4 * Procedures for interfacing to Open Firmware.
6 * Paul Mackerras August 1996.
7 * Copyright (C) 1996 Paul Mackerras.
9 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
10 * {engebret|bergner}@us.ibm.com
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/version.h>
26 #include <linux/threads.h>
27 #include <linux/spinlock.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/stringify.h>
31 #include <linux/delay.h>
32 #include <linux/initrd.h>
33 #include <linux/bitops.h>
34 #include <linux/module.h>
39 #include <asm/abs_addr.h>
41 #include <asm/processor.h>
45 #include <asm/system.h>
47 #include <asm/pgtable.h>
49 #include <asm/iommu.h>
50 #include <asm/bootinfo.h>
51 #include <asm/ppcdebug.h>
52 #include <asm/btext.h>
53 #include <asm/sections.h>
54 #include <asm/machdep.h>
55 #include <asm/pSeries_reconfig.h>
58 #define DBG(fmt...) udbg_printf(fmt)
63 struct pci_reg_property {
64 struct pci_address addr;
69 struct isa_reg_property {
76 typedef int interpret_func(struct device_node *, unsigned long *,
79 extern struct rtas_t rtas;
80 extern struct lmb lmb;
81 extern unsigned long klimit;
83 static int __initdata dt_root_addr_cells;
84 static int __initdata dt_root_size_cells;
85 static int __initdata iommu_is_off;
86 int __initdata iommu_force_on;
90 static struct boot_param_header *initial_boot_params __initdata;
92 struct boot_param_header *initial_boot_params;
95 static struct device_node *allnodes = NULL;
97 /* use when traversing tree through the allnext, child, sibling,
98 * or parent members of struct device_node.
100 static DEFINE_RWLOCK(devtree_lock);
102 /* export that to outside world */
103 struct device_node *of_chosen;
106 * Wrapper for allocating memory for various data that needs to be
107 * attached to device nodes as they are processed at boot or when
108 * added to the device tree later (e.g. DLPAR). At boot there is
109 * already a region reserved so we just increment *mem_start by size;
110 * otherwise we call kmalloc.
112 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
117 return kmalloc(size, GFP_KERNEL);
125 * Find the device_node with a given phandle.
127 static struct device_node * find_phandle(phandle ph)
129 struct device_node *np;
131 for (np = allnodes; np != 0; np = np->allnext)
132 if (np->linux_phandle == ph)
138 * Find the interrupt parent of a node.
140 static struct device_node * __devinit intr_parent(struct device_node *p)
144 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
147 return find_phandle(*parp);
151 * Find out the size of each entry of the interrupts property
154 int __devinit prom_n_intr_cells(struct device_node *np)
156 struct device_node *p;
159 for (p = np; (p = intr_parent(p)) != NULL; ) {
160 icp = (unsigned int *)
161 get_property(p, "#interrupt-cells", NULL);
164 if (get_property(p, "interrupt-controller", NULL) != NULL
165 || get_property(p, "interrupt-map", NULL) != NULL) {
166 printk("oops, node %s doesn't have #interrupt-cells\n",
172 printk("prom_n_intr_cells failed for %s\n", np->full_name);
178 * Map an interrupt from a device up to the platform interrupt
181 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
182 struct device_node *np, unsigned int *ints,
185 struct device_node *p, *ipar;
186 unsigned int *imap, *imask, *ip;
187 int i, imaplen, match;
188 int newintrc = 0, newaddrc = 0;
192 reg = (unsigned int *) get_property(np, "reg", NULL);
193 naddrc = prom_n_addr_cells(np);
196 if (get_property(p, "interrupt-controller", NULL) != NULL)
197 /* this node is an interrupt controller, stop here */
199 imap = (unsigned int *)
200 get_property(p, "interrupt-map", &imaplen);
205 imask = (unsigned int *)
206 get_property(p, "interrupt-map-mask", NULL);
208 printk("oops, %s has interrupt-map but no mask\n",
212 imaplen /= sizeof(unsigned int);
215 while (imaplen > 0 && !match) {
216 /* check the child-interrupt field */
218 for (i = 0; i < naddrc && match; ++i)
219 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
220 for (; i < naddrc + nintrc && match; ++i)
221 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
222 imap += naddrc + nintrc;
223 imaplen -= naddrc + nintrc;
224 /* grab the interrupt parent */
225 ipar = find_phandle((phandle) *imap++);
228 printk("oops, no int parent %x in map of %s\n",
229 imap[-1], p->full_name);
232 /* find the parent's # addr and intr cells */
233 ip = (unsigned int *)
234 get_property(ipar, "#interrupt-cells", NULL);
236 printk("oops, no #interrupt-cells on %s\n",
241 ip = (unsigned int *)
242 get_property(ipar, "#address-cells", NULL);
243 newaddrc = (ip == NULL)? 0: *ip;
244 imap += newaddrc + newintrc;
245 imaplen -= newaddrc + newintrc;
248 printk("oops, error decoding int-map on %s, len=%d\n",
249 p->full_name, imaplen);
254 printk("oops, no match in %s int-map for %s\n",
255 p->full_name, np->full_name);
262 ints = imap - nintrc;
267 printk("hmmm, int tree for %s doesn't have ctrler\n",
277 static int __devinit finish_node_interrupts(struct device_node *np,
278 unsigned long *mem_start,
282 int intlen, intrcells, intrcount;
284 unsigned int *irq, virq;
285 struct device_node *ic;
287 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
290 intrcells = prom_n_intr_cells(np);
291 intlen /= intrcells * sizeof(unsigned int);
293 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
301 for (i = 0; i < intlen; ++i, ints += intrcells) {
302 n = map_interrupt(&irq, &ic, np, ints, intrcells);
306 /* don't map IRQ numbers under a cascaded 8259 controller */
307 if (ic && device_is_compatible(ic, "chrp,iic")) {
308 np->intrs[intrcount].line = irq[0];
310 virq = virt_irq_create_mapping(irq[0]);
311 if (virq == NO_IRQ) {
312 printk(KERN_CRIT "Could not allocate interrupt"
313 " number for %s\n", np->full_name);
316 np->intrs[intrcount].line = irq_offset_up(virq);
319 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
320 if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) {
321 char *name = get_property(ic->parent, "name", NULL);
322 if (name && !strcmp(name, "u3"))
323 np->intrs[intrcount].line += 128;
325 np->intrs[intrcount].sense = 1;
327 np->intrs[intrcount].sense = irq[1];
329 printk("hmmm, got %d intr cells for %s:", n,
331 for (j = 0; j < n; ++j)
332 printk(" %d", irq[j]);
337 np->n_intrs = intrcount;
342 static int __devinit interpret_pci_props(struct device_node *np,
343 unsigned long *mem_start,
344 int naddrc, int nsizec,
347 struct address_range *adr;
348 struct pci_reg_property *pci_addrs;
351 pci_addrs = (struct pci_reg_property *)
352 get_property(np, "assigned-addresses", &l);
356 n_addrs = l / sizeof(*pci_addrs);
358 adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
366 np->n_addrs = n_addrs;
368 for (i = 0; i < n_addrs; i++) {
369 adr[i].space = pci_addrs[i].addr.a_hi;
370 adr[i].address = pci_addrs[i].addr.a_lo |
371 ((u64)pci_addrs[i].addr.a_mid << 32);
372 adr[i].size = pci_addrs[i].size_lo;
378 static int __init interpret_dbdma_props(struct device_node *np,
379 unsigned long *mem_start,
380 int naddrc, int nsizec,
383 struct reg_property32 *rp;
384 struct address_range *adr;
385 unsigned long base_address;
387 struct device_node *db;
391 for (db = np->parent; db != NULL; db = db->parent) {
392 if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
393 base_address = db->addrs[0].address;
399 rp = (struct reg_property32 *) get_property(np, "reg", &l);
400 if (rp != 0 && l >= sizeof(struct reg_property32)) {
402 adr = (struct address_range *) (*mem_start);
403 while ((l -= sizeof(struct reg_property32)) >= 0) {
406 adr[i].address = rp[i].address + base_address;
407 adr[i].size = rp[i].size;
413 (*mem_start) += i * sizeof(struct address_range);
419 static int __init interpret_macio_props(struct device_node *np,
420 unsigned long *mem_start,
421 int naddrc, int nsizec,
424 struct reg_property32 *rp;
425 struct address_range *adr;
426 unsigned long base_address;
428 struct device_node *db;
432 for (db = np->parent; db != NULL; db = db->parent) {
433 if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
434 base_address = db->addrs[0].address;
440 rp = (struct reg_property32 *) get_property(np, "reg", &l);
441 if (rp != 0 && l >= sizeof(struct reg_property32)) {
443 adr = (struct address_range *) (*mem_start);
444 while ((l -= sizeof(struct reg_property32)) >= 0) {
447 adr[i].address = rp[i].address + base_address;
448 adr[i].size = rp[i].size;
454 (*mem_start) += i * sizeof(struct address_range);
460 static int __init interpret_isa_props(struct device_node *np,
461 unsigned long *mem_start,
462 int naddrc, int nsizec,
465 struct isa_reg_property *rp;
466 struct address_range *adr;
469 rp = (struct isa_reg_property *) get_property(np, "reg", &l);
470 if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
472 adr = (struct address_range *) (*mem_start);
473 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
475 adr[i].space = rp[i].space;
476 adr[i].address = rp[i].address;
477 adr[i].size = rp[i].size;
483 (*mem_start) += i * sizeof(struct address_range);
489 static int __init interpret_root_props(struct device_node *np,
490 unsigned long *mem_start,
491 int naddrc, int nsizec,
494 struct address_range *adr;
497 int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
499 rp = (unsigned int *) get_property(np, "reg", &l);
500 if (rp != 0 && l >= rpsize) {
502 adr = (struct address_range *) (*mem_start);
503 while ((l -= rpsize) >= 0) {
506 adr[i].address = rp[naddrc - 1];
507 adr[i].size = rp[naddrc + nsizec - 1];
510 rp += naddrc + nsizec;
514 (*mem_start) += i * sizeof(struct address_range);
520 static int __devinit finish_node(struct device_node *np,
521 unsigned long *mem_start,
522 interpret_func *ifunc,
523 int naddrc, int nsizec,
526 struct device_node *child;
529 /* get the device addresses and interrupts */
531 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
535 rc = finish_node_interrupts(np, mem_start, measure_only);
539 /* Look for #address-cells and #size-cells properties. */
540 ip = (int *) get_property(np, "#address-cells", NULL);
543 ip = (int *) get_property(np, "#size-cells", NULL);
547 if (!strcmp(np->name, "device-tree") || np->parent == NULL)
548 ifunc = interpret_root_props;
549 else if (np->type == 0)
551 else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
552 ifunc = interpret_pci_props;
553 else if (!strcmp(np->type, "dbdma"))
554 ifunc = interpret_dbdma_props;
555 else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
556 ifunc = interpret_macio_props;
557 else if (!strcmp(np->type, "isa"))
558 ifunc = interpret_isa_props;
559 else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
560 ifunc = interpret_root_props;
561 else if (!((ifunc == interpret_dbdma_props
562 || ifunc == interpret_macio_props)
563 && (!strcmp(np->type, "escc")
564 || !strcmp(np->type, "media-bay"))))
567 for (child = np->child; child != NULL; child = child->sibling) {
568 rc = finish_node(child, mem_start, ifunc,
569 naddrc, nsizec, measure_only);
578 * finish_device_tree is called once things are running normally
579 * (i.e. with text and data mapped to the address they were linked at).
580 * It traverses the device tree and fills in some of the additional,
581 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
582 * mapping is also initialized at this point.
584 void __init finish_device_tree(void)
586 unsigned long start, end, size = 0;
588 DBG(" -> finish_device_tree\n");
590 if (ppc64_interrupt_controller == IC_INVALID) {
591 DBG("failed to configure interrupt controller type\n");
592 panic("failed to configure interrupt controller type\n");
595 /* Initialize virtual IRQ map */
599 * Finish device-tree (pre-parsing some properties etc...)
600 * We do this in 2 passes. One with "measure_only" set, which
601 * will only measure the amount of memory needed, then we can
602 * allocate that memory, and call finish_node again. However,
603 * we must be careful as most routines will fail nowadays when
604 * prom_alloc() returns 0, so we must make sure our first pass
605 * doesn't start at 0. We pre-initialize size to 16 for that
606 * reason and then remove those additional 16 bytes
609 finish_node(allnodes, &size, NULL, 0, 0, 1);
611 end = start = (unsigned long)abs_to_virt(lmb_alloc(size, 128));
612 finish_node(allnodes, &end, NULL, 0, 0, 0);
613 BUG_ON(end != start + size);
615 DBG(" <- finish_device_tree\n");
619 #define printk udbg_printf
622 static inline char *find_flat_dt_string(u32 offset)
624 return ((char *)initial_boot_params) + initial_boot_params->off_dt_strings
629 * This function is used to scan the flattened device-tree, it is
630 * used to extract the memory informations at boot before we can
633 static int __init scan_flat_dt(int (*it)(unsigned long node,
634 const char *full_path, void *data),
637 unsigned long p = ((unsigned long)initial_boot_params) +
638 initial_boot_params->off_dt_struct;
642 u32 tag = *((u32 *)p);
646 if (tag == OF_DT_END_NODE)
648 if (tag == OF_DT_END)
650 if (tag == OF_DT_PROP) {
651 u32 sz = *((u32 *)p);
653 p = _ALIGN(p, sz >= 8 ? 8 : 4);
658 if (tag != OF_DT_BEGIN_NODE) {
659 printk(KERN_WARNING "Invalid tag %x scanning flattened"
660 " device tree !\n", tag);
664 p = _ALIGN(p + strlen(pathp) + 1, 4);
665 rc = it(p, pathp, data);
674 * This function can be used within scan_flattened_dt callback to get
675 * access to properties
677 static void* __init get_flat_dt_prop(unsigned long node, const char *name,
680 unsigned long p = node;
683 u32 tag = *((u32 *)p);
688 if (tag != OF_DT_PROP)
692 noff = *((u32 *)(p + 4));
694 p = _ALIGN(p, sz >= 8 ? 8 : 4);
696 nstr = find_flat_dt_string(noff);
698 printk(KERN_WARNING "Can't find property index name !\n");
701 if (strcmp(name, nstr) == 0) {
711 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
716 *mem = _ALIGN(*mem, align);
723 static unsigned long __init unflatten_dt_node(unsigned long mem,
725 struct device_node *dad,
726 struct device_node ***allnextpp)
728 struct device_node *np;
729 struct property *pp, **prev_pp = NULL;
734 tag = *((u32 *)(*p));
735 if (tag != OF_DT_BEGIN_NODE) {
736 printk("Weird tag at start of node: %x\n", tag);
741 l = strlen(pathp) + 1;
742 *p = _ALIGN(*p + l, 4);
744 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + l,
745 __alignof__(struct device_node));
747 memset(np, 0, sizeof(*np));
748 np->full_name = ((char*)np) + sizeof(struct device_node);
749 memcpy(np->full_name, pathp, l);
750 prev_pp = &np->properties;
752 *allnextpp = &np->allnext;
755 /* we temporarily use the `next' field as `last_child'. */
759 dad->next->sibling = np;
762 kref_init(&np->kref);
768 tag = *((u32 *)(*p));
769 if (tag != OF_DT_PROP)
773 noff = *((u32 *)((*p) + 4));
774 *p = _ALIGN((*p) + 8, sz >= 8 ? 8 : 4);
776 pname = find_flat_dt_string(noff);
778 printk("Can't find property name in list !\n");
781 l = strlen(pname) + 1;
782 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
783 __alignof__(struct property));
785 if (strcmp(pname, "linux,phandle") == 0) {
786 np->node = *((u32 *)*p);
787 if (np->linux_phandle == 0)
788 np->linux_phandle = np->node;
790 if (strcmp(pname, "ibm,phandle") == 0)
791 np->linux_phandle = *((u32 *)*p);
794 pp->value = (void *)*p;
798 *p = _ALIGN((*p) + sz, 4);
802 np->name = get_property(np, "name", NULL);
803 np->type = get_property(np, "device_type", NULL);
810 while (tag == OF_DT_BEGIN_NODE) {
811 mem = unflatten_dt_node(mem, p, np, allnextpp);
812 tag = *((u32 *)(*p));
814 if (tag != OF_DT_END_NODE) {
815 printk("Weird tag at start of node: %x\n", tag);
824 * unflattens the device-tree passed by the firmware, creating the
825 * tree of struct device_node. It also fills the "name" and "type"
826 * pointers of the nodes so the normal device-tree walking functions
827 * can be used (this used to be done by finish_device_tree)
829 void __init unflatten_device_tree(void)
831 unsigned long start, mem, size;
832 struct device_node **allnextp = &allnodes;
836 DBG(" -> unflatten_device_tree()\n");
838 /* First pass, scan for size */
839 start = ((unsigned long)initial_boot_params) +
840 initial_boot_params->off_dt_struct;
841 size = unflatten_dt_node(0, &start, NULL, NULL);
843 DBG(" size is %lx, allocating...\n", size);
845 /* Allocate memory for the expanded device tree */
846 mem = (unsigned long)abs_to_virt(lmb_alloc(size,
847 __alignof__(struct device_node)));
848 DBG(" unflattening...\n", mem);
850 /* Second pass, do actual unflattening */
851 start = ((unsigned long)initial_boot_params) +
852 initial_boot_params->off_dt_struct;
853 unflatten_dt_node(mem, &start, NULL, &allnextp);
854 if (*((u32 *)start) != OF_DT_END)
855 printk(KERN_WARNING "Weird tag at end of tree: %x\n", *((u32 *)start));
858 /* Get pointer to OF "/chosen" node for use everywhere */
859 of_chosen = of_find_node_by_path("/chosen");
861 /* Retreive command line */
862 if (of_chosen != NULL) {
863 p = (char *)get_property(of_chosen, "bootargs", &l);
864 if (p != NULL && l > 0)
865 strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
867 #ifdef CONFIG_CMDLINE
868 if (l == 0 || (l == 1 && (*p) == 0))
869 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
870 #endif /* CONFIG_CMDLINE */
872 DBG("Command line is: %s\n", cmd_line);
874 DBG(" <- unflatten_device_tree()\n");
878 static int __init early_init_dt_scan_cpus(unsigned long node,
879 const char *full_path, void *data)
881 char *type = get_flat_dt_prop(node, "device_type", NULL);
884 /* We are scanning "cpu" nodes only */
885 if (type == NULL || strcmp(type, "cpu") != 0)
888 /* On LPAR, look for the first ibm,pft-size property for the hash table size
890 if (systemcfg->platform == PLATFORM_PSERIES_LPAR && ppc64_pft_size == 0) {
892 pft_size = (u32 *)get_flat_dt_prop(node, "ibm,pft-size", NULL);
893 if (pft_size != NULL) {
894 /* pft_size[0] is the NUMA CEC cookie */
895 ppc64_pft_size = pft_size[1];
899 if (initial_boot_params && initial_boot_params->version >= 2) {
900 /* version 2 of the kexec param format adds the phys cpuid
903 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
906 /* Check if it's the boot-cpu, set it's hw index in paca now */
907 if (get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) {
908 u32 *prop = get_flat_dt_prop(node, "reg", NULL);
909 set_hard_smp_processor_id(0, prop == NULL ? 0 : *prop);
910 boot_cpuid_phys = get_hard_smp_processor_id(0);
914 /* Check if we have a VMX and eventually update CPU features */
915 prop = (u32 *)get_flat_dt_prop(node, "ibm,vmx", NULL);
916 if (prop && (*prop) > 0) {
917 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
918 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
921 /* Same goes for Apple's "altivec" property */
922 prop = (u32 *)get_flat_dt_prop(node, "altivec", NULL);
924 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
925 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
931 static int __init early_init_dt_scan_chosen(unsigned long node,
932 const char *full_path, void *data)
936 extern unsigned long memory_limit, tce_alloc_start, tce_alloc_end;
938 if (strcmp(full_path, "/chosen") != 0)
941 /* get platform type */
942 prop = (u32 *)get_flat_dt_prop(node, "linux,platform", NULL);
945 systemcfg->platform = *prop;
947 /* check if iommu is forced on or off */
948 if (get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
950 if (get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
953 prop64 = (u64*)get_flat_dt_prop(node, "linux,memory-limit", NULL);
955 memory_limit = *prop64;
957 prop64 = (u64*)get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
959 tce_alloc_start = *prop64;
961 prop64 = (u64*)get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
963 tce_alloc_end = *prop64;
965 #ifdef CONFIG_PPC_RTAS
966 /* To help early debugging via the front panel, we retreive a minimal
967 * set of RTAS infos now if available
972 basep = (u64*)get_flat_dt_prop(node, "linux,rtas-base", NULL);
973 entryp = (u64*)get_flat_dt_prop(node, "linux,rtas-entry", NULL);
974 prop = (u32*)get_flat_dt_prop(node, "linux,rtas-size", NULL);
975 if (basep && entryp && prop) {
977 rtas.entry = *entryp;
981 #endif /* CONFIG_PPC_RTAS */
987 static int __init early_init_dt_scan_root(unsigned long node,
988 const char *full_path, void *data)
992 if (strcmp(full_path, "/") != 0)
995 prop = (u32 *)get_flat_dt_prop(node, "#size-cells", NULL);
996 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
998 prop = (u32 *)get_flat_dt_prop(node, "#address-cells", NULL);
999 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1005 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1008 unsigned long r = 0;
1010 /* Ignore more than 2 cells */
1026 static int __init early_init_dt_scan_memory(unsigned long node,
1027 const char *full_path, void *data)
1029 char *type = get_flat_dt_prop(node, "device_type", NULL);
1033 /* We are scanning "memory" nodes only */
1034 if (type == NULL || strcmp(type, "memory") != 0)
1037 reg = (cell_t *)get_flat_dt_prop(node, "reg", &l);
1041 endp = reg + (l / sizeof(cell_t));
1043 DBG("memory scan node %s ...\n", full_path);
1044 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1045 unsigned long base, size;
1047 base = dt_mem_next_cell(dt_root_addr_cells, ®);
1048 size = dt_mem_next_cell(dt_root_size_cells, ®);
1052 DBG(" - %lx , %lx\n", base, size);
1054 if (base >= 0x80000000ul)
1056 if ((base + size) > 0x80000000ul)
1057 size = 0x80000000ul - base;
1059 lmb_add(base, size);
1064 static void __init early_reserve_mem(void)
1067 u64 *reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
1068 initial_boot_params->off_mem_rsvmap);
1070 base = *(reserve_map++);
1071 size = *(reserve_map++);
1074 DBG("reserving: %lx -> %lx\n", base, size);
1075 lmb_reserve(base, size);
1079 DBG("memory reserved, lmbs :\n");
1084 void __init early_init_devtree(void *params)
1086 DBG(" -> early_init_devtree()\n");
1088 /* Setup flat device-tree pointer */
1089 initial_boot_params = params;
1091 /* By default, hash size is not set */
1094 /* Retreive various informations from the /chosen node of the
1095 * device-tree, including the platform type, initrd location and
1096 * size, TCE reserve, and more ...
1098 scan_flat_dt(early_init_dt_scan_chosen, NULL);
1100 /* Scan memory nodes and rebuild LMBs */
1102 scan_flat_dt(early_init_dt_scan_root, NULL);
1103 scan_flat_dt(early_init_dt_scan_memory, NULL);
1104 lmb_enforce_memory_limit();
1106 systemcfg->physicalMemorySize = lmb_phys_mem_size();
1107 lmb_reserve(0, __pa(klimit));
1109 DBG("Phys. mem: %lx\n", systemcfg->physicalMemorySize);
1111 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1112 early_reserve_mem();
1114 DBG("Scanning CPUs ...\n");
1116 /* Retreive hash table size from flattened tree plus other
1117 * CPU related informations (altivec support, boot CPU ID, ...)
1119 scan_flat_dt(early_init_dt_scan_cpus, NULL);
1121 /* If hash size wasn't obtained above, we calculate it now based on
1122 * the total RAM size
1124 if (ppc64_pft_size == 0) {
1125 unsigned long rnd_mem_size, pteg_count;
1127 /* round mem_size up to next power of 2 */
1128 rnd_mem_size = 1UL << __ilog2(systemcfg->physicalMemorySize);
1129 if (rnd_mem_size < systemcfg->physicalMemorySize)
1133 pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11);
1135 ppc64_pft_size = __ilog2(pteg_count << 7);
1138 DBG("Hash pftSize: %x\n", (int)ppc64_pft_size);
1139 DBG(" <- early_init_devtree()\n");
1145 prom_n_addr_cells(struct device_node* np)
1151 ip = (int *) get_property(np, "#address-cells", NULL);
1154 } while (np->parent);
1155 /* No #address-cells property for the root node, default to 1 */
1160 prom_n_size_cells(struct device_node* np)
1166 ip = (int *) get_property(np, "#size-cells", NULL);
1169 } while (np->parent);
1170 /* No #size-cells property for the root node, default to 1 */
1175 * Work out the sense (active-low level / active-high edge)
1176 * of each interrupt from the device tree.
1178 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1180 struct device_node *np;
1183 /* default to level-triggered */
1184 memset(senses, 1, max - off);
1186 for (np = allnodes; np != 0; np = np->allnext) {
1187 for (j = 0; j < np->n_intrs; j++) {
1188 i = np->intrs[j].line;
1189 if (i >= off && i < max)
1190 senses[i-off] = np->intrs[j].sense ?
1191 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE :
1192 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE;
1198 * Construct and return a list of the device_nodes with a given name.
1200 struct device_node *
1201 find_devices(const char *name)
1203 struct device_node *head, **prevp, *np;
1206 for (np = allnodes; np != 0; np = np->allnext) {
1207 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1215 EXPORT_SYMBOL(find_devices);
1218 * Construct and return a list of the device_nodes with a given type.
1220 struct device_node *
1221 find_type_devices(const char *type)
1223 struct device_node *head, **prevp, *np;
1226 for (np = allnodes; np != 0; np = np->allnext) {
1227 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1235 EXPORT_SYMBOL(find_type_devices);
1238 * Returns all nodes linked together
1240 struct device_node *
1241 find_all_nodes(void)
1243 struct device_node *head, **prevp, *np;
1246 for (np = allnodes; np != 0; np = np->allnext) {
1253 EXPORT_SYMBOL(find_all_nodes);
1255 /** Checks if the given "compat" string matches one of the strings in
1256 * the device's "compatible" property
1259 device_is_compatible(struct device_node *device, const char *compat)
1264 cp = (char *) get_property(device, "compatible", &cplen);
1268 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1277 EXPORT_SYMBOL(device_is_compatible);
1281 * Indicates whether the root node has a given value in its
1282 * compatible property.
1285 machine_is_compatible(const char *compat)
1287 struct device_node *root;
1290 root = of_find_node_by_path("/");
1292 rc = device_is_compatible(root, compat);
1297 EXPORT_SYMBOL(machine_is_compatible);
1300 * Construct and return a list of the device_nodes with a given type
1301 * and compatible property.
1303 struct device_node *
1304 find_compatible_devices(const char *type, const char *compat)
1306 struct device_node *head, **prevp, *np;
1309 for (np = allnodes; np != 0; np = np->allnext) {
1311 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1313 if (device_is_compatible(np, compat)) {
1321 EXPORT_SYMBOL(find_compatible_devices);
1324 * Find the device_node with a given full_name.
1326 struct device_node *
1327 find_path_device(const char *path)
1329 struct device_node *np;
1331 for (np = allnodes; np != 0; np = np->allnext)
1332 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1336 EXPORT_SYMBOL(find_path_device);
1340 * New implementation of the OF "find" APIs, return a refcounted
1341 * object, call of_node_put() when done. The device tree and list
1342 * are protected by a rw_lock.
1344 * Note that property management will need some locking as well,
1345 * this isn't dealt with yet.
1350 * of_find_node_by_name - Find a node by its "name" property
1351 * @from: The node to start searching from or NULL, the node
1352 * you pass will not be searched, only the next one
1353 * will; typically, you pass what the previous call
1354 * returned. of_node_put() will be called on it
1355 * @name: The name string to match against
1357 * Returns a node pointer with refcount incremented, use
1358 * of_node_put() on it when done.
1360 struct device_node *of_find_node_by_name(struct device_node *from,
1363 struct device_node *np;
1365 read_lock(&devtree_lock);
1366 np = from ? from->allnext : allnodes;
1367 for (; np != 0; np = np->allnext)
1368 if (np->name != 0 && strcasecmp(np->name, name) == 0
1373 read_unlock(&devtree_lock);
1376 EXPORT_SYMBOL(of_find_node_by_name);
1379 * of_find_node_by_type - Find a node by its "device_type" property
1380 * @from: The node to start searching from or NULL, the node
1381 * you pass will not be searched, only the next one
1382 * will; typically, you pass what the previous call
1383 * returned. of_node_put() will be called on it
1384 * @name: The type string to match against
1386 * Returns a node pointer with refcount incremented, use
1387 * of_node_put() on it when done.
1389 struct device_node *of_find_node_by_type(struct device_node *from,
1392 struct device_node *np;
1394 read_lock(&devtree_lock);
1395 np = from ? from->allnext : allnodes;
1396 for (; np != 0; np = np->allnext)
1397 if (np->type != 0 && strcasecmp(np->type, type) == 0
1402 read_unlock(&devtree_lock);
1405 EXPORT_SYMBOL(of_find_node_by_type);
1408 * of_find_compatible_node - Find a node based on type and one of the
1409 * tokens in its "compatible" property
1410 * @from: The node to start searching from or NULL, the node
1411 * you pass will not be searched, only the next one
1412 * will; typically, you pass what the previous call
1413 * returned. of_node_put() will be called on it
1414 * @type: The type string to match "device_type" or NULL to ignore
1415 * @compatible: The string to match to one of the tokens in the device
1416 * "compatible" list.
1418 * Returns a node pointer with refcount incremented, use
1419 * of_node_put() on it when done.
1421 struct device_node *of_find_compatible_node(struct device_node *from,
1422 const char *type, const char *compatible)
1424 struct device_node *np;
1426 read_lock(&devtree_lock);
1427 np = from ? from->allnext : allnodes;
1428 for (; np != 0; np = np->allnext) {
1430 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1432 if (device_is_compatible(np, compatible) && of_node_get(np))
1437 read_unlock(&devtree_lock);
1440 EXPORT_SYMBOL(of_find_compatible_node);
1443 * of_find_node_by_path - Find a node matching a full OF path
1444 * @path: The full path to match
1446 * Returns a node pointer with refcount incremented, use
1447 * of_node_put() on it when done.
1449 struct device_node *of_find_node_by_path(const char *path)
1451 struct device_node *np = allnodes;
1453 read_lock(&devtree_lock);
1454 for (; np != 0; np = np->allnext)
1455 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1458 read_unlock(&devtree_lock);
1461 EXPORT_SYMBOL(of_find_node_by_path);
1464 * of_find_node_by_phandle - Find a node given a phandle
1465 * @handle: phandle of the node to find
1467 * Returns a node pointer with refcount incremented, use
1468 * of_node_put() on it when done.
1470 struct device_node *of_find_node_by_phandle(phandle handle)
1472 struct device_node *np;
1474 read_lock(&devtree_lock);
1475 for (np = allnodes; np != 0; np = np->allnext)
1476 if (np->linux_phandle == handle)
1480 read_unlock(&devtree_lock);
1483 EXPORT_SYMBOL(of_find_node_by_phandle);
1486 * of_find_all_nodes - Get next node in global list
1487 * @prev: Previous node or NULL to start iteration
1488 * of_node_put() will be called on it
1490 * Returns a node pointer with refcount incremented, use
1491 * of_node_put() on it when done.
1493 struct device_node *of_find_all_nodes(struct device_node *prev)
1495 struct device_node *np;
1497 read_lock(&devtree_lock);
1498 np = prev ? prev->allnext : allnodes;
1499 for (; np != 0; np = np->allnext)
1500 if (of_node_get(np))
1504 read_unlock(&devtree_lock);
1507 EXPORT_SYMBOL(of_find_all_nodes);
1510 * of_get_parent - Get a node's parent if any
1511 * @node: Node to get parent
1513 * Returns a node pointer with refcount incremented, use
1514 * of_node_put() on it when done.
1516 struct device_node *of_get_parent(const struct device_node *node)
1518 struct device_node *np;
1523 read_lock(&devtree_lock);
1524 np = of_node_get(node->parent);
1525 read_unlock(&devtree_lock);
1528 EXPORT_SYMBOL(of_get_parent);
1531 * of_get_next_child - Iterate a node childs
1532 * @node: parent node
1533 * @prev: previous child of the parent node, or NULL to get first
1535 * Returns a node pointer with refcount incremented, use
1536 * of_node_put() on it when done.
1538 struct device_node *of_get_next_child(const struct device_node *node,
1539 struct device_node *prev)
1541 struct device_node *next;
1543 read_lock(&devtree_lock);
1544 next = prev ? prev->sibling : node->child;
1545 for (; next != 0; next = next->sibling)
1546 if (of_node_get(next))
1550 read_unlock(&devtree_lock);
1553 EXPORT_SYMBOL(of_get_next_child);
1556 * of_node_get - Increment refcount of a node
1557 * @node: Node to inc refcount, NULL is supported to
1558 * simplify writing of callers
1562 struct device_node *of_node_get(struct device_node *node)
1565 kref_get(&node->kref);
1568 EXPORT_SYMBOL(of_node_get);
1570 static inline struct device_node * kref_to_device_node(struct kref *kref)
1572 return container_of(kref, struct device_node, kref);
1576 * of_node_release - release a dynamically allocated node
1577 * @kref: kref element of the node to be released
1579 * In of_node_put() this function is passed to kref_put()
1580 * as the destructor.
1582 static void of_node_release(struct kref *kref)
1584 struct device_node *node = kref_to_device_node(kref);
1585 struct property *prop = node->properties;
1587 if (!OF_IS_DYNAMIC(node))
1590 struct property *next = prop->next;
1598 kfree(node->full_name);
1603 * of_node_put - Decrement refcount of a node
1604 * @node: Node to dec refcount, NULL is supported to
1605 * simplify writing of callers
1608 void of_node_put(struct device_node *node)
1611 kref_put(&node->kref, of_node_release);
1613 EXPORT_SYMBOL(of_node_put);
1616 * Fix up the uninitialized fields in a new device node:
1617 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1619 * A lot of boot-time code is duplicated here, because functions such
1620 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1623 * This should probably be split up into smaller chunks.
1626 static int of_finish_dynamic_node(struct device_node *node,
1627 unsigned long *unused1, int unused2,
1628 int unused3, int unused4)
1630 struct device_node *parent = of_get_parent(node);
1632 phandle *ibm_phandle;
1634 node->name = get_property(node, "name", NULL);
1635 node->type = get_property(node, "device_type", NULL);
1642 /* We don't support that function on PowerMac, at least
1645 if (systemcfg->platform == PLATFORM_POWERMAC)
1648 /* fix up new node's linux_phandle field */
1649 if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1650 node->linux_phandle = *ibm_phandle;
1653 of_node_put(parent);
1658 * Plug a device node into the tree and global list.
1660 void of_attach_node(struct device_node *np)
1662 write_lock(&devtree_lock);
1663 np->sibling = np->parent->child;
1664 np->allnext = allnodes;
1665 np->parent->child = np;
1667 write_unlock(&devtree_lock);
1671 * "Unplug" a node from the device tree. The caller must hold
1672 * a reference to the node. The memory associated with the node
1673 * is not freed until its refcount goes to zero.
1675 void of_detach_node(const struct device_node *np)
1677 struct device_node *parent;
1679 write_lock(&devtree_lock);
1681 parent = np->parent;
1684 allnodes = np->allnext;
1686 struct device_node *prev;
1687 for (prev = allnodes;
1688 prev->allnext != np;
1689 prev = prev->allnext)
1691 prev->allnext = np->allnext;
1694 if (parent->child == np)
1695 parent->child = np->sibling;
1697 struct device_node *prevsib;
1698 for (prevsib = np->parent->child;
1699 prevsib->sibling != np;
1700 prevsib = prevsib->sibling)
1702 prevsib->sibling = np->sibling;
1705 write_unlock(&devtree_lock);
1708 static int prom_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *node)
1713 case PSERIES_RECONFIG_ADD:
1714 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1716 printk(KERN_ERR "finish_node returned %d\n", err);
1727 static struct notifier_block prom_reconfig_nb = {
1728 .notifier_call = prom_reconfig_notifier,
1729 .priority = 10, /* This one needs to run first */
1732 static int __init prom_reconfig_setup(void)
1734 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1736 __initcall(prom_reconfig_setup);
1739 * Find a property with a given name for a given node
1740 * and return the value.
1743 get_property(struct device_node *np, const char *name, int *lenp)
1745 struct property *pp;
1747 for (pp = np->properties; pp != 0; pp = pp->next)
1748 if (strcmp(pp->name, name) == 0) {
1755 EXPORT_SYMBOL(get_property);
1758 * Add a property to a node
1761 prom_add_property(struct device_node* np, struct property* prop)
1763 struct property **next = &np->properties;
1767 next = &(*next)->next;
1773 print_properties(struct device_node *np)
1775 struct property *pp;
1779 for (pp = np->properties; pp != 0; pp = pp->next) {
1780 printk(KERN_INFO "%s", pp->name);
1781 for (i = strlen(pp->name); i < 16; ++i)
1783 cp = (char *) pp->value;
1784 for (i = pp->length; i > 0; --i, ++cp)
1785 if ((i > 1 && (*cp < 0x20 || *cp > 0x7e))
1786 || (i == 1 && *cp != 0))
1788 if (i == 0 && pp->length > 1) {
1789 /* looks like a string */
1790 printk(" %s\n", (char *) pp->value);
1792 /* dump it in hex */
1796 if (pp->length % 4 == 0) {
1797 unsigned int *p = (unsigned int *) pp->value;
1800 for (i = 0; i < n; ++i) {
1801 if (i != 0 && (i % 4) == 0)
1803 printk(" %08x", *p++);
1806 unsigned char *bp = pp->value;
1808 for (i = 0; i < n; ++i) {
1809 if (i != 0 && (i % 16) == 0)
1811 printk(" %02x", *bp++);
1815 if (pp->length > 64)
1816 printk(" ... (length = %d)\n",