[PATCH 2/2] ocfs2: cluster aware flock()
[linux-2.6] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30
31 #define MLOG_MASK_PREFIX ML_FILE_IO
32 #include <cluster/masklog.h>
33
34 #include "ocfs2.h"
35
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46
47 #include "buffer_head_io.h"
48
49 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
50                                    struct buffer_head *bh_result, int create)
51 {
52         int err = -EIO;
53         int status;
54         struct ocfs2_dinode *fe = NULL;
55         struct buffer_head *bh = NULL;
56         struct buffer_head *buffer_cache_bh = NULL;
57         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58         void *kaddr;
59
60         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
61                    (unsigned long long)iblock, bh_result, create);
62
63         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64
65         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
66                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
67                      (unsigned long long)iblock);
68                 goto bail;
69         }
70
71         status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
72                                   OCFS2_I(inode)->ip_blkno,
73                                   &bh, OCFS2_BH_CACHED, inode);
74         if (status < 0) {
75                 mlog_errno(status);
76                 goto bail;
77         }
78         fe = (struct ocfs2_dinode *) bh->b_data;
79
80         if (!OCFS2_IS_VALID_DINODE(fe)) {
81                 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
82                      (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
83                      fe->i_signature);
84                 goto bail;
85         }
86
87         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
88                                                     le32_to_cpu(fe->i_clusters))) {
89                 mlog(ML_ERROR, "block offset is outside the allocated size: "
90                      "%llu\n", (unsigned long long)iblock);
91                 goto bail;
92         }
93
94         /* We don't use the page cache to create symlink data, so if
95          * need be, copy it over from the buffer cache. */
96         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98                             iblock;
99                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100                 if (!buffer_cache_bh) {
101                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
102                         goto bail;
103                 }
104
105                 /* we haven't locked out transactions, so a commit
106                  * could've happened. Since we've got a reference on
107                  * the bh, even if it commits while we're doing the
108                  * copy, the data is still good. */
109                 if (buffer_jbd(buffer_cache_bh)
110                     && ocfs2_inode_is_new(inode)) {
111                         kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
112                         if (!kaddr) {
113                                 mlog(ML_ERROR, "couldn't kmap!\n");
114                                 goto bail;
115                         }
116                         memcpy(kaddr + (bh_result->b_size * iblock),
117                                buffer_cache_bh->b_data,
118                                bh_result->b_size);
119                         kunmap_atomic(kaddr, KM_USER0);
120                         set_buffer_uptodate(bh_result);
121                 }
122                 brelse(buffer_cache_bh);
123         }
124
125         map_bh(bh_result, inode->i_sb,
126                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
127
128         err = 0;
129
130 bail:
131         if (bh)
132                 brelse(bh);
133
134         mlog_exit(err);
135         return err;
136 }
137
138 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
139                            struct buffer_head *bh_result, int create)
140 {
141         int err = 0;
142         unsigned int ext_flags;
143         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
144         u64 p_blkno, count, past_eof;
145         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
146
147         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
148                    (unsigned long long)iblock, bh_result, create);
149
150         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
151                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
152                      inode, inode->i_ino);
153
154         if (S_ISLNK(inode->i_mode)) {
155                 /* this always does I/O for some reason. */
156                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
157                 goto bail;
158         }
159
160         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
161                                           &ext_flags);
162         if (err) {
163                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
164                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
165                      (unsigned long long)p_blkno);
166                 goto bail;
167         }
168
169         if (max_blocks < count)
170                 count = max_blocks;
171
172         /*
173          * ocfs2 never allocates in this function - the only time we
174          * need to use BH_New is when we're extending i_size on a file
175          * system which doesn't support holes, in which case BH_New
176          * allows block_prepare_write() to zero.
177          */
178         mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
179                         "ino %lu, iblock %llu\n", inode->i_ino,
180                         (unsigned long long)iblock);
181
182         /* Treat the unwritten extent as a hole for zeroing purposes. */
183         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
184                 map_bh(bh_result, inode->i_sb, p_blkno);
185
186         bh_result->b_size = count << inode->i_blkbits;
187
188         if (!ocfs2_sparse_alloc(osb)) {
189                 if (p_blkno == 0) {
190                         err = -EIO;
191                         mlog(ML_ERROR,
192                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
193                              (unsigned long long)iblock,
194                              (unsigned long long)p_blkno,
195                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
196                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
197                         dump_stack();
198                 }
199
200                 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
201                 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
202                      (unsigned long long)past_eof);
203
204                 if (create && (iblock >= past_eof))
205                         set_buffer_new(bh_result);
206         }
207
208 bail:
209         if (err < 0)
210                 err = -EIO;
211
212         mlog_exit(err);
213         return err;
214 }
215
216 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
217                            struct buffer_head *di_bh)
218 {
219         void *kaddr;
220         unsigned int size;
221         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
222
223         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
224                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
225                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
226                 return -EROFS;
227         }
228
229         size = i_size_read(inode);
230
231         if (size > PAGE_CACHE_SIZE ||
232             size > ocfs2_max_inline_data(inode->i_sb)) {
233                 ocfs2_error(inode->i_sb,
234                             "Inode %llu has with inline data has bad size: %u",
235                             (unsigned long long)OCFS2_I(inode)->ip_blkno, size);
236                 return -EROFS;
237         }
238
239         kaddr = kmap_atomic(page, KM_USER0);
240         if (size)
241                 memcpy(kaddr, di->id2.i_data.id_data, size);
242         /* Clear the remaining part of the page */
243         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244         flush_dcache_page(page);
245         kunmap_atomic(kaddr, KM_USER0);
246
247         SetPageUptodate(page);
248
249         return 0;
250 }
251
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253 {
254         int ret;
255         struct buffer_head *di_bh = NULL;
256         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
257
258         BUG_ON(!PageLocked(page));
259         BUG_ON(!OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
260
261         ret = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &di_bh,
262                                OCFS2_BH_CACHED, inode);
263         if (ret) {
264                 mlog_errno(ret);
265                 goto out;
266         }
267
268         ret = ocfs2_read_inline_data(inode, page, di_bh);
269 out:
270         unlock_page(page);
271
272         brelse(di_bh);
273         return ret;
274 }
275
276 static int ocfs2_readpage(struct file *file, struct page *page)
277 {
278         struct inode *inode = page->mapping->host;
279         struct ocfs2_inode_info *oi = OCFS2_I(inode);
280         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
281         int ret, unlock = 1;
282
283         mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
284
285         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
286         if (ret != 0) {
287                 if (ret == AOP_TRUNCATED_PAGE)
288                         unlock = 0;
289                 mlog_errno(ret);
290                 goto out;
291         }
292
293         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
294                 ret = AOP_TRUNCATED_PAGE;
295                 goto out_inode_unlock;
296         }
297
298         /*
299          * i_size might have just been updated as we grabed the meta lock.  We
300          * might now be discovering a truncate that hit on another node.
301          * block_read_full_page->get_block freaks out if it is asked to read
302          * beyond the end of a file, so we check here.  Callers
303          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
304          * and notice that the page they just read isn't needed.
305          *
306          * XXX sys_readahead() seems to get that wrong?
307          */
308         if (start >= i_size_read(inode)) {
309                 zero_user_page(page, 0, PAGE_SIZE, KM_USER0);
310                 SetPageUptodate(page);
311                 ret = 0;
312                 goto out_alloc;
313         }
314
315         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
316                 ret = ocfs2_readpage_inline(inode, page);
317         else
318                 ret = block_read_full_page(page, ocfs2_get_block);
319         unlock = 0;
320
321 out_alloc:
322         up_read(&OCFS2_I(inode)->ip_alloc_sem);
323 out_inode_unlock:
324         ocfs2_inode_unlock(inode, 0);
325 out:
326         if (unlock)
327                 unlock_page(page);
328         mlog_exit(ret);
329         return ret;
330 }
331
332 /*
333  * This is used only for read-ahead. Failures or difficult to handle
334  * situations are safe to ignore.
335  *
336  * Right now, we don't bother with BH_Boundary - in-inode extent lists
337  * are quite large (243 extents on 4k blocks), so most inodes don't
338  * grow out to a tree. If need be, detecting boundary extents could
339  * trivially be added in a future version of ocfs2_get_block().
340  */
341 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
342                            struct list_head *pages, unsigned nr_pages)
343 {
344         int ret, err = -EIO;
345         struct inode *inode = mapping->host;
346         struct ocfs2_inode_info *oi = OCFS2_I(inode);
347         loff_t start;
348         struct page *last;
349
350         /*
351          * Use the nonblocking flag for the dlm code to avoid page
352          * lock inversion, but don't bother with retrying.
353          */
354         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
355         if (ret)
356                 return err;
357
358         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
359                 ocfs2_inode_unlock(inode, 0);
360                 return err;
361         }
362
363         /*
364          * Don't bother with inline-data. There isn't anything
365          * to read-ahead in that case anyway...
366          */
367         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
368                 goto out_unlock;
369
370         /*
371          * Check whether a remote node truncated this file - we just
372          * drop out in that case as it's not worth handling here.
373          */
374         last = list_entry(pages->prev, struct page, lru);
375         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
376         if (start >= i_size_read(inode))
377                 goto out_unlock;
378
379         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
380
381 out_unlock:
382         up_read(&oi->ip_alloc_sem);
383         ocfs2_inode_unlock(inode, 0);
384
385         return err;
386 }
387
388 /* Note: Because we don't support holes, our allocation has
389  * already happened (allocation writes zeros to the file data)
390  * so we don't have to worry about ordered writes in
391  * ocfs2_writepage.
392  *
393  * ->writepage is called during the process of invalidating the page cache
394  * during blocked lock processing.  It can't block on any cluster locks
395  * to during block mapping.  It's relying on the fact that the block
396  * mapping can't have disappeared under the dirty pages that it is
397  * being asked to write back.
398  */
399 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
400 {
401         int ret;
402
403         mlog_entry("(0x%p)\n", page);
404
405         ret = block_write_full_page(page, ocfs2_get_block, wbc);
406
407         mlog_exit(ret);
408
409         return ret;
410 }
411
412 /*
413  * This is called from ocfs2_write_zero_page() which has handled it's
414  * own cluster locking and has ensured allocation exists for those
415  * blocks to be written.
416  */
417 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
418                                unsigned from, unsigned to)
419 {
420         int ret;
421
422         ret = block_prepare_write(page, from, to, ocfs2_get_block);
423
424         return ret;
425 }
426
427 /* Taken from ext3. We don't necessarily need the full blown
428  * functionality yet, but IMHO it's better to cut and paste the whole
429  * thing so we can avoid introducing our own bugs (and easily pick up
430  * their fixes when they happen) --Mark */
431 int walk_page_buffers(  handle_t *handle,
432                         struct buffer_head *head,
433                         unsigned from,
434                         unsigned to,
435                         int *partial,
436                         int (*fn)(      handle_t *handle,
437                                         struct buffer_head *bh))
438 {
439         struct buffer_head *bh;
440         unsigned block_start, block_end;
441         unsigned blocksize = head->b_size;
442         int err, ret = 0;
443         struct buffer_head *next;
444
445         for (   bh = head, block_start = 0;
446                 ret == 0 && (bh != head || !block_start);
447                 block_start = block_end, bh = next)
448         {
449                 next = bh->b_this_page;
450                 block_end = block_start + blocksize;
451                 if (block_end <= from || block_start >= to) {
452                         if (partial && !buffer_uptodate(bh))
453                                 *partial = 1;
454                         continue;
455                 }
456                 err = (*fn)(handle, bh);
457                 if (!ret)
458                         ret = err;
459         }
460         return ret;
461 }
462
463 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
464                                                          struct page *page,
465                                                          unsigned from,
466                                                          unsigned to)
467 {
468         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
469         handle_t *handle = NULL;
470         int ret = 0;
471
472         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
473         if (!handle) {
474                 ret = -ENOMEM;
475                 mlog_errno(ret);
476                 goto out;
477         }
478
479         if (ocfs2_should_order_data(inode)) {
480                 ret = walk_page_buffers(handle,
481                                         page_buffers(page),
482                                         from, to, NULL,
483                                         ocfs2_journal_dirty_data);
484                 if (ret < 0) 
485                         mlog_errno(ret);
486         }
487 out:
488         if (ret) {
489                 if (handle)
490                         ocfs2_commit_trans(osb, handle);
491                 handle = ERR_PTR(ret);
492         }
493         return handle;
494 }
495
496 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
497 {
498         sector_t status;
499         u64 p_blkno = 0;
500         int err = 0;
501         struct inode *inode = mapping->host;
502
503         mlog_entry("(block = %llu)\n", (unsigned long long)block);
504
505         /* We don't need to lock journal system files, since they aren't
506          * accessed concurrently from multiple nodes.
507          */
508         if (!INODE_JOURNAL(inode)) {
509                 err = ocfs2_inode_lock(inode, NULL, 0);
510                 if (err) {
511                         if (err != -ENOENT)
512                                 mlog_errno(err);
513                         goto bail;
514                 }
515                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
516         }
517
518         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
519                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
520                                                   NULL);
521
522         if (!INODE_JOURNAL(inode)) {
523                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
524                 ocfs2_inode_unlock(inode, 0);
525         }
526
527         if (err) {
528                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
529                      (unsigned long long)block);
530                 mlog_errno(err);
531                 goto bail;
532         }
533
534 bail:
535         status = err ? 0 : p_blkno;
536
537         mlog_exit((int)status);
538
539         return status;
540 }
541
542 /*
543  * TODO: Make this into a generic get_blocks function.
544  *
545  * From do_direct_io in direct-io.c:
546  *  "So what we do is to permit the ->get_blocks function to populate
547  *   bh.b_size with the size of IO which is permitted at this offset and
548  *   this i_blkbits."
549  *
550  * This function is called directly from get_more_blocks in direct-io.c.
551  *
552  * called like this: dio->get_blocks(dio->inode, fs_startblk,
553  *                                      fs_count, map_bh, dio->rw == WRITE);
554  */
555 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
556                                      struct buffer_head *bh_result, int create)
557 {
558         int ret;
559         u64 p_blkno, inode_blocks, contig_blocks;
560         unsigned int ext_flags;
561         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
562         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
563
564         /* This function won't even be called if the request isn't all
565          * nicely aligned and of the right size, so there's no need
566          * for us to check any of that. */
567
568         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
569
570         /*
571          * Any write past EOF is not allowed because we'd be extending.
572          */
573         if (create && (iblock + max_blocks) > inode_blocks) {
574                 ret = -EIO;
575                 goto bail;
576         }
577
578         /* This figures out the size of the next contiguous block, and
579          * our logical offset */
580         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
581                                           &contig_blocks, &ext_flags);
582         if (ret) {
583                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
584                      (unsigned long long)iblock);
585                 ret = -EIO;
586                 goto bail;
587         }
588
589         if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
590                 ocfs2_error(inode->i_sb,
591                             "Inode %llu has a hole at block %llu\n",
592                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
593                             (unsigned long long)iblock);
594                 ret = -EROFS;
595                 goto bail;
596         }
597
598         /*
599          * get_more_blocks() expects us to describe a hole by clearing
600          * the mapped bit on bh_result().
601          *
602          * Consider an unwritten extent as a hole.
603          */
604         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
605                 map_bh(bh_result, inode->i_sb, p_blkno);
606         else {
607                 /*
608                  * ocfs2_prepare_inode_for_write() should have caught
609                  * the case where we'd be filling a hole and triggered
610                  * a buffered write instead.
611                  */
612                 if (create) {
613                         ret = -EIO;
614                         mlog_errno(ret);
615                         goto bail;
616                 }
617
618                 clear_buffer_mapped(bh_result);
619         }
620
621         /* make sure we don't map more than max_blocks blocks here as
622            that's all the kernel will handle at this point. */
623         if (max_blocks < contig_blocks)
624                 contig_blocks = max_blocks;
625         bh_result->b_size = contig_blocks << blocksize_bits;
626 bail:
627         return ret;
628 }
629
630 /* 
631  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
632  * particularly interested in the aio/dio case.  Like the core uses
633  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
634  * truncation on another.
635  */
636 static void ocfs2_dio_end_io(struct kiocb *iocb,
637                              loff_t offset,
638                              ssize_t bytes,
639                              void *private)
640 {
641         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
642         int level;
643
644         /* this io's submitter should not have unlocked this before we could */
645         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
646
647         ocfs2_iocb_clear_rw_locked(iocb);
648
649         level = ocfs2_iocb_rw_locked_level(iocb);
650         if (!level)
651                 up_read(&inode->i_alloc_sem);
652         ocfs2_rw_unlock(inode, level);
653 }
654
655 /*
656  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
657  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
658  * do journalled data.
659  */
660 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
661 {
662         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
663
664         journal_invalidatepage(journal, page, offset);
665 }
666
667 static int ocfs2_releasepage(struct page *page, gfp_t wait)
668 {
669         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
670
671         if (!page_has_buffers(page))
672                 return 0;
673         return journal_try_to_free_buffers(journal, page, wait);
674 }
675
676 static ssize_t ocfs2_direct_IO(int rw,
677                                struct kiocb *iocb,
678                                const struct iovec *iov,
679                                loff_t offset,
680                                unsigned long nr_segs)
681 {
682         struct file *file = iocb->ki_filp;
683         struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
684         int ret;
685
686         mlog_entry_void();
687
688         /*
689          * Fallback to buffered I/O if we see an inode without
690          * extents.
691          */
692         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
693                 return 0;
694
695         ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
696                                             inode->i_sb->s_bdev, iov, offset,
697                                             nr_segs, 
698                                             ocfs2_direct_IO_get_blocks,
699                                             ocfs2_dio_end_io);
700
701         mlog_exit(ret);
702         return ret;
703 }
704
705 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
706                                             u32 cpos,
707                                             unsigned int *start,
708                                             unsigned int *end)
709 {
710         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
711
712         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
713                 unsigned int cpp;
714
715                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
716
717                 cluster_start = cpos % cpp;
718                 cluster_start = cluster_start << osb->s_clustersize_bits;
719
720                 cluster_end = cluster_start + osb->s_clustersize;
721         }
722
723         BUG_ON(cluster_start > PAGE_SIZE);
724         BUG_ON(cluster_end > PAGE_SIZE);
725
726         if (start)
727                 *start = cluster_start;
728         if (end)
729                 *end = cluster_end;
730 }
731
732 /*
733  * 'from' and 'to' are the region in the page to avoid zeroing.
734  *
735  * If pagesize > clustersize, this function will avoid zeroing outside
736  * of the cluster boundary.
737  *
738  * from == to == 0 is code for "zero the entire cluster region"
739  */
740 static void ocfs2_clear_page_regions(struct page *page,
741                                      struct ocfs2_super *osb, u32 cpos,
742                                      unsigned from, unsigned to)
743 {
744         void *kaddr;
745         unsigned int cluster_start, cluster_end;
746
747         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
748
749         kaddr = kmap_atomic(page, KM_USER0);
750
751         if (from || to) {
752                 if (from > cluster_start)
753                         memset(kaddr + cluster_start, 0, from - cluster_start);
754                 if (to < cluster_end)
755                         memset(kaddr + to, 0, cluster_end - to);
756         } else {
757                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
758         }
759
760         kunmap_atomic(kaddr, KM_USER0);
761 }
762
763 /*
764  * Nonsparse file systems fully allocate before we get to the write
765  * code. This prevents ocfs2_write() from tagging the write as an
766  * allocating one, which means ocfs2_map_page_blocks() might try to
767  * read-in the blocks at the tail of our file. Avoid reading them by
768  * testing i_size against each block offset.
769  */
770 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
771                                  unsigned int block_start)
772 {
773         u64 offset = page_offset(page) + block_start;
774
775         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
776                 return 1;
777
778         if (i_size_read(inode) > offset)
779                 return 1;
780
781         return 0;
782 }
783
784 /*
785  * Some of this taken from block_prepare_write(). We already have our
786  * mapping by now though, and the entire write will be allocating or
787  * it won't, so not much need to use BH_New.
788  *
789  * This will also skip zeroing, which is handled externally.
790  */
791 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
792                           struct inode *inode, unsigned int from,
793                           unsigned int to, int new)
794 {
795         int ret = 0;
796         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
797         unsigned int block_end, block_start;
798         unsigned int bsize = 1 << inode->i_blkbits;
799
800         if (!page_has_buffers(page))
801                 create_empty_buffers(page, bsize, 0);
802
803         head = page_buffers(page);
804         for (bh = head, block_start = 0; bh != head || !block_start;
805              bh = bh->b_this_page, block_start += bsize) {
806                 block_end = block_start + bsize;
807
808                 clear_buffer_new(bh);
809
810                 /*
811                  * Ignore blocks outside of our i/o range -
812                  * they may belong to unallocated clusters.
813                  */
814                 if (block_start >= to || block_end <= from) {
815                         if (PageUptodate(page))
816                                 set_buffer_uptodate(bh);
817                         continue;
818                 }
819
820                 /*
821                  * For an allocating write with cluster size >= page
822                  * size, we always write the entire page.
823                  */
824                 if (new)
825                         set_buffer_new(bh);
826
827                 if (!buffer_mapped(bh)) {
828                         map_bh(bh, inode->i_sb, *p_blkno);
829                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
830                 }
831
832                 if (PageUptodate(page)) {
833                         if (!buffer_uptodate(bh))
834                                 set_buffer_uptodate(bh);
835                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
836                            !buffer_new(bh) &&
837                            ocfs2_should_read_blk(inode, page, block_start) &&
838                            (block_start < from || block_end > to)) {
839                         ll_rw_block(READ, 1, &bh);
840                         *wait_bh++=bh;
841                 }
842
843                 *p_blkno = *p_blkno + 1;
844         }
845
846         /*
847          * If we issued read requests - let them complete.
848          */
849         while(wait_bh > wait) {
850                 wait_on_buffer(*--wait_bh);
851                 if (!buffer_uptodate(*wait_bh))
852                         ret = -EIO;
853         }
854
855         if (ret == 0 || !new)
856                 return ret;
857
858         /*
859          * If we get -EIO above, zero out any newly allocated blocks
860          * to avoid exposing stale data.
861          */
862         bh = head;
863         block_start = 0;
864         do {
865                 block_end = block_start + bsize;
866                 if (block_end <= from)
867                         goto next_bh;
868                 if (block_start >= to)
869                         break;
870
871                 zero_user_page(page, block_start, bh->b_size, KM_USER0);
872                 set_buffer_uptodate(bh);
873                 mark_buffer_dirty(bh);
874
875 next_bh:
876                 block_start = block_end;
877                 bh = bh->b_this_page;
878         } while (bh != head);
879
880         return ret;
881 }
882
883 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
884 #define OCFS2_MAX_CTXT_PAGES    1
885 #else
886 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
887 #endif
888
889 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
890
891 /*
892  * Describe the state of a single cluster to be written to.
893  */
894 struct ocfs2_write_cluster_desc {
895         u32             c_cpos;
896         u32             c_phys;
897         /*
898          * Give this a unique field because c_phys eventually gets
899          * filled.
900          */
901         unsigned        c_new;
902         unsigned        c_unwritten;
903 };
904
905 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
906 {
907         return d->c_new || d->c_unwritten;
908 }
909
910 struct ocfs2_write_ctxt {
911         /* Logical cluster position / len of write */
912         u32                             w_cpos;
913         u32                             w_clen;
914
915         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
916
917         /*
918          * This is true if page_size > cluster_size.
919          *
920          * It triggers a set of special cases during write which might
921          * have to deal with allocating writes to partial pages.
922          */
923         unsigned int                    w_large_pages;
924
925         /*
926          * Pages involved in this write.
927          *
928          * w_target_page is the page being written to by the user.
929          *
930          * w_pages is an array of pages which always contains
931          * w_target_page, and in the case of an allocating write with
932          * page_size < cluster size, it will contain zero'd and mapped
933          * pages adjacent to w_target_page which need to be written
934          * out in so that future reads from that region will get
935          * zero's.
936          */
937         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
938         unsigned int                    w_num_pages;
939         struct page                     *w_target_page;
940
941         /*
942          * ocfs2_write_end() uses this to know what the real range to
943          * write in the target should be.
944          */
945         unsigned int                    w_target_from;
946         unsigned int                    w_target_to;
947
948         /*
949          * We could use journal_current_handle() but this is cleaner,
950          * IMHO -Mark
951          */
952         handle_t                        *w_handle;
953
954         struct buffer_head              *w_di_bh;
955
956         struct ocfs2_cached_dealloc_ctxt w_dealloc;
957 };
958
959 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
960 {
961         int i;
962
963         for(i = 0; i < num_pages; i++) {
964                 if (pages[i]) {
965                         unlock_page(pages[i]);
966                         mark_page_accessed(pages[i]);
967                         page_cache_release(pages[i]);
968                 }
969         }
970 }
971
972 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
973 {
974         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
975
976         brelse(wc->w_di_bh);
977         kfree(wc);
978 }
979
980 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
981                                   struct ocfs2_super *osb, loff_t pos,
982                                   unsigned len, struct buffer_head *di_bh)
983 {
984         u32 cend;
985         struct ocfs2_write_ctxt *wc;
986
987         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
988         if (!wc)
989                 return -ENOMEM;
990
991         wc->w_cpos = pos >> osb->s_clustersize_bits;
992         cend = (pos + len - 1) >> osb->s_clustersize_bits;
993         wc->w_clen = cend - wc->w_cpos + 1;
994         get_bh(di_bh);
995         wc->w_di_bh = di_bh;
996
997         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
998                 wc->w_large_pages = 1;
999         else
1000                 wc->w_large_pages = 0;
1001
1002         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1003
1004         *wcp = wc;
1005
1006         return 0;
1007 }
1008
1009 /*
1010  * If a page has any new buffers, zero them out here, and mark them uptodate
1011  * and dirty so they'll be written out (in order to prevent uninitialised
1012  * block data from leaking). And clear the new bit.
1013  */
1014 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1015 {
1016         unsigned int block_start, block_end;
1017         struct buffer_head *head, *bh;
1018
1019         BUG_ON(!PageLocked(page));
1020         if (!page_has_buffers(page))
1021                 return;
1022
1023         bh = head = page_buffers(page);
1024         block_start = 0;
1025         do {
1026                 block_end = block_start + bh->b_size;
1027
1028                 if (buffer_new(bh)) {
1029                         if (block_end > from && block_start < to) {
1030                                 if (!PageUptodate(page)) {
1031                                         unsigned start, end;
1032
1033                                         start = max(from, block_start);
1034                                         end = min(to, block_end);
1035
1036                                         zero_user_page(page, start, end - start, KM_USER0);
1037                                         set_buffer_uptodate(bh);
1038                                 }
1039
1040                                 clear_buffer_new(bh);
1041                                 mark_buffer_dirty(bh);
1042                         }
1043                 }
1044
1045                 block_start = block_end;
1046                 bh = bh->b_this_page;
1047         } while (bh != head);
1048 }
1049
1050 /*
1051  * Only called when we have a failure during allocating write to write
1052  * zero's to the newly allocated region.
1053  */
1054 static void ocfs2_write_failure(struct inode *inode,
1055                                 struct ocfs2_write_ctxt *wc,
1056                                 loff_t user_pos, unsigned user_len)
1057 {
1058         int i;
1059         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1060                 to = user_pos + user_len;
1061         struct page *tmppage;
1062
1063         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1064
1065         for(i = 0; i < wc->w_num_pages; i++) {
1066                 tmppage = wc->w_pages[i];
1067
1068                 if (ocfs2_should_order_data(inode))
1069                         walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1070                                           from, to, NULL,
1071                                           ocfs2_journal_dirty_data);
1072
1073                 block_commit_write(tmppage, from, to);
1074         }
1075 }
1076
1077 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1078                                         struct ocfs2_write_ctxt *wc,
1079                                         struct page *page, u32 cpos,
1080                                         loff_t user_pos, unsigned user_len,
1081                                         int new)
1082 {
1083         int ret;
1084         unsigned int map_from = 0, map_to = 0;
1085         unsigned int cluster_start, cluster_end;
1086         unsigned int user_data_from = 0, user_data_to = 0;
1087
1088         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1089                                         &cluster_start, &cluster_end);
1090
1091         if (page == wc->w_target_page) {
1092                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1093                 map_to = map_from + user_len;
1094
1095                 if (new)
1096                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1097                                                     cluster_start, cluster_end,
1098                                                     new);
1099                 else
1100                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1101                                                     map_from, map_to, new);
1102                 if (ret) {
1103                         mlog_errno(ret);
1104                         goto out;
1105                 }
1106
1107                 user_data_from = map_from;
1108                 user_data_to = map_to;
1109                 if (new) {
1110                         map_from = cluster_start;
1111                         map_to = cluster_end;
1112                 }
1113         } else {
1114                 /*
1115                  * If we haven't allocated the new page yet, we
1116                  * shouldn't be writing it out without copying user
1117                  * data. This is likely a math error from the caller.
1118                  */
1119                 BUG_ON(!new);
1120
1121                 map_from = cluster_start;
1122                 map_to = cluster_end;
1123
1124                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1125                                             cluster_start, cluster_end, new);
1126                 if (ret) {
1127                         mlog_errno(ret);
1128                         goto out;
1129                 }
1130         }
1131
1132         /*
1133          * Parts of newly allocated pages need to be zero'd.
1134          *
1135          * Above, we have also rewritten 'to' and 'from' - as far as
1136          * the rest of the function is concerned, the entire cluster
1137          * range inside of a page needs to be written.
1138          *
1139          * We can skip this if the page is up to date - it's already
1140          * been zero'd from being read in as a hole.
1141          */
1142         if (new && !PageUptodate(page))
1143                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1144                                          cpos, user_data_from, user_data_to);
1145
1146         flush_dcache_page(page);
1147
1148 out:
1149         return ret;
1150 }
1151
1152 /*
1153  * This function will only grab one clusters worth of pages.
1154  */
1155 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1156                                       struct ocfs2_write_ctxt *wc,
1157                                       u32 cpos, loff_t user_pos, int new,
1158                                       struct page *mmap_page)
1159 {
1160         int ret = 0, i;
1161         unsigned long start, target_index, index;
1162         struct inode *inode = mapping->host;
1163
1164         target_index = user_pos >> PAGE_CACHE_SHIFT;
1165
1166         /*
1167          * Figure out how many pages we'll be manipulating here. For
1168          * non allocating write, we just change the one
1169          * page. Otherwise, we'll need a whole clusters worth.
1170          */
1171         if (new) {
1172                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1173                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1174         } else {
1175                 wc->w_num_pages = 1;
1176                 start = target_index;
1177         }
1178
1179         for(i = 0; i < wc->w_num_pages; i++) {
1180                 index = start + i;
1181
1182                 if (index == target_index && mmap_page) {
1183                         /*
1184                          * ocfs2_pagemkwrite() is a little different
1185                          * and wants us to directly use the page
1186                          * passed in.
1187                          */
1188                         lock_page(mmap_page);
1189
1190                         if (mmap_page->mapping != mapping) {
1191                                 unlock_page(mmap_page);
1192                                 /*
1193                                  * Sanity check - the locking in
1194                                  * ocfs2_pagemkwrite() should ensure
1195                                  * that this code doesn't trigger.
1196                                  */
1197                                 ret = -EINVAL;
1198                                 mlog_errno(ret);
1199                                 goto out;
1200                         }
1201
1202                         page_cache_get(mmap_page);
1203                         wc->w_pages[i] = mmap_page;
1204                 } else {
1205                         wc->w_pages[i] = find_or_create_page(mapping, index,
1206                                                              GFP_NOFS);
1207                         if (!wc->w_pages[i]) {
1208                                 ret = -ENOMEM;
1209                                 mlog_errno(ret);
1210                                 goto out;
1211                         }
1212                 }
1213
1214                 if (index == target_index)
1215                         wc->w_target_page = wc->w_pages[i];
1216         }
1217 out:
1218         return ret;
1219 }
1220
1221 /*
1222  * Prepare a single cluster for write one cluster into the file.
1223  */
1224 static int ocfs2_write_cluster(struct address_space *mapping,
1225                                u32 phys, unsigned int unwritten,
1226                                struct ocfs2_alloc_context *data_ac,
1227                                struct ocfs2_alloc_context *meta_ac,
1228                                struct ocfs2_write_ctxt *wc, u32 cpos,
1229                                loff_t user_pos, unsigned user_len)
1230 {
1231         int ret, i, new, should_zero = 0;
1232         u64 v_blkno, p_blkno;
1233         struct inode *inode = mapping->host;
1234
1235         new = phys == 0 ? 1 : 0;
1236         if (new || unwritten)
1237                 should_zero = 1;
1238
1239         if (new) {
1240                 u32 tmp_pos;
1241
1242                 /*
1243                  * This is safe to call with the page locks - it won't take
1244                  * any additional semaphores or cluster locks.
1245                  */
1246                 tmp_pos = cpos;
1247                 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1248                                                  &tmp_pos, 1, 0, wc->w_di_bh,
1249                                                  wc->w_handle, data_ac,
1250                                                  meta_ac, NULL);
1251                 /*
1252                  * This shouldn't happen because we must have already
1253                  * calculated the correct meta data allocation required. The
1254                  * internal tree allocation code should know how to increase
1255                  * transaction credits itself.
1256                  *
1257                  * If need be, we could handle -EAGAIN for a
1258                  * RESTART_TRANS here.
1259                  */
1260                 mlog_bug_on_msg(ret == -EAGAIN,
1261                                 "Inode %llu: EAGAIN return during allocation.\n",
1262                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1263                 if (ret < 0) {
1264                         mlog_errno(ret);
1265                         goto out;
1266                 }
1267         } else if (unwritten) {
1268                 ret = ocfs2_mark_extent_written(inode, wc->w_di_bh,
1269                                                 wc->w_handle, cpos, 1, phys,
1270                                                 meta_ac, &wc->w_dealloc);
1271                 if (ret < 0) {
1272                         mlog_errno(ret);
1273                         goto out;
1274                 }
1275         }
1276
1277         if (should_zero)
1278                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1279         else
1280                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1281
1282         /*
1283          * The only reason this should fail is due to an inability to
1284          * find the extent added.
1285          */
1286         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1287                                           NULL);
1288         if (ret < 0) {
1289                 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1290                             "at logical block %llu",
1291                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1292                             (unsigned long long)v_blkno);
1293                 goto out;
1294         }
1295
1296         BUG_ON(p_blkno == 0);
1297
1298         for(i = 0; i < wc->w_num_pages; i++) {
1299                 int tmpret;
1300
1301                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1302                                                       wc->w_pages[i], cpos,
1303                                                       user_pos, user_len,
1304                                                       should_zero);
1305                 if (tmpret) {
1306                         mlog_errno(tmpret);
1307                         if (ret == 0)
1308                                 tmpret = ret;
1309                 }
1310         }
1311
1312         /*
1313          * We only have cleanup to do in case of allocating write.
1314          */
1315         if (ret && new)
1316                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1317
1318 out:
1319
1320         return ret;
1321 }
1322
1323 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1324                                        struct ocfs2_alloc_context *data_ac,
1325                                        struct ocfs2_alloc_context *meta_ac,
1326                                        struct ocfs2_write_ctxt *wc,
1327                                        loff_t pos, unsigned len)
1328 {
1329         int ret, i;
1330         loff_t cluster_off;
1331         unsigned int local_len = len;
1332         struct ocfs2_write_cluster_desc *desc;
1333         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1334
1335         for (i = 0; i < wc->w_clen; i++) {
1336                 desc = &wc->w_desc[i];
1337
1338                 /*
1339                  * We have to make sure that the total write passed in
1340                  * doesn't extend past a single cluster.
1341                  */
1342                 local_len = len;
1343                 cluster_off = pos & (osb->s_clustersize - 1);
1344                 if ((cluster_off + local_len) > osb->s_clustersize)
1345                         local_len = osb->s_clustersize - cluster_off;
1346
1347                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1348                                           desc->c_unwritten, data_ac, meta_ac,
1349                                           wc, desc->c_cpos, pos, local_len);
1350                 if (ret) {
1351                         mlog_errno(ret);
1352                         goto out;
1353                 }
1354
1355                 len -= local_len;
1356                 pos += local_len;
1357         }
1358
1359         ret = 0;
1360 out:
1361         return ret;
1362 }
1363
1364 /*
1365  * ocfs2_write_end() wants to know which parts of the target page it
1366  * should complete the write on. It's easiest to compute them ahead of
1367  * time when a more complete view of the write is available.
1368  */
1369 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1370                                         struct ocfs2_write_ctxt *wc,
1371                                         loff_t pos, unsigned len, int alloc)
1372 {
1373         struct ocfs2_write_cluster_desc *desc;
1374
1375         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1376         wc->w_target_to = wc->w_target_from + len;
1377
1378         if (alloc == 0)
1379                 return;
1380
1381         /*
1382          * Allocating write - we may have different boundaries based
1383          * on page size and cluster size.
1384          *
1385          * NOTE: We can no longer compute one value from the other as
1386          * the actual write length and user provided length may be
1387          * different.
1388          */
1389
1390         if (wc->w_large_pages) {
1391                 /*
1392                  * We only care about the 1st and last cluster within
1393                  * our range and whether they should be zero'd or not. Either
1394                  * value may be extended out to the start/end of a
1395                  * newly allocated cluster.
1396                  */
1397                 desc = &wc->w_desc[0];
1398                 if (ocfs2_should_zero_cluster(desc))
1399                         ocfs2_figure_cluster_boundaries(osb,
1400                                                         desc->c_cpos,
1401                                                         &wc->w_target_from,
1402                                                         NULL);
1403
1404                 desc = &wc->w_desc[wc->w_clen - 1];
1405                 if (ocfs2_should_zero_cluster(desc))
1406                         ocfs2_figure_cluster_boundaries(osb,
1407                                                         desc->c_cpos,
1408                                                         NULL,
1409                                                         &wc->w_target_to);
1410         } else {
1411                 wc->w_target_from = 0;
1412                 wc->w_target_to = PAGE_CACHE_SIZE;
1413         }
1414 }
1415
1416 /*
1417  * Populate each single-cluster write descriptor in the write context
1418  * with information about the i/o to be done.
1419  *
1420  * Returns the number of clusters that will have to be allocated, as
1421  * well as a worst case estimate of the number of extent records that
1422  * would have to be created during a write to an unwritten region.
1423  */
1424 static int ocfs2_populate_write_desc(struct inode *inode,
1425                                      struct ocfs2_write_ctxt *wc,
1426                                      unsigned int *clusters_to_alloc,
1427                                      unsigned int *extents_to_split)
1428 {
1429         int ret;
1430         struct ocfs2_write_cluster_desc *desc;
1431         unsigned int num_clusters = 0;
1432         unsigned int ext_flags = 0;
1433         u32 phys = 0;
1434         int i;
1435
1436         *clusters_to_alloc = 0;
1437         *extents_to_split = 0;
1438
1439         for (i = 0; i < wc->w_clen; i++) {
1440                 desc = &wc->w_desc[i];
1441                 desc->c_cpos = wc->w_cpos + i;
1442
1443                 if (num_clusters == 0) {
1444                         /*
1445                          * Need to look up the next extent record.
1446                          */
1447                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1448                                                  &num_clusters, &ext_flags);
1449                         if (ret) {
1450                                 mlog_errno(ret);
1451                                 goto out;
1452                         }
1453
1454                         /*
1455                          * Assume worst case - that we're writing in
1456                          * the middle of the extent.
1457                          *
1458                          * We can assume that the write proceeds from
1459                          * left to right, in which case the extent
1460                          * insert code is smart enough to coalesce the
1461                          * next splits into the previous records created.
1462                          */
1463                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1464                                 *extents_to_split = *extents_to_split + 2;
1465                 } else if (phys) {
1466                         /*
1467                          * Only increment phys if it doesn't describe
1468                          * a hole.
1469                          */
1470                         phys++;
1471                 }
1472
1473                 desc->c_phys = phys;
1474                 if (phys == 0) {
1475                         desc->c_new = 1;
1476                         *clusters_to_alloc = *clusters_to_alloc + 1;
1477                 }
1478                 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1479                         desc->c_unwritten = 1;
1480
1481                 num_clusters--;
1482         }
1483
1484         ret = 0;
1485 out:
1486         return ret;
1487 }
1488
1489 static int ocfs2_write_begin_inline(struct address_space *mapping,
1490                                     struct inode *inode,
1491                                     struct ocfs2_write_ctxt *wc)
1492 {
1493         int ret;
1494         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1495         struct page *page;
1496         handle_t *handle;
1497         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1498
1499         page = find_or_create_page(mapping, 0, GFP_NOFS);
1500         if (!page) {
1501                 ret = -ENOMEM;
1502                 mlog_errno(ret);
1503                 goto out;
1504         }
1505         /*
1506          * If we don't set w_num_pages then this page won't get unlocked
1507          * and freed on cleanup of the write context.
1508          */
1509         wc->w_pages[0] = wc->w_target_page = page;
1510         wc->w_num_pages = 1;
1511
1512         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1513         if (IS_ERR(handle)) {
1514                 ret = PTR_ERR(handle);
1515                 mlog_errno(ret);
1516                 goto out;
1517         }
1518
1519         ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1520                                    OCFS2_JOURNAL_ACCESS_WRITE);
1521         if (ret) {
1522                 ocfs2_commit_trans(osb, handle);
1523
1524                 mlog_errno(ret);
1525                 goto out;
1526         }
1527
1528         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1529                 ocfs2_set_inode_data_inline(inode, di);
1530
1531         if (!PageUptodate(page)) {
1532                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1533                 if (ret) {
1534                         ocfs2_commit_trans(osb, handle);
1535
1536                         goto out;
1537                 }
1538         }
1539
1540         wc->w_handle = handle;
1541 out:
1542         return ret;
1543 }
1544
1545 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1546 {
1547         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1548
1549         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1550                 return 1;
1551         return 0;
1552 }
1553
1554 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1555                                           struct inode *inode, loff_t pos,
1556                                           unsigned len, struct page *mmap_page,
1557                                           struct ocfs2_write_ctxt *wc)
1558 {
1559         int ret, written = 0;
1560         loff_t end = pos + len;
1561         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1562
1563         mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1564              (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1565              oi->ip_dyn_features);
1566
1567         /*
1568          * Handle inodes which already have inline data 1st.
1569          */
1570         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1571                 if (mmap_page == NULL &&
1572                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1573                         goto do_inline_write;
1574
1575                 /*
1576                  * The write won't fit - we have to give this inode an
1577                  * inline extent list now.
1578                  */
1579                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1580                 if (ret)
1581                         mlog_errno(ret);
1582                 goto out;
1583         }
1584
1585         /*
1586          * Check whether the inode can accept inline data.
1587          */
1588         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1589                 return 0;
1590
1591         /*
1592          * Check whether the write can fit.
1593          */
1594         if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1595                 return 0;
1596
1597 do_inline_write:
1598         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1599         if (ret) {
1600                 mlog_errno(ret);
1601                 goto out;
1602         }
1603
1604         /*
1605          * This signals to the caller that the data can be written
1606          * inline.
1607          */
1608         written = 1;
1609 out:
1610         return written ? written : ret;
1611 }
1612
1613 /*
1614  * This function only does anything for file systems which can't
1615  * handle sparse files.
1616  *
1617  * What we want to do here is fill in any hole between the current end
1618  * of allocation and the end of our write. That way the rest of the
1619  * write path can treat it as an non-allocating write, which has no
1620  * special case code for sparse/nonsparse files.
1621  */
1622 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1623                                         unsigned len,
1624                                         struct ocfs2_write_ctxt *wc)
1625 {
1626         int ret;
1627         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1628         loff_t newsize = pos + len;
1629
1630         if (ocfs2_sparse_alloc(osb))
1631                 return 0;
1632
1633         if (newsize <= i_size_read(inode))
1634                 return 0;
1635
1636         ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1637         if (ret)
1638                 mlog_errno(ret);
1639
1640         return ret;
1641 }
1642
1643 int ocfs2_write_begin_nolock(struct address_space *mapping,
1644                              loff_t pos, unsigned len, unsigned flags,
1645                              struct page **pagep, void **fsdata,
1646                              struct buffer_head *di_bh, struct page *mmap_page)
1647 {
1648         int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1649         unsigned int clusters_to_alloc, extents_to_split;
1650         struct ocfs2_write_ctxt *wc;
1651         struct inode *inode = mapping->host;
1652         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1653         struct ocfs2_dinode *di;
1654         struct ocfs2_alloc_context *data_ac = NULL;
1655         struct ocfs2_alloc_context *meta_ac = NULL;
1656         handle_t *handle;
1657
1658         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1659         if (ret) {
1660                 mlog_errno(ret);
1661                 return ret;
1662         }
1663
1664         if (ocfs2_supports_inline_data(osb)) {
1665                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1666                                                      mmap_page, wc);
1667                 if (ret == 1) {
1668                         ret = 0;
1669                         goto success;
1670                 }
1671                 if (ret < 0) {
1672                         mlog_errno(ret);
1673                         goto out;
1674                 }
1675         }
1676
1677         ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1678         if (ret) {
1679                 mlog_errno(ret);
1680                 goto out;
1681         }
1682
1683         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1684                                         &extents_to_split);
1685         if (ret) {
1686                 mlog_errno(ret);
1687                 goto out;
1688         }
1689
1690         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1691
1692         /*
1693          * We set w_target_from, w_target_to here so that
1694          * ocfs2_write_end() knows which range in the target page to
1695          * write out. An allocation requires that we write the entire
1696          * cluster range.
1697          */
1698         if (clusters_to_alloc || extents_to_split) {
1699                 /*
1700                  * XXX: We are stretching the limits of
1701                  * ocfs2_lock_allocators(). It greatly over-estimates
1702                  * the work to be done.
1703                  */
1704                 ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
1705                                             extents_to_split, &data_ac, &meta_ac);
1706                 if (ret) {
1707                         mlog_errno(ret);
1708                         goto out;
1709                 }
1710
1711                 credits = ocfs2_calc_extend_credits(inode->i_sb, di,
1712                                                     clusters_to_alloc);
1713
1714         }
1715
1716         ocfs2_set_target_boundaries(osb, wc, pos, len,
1717                                     clusters_to_alloc + extents_to_split);
1718
1719         handle = ocfs2_start_trans(osb, credits);
1720         if (IS_ERR(handle)) {
1721                 ret = PTR_ERR(handle);
1722                 mlog_errno(ret);
1723                 goto out;
1724         }
1725
1726         wc->w_handle = handle;
1727
1728         /*
1729          * We don't want this to fail in ocfs2_write_end(), so do it
1730          * here.
1731          */
1732         ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1733                                    OCFS2_JOURNAL_ACCESS_WRITE);
1734         if (ret) {
1735                 mlog_errno(ret);
1736                 goto out_commit;
1737         }
1738
1739         /*
1740          * Fill our page array first. That way we've grabbed enough so
1741          * that we can zero and flush if we error after adding the
1742          * extent.
1743          */
1744         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1745                                          clusters_to_alloc + extents_to_split,
1746                                          mmap_page);
1747         if (ret) {
1748                 mlog_errno(ret);
1749                 goto out_commit;
1750         }
1751
1752         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1753                                           len);
1754         if (ret) {
1755                 mlog_errno(ret);
1756                 goto out_commit;
1757         }
1758
1759         if (data_ac)
1760                 ocfs2_free_alloc_context(data_ac);
1761         if (meta_ac)
1762                 ocfs2_free_alloc_context(meta_ac);
1763
1764 success:
1765         *pagep = wc->w_target_page;
1766         *fsdata = wc;
1767         return 0;
1768 out_commit:
1769         ocfs2_commit_trans(osb, handle);
1770
1771 out:
1772         ocfs2_free_write_ctxt(wc);
1773
1774         if (data_ac)
1775                 ocfs2_free_alloc_context(data_ac);
1776         if (meta_ac)
1777                 ocfs2_free_alloc_context(meta_ac);
1778         return ret;
1779 }
1780
1781 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1782                              loff_t pos, unsigned len, unsigned flags,
1783                              struct page **pagep, void **fsdata)
1784 {
1785         int ret;
1786         struct buffer_head *di_bh = NULL;
1787         struct inode *inode = mapping->host;
1788
1789         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1790         if (ret) {
1791                 mlog_errno(ret);
1792                 return ret;
1793         }
1794
1795         /*
1796          * Take alloc sem here to prevent concurrent lookups. That way
1797          * the mapping, zeroing and tree manipulation within
1798          * ocfs2_write() will be safe against ->readpage(). This
1799          * should also serve to lock out allocation from a shared
1800          * writeable region.
1801          */
1802         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1803
1804         ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1805                                        fsdata, di_bh, NULL);
1806         if (ret) {
1807                 mlog_errno(ret);
1808                 goto out_fail;
1809         }
1810
1811         brelse(di_bh);
1812
1813         return 0;
1814
1815 out_fail:
1816         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1817
1818         brelse(di_bh);
1819         ocfs2_inode_unlock(inode, 1);
1820
1821         return ret;
1822 }
1823
1824 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1825                                    unsigned len, unsigned *copied,
1826                                    struct ocfs2_dinode *di,
1827                                    struct ocfs2_write_ctxt *wc)
1828 {
1829         void *kaddr;
1830
1831         if (unlikely(*copied < len)) {
1832                 if (!PageUptodate(wc->w_target_page)) {
1833                         *copied = 0;
1834                         return;
1835                 }
1836         }
1837
1838         kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1839         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1840         kunmap_atomic(kaddr, KM_USER0);
1841
1842         mlog(0, "Data written to inode at offset %llu. "
1843              "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1844              (unsigned long long)pos, *copied,
1845              le16_to_cpu(di->id2.i_data.id_count),
1846              le16_to_cpu(di->i_dyn_features));
1847 }
1848
1849 int ocfs2_write_end_nolock(struct address_space *mapping,
1850                            loff_t pos, unsigned len, unsigned copied,
1851                            struct page *page, void *fsdata)
1852 {
1853         int i;
1854         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1855         struct inode *inode = mapping->host;
1856         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1857         struct ocfs2_write_ctxt *wc = fsdata;
1858         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1859         handle_t *handle = wc->w_handle;
1860         struct page *tmppage;
1861
1862         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1863                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1864                 goto out_write_size;
1865         }
1866
1867         if (unlikely(copied < len)) {
1868                 if (!PageUptodate(wc->w_target_page))
1869                         copied = 0;
1870
1871                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1872                                        start+len);
1873         }
1874         flush_dcache_page(wc->w_target_page);
1875
1876         for(i = 0; i < wc->w_num_pages; i++) {
1877                 tmppage = wc->w_pages[i];
1878
1879                 if (tmppage == wc->w_target_page) {
1880                         from = wc->w_target_from;
1881                         to = wc->w_target_to;
1882
1883                         BUG_ON(from > PAGE_CACHE_SIZE ||
1884                                to > PAGE_CACHE_SIZE ||
1885                                to < from);
1886                 } else {
1887                         /*
1888                          * Pages adjacent to the target (if any) imply
1889                          * a hole-filling write in which case we want
1890                          * to flush their entire range.
1891                          */
1892                         from = 0;
1893                         to = PAGE_CACHE_SIZE;
1894                 }
1895
1896                 if (ocfs2_should_order_data(inode))
1897                         walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1898                                           from, to, NULL,
1899                                           ocfs2_journal_dirty_data);
1900
1901                 block_commit_write(tmppage, from, to);
1902         }
1903
1904 out_write_size:
1905         pos += copied;
1906         if (pos > inode->i_size) {
1907                 i_size_write(inode, pos);
1908                 mark_inode_dirty(inode);
1909         }
1910         inode->i_blocks = ocfs2_inode_sector_count(inode);
1911         di->i_size = cpu_to_le64((u64)i_size_read(inode));
1912         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1913         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1914         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1915         ocfs2_journal_dirty(handle, wc->w_di_bh);
1916
1917         ocfs2_commit_trans(osb, handle);
1918
1919         ocfs2_run_deallocs(osb, &wc->w_dealloc);
1920
1921         ocfs2_free_write_ctxt(wc);
1922
1923         return copied;
1924 }
1925
1926 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1927                            loff_t pos, unsigned len, unsigned copied,
1928                            struct page *page, void *fsdata)
1929 {
1930         int ret;
1931         struct inode *inode = mapping->host;
1932
1933         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1934
1935         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1936         ocfs2_inode_unlock(inode, 1);
1937
1938         return ret;
1939 }
1940
1941 const struct address_space_operations ocfs2_aops = {
1942         .readpage       = ocfs2_readpage,
1943         .readpages      = ocfs2_readpages,
1944         .writepage      = ocfs2_writepage,
1945         .write_begin    = ocfs2_write_begin,
1946         .write_end      = ocfs2_write_end,
1947         .bmap           = ocfs2_bmap,
1948         .sync_page      = block_sync_page,
1949         .direct_IO      = ocfs2_direct_IO,
1950         .invalidatepage = ocfs2_invalidatepage,
1951         .releasepage    = ocfs2_releasepage,
1952         .migratepage    = buffer_migrate_page,
1953 };