2 * drivers/net/wan/dscc4/dscc4.c: a DSCC4 HDLC driver for Linux
4 * This software may be used and distributed according to the terms of the
5 * GNU General Public License.
7 * The author may be reached as romieu@cogenit.fr.
8 * Specific bug reports/asian food will be welcome.
10 * Special thanks to the nice people at CS-Telecom for the hardware and the
11 * access to the test/measure tools.
16 * I. Board Compatibility
18 * This device driver is designed for the Siemens PEB20534 4 ports serial
19 * controller as found on Etinc PCISYNC cards. The documentation for the
20 * chipset is available at http://www.infineon.com:
21 * - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with
22 * 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1";
23 * - Application Hint "Management of DSCC4 on-chip FIFO resources".
24 * - Errata sheet DS5 (courtesy of Michael Skerritt).
25 * Jens David has built an adapter based on the same chipset. Take a look
26 * at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific
28 * Sample code (2 revisions) is available at Infineon.
30 * II. Board-specific settings
32 * Pcisync can transmit some clock signal to the outside world on the
33 * *first two* ports provided you put a quartz and a line driver on it and
34 * remove the jumpers. The operation is described on Etinc web site. If you
35 * go DCE on these ports, don't forget to use an adequate cable.
37 * Sharing of the PCI interrupt line for this board is possible.
39 * III. Driver operation
41 * The rx/tx operations are based on a linked list of descriptors. The driver
42 * doesn't use HOLD mode any more. HOLD mode is definitely buggy and the more
43 * I tried to fix it, the more it started to look like (convoluted) software
44 * mutation of LxDA method. Errata sheet DS5 suggests to use LxDA: consider
45 * this a rfc2119 MUST.
48 * When the tx ring is full, the xmit routine issues a call to netdev_stop.
49 * The device is supposed to be enabled again during an ALLS irq (we could
50 * use HI but as it's easy to lose events, it's fscked).
53 * The received frames aren't supposed to span over multiple receiving areas.
54 * I may implement it some day but it isn't the highest ranked item.
57 * The current error (XDU, RFO) recovery code is untested.
58 * So far, RDO takes his RX channel down and the right sequence to enable it
59 * again is still a mistery. If RDO happens, plan a reboot. More details
60 * in the code (NB: as this happens, TX still works).
61 * Don't mess the cables during operation, especially on DTE ports. I don't
62 * suggest it for DCE either but at least one can get some messages instead
63 * of a complete instant freeze.
64 * Tests are done on Rev. 20 of the silicium. The RDO handling changes with
65 * the documentation/chipset releases.
69 * - use polling at high irq/s,
70 * - performance analysis,
73 * 2001/12/10 Daniela Squassoni <daniela@cyclades.com>
74 * - Contribution to support the new generic HDLC layer.
77 * - old style interface removal
78 * - dscc4_release_ring fix (related to DMA mapping)
79 * - hard_start_xmit fix (hint: TxSizeMax)
83 #include <linux/module.h>
84 #include <linux/types.h>
85 #include <linux/errno.h>
86 #include <linux/list.h>
87 #include <linux/ioport.h>
88 #include <linux/pci.h>
89 #include <linux/kernel.h>
92 #include <asm/system.h>
93 #include <asm/cache.h>
94 #include <asm/byteorder.h>
95 #include <asm/uaccess.h>
99 #include <linux/init.h>
100 #include <linux/string.h>
102 #include <linux/if_arp.h>
103 #include <linux/netdevice.h>
104 #include <linux/skbuff.h>
105 #include <linux/delay.h>
106 #include <net/syncppp.h>
107 #include <linux/hdlc.h>
108 #include <linux/mutex.h>
111 static const char version[] = "$Id: dscc4.c,v 1.173 2003/09/20 23:55:34 romieu Exp $ for Linux\n";
115 #ifdef CONFIG_DSCC4_PCI_RST
116 static DEFINE_MUTEX(dscc4_mutex);
117 static u32 dscc4_pci_config_store[16];
120 #define DRV_NAME "dscc4"
124 /* Module parameters */
126 MODULE_AUTHOR("Maintainer: Francois Romieu <romieu@cogenit.fr>");
127 MODULE_DESCRIPTION("Siemens PEB20534 PCI Controler");
128 MODULE_LICENSE("GPL");
129 module_param(debug, int, 0);
130 MODULE_PARM_DESC(debug,"Enable/disable extra messages");
131 module_param(quartz, int, 0);
132 MODULE_PARM_DESC(quartz,"If present, on-board quartz frequency (Hz)");
146 u32 jiffies; /* Allows sizeof(TxFD) == sizeof(RxFD) + extra hack */
147 /* FWIW, datasheet calls that "dummy" and says that card
148 * never looks at it; neither does the driver */
159 #define DUMMY_SKB_SIZE 64
161 #define TX_RING_SIZE 32
162 #define RX_RING_SIZE 32
163 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct TxFD)
164 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct RxFD)
165 #define IRQ_RING_SIZE 64 /* Keep it a multiple of 32 */
166 #define TX_TIMEOUT (HZ/10)
167 #define DSCC4_HZ_MAX 33000000
168 #define BRR_DIVIDER_MAX 64*0x00004000 /* Cf errata DS5 p.10 */
169 #define dev_per_card 4
170 #define SCC_REGISTERS_MAX 23 /* Cf errata DS5 p.4 */
172 #define SOURCE_ID(flags) (((flags) >> 28) & 0x03)
173 #define TO_SIZE(state) (((state) >> 16) & 0x1fff)
176 * Given the operating range of Linux HDLC, the 2 defines below could be
177 * made simpler. However they are a fine reminder for the limitations of
178 * the driver: it's better to stay < TxSizeMax and < RxSizeMax.
180 #define TO_STATE_TX(len) cpu_to_le32(((len) & TxSizeMax) << 16)
181 #define TO_STATE_RX(len) cpu_to_le32((RX_MAX(len) % RxSizeMax) << 16)
182 #define RX_MAX(len) ((((len) >> 5) + 1) << 5) /* Cf RLCR */
183 #define SCC_REG_START(dpriv) (SCC_START+(dpriv->dev_id)*SCC_OFFSET)
185 struct dscc4_pci_priv {
189 struct pci_dev *pdev;
191 struct dscc4_dev_priv *root;
192 dma_addr_t iqcfg_dma;
196 struct dscc4_dev_priv {
197 struct sk_buff *rx_skbuff[RX_RING_SIZE];
198 struct sk_buff *tx_skbuff[TX_RING_SIZE];
205 /* FIXME: check all the volatile are required */
206 volatile u32 tx_current;
211 volatile u32 tx_dirty;
216 dma_addr_t tx_fd_dma;
217 dma_addr_t rx_fd_dma;
221 u32 scc_regs[SCC_REGISTERS_MAX]; /* Cf errata DS5 p.4 */
223 struct timer_list timer;
225 struct dscc4_pci_priv *pci_priv;
232 unsigned short encoding;
233 unsigned short parity;
234 struct net_device *dev;
235 sync_serial_settings settings;
236 void __iomem *base_addr;
237 u32 __pad __attribute__ ((aligned (4)));
240 /* GLOBAL registers definitions */
261 /* SCC registers definitions */
262 #define SCC_START 0x0100
263 #define SCC_OFFSET 0x80
275 #define GPDATA 0x0404
279 #define EncodingMask 0x00700000
280 #define CrcMask 0x00000003
282 #define IntRxScc0 0x10000000
283 #define IntTxScc0 0x01000000
285 #define TxPollCmd 0x00000400
286 #define RxActivate 0x08000000
287 #define MTFi 0x04000000
288 #define Rdr 0x00400000
289 #define Rdt 0x00200000
290 #define Idr 0x00100000
291 #define Idt 0x00080000
292 #define TxSccRes 0x01000000
293 #define RxSccRes 0x00010000
294 #define TxSizeMax 0x1fff /* Datasheet DS1 - 11.1.1.1 */
295 #define RxSizeMax 0x1ffc /* Datasheet DS1 - 11.1.2.1 */
297 #define Ccr0ClockMask 0x0000003f
298 #define Ccr1LoopMask 0x00000200
299 #define IsrMask 0x000fffff
300 #define BrrExpMask 0x00000f00
301 #define BrrMultMask 0x0000003f
302 #define EncodingMask 0x00700000
303 #define Hold cpu_to_le32(0x40000000)
304 #define SccBusy 0x10000000
305 #define PowerUp 0x80000000
306 #define Vis 0x00001000
307 #define FrameOk (FrameVfr | FrameCrc)
308 #define FrameVfr 0x80
309 #define FrameRdo 0x40
310 #define FrameCrc 0x20
311 #define FrameRab 0x10
312 #define FrameAborted cpu_to_le32(0x00000200)
313 #define FrameEnd cpu_to_le32(0x80000000)
314 #define DataComplete cpu_to_le32(0x40000000)
315 #define LengthCheck 0x00008000
316 #define SccEvt 0x02000000
317 #define NoAck 0x00000200
318 #define Action 0x00000001
319 #define HiDesc cpu_to_le32(0x20000000)
322 #define RxEvt 0xf0000000
323 #define TxEvt 0x0f000000
324 #define Alls 0x00040000
325 #define Xdu 0x00010000
326 #define Cts 0x00004000
327 #define Xmr 0x00002000
328 #define Xpr 0x00001000
329 #define Rdo 0x00000080
330 #define Rfs 0x00000040
331 #define Cd 0x00000004
332 #define Rfo 0x00000002
333 #define Flex 0x00000001
335 /* DMA core events */
336 #define Cfg 0x00200000
337 #define Hi 0x00040000
338 #define Fi 0x00020000
339 #define Err 0x00010000
340 #define Arf 0x00000002
341 #define ArAck 0x00000001
344 #define Ready 0x00000000
345 #define NeedIDR 0x00000001
346 #define NeedIDT 0x00000002
347 #define RdoSet 0x00000004
348 #define FakeReset 0x00000008
350 /* Don't mask RDO. Ever. */
352 #define EventsMask 0xfffeef7f
354 #define EventsMask 0xfffa8f7a
357 /* Functions prototypes */
358 static void dscc4_rx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
359 static void dscc4_tx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
360 static int dscc4_found1(struct pci_dev *, void __iomem *ioaddr);
361 static int dscc4_init_one(struct pci_dev *, const struct pci_device_id *ent);
362 static int dscc4_open(struct net_device *);
363 static int dscc4_start_xmit(struct sk_buff *, struct net_device *);
364 static int dscc4_close(struct net_device *);
365 static int dscc4_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
366 static int dscc4_init_ring(struct net_device *);
367 static void dscc4_release_ring(struct dscc4_dev_priv *);
368 static void dscc4_timer(unsigned long);
369 static void dscc4_tx_timeout(struct net_device *);
370 static irqreturn_t dscc4_irq(int irq, void *dev_id);
371 static int dscc4_hdlc_attach(struct net_device *, unsigned short, unsigned short);
372 static int dscc4_set_iface(struct dscc4_dev_priv *, struct net_device *);
374 static int dscc4_tx_poll(struct dscc4_dev_priv *, struct net_device *);
377 static inline struct dscc4_dev_priv *dscc4_priv(struct net_device *dev)
379 return dev_to_hdlc(dev)->priv;
382 static inline struct net_device *dscc4_to_dev(struct dscc4_dev_priv *p)
387 static void scc_patchl(u32 mask, u32 value, struct dscc4_dev_priv *dpriv,
388 struct net_device *dev, int offset)
392 /* Cf scc_writel for concern regarding thread-safety */
393 state = dpriv->scc_regs[offset >> 2];
396 dpriv->scc_regs[offset >> 2] = state;
397 writel(state, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
400 static void scc_writel(u32 bits, struct dscc4_dev_priv *dpriv,
401 struct net_device *dev, int offset)
405 * As of 2002/02/16, there are no thread racing for access.
407 dpriv->scc_regs[offset >> 2] = bits;
408 writel(bits, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
411 static inline u32 scc_readl(struct dscc4_dev_priv *dpriv, int offset)
413 return dpriv->scc_regs[offset >> 2];
416 static u32 scc_readl_star(struct dscc4_dev_priv *dpriv, struct net_device *dev)
418 /* Cf errata DS5 p.4 */
419 readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
420 return readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
423 static inline void dscc4_do_tx(struct dscc4_dev_priv *dpriv,
424 struct net_device *dev)
426 dpriv->ltda = dpriv->tx_fd_dma +
427 ((dpriv->tx_current-1)%TX_RING_SIZE)*sizeof(struct TxFD);
428 writel(dpriv->ltda, dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
429 /* Flush posted writes *NOW* */
430 readl(dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
433 static inline void dscc4_rx_update(struct dscc4_dev_priv *dpriv,
434 struct net_device *dev)
436 dpriv->lrda = dpriv->rx_fd_dma +
437 ((dpriv->rx_dirty - 1)%RX_RING_SIZE)*sizeof(struct RxFD);
438 writel(dpriv->lrda, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
441 static inline unsigned int dscc4_tx_done(struct dscc4_dev_priv *dpriv)
443 return dpriv->tx_current == dpriv->tx_dirty;
446 static inline unsigned int dscc4_tx_quiescent(struct dscc4_dev_priv *dpriv,
447 struct net_device *dev)
449 return readl(dpriv->base_addr + CH0FTDA + dpriv->dev_id*4) == dpriv->ltda;
452 static int state_check(u32 state, struct dscc4_dev_priv *dpriv,
453 struct net_device *dev, const char *msg)
458 if (SOURCE_ID(state) != dpriv->dev_id) {
459 printk(KERN_DEBUG "%s (%s): Source Id=%d, state=%08x\n",
460 dev->name, msg, SOURCE_ID(state), state );
463 if (state & 0x0df80c00) {
464 printk(KERN_DEBUG "%s (%s): state=%08x (UFO alert)\n",
465 dev->name, msg, state);
472 static void dscc4_tx_print(struct net_device *dev,
473 struct dscc4_dev_priv *dpriv,
476 printk(KERN_DEBUG "%s: tx_current=%02d tx_dirty=%02d (%s)\n",
477 dev->name, dpriv->tx_current, dpriv->tx_dirty, msg);
480 static void dscc4_release_ring(struct dscc4_dev_priv *dpriv)
482 struct pci_dev *pdev = dpriv->pci_priv->pdev;
483 struct TxFD *tx_fd = dpriv->tx_fd;
484 struct RxFD *rx_fd = dpriv->rx_fd;
485 struct sk_buff **skbuff;
488 pci_free_consistent(pdev, TX_TOTAL_SIZE, tx_fd, dpriv->tx_fd_dma);
489 pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
491 skbuff = dpriv->tx_skbuff;
492 for (i = 0; i < TX_RING_SIZE; i++) {
494 pci_unmap_single(pdev, le32_to_cpu(tx_fd->data),
495 (*skbuff)->len, PCI_DMA_TODEVICE);
496 dev_kfree_skb(*skbuff);
502 skbuff = dpriv->rx_skbuff;
503 for (i = 0; i < RX_RING_SIZE; i++) {
505 pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
506 RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
507 dev_kfree_skb(*skbuff);
514 static inline int try_get_rx_skb(struct dscc4_dev_priv *dpriv,
515 struct net_device *dev)
517 unsigned int dirty = dpriv->rx_dirty%RX_RING_SIZE;
518 struct RxFD *rx_fd = dpriv->rx_fd + dirty;
519 const int len = RX_MAX(HDLC_MAX_MRU);
523 skb = dev_alloc_skb(len);
524 dpriv->rx_skbuff[dirty] = skb;
526 skb->protocol = hdlc_type_trans(skb, dev);
527 rx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
528 skb->data, len, PCI_DMA_FROMDEVICE));
537 * IRQ/thread/whatever safe
539 static int dscc4_wait_ack_cec(struct dscc4_dev_priv *dpriv,
540 struct net_device *dev, char *msg)
545 if (!(scc_readl_star(dpriv, dev) & SccBusy)) {
546 printk(KERN_DEBUG "%s: %s ack (%d try)\n", dev->name,
550 schedule_timeout_uninterruptible(10);
553 printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
555 return (i >= 0) ? i : -EAGAIN;
558 static int dscc4_do_action(struct net_device *dev, char *msg)
560 void __iomem *ioaddr = dscc4_priv(dev)->base_addr;
563 writel(Action, ioaddr + GCMDR);
566 u32 state = readl(ioaddr);
569 printk(KERN_DEBUG "%s: %s ack\n", dev->name, msg);
570 writel(ArAck, ioaddr);
572 } else if (state & Arf) {
573 printk(KERN_ERR "%s: %s failed\n", dev->name, msg);
580 printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
585 static inline int dscc4_xpr_ack(struct dscc4_dev_priv *dpriv)
587 int cur = dpriv->iqtx_current%IRQ_RING_SIZE;
591 if (!(dpriv->flags & (NeedIDR | NeedIDT)) ||
592 (dpriv->iqtx[cur] & cpu_to_le32(Xpr)))
595 schedule_timeout_uninterruptible(10);
598 return (i >= 0 ) ? i : -EAGAIN;
601 #if 0 /* dscc4_{rx/tx}_reset are both unreliable - more tweak needed */
602 static void dscc4_rx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
606 spin_lock_irqsave(&dpriv->pci_priv->lock, flags);
607 /* Cf errata DS5 p.6 */
608 writel(0x00000000, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
609 scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
610 readl(dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
611 writel(MTFi|Rdr, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
612 writel(Action, dpriv->base_addr + GCMDR);
613 spin_unlock_irqrestore(&dpriv->pci_priv->lock, flags);
619 static void dscc4_tx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
623 /* Cf errata DS5 p.7 */
624 scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
625 scc_writel(0x00050000, dpriv, dev, CCR2);
627 * Must be longer than the time required to fill the fifo.
629 while (!dscc4_tx_quiescent(dpriv, dev) && ++i) {
634 writel(MTFi|Rdt, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
635 if (dscc4_do_action(dev, "Rdt") < 0)
636 printk(KERN_ERR "%s: Tx reset failed\n", dev->name);
640 /* TODO: (ab)use this function to refill a completely depleted RX ring. */
641 static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv,
642 struct net_device *dev)
644 struct RxFD *rx_fd = dpriv->rx_fd + dpriv->rx_current%RX_RING_SIZE;
645 struct pci_dev *pdev = dpriv->pci_priv->pdev;
649 skb = dpriv->rx_skbuff[dpriv->rx_current++%RX_RING_SIZE];
651 printk(KERN_DEBUG "%s: skb=0 (%s)\n", dev->name, __FUNCTION__);
654 pkt_len = TO_SIZE(le32_to_cpu(rx_fd->state2));
655 pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
656 RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
657 if ((skb->data[--pkt_len] & FrameOk) == FrameOk) {
658 dev->stats.rx_packets++;
659 dev->stats.rx_bytes += pkt_len;
660 skb_put(skb, pkt_len);
661 if (netif_running(dev))
662 skb->protocol = hdlc_type_trans(skb, dev);
663 skb->dev->last_rx = jiffies;
666 if (skb->data[pkt_len] & FrameRdo)
667 dev->stats.rx_fifo_errors++;
668 else if (!(skb->data[pkt_len] | ~FrameCrc))
669 dev->stats.rx_crc_errors++;
670 else if (!(skb->data[pkt_len] | ~(FrameVfr | FrameRab)))
671 dev->stats.rx_length_errors++;
673 dev->stats.rx_errors++;
674 dev_kfree_skb_irq(skb);
677 while ((dpriv->rx_dirty - dpriv->rx_current) % RX_RING_SIZE) {
678 if (try_get_rx_skb(dpriv, dev) < 0)
682 dscc4_rx_update(dpriv, dev);
683 rx_fd->state2 = 0x00000000;
684 rx_fd->end = cpu_to_le32(0xbabeface);
687 static void dscc4_free1(struct pci_dev *pdev)
689 struct dscc4_pci_priv *ppriv;
690 struct dscc4_dev_priv *root;
693 ppriv = pci_get_drvdata(pdev);
696 for (i = 0; i < dev_per_card; i++)
697 unregister_hdlc_device(dscc4_to_dev(root + i));
699 pci_set_drvdata(pdev, NULL);
701 for (i = 0; i < dev_per_card; i++)
702 free_netdev(root[i].dev);
707 static int __devinit dscc4_init_one(struct pci_dev *pdev,
708 const struct pci_device_id *ent)
710 struct dscc4_pci_priv *priv;
711 struct dscc4_dev_priv *dpriv;
712 void __iomem *ioaddr;
715 printk(KERN_DEBUG "%s", version);
717 rc = pci_enable_device(pdev);
721 rc = pci_request_region(pdev, 0, "registers");
723 printk(KERN_ERR "%s: can't reserve MMIO region (regs)\n",
727 rc = pci_request_region(pdev, 1, "LBI interface");
729 printk(KERN_ERR "%s: can't reserve MMIO region (lbi)\n",
731 goto err_free_mmio_region_1;
734 ioaddr = ioremap(pci_resource_start(pdev, 0),
735 pci_resource_len(pdev, 0));
737 printk(KERN_ERR "%s: cannot remap MMIO region %llx @ %llx\n",
738 DRV_NAME, (unsigned long long)pci_resource_len(pdev, 0),
739 (unsigned long long)pci_resource_start(pdev, 0));
741 goto err_free_mmio_regions_2;
743 printk(KERN_DEBUG "Siemens DSCC4, MMIO at %#llx (regs), %#llx (lbi), IRQ %d\n",
744 (unsigned long long)pci_resource_start(pdev, 0),
745 (unsigned long long)pci_resource_start(pdev, 1), pdev->irq);
747 /* Cf errata DS5 p.2 */
748 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xf8);
749 pci_set_master(pdev);
751 rc = dscc4_found1(pdev, ioaddr);
755 priv = pci_get_drvdata(pdev);
757 rc = request_irq(pdev->irq, dscc4_irq, IRQF_SHARED, DRV_NAME, priv->root);
759 printk(KERN_WARNING "%s: IRQ %d busy\n", DRV_NAME, pdev->irq);
763 /* power up/little endian/dma core controlled via lrda/ltda */
764 writel(0x00000001, ioaddr + GMODE);
765 /* Shared interrupt queue */
769 bits = (IRQ_RING_SIZE >> 5) - 1;
773 writel(bits, ioaddr + IQLENR0);
775 /* Global interrupt queue */
776 writel((u32)(((IRQ_RING_SIZE >> 5) - 1) << 20), ioaddr + IQLENR1);
777 priv->iqcfg = (__le32 *) pci_alloc_consistent(pdev,
778 IRQ_RING_SIZE*sizeof(__le32), &priv->iqcfg_dma);
781 writel(priv->iqcfg_dma, ioaddr + IQCFG);
786 * SCC 0-3 private rx/tx irq structures
787 * IQRX/TXi needs to be set soon. Learned it the hard way...
789 for (i = 0; i < dev_per_card; i++) {
790 dpriv = priv->root + i;
791 dpriv->iqtx = (__le32 *) pci_alloc_consistent(pdev,
792 IRQ_RING_SIZE*sizeof(u32), &dpriv->iqtx_dma);
794 goto err_free_iqtx_6;
795 writel(dpriv->iqtx_dma, ioaddr + IQTX0 + i*4);
797 for (i = 0; i < dev_per_card; i++) {
798 dpriv = priv->root + i;
799 dpriv->iqrx = (__le32 *) pci_alloc_consistent(pdev,
800 IRQ_RING_SIZE*sizeof(u32), &dpriv->iqrx_dma);
802 goto err_free_iqrx_7;
803 writel(dpriv->iqrx_dma, ioaddr + IQRX0 + i*4);
806 /* Cf application hint. Beware of hard-lock condition on threshold. */
807 writel(0x42104000, ioaddr + FIFOCR1);
808 //writel(0x9ce69800, ioaddr + FIFOCR2);
809 writel(0xdef6d800, ioaddr + FIFOCR2);
810 //writel(0x11111111, ioaddr + FIFOCR4);
811 writel(0x18181818, ioaddr + FIFOCR4);
812 // FIXME: should depend on the chipset revision
813 writel(0x0000000e, ioaddr + FIFOCR3);
815 writel(0xff200001, ioaddr + GCMDR);
823 dpriv = priv->root + i;
824 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
825 dpriv->iqrx, dpriv->iqrx_dma);
830 dpriv = priv->root + i;
831 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
832 dpriv->iqtx, dpriv->iqtx_dma);
834 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), priv->iqcfg,
837 free_irq(pdev->irq, priv->root);
842 err_free_mmio_regions_2:
843 pci_release_region(pdev, 1);
844 err_free_mmio_region_1:
845 pci_release_region(pdev, 0);
847 pci_disable_device(pdev);
852 * Let's hope the default values are decent enough to protect my
853 * feet from the user's gun - Ueimor
855 static void dscc4_init_registers(struct dscc4_dev_priv *dpriv,
856 struct net_device *dev)
858 /* No interrupts, SCC core disabled. Let's relax */
859 scc_writel(0x00000000, dpriv, dev, CCR0);
861 scc_writel(LengthCheck | (HDLC_MAX_MRU >> 5), dpriv, dev, RLCR);
864 * No address recognition/crc-CCITT/cts enabled
865 * Shared flags transmission disabled - cf errata DS5 p.11
866 * Carrier detect disabled - cf errata p.14
867 * FIXME: carrier detection/polarity may be handled more gracefully.
869 scc_writel(0x02408000, dpriv, dev, CCR1);
871 /* crc not forwarded - Cf errata DS5 p.11 */
872 scc_writel(0x00050008 & ~RxActivate, dpriv, dev, CCR2);
874 //scc_writel(0x00250008 & ~RxActivate, dpriv, dev, CCR2);
877 static inline int dscc4_set_quartz(struct dscc4_dev_priv *dpriv, int hz)
881 if ((hz < 0) || (hz > DSCC4_HZ_MAX))
884 dpriv->pci_priv->xtal_hz = hz;
889 static int dscc4_found1(struct pci_dev *pdev, void __iomem *ioaddr)
891 struct dscc4_pci_priv *ppriv;
892 struct dscc4_dev_priv *root;
893 int i, ret = -ENOMEM;
895 root = kcalloc(dev_per_card, sizeof(*root), GFP_KERNEL);
897 printk(KERN_ERR "%s: can't allocate data\n", DRV_NAME);
901 for (i = 0; i < dev_per_card; i++) {
902 root[i].dev = alloc_hdlcdev(root + i);
907 ppriv = kzalloc(sizeof(*ppriv), GFP_KERNEL);
909 printk(KERN_ERR "%s: can't allocate private data\n", DRV_NAME);
914 spin_lock_init(&ppriv->lock);
916 for (i = 0; i < dev_per_card; i++) {
917 struct dscc4_dev_priv *dpriv = root + i;
918 struct net_device *d = dscc4_to_dev(dpriv);
919 hdlc_device *hdlc = dev_to_hdlc(d);
921 d->base_addr = (unsigned long)ioaddr;
924 d->open = dscc4_open;
925 d->stop = dscc4_close;
926 d->set_multicast_list = NULL;
927 d->do_ioctl = dscc4_ioctl;
928 d->tx_timeout = dscc4_tx_timeout;
929 d->watchdog_timeo = TX_TIMEOUT;
930 SET_NETDEV_DEV(d, &pdev->dev);
933 dpriv->pci_priv = ppriv;
934 dpriv->base_addr = ioaddr;
935 spin_lock_init(&dpriv->lock);
937 hdlc->xmit = dscc4_start_xmit;
938 hdlc->attach = dscc4_hdlc_attach;
940 dscc4_init_registers(dpriv, d);
941 dpriv->parity = PARITY_CRC16_PR0_CCITT;
942 dpriv->encoding = ENCODING_NRZ;
944 ret = dscc4_init_ring(d);
948 ret = register_hdlc_device(d);
950 printk(KERN_ERR "%s: unable to register\n", DRV_NAME);
951 dscc4_release_ring(dpriv);
956 ret = dscc4_set_quartz(root, quartz);
960 pci_set_drvdata(pdev, ppriv);
965 dscc4_release_ring(root + i);
966 unregister_hdlc_device(dscc4_to_dev(root + i));
972 free_netdev(root[i].dev);
978 /* FIXME: get rid of the unneeded code */
979 static void dscc4_timer(unsigned long data)
981 struct net_device *dev = (struct net_device *)data;
982 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
983 // struct dscc4_pci_priv *ppriv;
987 dpriv->timer.expires = jiffies + TX_TIMEOUT;
988 add_timer(&dpriv->timer);
991 static void dscc4_tx_timeout(struct net_device *dev)
993 /* FIXME: something is missing there */
996 static int dscc4_loopback_check(struct dscc4_dev_priv *dpriv)
998 sync_serial_settings *settings = &dpriv->settings;
1000 if (settings->loopback && (settings->clock_type != CLOCK_INT)) {
1001 struct net_device *dev = dscc4_to_dev(dpriv);
1003 printk(KERN_INFO "%s: loopback requires clock\n", dev->name);
1009 #ifdef CONFIG_DSCC4_PCI_RST
1011 * Some DSCC4-based cards wires the GPIO port and the PCI #RST pin together
1012 * so as to provide a safe way to reset the asic while not the whole machine
1015 * This code doesn't need to be efficient. Keep It Simple
1017 static void dscc4_pci_reset(struct pci_dev *pdev, void __iomem *ioaddr)
1021 mutex_lock(&dscc4_mutex);
1022 for (i = 0; i < 16; i++)
1023 pci_read_config_dword(pdev, i << 2, dscc4_pci_config_store + i);
1025 /* Maximal LBI clock divider (who cares ?) and whole GPIO range. */
1026 writel(0x001c0000, ioaddr + GMODE);
1027 /* Configure GPIO port as output */
1028 writel(0x0000ffff, ioaddr + GPDIR);
1029 /* Disable interruption */
1030 writel(0x0000ffff, ioaddr + GPIM);
1032 writel(0x0000ffff, ioaddr + GPDATA);
1033 writel(0x00000000, ioaddr + GPDATA);
1035 /* Flush posted writes */
1036 readl(ioaddr + GSTAR);
1038 schedule_timeout_uninterruptible(10);
1040 for (i = 0; i < 16; i++)
1041 pci_write_config_dword(pdev, i << 2, dscc4_pci_config_store[i]);
1042 mutex_unlock(&dscc4_mutex);
1045 #define dscc4_pci_reset(pdev,ioaddr) do {} while (0)
1046 #endif /* CONFIG_DSCC4_PCI_RST */
1048 static int dscc4_open(struct net_device *dev)
1050 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1051 struct dscc4_pci_priv *ppriv;
1054 if ((dscc4_loopback_check(dpriv) < 0) || !dev->hard_start_xmit)
1057 if ((ret = hdlc_open(dev)))
1060 ppriv = dpriv->pci_priv;
1063 * Due to various bugs, there is no way to reliably reset a
1064 * specific port (manufacturer's dependant special PCI #RST wiring
1065 * apart: it affects all ports). Thus the device goes in the best
1066 * silent mode possible at dscc4_close() time and simply claims to
1067 * be up if it's opened again. It still isn't possible to change
1068 * the HDLC configuration without rebooting but at least the ports
1069 * can be up/down ifconfig'ed without killing the host.
1071 if (dpriv->flags & FakeReset) {
1072 dpriv->flags &= ~FakeReset;
1073 scc_patchl(0, PowerUp, dpriv, dev, CCR0);
1074 scc_patchl(0, 0x00050000, dpriv, dev, CCR2);
1075 scc_writel(EventsMask, dpriv, dev, IMR);
1076 printk(KERN_INFO "%s: up again.\n", dev->name);
1080 /* IDT+IDR during XPR */
1081 dpriv->flags = NeedIDR | NeedIDT;
1083 scc_patchl(0, PowerUp | Vis, dpriv, dev, CCR0);
1086 * The following is a bit paranoid...
1088 * NB: the datasheet "...CEC will stay active if the SCC is in
1089 * power-down mode or..." and CCR2.RAC = 1 are two different
1092 if (scc_readl_star(dpriv, dev) & SccBusy) {
1093 printk(KERN_ERR "%s busy. Try later\n", dev->name);
1097 printk(KERN_INFO "%s: available. Good\n", dev->name);
1099 scc_writel(EventsMask, dpriv, dev, IMR);
1101 /* Posted write is flushed in the wait_ack loop */
1102 scc_writel(TxSccRes | RxSccRes, dpriv, dev, CMDR);
1104 if ((ret = dscc4_wait_ack_cec(dpriv, dev, "Cec")) < 0)
1105 goto err_disable_scc_events;
1108 * I would expect XPR near CE completion (before ? after ?).
1109 * At worst, this code won't see a late XPR and people
1110 * will have to re-issue an ifconfig (this is harmless).
1111 * WARNING, a really missing XPR usually means a hardware
1112 * reset is needed. Suggestions anyone ?
1114 if ((ret = dscc4_xpr_ack(dpriv)) < 0) {
1115 printk(KERN_ERR "%s: %s timeout\n", DRV_NAME, "XPR");
1116 goto err_disable_scc_events;
1120 dscc4_tx_print(dev, dpriv, "Open");
1123 netif_start_queue(dev);
1125 init_timer(&dpriv->timer);
1126 dpriv->timer.expires = jiffies + 10*HZ;
1127 dpriv->timer.data = (unsigned long)dev;
1128 dpriv->timer.function = &dscc4_timer;
1129 add_timer(&dpriv->timer);
1130 netif_carrier_on(dev);
1134 err_disable_scc_events:
1135 scc_writel(0xffffffff, dpriv, dev, IMR);
1136 scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1143 #ifdef DSCC4_POLLING
1144 static int dscc4_tx_poll(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1146 /* FIXME: it's gonna be easy (TM), for sure */
1148 #endif /* DSCC4_POLLING */
1150 static int dscc4_start_xmit(struct sk_buff *skb, struct net_device *dev)
1152 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1153 struct dscc4_pci_priv *ppriv = dpriv->pci_priv;
1157 next = dpriv->tx_current%TX_RING_SIZE;
1158 dpriv->tx_skbuff[next] = skb;
1159 tx_fd = dpriv->tx_fd + next;
1160 tx_fd->state = FrameEnd | TO_STATE_TX(skb->len);
1161 tx_fd->data = cpu_to_le32(pci_map_single(ppriv->pdev, skb->data, skb->len,
1163 tx_fd->complete = 0x00000000;
1164 tx_fd->jiffies = jiffies;
1167 #ifdef DSCC4_POLLING
1168 spin_lock(&dpriv->lock);
1169 while (dscc4_tx_poll(dpriv, dev));
1170 spin_unlock(&dpriv->lock);
1173 dev->trans_start = jiffies;
1176 dscc4_tx_print(dev, dpriv, "Xmit");
1177 /* To be cleaned(unsigned int)/optimized. Later, ok ? */
1178 if (!((++dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE))
1179 netif_stop_queue(dev);
1181 if (dscc4_tx_quiescent(dpriv, dev))
1182 dscc4_do_tx(dpriv, dev);
1187 static int dscc4_close(struct net_device *dev)
1189 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1191 del_timer_sync(&dpriv->timer);
1192 netif_stop_queue(dev);
1194 scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1195 scc_patchl(0x00050000, 0, dpriv, dev, CCR2);
1196 scc_writel(0xffffffff, dpriv, dev, IMR);
1198 dpriv->flags |= FakeReset;
1205 static inline int dscc4_check_clock_ability(int port)
1209 #ifdef CONFIG_DSCC4_PCISYNC
1217 * DS1 p.137: "There are a total of 13 different clocking modes..."
1220 * - by default, assume a clock is provided on pin RxClk/TxClk (clock mode 0a).
1221 * Clock mode 3b _should_ work but the testing seems to make this point
1222 * dubious (DIY testing requires setting CCR0 at 0x00000033).
1223 * This is supposed to provide least surprise "DTE like" behavior.
1224 * - if line rate is specified, clocks are assumed to be locally generated.
1225 * A quartz must be available (on pin XTAL1). Modes 6b/7b are used. Choosing
1226 * between these it automagically done according on the required frequency
1227 * scaling. Of course some rounding may take place.
1228 * - no high speed mode (40Mb/s). May be trivial to do but I don't have an
1229 * appropriate external clocking device for testing.
1230 * - no time-slot/clock mode 5: shameless lazyness.
1232 * The clock signals wiring can be (is ?) manufacturer dependant. Good luck.
1234 * BIG FAT WARNING: if the device isn't provided enough clocking signal, it
1235 * won't pass the init sequence. For example, straight back-to-back DTE without
1236 * external clock will fail when dscc4_open() (<- 'ifconfig hdlcx xxx') is
1239 * Typos lurk in datasheet (missing divier in clock mode 7a figure 51 p.153
1242 * Clock mode related bits of CCR0:
1243 * +------------ TOE: output TxClk (0b/2b/3a/3b/6b/7a/7b only)
1244 * | +---------- SSEL: sub-mode select 0 -> a, 1 -> b
1245 * | | +-------- High Speed: say 0
1246 * | | | +-+-+-- Clock Mode: 0..7
1249 * x|x|5|4|3|2|1|0| lower bits
1251 * Division factor of BRR: k = (N+1)x2^M (total divider = 16xk in mode 6b)
1252 * +-+-+-+------------------ M (0..15)
1253 * | | | | +-+-+-+-+-+-- N (0..63)
1254 * 0 0 0 0 | | | | 0 0 | | | | | |
1255 * ...-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1256 * f|e|d|c|b|a|9|8|7|6|5|4|3|2|1|0| lower bits
1259 static int dscc4_set_clock(struct net_device *dev, u32 *bps, u32 *state)
1261 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1265 *state &= ~Ccr0ClockMask;
1266 if (*bps) { /* Clock generated - required for DCE */
1267 u32 n = 0, m = 0, divider;
1270 xtal = dpriv->pci_priv->xtal_hz;
1273 if (dscc4_check_clock_ability(dpriv->dev_id) < 0)
1275 divider = xtal / *bps;
1276 if (divider > BRR_DIVIDER_MAX) {
1278 *state |= 0x00000036; /* Clock mode 6b (BRG/16) */
1280 *state |= 0x00000037; /* Clock mode 7b (BRG) */
1281 if (divider >> 22) {
1284 } else if (divider) {
1285 /* Extraction of the 6 highest weighted bits */
1287 while (0xffffffc0 & divider) {
1295 if (!(*state & 0x00000001)) /* ?b mode mask => clock mode 6b */
1297 *bps = xtal / divider;
1300 * External clock - DTE
1301 * "state" already reflects Clock mode 0a (CCR0 = 0xzzzzzz00).
1302 * Nothing more to be done
1306 scc_writel(brr, dpriv, dev, BRR);
1312 static int dscc4_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1314 sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1315 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1316 const size_t size = sizeof(dpriv->settings);
1319 if (dev->flags & IFF_UP)
1322 if (cmd != SIOCWANDEV)
1325 switch(ifr->ifr_settings.type) {
1327 ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
1328 if (ifr->ifr_settings.size < size) {
1329 ifr->ifr_settings.size = size; /* data size wanted */
1332 if (copy_to_user(line, &dpriv->settings, size))
1336 case IF_IFACE_SYNC_SERIAL:
1337 if (!capable(CAP_NET_ADMIN))
1340 if (dpriv->flags & FakeReset) {
1341 printk(KERN_INFO "%s: please reset the device"
1342 " before this command\n", dev->name);
1345 if (copy_from_user(&dpriv->settings, line, size))
1347 ret = dscc4_set_iface(dpriv, dev);
1351 ret = hdlc_ioctl(dev, ifr, cmd);
1358 static int dscc4_match(struct thingie *p, int value)
1362 for (i = 0; p[i].define != -1; i++) {
1363 if (value == p[i].define)
1366 if (p[i].define == -1)
1372 static int dscc4_clock_setting(struct dscc4_dev_priv *dpriv,
1373 struct net_device *dev)
1375 sync_serial_settings *settings = &dpriv->settings;
1376 int ret = -EOPNOTSUPP;
1379 bps = settings->clock_rate;
1380 state = scc_readl(dpriv, CCR0);
1381 if (dscc4_set_clock(dev, &bps, &state) < 0)
1383 if (bps) { /* DCE */
1384 printk(KERN_DEBUG "%s: generated RxClk (DCE)\n", dev->name);
1385 if (settings->clock_rate != bps) {
1386 printk(KERN_DEBUG "%s: clock adjusted (%08d -> %08d)\n",
1387 dev->name, settings->clock_rate, bps);
1388 settings->clock_rate = bps;
1391 state |= PowerUp | Vis;
1392 printk(KERN_DEBUG "%s: external RxClk (DTE)\n", dev->name);
1394 scc_writel(state, dpriv, dev, CCR0);
1400 static int dscc4_encoding_setting(struct dscc4_dev_priv *dpriv,
1401 struct net_device *dev)
1403 struct thingie encoding[] = {
1404 { ENCODING_NRZ, 0x00000000 },
1405 { ENCODING_NRZI, 0x00200000 },
1406 { ENCODING_FM_MARK, 0x00400000 },
1407 { ENCODING_FM_SPACE, 0x00500000 },
1408 { ENCODING_MANCHESTER, 0x00600000 },
1413 i = dscc4_match(encoding, dpriv->encoding);
1415 scc_patchl(EncodingMask, encoding[i].bits, dpriv, dev, CCR0);
1421 static int dscc4_loopback_setting(struct dscc4_dev_priv *dpriv,
1422 struct net_device *dev)
1424 sync_serial_settings *settings = &dpriv->settings;
1427 state = scc_readl(dpriv, CCR1);
1428 if (settings->loopback) {
1429 printk(KERN_DEBUG "%s: loopback\n", dev->name);
1430 state |= 0x00000100;
1432 printk(KERN_DEBUG "%s: normal\n", dev->name);
1433 state &= ~0x00000100;
1435 scc_writel(state, dpriv, dev, CCR1);
1439 static int dscc4_crc_setting(struct dscc4_dev_priv *dpriv,
1440 struct net_device *dev)
1442 struct thingie crc[] = {
1443 { PARITY_CRC16_PR0_CCITT, 0x00000010 },
1444 { PARITY_CRC16_PR1_CCITT, 0x00000000 },
1445 { PARITY_CRC32_PR0_CCITT, 0x00000011 },
1446 { PARITY_CRC32_PR1_CCITT, 0x00000001 }
1450 i = dscc4_match(crc, dpriv->parity);
1452 scc_patchl(CrcMask, crc[i].bits, dpriv, dev, CCR1);
1458 static int dscc4_set_iface(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1461 int (*action)(struct dscc4_dev_priv *, struct net_device *);
1462 } *p, do_setting[] = {
1463 { dscc4_encoding_setting },
1464 { dscc4_clock_setting },
1465 { dscc4_loopback_setting },
1466 { dscc4_crc_setting },
1471 for (p = do_setting; p->action; p++) {
1472 if ((ret = p->action(dpriv, dev)) < 0)
1478 static irqreturn_t dscc4_irq(int irq, void *token)
1480 struct dscc4_dev_priv *root = token;
1481 struct dscc4_pci_priv *priv;
1482 struct net_device *dev;
1483 void __iomem *ioaddr;
1485 unsigned long flags;
1488 priv = root->pci_priv;
1489 dev = dscc4_to_dev(root);
1491 spin_lock_irqsave(&priv->lock, flags);
1493 ioaddr = root->base_addr;
1495 state = readl(ioaddr + GSTAR);
1501 printk(KERN_DEBUG "%s: GSTAR = 0x%08x\n", DRV_NAME, state);
1502 writel(state, ioaddr + GSTAR);
1505 printk(KERN_ERR "%s: failure (Arf). Harass the maintener\n",
1512 printk(KERN_DEBUG "%s: CfgIV\n", DRV_NAME);
1513 if (priv->iqcfg[priv->cfg_cur++%IRQ_RING_SIZE] & cpu_to_le32(Arf))
1514 printk(KERN_ERR "%s: %s failed\n", dev->name, "CFG");
1515 if (!(state &= ~Cfg))
1518 if (state & RxEvt) {
1519 i = dev_per_card - 1;
1521 dscc4_rx_irq(priv, root + i);
1525 if (state & TxEvt) {
1526 i = dev_per_card - 1;
1528 dscc4_tx_irq(priv, root + i);
1533 spin_unlock_irqrestore(&priv->lock, flags);
1534 return IRQ_RETVAL(handled);
1537 static void dscc4_tx_irq(struct dscc4_pci_priv *ppriv,
1538 struct dscc4_dev_priv *dpriv)
1540 struct net_device *dev = dscc4_to_dev(dpriv);
1545 cur = dpriv->iqtx_current%IRQ_RING_SIZE;
1546 state = le32_to_cpu(dpriv->iqtx[cur]);
1549 printk(KERN_DEBUG "%s: Tx ISR = 0x%08x\n", dev->name,
1551 if ((debug > 1) && (loop > 1))
1552 printk(KERN_DEBUG "%s: Tx irq loop=%d\n", dev->name, loop);
1553 if (loop && netif_queue_stopped(dev))
1554 if ((dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE)
1555 netif_wake_queue(dev);
1557 if (netif_running(dev) && dscc4_tx_quiescent(dpriv, dev) &&
1558 !dscc4_tx_done(dpriv))
1559 dscc4_do_tx(dpriv, dev);
1563 dpriv->iqtx[cur] = 0;
1564 dpriv->iqtx_current++;
1566 if (state_check(state, dpriv, dev, "Tx") < 0)
1569 if (state & SccEvt) {
1571 struct sk_buff *skb;
1575 dscc4_tx_print(dev, dpriv, "Alls");
1577 * DataComplete can't be trusted for Tx completion.
1580 cur = dpriv->tx_dirty%TX_RING_SIZE;
1581 tx_fd = dpriv->tx_fd + cur;
1582 skb = dpriv->tx_skbuff[cur];
1584 pci_unmap_single(ppriv->pdev, le32_to_cpu(tx_fd->data),
1585 skb->len, PCI_DMA_TODEVICE);
1586 if (tx_fd->state & FrameEnd) {
1587 dev->stats.tx_packets++;
1588 dev->stats.tx_bytes += skb->len;
1590 dev_kfree_skb_irq(skb);
1591 dpriv->tx_skbuff[cur] = NULL;
1595 printk(KERN_ERR "%s Tx: NULL skb %d\n",
1599 * If the driver ends sending crap on the wire, it
1600 * will be way easier to diagnose than the (not so)
1601 * random freeze induced by null sized tx frames.
1603 tx_fd->data = tx_fd->next;
1604 tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1605 tx_fd->complete = 0x00000000;
1608 if (!(state &= ~Alls))
1612 * Transmit Data Underrun
1615 printk(KERN_ERR "%s: XDU. Ask maintainer\n", DRV_NAME);
1616 dpriv->flags = NeedIDT;
1619 dpriv->base_addr + 0x0c*dpriv->dev_id + CH0CFG);
1620 writel(Action, dpriv->base_addr + GCMDR);
1624 printk(KERN_INFO "%s: CTS transition\n", dev->name);
1625 if (!(state &= ~Cts)) /* DEBUG */
1629 /* Frame needs to be sent again - FIXME */
1630 printk(KERN_ERR "%s: Xmr. Ask maintainer\n", DRV_NAME);
1631 if (!(state &= ~Xmr)) /* DEBUG */
1635 void __iomem *scc_addr;
1640 * - the busy condition happens (sometimes);
1641 * - it doesn't seem to make the handler unreliable.
1643 for (i = 1; i; i <<= 1) {
1644 if (!(scc_readl_star(dpriv, dev) & SccBusy))
1648 printk(KERN_INFO "%s busy in irq\n", dev->name);
1650 scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1651 /* Keep this order: IDT before IDR */
1652 if (dpriv->flags & NeedIDT) {
1654 dscc4_tx_print(dev, dpriv, "Xpr");
1655 ring = dpriv->tx_fd_dma +
1656 (dpriv->tx_dirty%TX_RING_SIZE)*
1657 sizeof(struct TxFD);
1658 writel(ring, scc_addr + CH0BTDA);
1659 dscc4_do_tx(dpriv, dev);
1660 writel(MTFi | Idt, scc_addr + CH0CFG);
1661 if (dscc4_do_action(dev, "IDT") < 0)
1663 dpriv->flags &= ~NeedIDT;
1665 if (dpriv->flags & NeedIDR) {
1666 ring = dpriv->rx_fd_dma +
1667 (dpriv->rx_current%RX_RING_SIZE)*
1668 sizeof(struct RxFD);
1669 writel(ring, scc_addr + CH0BRDA);
1670 dscc4_rx_update(dpriv, dev);
1671 writel(MTFi | Idr, scc_addr + CH0CFG);
1672 if (dscc4_do_action(dev, "IDR") < 0)
1674 dpriv->flags &= ~NeedIDR;
1676 /* Activate receiver and misc */
1677 scc_writel(0x08050008, dpriv, dev, CCR2);
1680 if (!(state &= ~Xpr))
1685 printk(KERN_INFO "%s: CD transition\n", dev->name);
1686 if (!(state &= ~Cd)) /* DEBUG */
1689 } else { /* ! SccEvt */
1691 #ifdef DSCC4_POLLING
1692 while (!dscc4_tx_poll(dpriv, dev));
1694 printk(KERN_INFO "%s: Tx Hi\n", dev->name);
1698 printk(KERN_INFO "%s: Tx ERR\n", dev->name);
1699 dev->stats.tx_errors++;
1706 static void dscc4_rx_irq(struct dscc4_pci_priv *priv,
1707 struct dscc4_dev_priv *dpriv)
1709 struct net_device *dev = dscc4_to_dev(dpriv);
1714 cur = dpriv->iqrx_current%IRQ_RING_SIZE;
1715 state = le32_to_cpu(dpriv->iqrx[cur]);
1718 dpriv->iqrx[cur] = 0;
1719 dpriv->iqrx_current++;
1721 if (state_check(state, dpriv, dev, "Rx") < 0)
1724 if (!(state & SccEvt)){
1728 printk(KERN_DEBUG "%s: Rx ISR = 0x%08x\n", dev->name,
1730 state &= 0x00ffffff;
1731 if (state & Err) { /* Hold or reset */
1732 printk(KERN_DEBUG "%s: Rx ERR\n", dev->name);
1733 cur = dpriv->rx_current%RX_RING_SIZE;
1734 rx_fd = dpriv->rx_fd + cur;
1736 * Presume we're not facing a DMAC receiver reset.
1737 * As We use the rx size-filtering feature of the
1738 * DSCC4, the beginning of a new frame is waiting in
1739 * the rx fifo. I bet a Receive Data Overflow will
1740 * happen most of time but let's try and avoid it.
1741 * Btw (as for RDO) if one experiences ERR whereas
1742 * the system looks rather idle, there may be a
1743 * problem with latency. In this case, increasing
1744 * RX_RING_SIZE may help.
1746 //while (dpriv->rx_needs_refill) {
1747 while (!(rx_fd->state1 & Hold)) {
1750 if (!(cur = cur%RX_RING_SIZE))
1751 rx_fd = dpriv->rx_fd;
1753 //dpriv->rx_needs_refill--;
1754 try_get_rx_skb(dpriv, dev);
1757 rx_fd->state1 &= ~Hold;
1758 rx_fd->state2 = 0x00000000;
1759 rx_fd->end = cpu_to_le32(0xbabeface);
1764 dscc4_rx_skb(dpriv, dev);
1767 if (state & Hi ) { /* HI bit */
1768 printk(KERN_INFO "%s: Rx Hi\n", dev->name);
1772 } else { /* SccEvt */
1774 //FIXME: verifier la presence de tous les evenements
1777 const char *irq_name;
1779 { 0x00008000, "TIN"},
1780 { 0x00000020, "RSC"},
1781 { 0x00000010, "PCE"},
1782 { 0x00000008, "PLLA"},
1786 for (evt = evts; evt->irq_name; evt++) {
1787 if (state & evt->mask) {
1788 printk(KERN_DEBUG "%s: %s\n",
1789 dev->name, evt->irq_name);
1790 if (!(state &= ~evt->mask))
1795 if (!(state &= ~0x0000c03c))
1799 printk(KERN_INFO "%s: CTS transition\n", dev->name);
1800 if (!(state &= ~Cts)) /* DEBUG */
1804 * Receive Data Overflow (FIXME: fscked)
1808 void __iomem *scc_addr;
1812 // dscc4_rx_dump(dpriv);
1813 scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1815 scc_patchl(RxActivate, 0, dpriv, dev, CCR2);
1817 * This has no effect. Why ?
1818 * ORed with TxSccRes, one sees the CFG ack (for
1819 * the TX part only).
1821 scc_writel(RxSccRes, dpriv, dev, CMDR);
1822 dpriv->flags |= RdoSet;
1825 * Let's try and save something in the received data.
1826 * rx_current must be incremented at least once to
1827 * avoid HOLD in the BRDA-to-be-pointed desc.
1830 cur = dpriv->rx_current++%RX_RING_SIZE;
1831 rx_fd = dpriv->rx_fd + cur;
1832 if (!(rx_fd->state2 & DataComplete))
1834 if (rx_fd->state2 & FrameAborted) {
1835 dev->stats.rx_over_errors++;
1836 rx_fd->state1 |= Hold;
1837 rx_fd->state2 = 0x00000000;
1838 rx_fd->end = cpu_to_le32(0xbabeface);
1840 dscc4_rx_skb(dpriv, dev);
1844 if (dpriv->flags & RdoSet)
1846 "%s: no RDO in Rx data\n", DRV_NAME);
1848 #ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY
1850 * FIXME: must the reset be this violent ?
1852 #warning "FIXME: CH0BRDA"
1853 writel(dpriv->rx_fd_dma +
1854 (dpriv->rx_current%RX_RING_SIZE)*
1855 sizeof(struct RxFD), scc_addr + CH0BRDA);
1856 writel(MTFi|Rdr|Idr, scc_addr + CH0CFG);
1857 if (dscc4_do_action(dev, "RDR") < 0) {
1858 printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
1862 writel(MTFi|Idr, scc_addr + CH0CFG);
1863 if (dscc4_do_action(dev, "IDR") < 0) {
1864 printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
1870 scc_patchl(0, RxActivate, dpriv, dev, CCR2);
1874 printk(KERN_INFO "%s: CD transition\n", dev->name);
1875 if (!(state &= ~Cd)) /* DEBUG */
1879 printk(KERN_DEBUG "%s: Flex. Ttttt...\n", DRV_NAME);
1880 if (!(state &= ~Flex))
1887 * I had expected the following to work for the first descriptor
1888 * (tx_fd->state = 0xc0000000)
1889 * - Hold=1 (don't try and branch to the next descripto);
1890 * - No=0 (I want an empty data section, i.e. size=0);
1891 * - Fe=1 (required by No=0 or we got an Err irq and must reset).
1892 * It failed and locked solid. Thus the introduction of a dummy skb.
1893 * Problem is acknowledged in errata sheet DS5. Joy :o/
1895 static struct sk_buff *dscc4_init_dummy_skb(struct dscc4_dev_priv *dpriv)
1897 struct sk_buff *skb;
1899 skb = dev_alloc_skb(DUMMY_SKB_SIZE);
1901 int last = dpriv->tx_dirty%TX_RING_SIZE;
1902 struct TxFD *tx_fd = dpriv->tx_fd + last;
1904 skb->len = DUMMY_SKB_SIZE;
1905 skb_copy_to_linear_data(skb, version,
1906 strlen(version) % DUMMY_SKB_SIZE);
1907 tx_fd->state = FrameEnd | TO_STATE_TX(DUMMY_SKB_SIZE);
1908 tx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
1909 skb->data, DUMMY_SKB_SIZE,
1911 dpriv->tx_skbuff[last] = skb;
1916 static int dscc4_init_ring(struct net_device *dev)
1918 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1919 struct pci_dev *pdev = dpriv->pci_priv->pdev;
1925 ring = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &dpriv->rx_fd_dma);
1928 dpriv->rx_fd = rx_fd = (struct RxFD *) ring;
1930 ring = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &dpriv->tx_fd_dma);
1932 goto err_free_dma_rx;
1933 dpriv->tx_fd = tx_fd = (struct TxFD *) ring;
1935 memset(dpriv->tx_skbuff, 0, sizeof(struct sk_buff *)*TX_RING_SIZE);
1936 dpriv->tx_dirty = 0xffffffff;
1937 i = dpriv->tx_current = 0;
1939 tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1940 tx_fd->complete = 0x00000000;
1941 /* FIXME: NULL should be ok - to be tried */
1942 tx_fd->data = cpu_to_le32(dpriv->tx_fd_dma);
1943 (tx_fd++)->next = cpu_to_le32(dpriv->tx_fd_dma +
1944 (++i%TX_RING_SIZE)*sizeof(*tx_fd));
1945 } while (i < TX_RING_SIZE);
1947 if (!dscc4_init_dummy_skb(dpriv))
1948 goto err_free_dma_tx;
1950 memset(dpriv->rx_skbuff, 0, sizeof(struct sk_buff *)*RX_RING_SIZE);
1951 i = dpriv->rx_dirty = dpriv->rx_current = 0;
1953 /* size set by the host. Multiple of 4 bytes please */
1954 rx_fd->state1 = HiDesc;
1955 rx_fd->state2 = 0x00000000;
1956 rx_fd->end = cpu_to_le32(0xbabeface);
1957 rx_fd->state1 |= TO_STATE_RX(HDLC_MAX_MRU);
1958 // FIXME: return value verifiee mais traitement suspect
1959 if (try_get_rx_skb(dpriv, dev) >= 0)
1961 (rx_fd++)->next = cpu_to_le32(dpriv->rx_fd_dma +
1962 (++i%RX_RING_SIZE)*sizeof(*rx_fd));
1963 } while (i < RX_RING_SIZE);
1968 pci_free_consistent(pdev, TX_TOTAL_SIZE, ring, dpriv->tx_fd_dma);
1970 pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
1975 static void __devexit dscc4_remove_one(struct pci_dev *pdev)
1977 struct dscc4_pci_priv *ppriv;
1978 struct dscc4_dev_priv *root;
1979 void __iomem *ioaddr;
1982 ppriv = pci_get_drvdata(pdev);
1985 ioaddr = root->base_addr;
1987 dscc4_pci_reset(pdev, ioaddr);
1989 free_irq(pdev->irq, root);
1990 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), ppriv->iqcfg,
1992 for (i = 0; i < dev_per_card; i++) {
1993 struct dscc4_dev_priv *dpriv = root + i;
1995 dscc4_release_ring(dpriv);
1996 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
1997 dpriv->iqrx, dpriv->iqrx_dma);
1998 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
1999 dpriv->iqtx, dpriv->iqtx_dma);
2006 pci_release_region(pdev, 1);
2007 pci_release_region(pdev, 0);
2009 pci_disable_device(pdev);
2012 static int dscc4_hdlc_attach(struct net_device *dev, unsigned short encoding,
2013 unsigned short parity)
2015 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
2017 if (encoding != ENCODING_NRZ &&
2018 encoding != ENCODING_NRZI &&
2019 encoding != ENCODING_FM_MARK &&
2020 encoding != ENCODING_FM_SPACE &&
2021 encoding != ENCODING_MANCHESTER)
2024 if (parity != PARITY_NONE &&
2025 parity != PARITY_CRC16_PR0_CCITT &&
2026 parity != PARITY_CRC16_PR1_CCITT &&
2027 parity != PARITY_CRC32_PR0_CCITT &&
2028 parity != PARITY_CRC32_PR1_CCITT)
2031 dpriv->encoding = encoding;
2032 dpriv->parity = parity;
2037 static int __init dscc4_setup(char *str)
2039 int *args[] = { &debug, &quartz, NULL }, **p = args;
2041 while (*p && (get_option(&str, *p) == 2))
2046 __setup("dscc4.setup=", dscc4_setup);
2049 static struct pci_device_id dscc4_pci_tbl[] = {
2050 { PCI_VENDOR_ID_SIEMENS, PCI_DEVICE_ID_SIEMENS_DSCC4,
2051 PCI_ANY_ID, PCI_ANY_ID, },
2054 MODULE_DEVICE_TABLE(pci, dscc4_pci_tbl);
2056 static struct pci_driver dscc4_driver = {
2058 .id_table = dscc4_pci_tbl,
2059 .probe = dscc4_init_one,
2060 .remove = __devexit_p(dscc4_remove_one),
2063 static int __init dscc4_init_module(void)
2065 return pci_register_driver(&dscc4_driver);
2068 static void __exit dscc4_cleanup_module(void)
2070 pci_unregister_driver(&dscc4_driver);
2073 module_init(dscc4_init_module);
2074 module_exit(dscc4_cleanup_module);