_inode(vi, mapping,
2120 OSYNC_METADATA|OSYNC_DATA);
2123 pagevec_lru_add(&lru_pvec);
2124 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
2125 written ? "written" : "status", (unsigned long)written,
2127 return written ? written : status;
2131 * ntfs_file_aio_write_nolock -
2133 static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
2134 const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
2136 struct file *file = iocb->ki_filp;
2137 struct address_space *mapping = file->f_mapping;
2138 struct inode *inode = mapping->host;
2141 size_t count; /* after file limit checks */
2142 ssize_t written, err;
2145 for (seg = 0; seg < nr_segs; seg++) {
2146 const struct iovec *iv = &iov[seg];
2148 * If any segment has a negative length, or the cumulative
2149 * length ever wraps negative then return -EINVAL.
2151 count += iv->iov_len;
2152 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
2154 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2159 count -= iv->iov_len; /* This segment is no good */
2163 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2164 /* We can write back this queue in page reclaim. */
2165 current->backing_dev_info = mapping->backing_dev_info;
2167 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2172 err = remove_suid(file->f_dentry);
2175 inode_update_time(inode, 1);
2176 written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
2179 current->backing_dev_info = NULL;
2180 return written ? written : err;
2184 * ntfs_file_aio_write -
2186 static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const char __user *buf,
2187 size_t count, loff_t pos)
2189 struct file *file = iocb->ki_filp;
2190 struct address_space *mapping = file->f_mapping;
2191 struct inode *inode = mapping->host;
2193 struct iovec local_iov = { .iov_base = (void __user *)buf,
2196 BUG_ON(iocb->ki_pos != pos);
2198 down(&inode->i_sem);
2199 ret = ntfs_file_aio_write_nolock(iocb, &local_iov, 1, &iocb->ki_pos);
2201 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2202 int err = sync_page_range(inode, mapping, pos, ret);
2210 * ntfs_file_writev -
2212 * Basically the same as generic_file_writev() except that it ends up calling
2213 * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock().
2215 static ssize_t ntfs_file_writev(struct file *file, const struct iovec *iov,
2216 unsigned long nr_segs, loff_t *ppos)
2218 struct address_space *mapping = file->f_mapping;
2219 struct inode *inode = mapping->host;
2223 down(&inode->i_sem);
2224 init_sync_kiocb(&kiocb, file);
2225 ret = ntfs_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2226 if (ret == -EIOCBQUEUED)
2227 ret = wait_on_sync_kiocb(&kiocb);
2229 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2230 int err = sync_page_range(inode, mapping, *ppos - ret, ret);
2238 * ntfs_file_write - simple wrapper for ntfs_file_writev()
2240 static ssize_t ntfs_file_write(struct file *file, const char __user *buf,
2241 size_t count, loff_t *ppos)
2243 struct iovec local_iov = { .iov_base = (void __user *)buf,
2246 return ntfs_file_writev(file, &local_iov, 1, ppos);
2250 * ntfs_file_fsync - sync a file to disk
2251 * @filp: file to be synced
2252 * @dentry: dentry describing the file to sync
2253 * @datasync: if non-zero only flush user data and not metadata
2255 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync
2256 * system calls. This function is inspired by fs/buffer.c::file_fsync().
2258 * If @datasync is false, write the mft record and all associated extent mft
2259 * records as well as the $DATA attribute and then sync the block device.
2261 * If @datasync is true and the attribute is non-resident, we skip the writing
2262 * of the mft record and all associated extent mft records (this might still
2263 * happen due to the write_inode_now() call).
2265 * Also, if @datasync is true, we do not wait on the inode to be written out
2266 * but we always wait on the page cache pages to be written out.
2268 * Note: In the past @filp could be NULL so we ignore it as we don't need it
2271 * Locking: Caller must hold i_sem on the inode.
2273 * TODO: We should probably also write all attribute/index inodes associated
2274 * with this inode but since we have no simple way of getting to them we ignore
2275 * this problem for now.
2277 static int ntfs_file_fsync(struct file *filp, struct dentry *dentry,
2280 struct inode *vi = dentry->d_inode;
2283 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2284 BUG_ON(S_ISDIR(vi->i_mode));
2285 if (!datasync || !NInoNonResident(NTFS_I(vi)))
2286 ret = ntfs_write_inode(vi, 1);
2287 write_inode_now(vi, !datasync);
2289 * NOTE: If we were to use mapping->private_list (see ext2 and
2290 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2291 * sync_mapping_buffers(vi->i_mapping).
2293 err = sync_blockdev(vi->i_sb->s_bdev);
2294 if (unlikely(err && !ret))
2297 ntfs_debug("Done.");
2299 ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error "
2300 "%u.", datasync ? "data" : "", vi->i_ino, -ret);
2304 #endif /* NTFS_RW */
2306 struct file_operations ntfs_file_ops = {
2307 .llseek = generic_file_llseek, /* Seek inside file. */
2308 .read = generic_file_read, /* Read from file. */
2309 .aio_read = generic_file_aio_read, /* Async read from file. */
2310 .readv = generic_file_readv, /* Read from file. */
2312 .write = ntfs_file_write, /* Write to file. */
2313 .aio_write = ntfs_file_aio_write, /* Async write to file. */
2314 .writev = ntfs_file_writev, /* Write to file. */
2315 /*.release = ,*/ /* Last file is closed. See
2317 ext2_release_file() for
2318 how to use this to discard
2319 preallocated space for
2320 write opened files. */
2321 .fsync = ntfs_file_fsync, /* Sync a file to disk. */
2322 /*.aio_fsync = ,*/ /* Sync all outstanding async
2325 #endif /* NTFS_RW */
2326 /*.ioctl = ,*/ /* Perform function on the
2327 mounted filesystem. */
2328 .mmap = generic_file_mmap, /* Mmap file. */
2329 .open = ntfs_file_open, /* Open file. */
2330 .sendfile = generic_file_sendfile, /* Zero-copy data send with
2331 the data source being on
2332 the ntfs partition. We do
2333 not need to care about the
2334 data destination. */
2335 /*.sendpage = ,*/ /* Zero-copy data send with
2336 the data destination being
2337 on the ntfs partition. We
2338 do not need to care about
2342 struct inode_operations ntfs_file_inode_ops = {
2344 .truncate = ntfs_truncate_vfs,
2345 .setattr = ntfs_setattr,
2346 #endif /* NTFS_RW */
2349 struct file_operations ntfs_empty_file_ops = {};
2351 struct inode_operations ntfs_empty_inode_ops = {};