2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
33 MODULE_AUTHOR("Qumranet");
34 MODULE_LICENSE("GPL");
36 static int bypass_guest_pf = 1;
37 module_param(bypass_guest_pf, bool, 0);
39 static int enable_vpid = 1;
40 module_param(enable_vpid, bool, 0);
42 static int flexpriority_enabled = 1;
43 module_param(flexpriority_enabled, bool, 0);
45 static int enable_ept = 1;
46 module_param(enable_ept, bool, 0);
58 u32 idt_vectoring_info;
59 struct kvm_msr_entry *guest_msrs;
60 struct kvm_msr_entry *host_msrs;
65 int msr_offset_kernel_gs_base;
70 u16 fs_sel, gs_sel, ldt_sel;
71 int gs_ldt_reload_needed;
73 int guest_efer_loaded;
85 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
87 return container_of(vcpu, struct vcpu_vmx, vcpu);
90 static int init_rmode(struct kvm *kvm);
92 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
93 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
95 static struct page *vmx_io_bitmap_a;
96 static struct page *vmx_io_bitmap_b;
97 static struct page *vmx_msr_bitmap;
99 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
100 static DEFINE_SPINLOCK(vmx_vpid_lock);
102 static struct vmcs_config {
106 u32 pin_based_exec_ctrl;
107 u32 cpu_based_exec_ctrl;
108 u32 cpu_based_2nd_exec_ctrl;
113 struct vmx_capability {
118 #define VMX_SEGMENT_FIELD(seg) \
119 [VCPU_SREG_##seg] = { \
120 .selector = GUEST_##seg##_SELECTOR, \
121 .base = GUEST_##seg##_BASE, \
122 .limit = GUEST_##seg##_LIMIT, \
123 .ar_bytes = GUEST_##seg##_AR_BYTES, \
126 static struct kvm_vmx_segment_field {
131 } kvm_vmx_segment_fields[] = {
132 VMX_SEGMENT_FIELD(CS),
133 VMX_SEGMENT_FIELD(DS),
134 VMX_SEGMENT_FIELD(ES),
135 VMX_SEGMENT_FIELD(FS),
136 VMX_SEGMENT_FIELD(GS),
137 VMX_SEGMENT_FIELD(SS),
138 VMX_SEGMENT_FIELD(TR),
139 VMX_SEGMENT_FIELD(LDTR),
143 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
144 * away by decrementing the array size.
146 static const u32 vmx_msr_index[] = {
148 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
150 MSR_EFER, MSR_K6_STAR,
152 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
154 static void load_msrs(struct kvm_msr_entry *e, int n)
158 for (i = 0; i < n; ++i)
159 wrmsrl(e[i].index, e[i].data);
162 static void save_msrs(struct kvm_msr_entry *e, int n)
166 for (i = 0; i < n; ++i)
167 rdmsrl(e[i].index, e[i].data);
170 static inline int is_page_fault(u32 intr_info)
172 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
173 INTR_INFO_VALID_MASK)) ==
174 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
177 static inline int is_no_device(u32 intr_info)
179 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
180 INTR_INFO_VALID_MASK)) ==
181 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
184 static inline int is_invalid_opcode(u32 intr_info)
186 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
187 INTR_INFO_VALID_MASK)) ==
188 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
191 static inline int is_external_interrupt(u32 intr_info)
193 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
194 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
197 static inline int cpu_has_vmx_msr_bitmap(void)
199 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
202 static inline int cpu_has_vmx_tpr_shadow(void)
204 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
207 static inline int vm_need_tpr_shadow(struct kvm *kvm)
209 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
212 static inline int cpu_has_secondary_exec_ctrls(void)
214 return (vmcs_config.cpu_based_exec_ctrl &
215 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
218 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
220 return flexpriority_enabled
221 && (vmcs_config.cpu_based_2nd_exec_ctrl &
222 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
225 static inline int cpu_has_vmx_invept_individual_addr(void)
227 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
230 static inline int cpu_has_vmx_invept_context(void)
232 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
235 static inline int cpu_has_vmx_invept_global(void)
237 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
240 static inline int cpu_has_vmx_ept(void)
242 return (vmcs_config.cpu_based_2nd_exec_ctrl &
243 SECONDARY_EXEC_ENABLE_EPT);
246 static inline int vm_need_ept(void)
248 return (cpu_has_vmx_ept() && enable_ept);
251 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
253 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
254 (irqchip_in_kernel(kvm)));
257 static inline int cpu_has_vmx_vpid(void)
259 return (vmcs_config.cpu_based_2nd_exec_ctrl &
260 SECONDARY_EXEC_ENABLE_VPID);
263 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
267 for (i = 0; i < vmx->nmsrs; ++i)
268 if (vmx->guest_msrs[i].index == msr)
273 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
279 } operand = { vpid, 0, gva };
281 asm volatile (ASM_VMX_INVVPID
282 /* CF==1 or ZF==1 --> rc = -1 */
284 : : "a"(&operand), "c"(ext) : "cc", "memory");
287 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
291 } operand = {eptp, gpa};
293 asm volatile (ASM_VMX_INVEPT
294 /* CF==1 or ZF==1 --> rc = -1 */
295 "; ja 1f ; ud2 ; 1:\n"
296 : : "a" (&operand), "c" (ext) : "cc", "memory");
299 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
303 i = __find_msr_index(vmx, msr);
305 return &vmx->guest_msrs[i];
309 static void vmcs_clear(struct vmcs *vmcs)
311 u64 phys_addr = __pa(vmcs);
314 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
315 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
318 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
322 static void __vcpu_clear(void *arg)
324 struct vcpu_vmx *vmx = arg;
325 int cpu = raw_smp_processor_id();
327 if (vmx->vcpu.cpu == cpu)
328 vmcs_clear(vmx->vmcs);
329 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
330 per_cpu(current_vmcs, cpu) = NULL;
331 rdtscll(vmx->vcpu.arch.host_tsc);
334 static void vcpu_clear(struct vcpu_vmx *vmx)
336 if (vmx->vcpu.cpu == -1)
338 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
342 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
347 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
350 static inline void ept_sync_global(void)
352 if (cpu_has_vmx_invept_global())
353 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
356 static inline void ept_sync_context(u64 eptp)
359 if (cpu_has_vmx_invept_context())
360 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
366 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
369 if (cpu_has_vmx_invept_individual_addr())
370 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
373 ept_sync_context(eptp);
377 static unsigned long vmcs_readl(unsigned long field)
381 asm volatile (ASM_VMX_VMREAD_RDX_RAX
382 : "=a"(value) : "d"(field) : "cc");
386 static u16 vmcs_read16(unsigned long field)
388 return vmcs_readl(field);
391 static u32 vmcs_read32(unsigned long field)
393 return vmcs_readl(field);
396 static u64 vmcs_read64(unsigned long field)
399 return vmcs_readl(field);
401 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
405 static noinline void vmwrite_error(unsigned long field, unsigned long value)
407 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
408 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
412 static void vmcs_writel(unsigned long field, unsigned long value)
416 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
417 : "=q"(error) : "a"(value), "d"(field) : "cc");
419 vmwrite_error(field, value);
422 static void vmcs_write16(unsigned long field, u16 value)
424 vmcs_writel(field, value);
427 static void vmcs_write32(unsigned long field, u32 value)
429 vmcs_writel(field, value);
432 static void vmcs_write64(unsigned long field, u64 value)
435 vmcs_writel(field, value);
437 vmcs_writel(field, value);
439 vmcs_writel(field+1, value >> 32);
443 static void vmcs_clear_bits(unsigned long field, u32 mask)
445 vmcs_writel(field, vmcs_readl(field) & ~mask);
448 static void vmcs_set_bits(unsigned long field, u32 mask)
450 vmcs_writel(field, vmcs_readl(field) | mask);
453 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
457 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
458 if (!vcpu->fpu_active)
459 eb |= 1u << NM_VECTOR;
460 if (vcpu->guest_debug.enabled)
462 if (vcpu->arch.rmode.active)
465 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
466 vmcs_write32(EXCEPTION_BITMAP, eb);
469 static void reload_tss(void)
472 * VT restores TR but not its size. Useless.
474 struct descriptor_table gdt;
475 struct desc_struct *descs;
478 descs = (void *)gdt.base;
479 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
483 static void load_transition_efer(struct vcpu_vmx *vmx)
485 int efer_offset = vmx->msr_offset_efer;
486 u64 host_efer = vmx->host_msrs[efer_offset].data;
487 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
493 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
496 ignore_bits = EFER_NX | EFER_SCE;
498 ignore_bits |= EFER_LMA | EFER_LME;
499 /* SCE is meaningful only in long mode on Intel */
500 if (guest_efer & EFER_LMA)
501 ignore_bits &= ~(u64)EFER_SCE;
503 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
506 vmx->host_state.guest_efer_loaded = 1;
507 guest_efer &= ~ignore_bits;
508 guest_efer |= host_efer & ignore_bits;
509 wrmsrl(MSR_EFER, guest_efer);
510 vmx->vcpu.stat.efer_reload++;
513 static void reload_host_efer(struct vcpu_vmx *vmx)
515 if (vmx->host_state.guest_efer_loaded) {
516 vmx->host_state.guest_efer_loaded = 0;
517 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
521 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
523 struct vcpu_vmx *vmx = to_vmx(vcpu);
525 if (vmx->host_state.loaded)
528 vmx->host_state.loaded = 1;
530 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
531 * allow segment selectors with cpl > 0 or ti == 1.
533 vmx->host_state.ldt_sel = read_ldt();
534 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
535 vmx->host_state.fs_sel = read_fs();
536 if (!(vmx->host_state.fs_sel & 7)) {
537 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
538 vmx->host_state.fs_reload_needed = 0;
540 vmcs_write16(HOST_FS_SELECTOR, 0);
541 vmx->host_state.fs_reload_needed = 1;
543 vmx->host_state.gs_sel = read_gs();
544 if (!(vmx->host_state.gs_sel & 7))
545 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
547 vmcs_write16(HOST_GS_SELECTOR, 0);
548 vmx->host_state.gs_ldt_reload_needed = 1;
552 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
553 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
555 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
556 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
560 if (is_long_mode(&vmx->vcpu))
561 save_msrs(vmx->host_msrs +
562 vmx->msr_offset_kernel_gs_base, 1);
565 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
566 load_transition_efer(vmx);
569 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
573 if (!vmx->host_state.loaded)
576 ++vmx->vcpu.stat.host_state_reload;
577 vmx->host_state.loaded = 0;
578 if (vmx->host_state.fs_reload_needed)
579 load_fs(vmx->host_state.fs_sel);
580 if (vmx->host_state.gs_ldt_reload_needed) {
581 load_ldt(vmx->host_state.ldt_sel);
583 * If we have to reload gs, we must take care to
584 * preserve our gs base.
586 local_irq_save(flags);
587 load_gs(vmx->host_state.gs_sel);
589 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
591 local_irq_restore(flags);
594 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
595 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
596 reload_host_efer(vmx);
599 static void vmx_load_host_state(struct vcpu_vmx *vmx)
602 __vmx_load_host_state(vmx);
607 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
608 * vcpu mutex is already taken.
610 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
612 struct vcpu_vmx *vmx = to_vmx(vcpu);
613 u64 phys_addr = __pa(vmx->vmcs);
614 u64 tsc_this, delta, new_offset;
616 if (vcpu->cpu != cpu) {
618 kvm_migrate_timers(vcpu);
619 vpid_sync_vcpu_all(vmx);
622 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
625 per_cpu(current_vmcs, cpu) = vmx->vmcs;
626 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
627 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
630 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
631 vmx->vmcs, phys_addr);
634 if (vcpu->cpu != cpu) {
635 struct descriptor_table dt;
636 unsigned long sysenter_esp;
640 * Linux uses per-cpu TSS and GDT, so set these when switching
643 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
645 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
647 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
648 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
651 * Make sure the time stamp counter is monotonous.
654 if (tsc_this < vcpu->arch.host_tsc) {
655 delta = vcpu->arch.host_tsc - tsc_this;
656 new_offset = vmcs_read64(TSC_OFFSET) + delta;
657 vmcs_write64(TSC_OFFSET, new_offset);
662 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
664 __vmx_load_host_state(to_vmx(vcpu));
667 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
669 if (vcpu->fpu_active)
671 vcpu->fpu_active = 1;
672 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
673 if (vcpu->arch.cr0 & X86_CR0_TS)
674 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
675 update_exception_bitmap(vcpu);
678 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
680 if (!vcpu->fpu_active)
682 vcpu->fpu_active = 0;
683 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
684 update_exception_bitmap(vcpu);
687 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
689 vcpu_clear(to_vmx(vcpu));
692 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
694 return vmcs_readl(GUEST_RFLAGS);
697 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
699 if (vcpu->arch.rmode.active)
700 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
701 vmcs_writel(GUEST_RFLAGS, rflags);
704 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
707 u32 interruptibility;
709 rip = vmcs_readl(GUEST_RIP);
710 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
711 vmcs_writel(GUEST_RIP, rip);
714 * We emulated an instruction, so temporary interrupt blocking
715 * should be removed, if set.
717 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
718 if (interruptibility & 3)
719 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
720 interruptibility & ~3);
721 vcpu->arch.interrupt_window_open = 1;
724 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
725 bool has_error_code, u32 error_code)
727 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
728 nr | INTR_TYPE_EXCEPTION
729 | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
730 | INTR_INFO_VALID_MASK);
732 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
735 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
737 struct vcpu_vmx *vmx = to_vmx(vcpu);
739 return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
743 * Swap MSR entry in host/guest MSR entry array.
746 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
748 struct kvm_msr_entry tmp;
750 tmp = vmx->guest_msrs[to];
751 vmx->guest_msrs[to] = vmx->guest_msrs[from];
752 vmx->guest_msrs[from] = tmp;
753 tmp = vmx->host_msrs[to];
754 vmx->host_msrs[to] = vmx->host_msrs[from];
755 vmx->host_msrs[from] = tmp;
760 * Set up the vmcs to automatically save and restore system
761 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
762 * mode, as fiddling with msrs is very expensive.
764 static void setup_msrs(struct vcpu_vmx *vmx)
768 vmx_load_host_state(vmx);
771 if (is_long_mode(&vmx->vcpu)) {
774 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
776 move_msr_up(vmx, index, save_nmsrs++);
777 index = __find_msr_index(vmx, MSR_LSTAR);
779 move_msr_up(vmx, index, save_nmsrs++);
780 index = __find_msr_index(vmx, MSR_CSTAR);
782 move_msr_up(vmx, index, save_nmsrs++);
783 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
785 move_msr_up(vmx, index, save_nmsrs++);
787 * MSR_K6_STAR is only needed on long mode guests, and only
788 * if efer.sce is enabled.
790 index = __find_msr_index(vmx, MSR_K6_STAR);
791 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
792 move_msr_up(vmx, index, save_nmsrs++);
795 vmx->save_nmsrs = save_nmsrs;
798 vmx->msr_offset_kernel_gs_base =
799 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
801 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
805 * reads and returns guest's timestamp counter "register"
806 * guest_tsc = host_tsc + tsc_offset -- 21.3
808 static u64 guest_read_tsc(void)
810 u64 host_tsc, tsc_offset;
813 tsc_offset = vmcs_read64(TSC_OFFSET);
814 return host_tsc + tsc_offset;
818 * writes 'guest_tsc' into guest's timestamp counter "register"
819 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
821 static void guest_write_tsc(u64 guest_tsc)
826 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
830 * Reads an msr value (of 'msr_index') into 'pdata'.
831 * Returns 0 on success, non-0 otherwise.
832 * Assumes vcpu_load() was already called.
834 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
837 struct kvm_msr_entry *msr;
840 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
847 data = vmcs_readl(GUEST_FS_BASE);
850 data = vmcs_readl(GUEST_GS_BASE);
853 return kvm_get_msr_common(vcpu, msr_index, pdata);
855 case MSR_IA32_TIME_STAMP_COUNTER:
856 data = guest_read_tsc();
858 case MSR_IA32_SYSENTER_CS:
859 data = vmcs_read32(GUEST_SYSENTER_CS);
861 case MSR_IA32_SYSENTER_EIP:
862 data = vmcs_readl(GUEST_SYSENTER_EIP);
864 case MSR_IA32_SYSENTER_ESP:
865 data = vmcs_readl(GUEST_SYSENTER_ESP);
868 msr = find_msr_entry(to_vmx(vcpu), msr_index);
873 return kvm_get_msr_common(vcpu, msr_index, pdata);
881 * Writes msr value into into the appropriate "register".
882 * Returns 0 on success, non-0 otherwise.
883 * Assumes vcpu_load() was already called.
885 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
887 struct vcpu_vmx *vmx = to_vmx(vcpu);
888 struct kvm_msr_entry *msr;
894 vmx_load_host_state(vmx);
895 ret = kvm_set_msr_common(vcpu, msr_index, data);
898 vmcs_writel(GUEST_FS_BASE, data);
901 vmcs_writel(GUEST_GS_BASE, data);
904 case MSR_IA32_SYSENTER_CS:
905 vmcs_write32(GUEST_SYSENTER_CS, data);
907 case MSR_IA32_SYSENTER_EIP:
908 vmcs_writel(GUEST_SYSENTER_EIP, data);
910 case MSR_IA32_SYSENTER_ESP:
911 vmcs_writel(GUEST_SYSENTER_ESP, data);
913 case MSR_IA32_TIME_STAMP_COUNTER:
914 guest_write_tsc(data);
917 vmx_load_host_state(vmx);
918 msr = find_msr_entry(vmx, msr_index);
923 ret = kvm_set_msr_common(vcpu, msr_index, data);
930 * Sync the rsp and rip registers into the vcpu structure. This allows
931 * registers to be accessed by indexing vcpu->arch.regs.
933 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
935 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
936 vcpu->arch.rip = vmcs_readl(GUEST_RIP);
940 * Syncs rsp and rip back into the vmcs. Should be called after possible
943 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
945 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
946 vmcs_writel(GUEST_RIP, vcpu->arch.rip);
949 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
951 unsigned long dr7 = 0x400;
954 old_singlestep = vcpu->guest_debug.singlestep;
956 vcpu->guest_debug.enabled = dbg->enabled;
957 if (vcpu->guest_debug.enabled) {
960 dr7 |= 0x200; /* exact */
961 for (i = 0; i < 4; ++i) {
962 if (!dbg->breakpoints[i].enabled)
964 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
965 dr7 |= 2 << (i*2); /* global enable */
966 dr7 |= 0 << (i*4+16); /* execution breakpoint */
969 vcpu->guest_debug.singlestep = dbg->singlestep;
971 vcpu->guest_debug.singlestep = 0;
973 if (old_singlestep && !vcpu->guest_debug.singlestep) {
976 flags = vmcs_readl(GUEST_RFLAGS);
977 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
978 vmcs_writel(GUEST_RFLAGS, flags);
981 update_exception_bitmap(vcpu);
982 vmcs_writel(GUEST_DR7, dr7);
987 static int vmx_get_irq(struct kvm_vcpu *vcpu)
989 struct vcpu_vmx *vmx = to_vmx(vcpu);
992 idtv_info_field = vmx->idt_vectoring_info;
993 if (idtv_info_field & INTR_INFO_VALID_MASK) {
994 if (is_external_interrupt(idtv_info_field))
995 return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
997 printk(KERN_DEBUG "pending exception: not handled yet\n");
1002 static __init int cpu_has_kvm_support(void)
1004 unsigned long ecx = cpuid_ecx(1);
1005 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
1008 static __init int vmx_disabled_by_bios(void)
1012 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1013 return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
1014 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
1015 == MSR_IA32_FEATURE_CONTROL_LOCKED;
1016 /* locked but not enabled */
1019 static void hardware_enable(void *garbage)
1021 int cpu = raw_smp_processor_id();
1022 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1025 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1026 if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
1027 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
1028 != (MSR_IA32_FEATURE_CONTROL_LOCKED |
1029 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
1030 /* enable and lock */
1031 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1032 MSR_IA32_FEATURE_CONTROL_LOCKED |
1033 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
1034 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1035 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
1039 static void hardware_disable(void *garbage)
1041 asm volatile (ASM_VMX_VMXOFF : : : "cc");
1042 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1045 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1046 u32 msr, u32 *result)
1048 u32 vmx_msr_low, vmx_msr_high;
1049 u32 ctl = ctl_min | ctl_opt;
1051 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1053 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1054 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1056 /* Ensure minimum (required) set of control bits are supported. */
1064 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1066 u32 vmx_msr_low, vmx_msr_high;
1067 u32 min, opt, min2, opt2;
1068 u32 _pin_based_exec_control = 0;
1069 u32 _cpu_based_exec_control = 0;
1070 u32 _cpu_based_2nd_exec_control = 0;
1071 u32 _vmexit_control = 0;
1072 u32 _vmentry_control = 0;
1074 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1076 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1077 &_pin_based_exec_control) < 0)
1080 min = CPU_BASED_HLT_EXITING |
1081 #ifdef CONFIG_X86_64
1082 CPU_BASED_CR8_LOAD_EXITING |
1083 CPU_BASED_CR8_STORE_EXITING |
1085 CPU_BASED_CR3_LOAD_EXITING |
1086 CPU_BASED_CR3_STORE_EXITING |
1087 CPU_BASED_USE_IO_BITMAPS |
1088 CPU_BASED_MOV_DR_EXITING |
1089 CPU_BASED_USE_TSC_OFFSETING;
1090 opt = CPU_BASED_TPR_SHADOW |
1091 CPU_BASED_USE_MSR_BITMAPS |
1092 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1093 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1094 &_cpu_based_exec_control) < 0)
1096 #ifdef CONFIG_X86_64
1097 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1098 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1099 ~CPU_BASED_CR8_STORE_EXITING;
1101 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1103 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1104 SECONDARY_EXEC_WBINVD_EXITING |
1105 SECONDARY_EXEC_ENABLE_VPID |
1106 SECONDARY_EXEC_ENABLE_EPT;
1107 if (adjust_vmx_controls(min2, opt2,
1108 MSR_IA32_VMX_PROCBASED_CTLS2,
1109 &_cpu_based_2nd_exec_control) < 0)
1112 #ifndef CONFIG_X86_64
1113 if (!(_cpu_based_2nd_exec_control &
1114 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1115 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1117 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1118 /* CR3 accesses don't need to cause VM Exits when EPT enabled */
1119 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1120 CPU_BASED_CR3_STORE_EXITING);
1121 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1122 &_cpu_based_exec_control) < 0)
1124 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1125 vmx_capability.ept, vmx_capability.vpid);
1129 #ifdef CONFIG_X86_64
1130 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1133 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1134 &_vmexit_control) < 0)
1138 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1139 &_vmentry_control) < 0)
1142 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1144 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1145 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1148 #ifdef CONFIG_X86_64
1149 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1150 if (vmx_msr_high & (1u<<16))
1154 /* Require Write-Back (WB) memory type for VMCS accesses. */
1155 if (((vmx_msr_high >> 18) & 15) != 6)
1158 vmcs_conf->size = vmx_msr_high & 0x1fff;
1159 vmcs_conf->order = get_order(vmcs_config.size);
1160 vmcs_conf->revision_id = vmx_msr_low;
1162 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1163 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1164 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1165 vmcs_conf->vmexit_ctrl = _vmexit_control;
1166 vmcs_conf->vmentry_ctrl = _vmentry_control;
1171 static struct vmcs *alloc_vmcs_cpu(int cpu)
1173 int node = cpu_to_node(cpu);
1177 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1180 vmcs = page_address(pages);
1181 memset(vmcs, 0, vmcs_config.size);
1182 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1186 static struct vmcs *alloc_vmcs(void)
1188 return alloc_vmcs_cpu(raw_smp_processor_id());
1191 static void free_vmcs(struct vmcs *vmcs)
1193 free_pages((unsigned long)vmcs, vmcs_config.order);
1196 static void free_kvm_area(void)
1200 for_each_online_cpu(cpu)
1201 free_vmcs(per_cpu(vmxarea, cpu));
1204 static __init int alloc_kvm_area(void)
1208 for_each_online_cpu(cpu) {
1211 vmcs = alloc_vmcs_cpu(cpu);
1217 per_cpu(vmxarea, cpu) = vmcs;
1222 static __init int hardware_setup(void)
1224 if (setup_vmcs_config(&vmcs_config) < 0)
1227 if (boot_cpu_has(X86_FEATURE_NX))
1228 kvm_enable_efer_bits(EFER_NX);
1230 return alloc_kvm_area();
1233 static __exit void hardware_unsetup(void)
1238 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1240 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1242 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1243 vmcs_write16(sf->selector, save->selector);
1244 vmcs_writel(sf->base, save->base);
1245 vmcs_write32(sf->limit, save->limit);
1246 vmcs_write32(sf->ar_bytes, save->ar);
1248 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1250 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1254 static void enter_pmode(struct kvm_vcpu *vcpu)
1256 unsigned long flags;
1258 vcpu->arch.rmode.active = 0;
1260 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1261 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1262 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1264 flags = vmcs_readl(GUEST_RFLAGS);
1265 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1266 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1267 vmcs_writel(GUEST_RFLAGS, flags);
1269 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1270 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1272 update_exception_bitmap(vcpu);
1274 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1275 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1276 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1277 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1279 vmcs_write16(GUEST_SS_SELECTOR, 0);
1280 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1282 vmcs_write16(GUEST_CS_SELECTOR,
1283 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1284 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1287 static gva_t rmode_tss_base(struct kvm *kvm)
1289 if (!kvm->arch.tss_addr) {
1290 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1291 kvm->memslots[0].npages - 3;
1292 return base_gfn << PAGE_SHIFT;
1294 return kvm->arch.tss_addr;
1297 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1299 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1301 save->selector = vmcs_read16(sf->selector);
1302 save->base = vmcs_readl(sf->base);
1303 save->limit = vmcs_read32(sf->limit);
1304 save->ar = vmcs_read32(sf->ar_bytes);
1305 vmcs_write16(sf->selector, save->base >> 4);
1306 vmcs_write32(sf->base, save->base & 0xfffff);
1307 vmcs_write32(sf->limit, 0xffff);
1308 vmcs_write32(sf->ar_bytes, 0xf3);
1311 static void enter_rmode(struct kvm_vcpu *vcpu)
1313 unsigned long flags;
1315 vcpu->arch.rmode.active = 1;
1317 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1318 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1320 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1321 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1323 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1324 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1326 flags = vmcs_readl(GUEST_RFLAGS);
1327 vcpu->arch.rmode.save_iopl
1328 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1330 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1332 vmcs_writel(GUEST_RFLAGS, flags);
1333 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1334 update_exception_bitmap(vcpu);
1336 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1337 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1338 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1340 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1341 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1342 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1343 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1344 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1346 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1347 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1348 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1349 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1351 kvm_mmu_reset_context(vcpu);
1352 init_rmode(vcpu->kvm);
1355 #ifdef CONFIG_X86_64
1357 static void enter_lmode(struct kvm_vcpu *vcpu)
1361 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1362 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1363 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1365 vmcs_write32(GUEST_TR_AR_BYTES,
1366 (guest_tr_ar & ~AR_TYPE_MASK)
1367 | AR_TYPE_BUSY_64_TSS);
1370 vcpu->arch.shadow_efer |= EFER_LMA;
1372 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1373 vmcs_write32(VM_ENTRY_CONTROLS,
1374 vmcs_read32(VM_ENTRY_CONTROLS)
1375 | VM_ENTRY_IA32E_MODE);
1378 static void exit_lmode(struct kvm_vcpu *vcpu)
1380 vcpu->arch.shadow_efer &= ~EFER_LMA;
1382 vmcs_write32(VM_ENTRY_CONTROLS,
1383 vmcs_read32(VM_ENTRY_CONTROLS)
1384 & ~VM_ENTRY_IA32E_MODE);
1389 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1391 vpid_sync_vcpu_all(to_vmx(vcpu));
1394 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1396 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1397 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1400 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1402 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1403 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1404 printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1407 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1408 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1409 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1410 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1414 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1416 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1418 struct kvm_vcpu *vcpu)
1420 if (!(cr0 & X86_CR0_PG)) {
1421 /* From paging/starting to nonpaging */
1422 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1423 vmcs_config.cpu_based_exec_ctrl |
1424 (CPU_BASED_CR3_LOAD_EXITING |
1425 CPU_BASED_CR3_STORE_EXITING));
1426 vcpu->arch.cr0 = cr0;
1427 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1428 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1429 *hw_cr0 &= ~X86_CR0_WP;
1430 } else if (!is_paging(vcpu)) {
1431 /* From nonpaging to paging */
1432 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1433 vmcs_config.cpu_based_exec_ctrl &
1434 ~(CPU_BASED_CR3_LOAD_EXITING |
1435 CPU_BASED_CR3_STORE_EXITING));
1436 vcpu->arch.cr0 = cr0;
1437 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1438 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1439 *hw_cr0 &= ~X86_CR0_WP;
1443 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1444 struct kvm_vcpu *vcpu)
1446 if (!is_paging(vcpu)) {
1447 *hw_cr4 &= ~X86_CR4_PAE;
1448 *hw_cr4 |= X86_CR4_PSE;
1449 } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1450 *hw_cr4 &= ~X86_CR4_PAE;
1453 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1455 unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1456 KVM_VM_CR0_ALWAYS_ON;
1458 vmx_fpu_deactivate(vcpu);
1460 if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1463 if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1466 #ifdef CONFIG_X86_64
1467 if (vcpu->arch.shadow_efer & EFER_LME) {
1468 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1470 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1476 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1478 vmcs_writel(CR0_READ_SHADOW, cr0);
1479 vmcs_writel(GUEST_CR0, hw_cr0);
1480 vcpu->arch.cr0 = cr0;
1482 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1483 vmx_fpu_activate(vcpu);
1486 static u64 construct_eptp(unsigned long root_hpa)
1490 /* TODO write the value reading from MSR */
1491 eptp = VMX_EPT_DEFAULT_MT |
1492 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1493 eptp |= (root_hpa & PAGE_MASK);
1498 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1500 unsigned long guest_cr3;
1504 if (vm_need_ept()) {
1505 eptp = construct_eptp(cr3);
1506 vmcs_write64(EPT_POINTER, eptp);
1507 ept_sync_context(eptp);
1508 ept_load_pdptrs(vcpu);
1509 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1510 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1513 vmx_flush_tlb(vcpu);
1514 vmcs_writel(GUEST_CR3, guest_cr3);
1515 if (vcpu->arch.cr0 & X86_CR0_PE)
1516 vmx_fpu_deactivate(vcpu);
1519 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1521 unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1522 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1524 vcpu->arch.cr4 = cr4;
1526 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1528 vmcs_writel(CR4_READ_SHADOW, cr4);
1529 vmcs_writel(GUEST_CR4, hw_cr4);
1532 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1534 struct vcpu_vmx *vmx = to_vmx(vcpu);
1535 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1537 vcpu->arch.shadow_efer = efer;
1540 if (efer & EFER_LMA) {
1541 vmcs_write32(VM_ENTRY_CONTROLS,
1542 vmcs_read32(VM_ENTRY_CONTROLS) |
1543 VM_ENTRY_IA32E_MODE);
1547 vmcs_write32(VM_ENTRY_CONTROLS,
1548 vmcs_read32(VM_ENTRY_CONTROLS) &
1549 ~VM_ENTRY_IA32E_MODE);
1551 msr->data = efer & ~EFER_LME;
1556 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1558 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1560 return vmcs_readl(sf->base);
1563 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1564 struct kvm_segment *var, int seg)
1566 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1569 var->base = vmcs_readl(sf->base);
1570 var->limit = vmcs_read32(sf->limit);
1571 var->selector = vmcs_read16(sf->selector);
1572 ar = vmcs_read32(sf->ar_bytes);
1573 if (ar & AR_UNUSABLE_MASK)
1575 var->type = ar & 15;
1576 var->s = (ar >> 4) & 1;
1577 var->dpl = (ar >> 5) & 3;
1578 var->present = (ar >> 7) & 1;
1579 var->avl = (ar >> 12) & 1;
1580 var->l = (ar >> 13) & 1;
1581 var->db = (ar >> 14) & 1;
1582 var->g = (ar >> 15) & 1;
1583 var->unusable = (ar >> 16) & 1;
1586 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1588 struct kvm_segment kvm_seg;
1590 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1593 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1596 vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1597 return kvm_seg.selector & 3;
1600 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1607 ar = var->type & 15;
1608 ar |= (var->s & 1) << 4;
1609 ar |= (var->dpl & 3) << 5;
1610 ar |= (var->present & 1) << 7;
1611 ar |= (var->avl & 1) << 12;
1612 ar |= (var->l & 1) << 13;
1613 ar |= (var->db & 1) << 14;
1614 ar |= (var->g & 1) << 15;
1616 if (ar == 0) /* a 0 value means unusable */
1617 ar = AR_UNUSABLE_MASK;
1622 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1623 struct kvm_segment *var, int seg)
1625 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1628 if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1629 vcpu->arch.rmode.tr.selector = var->selector;
1630 vcpu->arch.rmode.tr.base = var->base;
1631 vcpu->arch.rmode.tr.limit = var->limit;
1632 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1635 vmcs_writel(sf->base, var->base);
1636 vmcs_write32(sf->limit, var->limit);
1637 vmcs_write16(sf->selector, var->selector);
1638 if (vcpu->arch.rmode.active && var->s) {
1640 * Hack real-mode segments into vm86 compatibility.
1642 if (var->base == 0xffff0000 && var->selector == 0xf000)
1643 vmcs_writel(sf->base, 0xf0000);
1646 ar = vmx_segment_access_rights(var);
1647 vmcs_write32(sf->ar_bytes, ar);
1650 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1652 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1654 *db = (ar >> 14) & 1;
1655 *l = (ar >> 13) & 1;
1658 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1660 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1661 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1664 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1666 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1667 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1670 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1672 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1673 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1676 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1678 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1679 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1682 static int init_rmode_tss(struct kvm *kvm)
1684 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1689 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1692 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1693 r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1696 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1699 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1703 r = kvm_write_guest_page(kvm, fn, &data,
1704 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1714 static int init_rmode_identity_map(struct kvm *kvm)
1717 pfn_t identity_map_pfn;
1722 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
1723 printk(KERN_ERR "EPT: identity-mapping pagetable "
1724 "haven't been allocated!\n");
1727 if (likely(kvm->arch.ept_identity_pagetable_done))
1730 identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
1731 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
1734 /* Set up identity-mapping pagetable for EPT in real mode */
1735 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
1736 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
1737 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
1738 r = kvm_write_guest_page(kvm, identity_map_pfn,
1739 &tmp, i * sizeof(tmp), sizeof(tmp));
1743 kvm->arch.ept_identity_pagetable_done = true;
1749 static void seg_setup(int seg)
1751 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1753 vmcs_write16(sf->selector, 0);
1754 vmcs_writel(sf->base, 0);
1755 vmcs_write32(sf->limit, 0xffff);
1756 vmcs_write32(sf->ar_bytes, 0x93);
1759 static int alloc_apic_access_page(struct kvm *kvm)
1761 struct kvm_userspace_memory_region kvm_userspace_mem;
1764 down_write(&kvm->slots_lock);
1765 if (kvm->arch.apic_access_page)
1767 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1768 kvm_userspace_mem.flags = 0;
1769 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1770 kvm_userspace_mem.memory_size = PAGE_SIZE;
1771 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1775 down_read(¤t->mm->mmap_sem);
1776 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
1777 up_read(¤t->mm->mmap_sem);
1779 up_write(&kvm->slots_lock);
1783 static int alloc_identity_pagetable(struct kvm *kvm)
1785 struct kvm_userspace_memory_region kvm_userspace_mem;
1788 down_write(&kvm->slots_lock);
1789 if (kvm->arch.ept_identity_pagetable)
1791 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
1792 kvm_userspace_mem.flags = 0;
1793 kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1794 kvm_userspace_mem.memory_size = PAGE_SIZE;
1795 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1799 down_read(¤t->mm->mmap_sem);
1800 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
1801 VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
1802 up_read(¤t->mm->mmap_sem);
1804 up_write(&kvm->slots_lock);
1808 static void allocate_vpid(struct vcpu_vmx *vmx)
1813 if (!enable_vpid || !cpu_has_vmx_vpid())
1815 spin_lock(&vmx_vpid_lock);
1816 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
1817 if (vpid < VMX_NR_VPIDS) {
1819 __set_bit(vpid, vmx_vpid_bitmap);
1821 spin_unlock(&vmx_vpid_lock);
1824 void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
1828 if (!cpu_has_vmx_msr_bitmap())
1832 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
1833 * have the write-low and read-high bitmap offsets the wrong way round.
1834 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
1836 va = kmap(msr_bitmap);
1837 if (msr <= 0x1fff) {
1838 __clear_bit(msr, va + 0x000); /* read-low */
1839 __clear_bit(msr, va + 0x800); /* write-low */
1840 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1842 __clear_bit(msr, va + 0x400); /* read-high */
1843 __clear_bit(msr, va + 0xc00); /* write-high */
1849 * Sets up the vmcs for emulated real mode.
1851 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1853 u32 host_sysenter_cs;
1856 struct descriptor_table dt;
1858 unsigned long kvm_vmx_return;
1862 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1863 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1865 if (cpu_has_vmx_msr_bitmap())
1866 vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
1868 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1871 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1872 vmcs_config.pin_based_exec_ctrl);
1874 exec_control = vmcs_config.cpu_based_exec_ctrl;
1875 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1876 exec_control &= ~CPU_BASED_TPR_SHADOW;
1877 #ifdef CONFIG_X86_64
1878 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1879 CPU_BASED_CR8_LOAD_EXITING;
1883 exec_control |= CPU_BASED_CR3_STORE_EXITING |
1884 CPU_BASED_CR3_LOAD_EXITING;
1885 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1887 if (cpu_has_secondary_exec_ctrls()) {
1888 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
1889 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1891 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1893 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
1895 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
1896 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
1899 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1900 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1901 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1903 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1904 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1905 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1907 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1908 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1909 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1910 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1911 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1912 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1913 #ifdef CONFIG_X86_64
1914 rdmsrl(MSR_FS_BASE, a);
1915 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1916 rdmsrl(MSR_GS_BASE, a);
1917 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1919 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1920 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1923 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1926 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1928 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1929 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1930 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1931 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1932 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1934 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1935 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1936 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1937 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1938 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1939 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1941 for (i = 0; i < NR_VMX_MSR; ++i) {
1942 u32 index = vmx_msr_index[i];
1943 u32 data_low, data_high;
1947 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1949 if (wrmsr_safe(index, data_low, data_high) < 0)
1951 data = data_low | ((u64)data_high << 32);
1952 vmx->host_msrs[j].index = index;
1953 vmx->host_msrs[j].reserved = 0;
1954 vmx->host_msrs[j].data = data;
1955 vmx->guest_msrs[j] = vmx->host_msrs[j];
1959 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1961 /* 22.2.1, 20.8.1 */
1962 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1964 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1965 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1971 static int init_rmode(struct kvm *kvm)
1973 if (!init_rmode_tss(kvm))
1975 if (!init_rmode_identity_map(kvm))
1980 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1982 struct vcpu_vmx *vmx = to_vmx(vcpu);
1986 down_read(&vcpu->kvm->slots_lock);
1987 if (!init_rmode(vmx->vcpu.kvm)) {
1992 vmx->vcpu.arch.rmode.active = 0;
1994 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1995 kvm_set_cr8(&vmx->vcpu, 0);
1996 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1997 if (vmx->vcpu.vcpu_id == 0)
1998 msr |= MSR_IA32_APICBASE_BSP;
1999 kvm_set_apic_base(&vmx->vcpu, msr);
2001 fx_init(&vmx->vcpu);
2004 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2005 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2007 if (vmx->vcpu.vcpu_id == 0) {
2008 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2009 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2011 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2012 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2014 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2015 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2017 seg_setup(VCPU_SREG_DS);
2018 seg_setup(VCPU_SREG_ES);
2019 seg_setup(VCPU_SREG_FS);
2020 seg_setup(VCPU_SREG_GS);
2021 seg_setup(VCPU_SREG_SS);
2023 vmcs_write16(GUEST_TR_SELECTOR, 0);
2024 vmcs_writel(GUEST_TR_BASE, 0);
2025 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2026 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2028 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2029 vmcs_writel(GUEST_LDTR_BASE, 0);
2030 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2031 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2033 vmcs_write32(GUEST_SYSENTER_CS, 0);
2034 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2035 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2037 vmcs_writel(GUEST_RFLAGS, 0x02);
2038 if (vmx->vcpu.vcpu_id == 0)
2039 vmcs_writel(GUEST_RIP, 0xfff0);
2041 vmcs_writel(GUEST_RIP, 0);
2042 vmcs_writel(GUEST_RSP, 0);
2044 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
2045 vmcs_writel(GUEST_DR7, 0x400);
2047 vmcs_writel(GUEST_GDTR_BASE, 0);
2048 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2050 vmcs_writel(GUEST_IDTR_BASE, 0);
2051 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2053 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2054 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2055 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2059 /* Special registers */
2060 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2064 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2066 if (cpu_has_vmx_tpr_shadow()) {
2067 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2068 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2069 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2070 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2071 vmcs_write32(TPR_THRESHOLD, 0);
2074 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2075 vmcs_write64(APIC_ACCESS_ADDR,
2076 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2079 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2081 vmx->vcpu.arch.cr0 = 0x60000010;
2082 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2083 vmx_set_cr4(&vmx->vcpu, 0);
2084 vmx_set_efer(&vmx->vcpu, 0);
2085 vmx_fpu_activate(&vmx->vcpu);
2086 update_exception_bitmap(&vmx->vcpu);
2088 vpid_sync_vcpu_all(vmx);
2093 up_read(&vcpu->kvm->slots_lock);
2097 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
2099 struct vcpu_vmx *vmx = to_vmx(vcpu);
2101 KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2103 if (vcpu->arch.rmode.active) {
2104 vmx->rmode.irq.pending = true;
2105 vmx->rmode.irq.vector = irq;
2106 vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
2107 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2108 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2109 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2110 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
2113 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2114 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
2117 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
2119 int word_index = __ffs(vcpu->arch.irq_summary);
2120 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
2121 int irq = word_index * BITS_PER_LONG + bit_index;
2123 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
2124 if (!vcpu->arch.irq_pending[word_index])
2125 clear_bit(word_index, &vcpu->arch.irq_summary);
2126 vmx_inject_irq(vcpu, irq);
2130 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
2131 struct kvm_run *kvm_run)
2133 u32 cpu_based_vm_exec_control;
2135 vcpu->arch.interrupt_window_open =
2136 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2137 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2139 if (vcpu->arch.interrupt_window_open &&
2140 vcpu->arch.irq_summary &&
2141 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
2143 * If interrupts enabled, and not blocked by sti or mov ss. Good.
2145 kvm_do_inject_irq(vcpu);
2147 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2148 if (!vcpu->arch.interrupt_window_open &&
2149 (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
2151 * Interrupts blocked. Wait for unblock.
2153 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2155 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2156 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2159 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2162 struct kvm_userspace_memory_region tss_mem = {
2164 .guest_phys_addr = addr,
2165 .memory_size = PAGE_SIZE * 3,
2169 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2172 kvm->arch.tss_addr = addr;
2176 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
2178 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
2180 set_debugreg(dbg->bp[0], 0);
2181 set_debugreg(dbg->bp[1], 1);
2182 set_debugreg(dbg->bp[2], 2);
2183 set_debugreg(dbg->bp[3], 3);
2185 if (dbg->singlestep) {
2186 unsigned long flags;
2188 flags = vmcs_readl(GUEST_RFLAGS);
2189 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
2190 vmcs_writel(GUEST_RFLAGS, flags);
2194 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2195 int vec, u32 err_code)
2197 if (!vcpu->arch.rmode.active)
2201 * Instruction with address size override prefix opcode 0x67
2202 * Cause the #SS fault with 0 error code in VM86 mode.
2204 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2205 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2210 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2212 struct vcpu_vmx *vmx = to_vmx(vcpu);
2213 u32 intr_info, error_code;
2214 unsigned long cr2, rip;
2216 enum emulation_result er;
2218 vect_info = vmx->idt_vectoring_info;
2219 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2221 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2222 !is_page_fault(intr_info))
2223 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2224 "intr info 0x%x\n", __func__, vect_info, intr_info);
2226 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
2227 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
2228 set_bit(irq, vcpu->arch.irq_pending);
2229 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
2232 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2233 return 1; /* already handled by vmx_vcpu_run() */
2235 if (is_no_device(intr_info)) {
2236 vmx_fpu_activate(vcpu);
2240 if (is_invalid_opcode(intr_info)) {
2241 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2242 if (er != EMULATE_DONE)
2243 kvm_queue_exception(vcpu, UD_VECTOR);
2248 rip = vmcs_readl(GUEST_RIP);
2249 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2250 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2251 if (is_page_fault(intr_info)) {
2252 /* EPT won't cause page fault directly */
2255 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2256 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2257 (u32)((u64)cr2 >> 32), handler);
2258 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2261 if (vcpu->arch.rmode.active &&
2262 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2264 if (vcpu->arch.halt_request) {
2265 vcpu->arch.halt_request = 0;
2266 return kvm_emulate_halt(vcpu);
2271 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
2272 (INTR_TYPE_EXCEPTION | 1)) {
2273 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2276 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2277 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
2278 kvm_run->ex.error_code = error_code;
2282 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2283 struct kvm_run *kvm_run)
2285 ++vcpu->stat.irq_exits;
2286 KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2290 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2292 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2296 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2298 unsigned long exit_qualification;
2299 int size, down, in, string, rep;
2302 ++vcpu->stat.io_exits;
2303 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2304 string = (exit_qualification & 16) != 0;
2307 if (emulate_instruction(vcpu,
2308 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2313 size = (exit_qualification & 7) + 1;
2314 in = (exit_qualification & 8) != 0;
2315 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
2316 rep = (exit_qualification & 32) != 0;
2317 port = exit_qualification >> 16;
2319 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2323 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2326 * Patch in the VMCALL instruction:
2328 hypercall[0] = 0x0f;
2329 hypercall[1] = 0x01;
2330 hypercall[2] = 0xc1;
2333 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2335 unsigned long exit_qualification;
2339 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2340 cr = exit_qualification & 15;
2341 reg = (exit_qualification >> 8) & 15;
2342 switch ((exit_qualification >> 4) & 3) {
2343 case 0: /* mov to cr */
2344 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)vcpu->arch.regs[reg],
2345 (u32)((u64)vcpu->arch.regs[reg] >> 32), handler);
2348 vcpu_load_rsp_rip(vcpu);
2349 kvm_set_cr0(vcpu, vcpu->arch.regs[reg]);
2350 skip_emulated_instruction(vcpu);
2353 vcpu_load_rsp_rip(vcpu);
2354 kvm_set_cr3(vcpu, vcpu->arch.regs[reg]);
2355 skip_emulated_instruction(vcpu);
2358 vcpu_load_rsp_rip(vcpu);
2359 kvm_set_cr4(vcpu, vcpu->arch.regs[reg]);
2360 skip_emulated_instruction(vcpu);
2363 vcpu_load_rsp_rip(vcpu);
2364 kvm_set_cr8(vcpu, vcpu->arch.regs[reg]);
2365 skip_emulated_instruction(vcpu);
2366 if (irqchip_in_kernel(vcpu->kvm))
2368 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2373 vcpu_load_rsp_rip(vcpu);
2374 vmx_fpu_deactivate(vcpu);
2375 vcpu->arch.cr0 &= ~X86_CR0_TS;
2376 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2377 vmx_fpu_activate(vcpu);
2378 KVMTRACE_0D(CLTS, vcpu, handler);
2379 skip_emulated_instruction(vcpu);
2381 case 1: /*mov from cr*/
2384 vcpu_load_rsp_rip(vcpu);
2385 vcpu->arch.regs[reg] = vcpu->arch.cr3;
2386 vcpu_put_rsp_rip(vcpu);
2387 KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2388 (u32)vcpu->arch.regs[reg],
2389 (u32)((u64)vcpu->arch.regs[reg] >> 32),
2391 skip_emulated_instruction(vcpu);
2394 vcpu_load_rsp_rip(vcpu);
2395 vcpu->arch.regs[reg] = kvm_get_cr8(vcpu);
2396 vcpu_put_rsp_rip(vcpu);
2397 KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2398 (u32)vcpu->arch.regs[reg], handler);
2399 skip_emulated_instruction(vcpu);
2404 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2406 skip_emulated_instruction(vcpu);
2411 kvm_run->exit_reason = 0;
2412 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2413 (int)(exit_qualification >> 4) & 3, cr);
2417 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2419 unsigned long exit_qualification;
2424 * FIXME: this code assumes the host is debugging the guest.
2425 * need to deal with guest debugging itself too.
2427 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2428 dr = exit_qualification & 7;
2429 reg = (exit_qualification >> 8) & 15;
2430 vcpu_load_rsp_rip(vcpu);
2431 if (exit_qualification & 16) {
2443 vcpu->arch.regs[reg] = val;
2444 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2448 vcpu_put_rsp_rip(vcpu);
2449 skip_emulated_instruction(vcpu);
2453 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2455 kvm_emulate_cpuid(vcpu);
2459 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2461 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2464 if (vmx_get_msr(vcpu, ecx, &data)) {
2465 kvm_inject_gp(vcpu, 0);
2469 KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2472 /* FIXME: handling of bits 32:63 of rax, rdx */
2473 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2474 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2475 skip_emulated_instruction(vcpu);
2479 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2481 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2482 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2483 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2485 KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2488 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2489 kvm_inject_gp(vcpu, 0);
2493 skip_emulated_instruction(vcpu);
2497 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2498 struct kvm_run *kvm_run)
2503 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2504 struct kvm_run *kvm_run)
2506 u32 cpu_based_vm_exec_control;
2508 /* clear pending irq */
2509 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2510 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2511 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2513 KVMTRACE_0D(PEND_INTR, vcpu, handler);
2516 * If the user space waits to inject interrupts, exit as soon as
2519 if (kvm_run->request_interrupt_window &&
2520 !vcpu->arch.irq_summary) {
2521 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2522 ++vcpu->stat.irq_window_exits;
2528 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2530 skip_emulated_instruction(vcpu);
2531 return kvm_emulate_halt(vcpu);
2534 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2536 skip_emulated_instruction(vcpu);
2537 kvm_emulate_hypercall(vcpu);
2541 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2543 skip_emulated_instruction(vcpu);
2544 /* TODO: Add support for VT-d/pass-through device */
2548 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2550 u64 exit_qualification;
2551 enum emulation_result er;
2552 unsigned long offset;
2554 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2555 offset = exit_qualification & 0xffful;
2557 KVMTRACE_1D(APIC_ACCESS, vcpu, (u32)offset, handler);
2559 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2561 if (er != EMULATE_DONE) {
2563 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2570 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2572 unsigned long exit_qualification;
2576 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2578 reason = (u32)exit_qualification >> 30;
2579 tss_selector = exit_qualification;
2581 return kvm_task_switch(vcpu, tss_selector, reason);
2584 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2586 u64 exit_qualification;
2587 enum emulation_result er;
2593 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2595 if (exit_qualification & (1 << 6)) {
2596 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
2600 gla_validity = (exit_qualification >> 7) & 0x3;
2601 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
2602 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
2603 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2604 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2605 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2606 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2607 (long unsigned int)exit_qualification);
2608 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2609 kvm_run->hw.hardware_exit_reason = 0;
2613 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
2614 hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
2615 if (!kvm_is_error_hva(hva)) {
2616 r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
2618 printk(KERN_ERR "EPT: Not enough memory!\n");
2624 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2626 if (er == EMULATE_FAIL) {
2628 "EPT: Fail to handle EPT violation vmexit!er is %d\n",
2630 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2631 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2632 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2633 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2634 (long unsigned int)exit_qualification);
2636 } else if (er == EMULATE_DO_MMIO)
2643 * The exit handlers return 1 if the exit was handled fully and guest execution
2644 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2645 * to be done to userspace and return 0.
2647 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2648 struct kvm_run *kvm_run) = {
2649 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2650 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2651 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2652 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2653 [EXIT_REASON_CR_ACCESS] = handle_cr,
2654 [EXIT_REASON_DR_ACCESS] = handle_dr,
2655 [EXIT_REASON_CPUID] = handle_cpuid,
2656 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2657 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2658 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2659 [EXIT_REASON_HLT] = handle_halt,
2660 [EXIT_REASON_VMCALL] = handle_vmcall,
2661 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
2662 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
2663 [EXIT_REASON_WBINVD] = handle_wbinvd,
2664 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
2665 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
2668 static const int kvm_vmx_max_exit_handlers =
2669 ARRAY_SIZE(kvm_vmx_exit_handlers);
2672 * The guest has exited. See if we can fix it or if we need userspace
2675 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2677 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2678 struct vcpu_vmx *vmx = to_vmx(vcpu);
2679 u32 vectoring_info = vmx->idt_vectoring_info;
2681 KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)vmcs_readl(GUEST_RIP),
2682 (u32)((u64)vmcs_readl(GUEST_RIP) >> 32), entryexit);
2684 /* Access CR3 don't cause VMExit in paging mode, so we need
2685 * to sync with guest real CR3. */
2686 if (vm_need_ept() && is_paging(vcpu)) {
2687 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2688 ept_load_pdptrs(vcpu);
2691 if (unlikely(vmx->fail)) {
2692 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2693 kvm_run->fail_entry.hardware_entry_failure_reason
2694 = vmcs_read32(VM_INSTRUCTION_ERROR);
2698 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2699 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
2700 exit_reason != EXIT_REASON_EPT_VIOLATION))
2701 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2702 "exit reason is 0x%x\n", __func__, exit_reason);
2703 if (exit_reason < kvm_vmx_max_exit_handlers
2704 && kvm_vmx_exit_handlers[exit_reason])
2705 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2707 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2708 kvm_run->hw.hardware_exit_reason = exit_reason;
2713 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2717 if (!vm_need_tpr_shadow(vcpu->kvm))
2720 if (!kvm_lapic_enabled(vcpu) ||
2721 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2722 vmcs_write32(TPR_THRESHOLD, 0);
2726 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2727 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2730 static void enable_irq_window(struct kvm_vcpu *vcpu)
2732 u32 cpu_based_vm_exec_control;
2734 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2735 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2736 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2739 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2741 struct vcpu_vmx *vmx = to_vmx(vcpu);
2742 u32 idtv_info_field, intr_info_field;
2743 int has_ext_irq, interrupt_window_open;
2746 update_tpr_threshold(vcpu);
2748 has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2749 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2750 idtv_info_field = vmx->idt_vectoring_info;
2751 if (intr_info_field & INTR_INFO_VALID_MASK) {
2752 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2753 /* TODO: fault when IDT_Vectoring */
2754 if (printk_ratelimit())
2755 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2758 enable_irq_window(vcpu);
2761 if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2762 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2763 == INTR_TYPE_EXT_INTR
2764 && vcpu->arch.rmode.active) {
2765 u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
2767 vmx_inject_irq(vcpu, vect);
2768 if (unlikely(has_ext_irq))
2769 enable_irq_window(vcpu);
2773 KVMTRACE_1D(REDELIVER_EVT, vcpu, idtv_info_field, handler);
2775 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2776 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2777 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2779 if (unlikely(idtv_info_field & INTR_INFO_DELIVER_CODE_MASK))
2780 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2781 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2782 if (unlikely(has_ext_irq))
2783 enable_irq_window(vcpu);
2788 interrupt_window_open =
2789 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2790 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2791 if (interrupt_window_open) {
2792 vector = kvm_cpu_get_interrupt(vcpu);
2793 vmx_inject_irq(vcpu, vector);
2794 kvm_timer_intr_post(vcpu, vector);
2796 enable_irq_window(vcpu);
2800 * Failure to inject an interrupt should give us the information
2801 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
2802 * when fetching the interrupt redirection bitmap in the real-mode
2803 * tss, this doesn't happen. So we do it ourselves.
2805 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2807 vmx->rmode.irq.pending = 0;
2808 if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
2810 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
2811 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2812 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2813 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2816 vmx->idt_vectoring_info =
2817 VECTORING_INFO_VALID_MASK
2818 | INTR_TYPE_EXT_INTR
2819 | vmx->rmode.irq.vector;
2822 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2824 struct vcpu_vmx *vmx = to_vmx(vcpu);
2828 * Loading guest fpu may have cleared host cr0.ts
2830 vmcs_writel(HOST_CR0, read_cr0());
2833 /* Store host registers */
2834 #ifdef CONFIG_X86_64
2835 "push %%rdx; push %%rbp;"
2838 "push %%edx; push %%ebp;"
2841 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2842 /* Check if vmlaunch of vmresume is needed */
2843 "cmpl $0, %c[launched](%0) \n\t"
2844 /* Load guest registers. Don't clobber flags. */
2845 #ifdef CONFIG_X86_64
2846 "mov %c[cr2](%0), %%rax \n\t"
2847 "mov %%rax, %%cr2 \n\t"
2848 "mov %c[rax](%0), %%rax \n\t"
2849 "mov %c[rbx](%0), %%rbx \n\t"
2850 "mov %c[rdx](%0), %%rdx \n\t"
2851 "mov %c[rsi](%0), %%rsi \n\t"
2852 "mov %c[rdi](%0), %%rdi \n\t"
2853 "mov %c[rbp](%0), %%rbp \n\t"
2854 "mov %c[r8](%0), %%r8 \n\t"
2855 "mov %c[r9](%0), %%r9 \n\t"
2856 "mov %c[r10](%0), %%r10 \n\t"
2857 "mov %c[r11](%0), %%r11 \n\t"
2858 "mov %c[r12](%0), %%r12 \n\t"
2859 "mov %c[r13](%0), %%r13 \n\t"
2860 "mov %c[r14](%0), %%r14 \n\t"
2861 "mov %c[r15](%0), %%r15 \n\t"
2862 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2864 "mov %c[cr2](%0), %%eax \n\t"
2865 "mov %%eax, %%cr2 \n\t"
2866 "mov %c[rax](%0), %%eax \n\t"
2867 "mov %c[rbx](%0), %%ebx \n\t"
2868 "mov %c[rdx](%0), %%edx \n\t"
2869 "mov %c[rsi](%0), %%esi \n\t"
2870 "mov %c[rdi](%0), %%edi \n\t"
2871 "mov %c[rbp](%0), %%ebp \n\t"
2872 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2874 /* Enter guest mode */
2875 "jne .Llaunched \n\t"
2876 ASM_VMX_VMLAUNCH "\n\t"
2877 "jmp .Lkvm_vmx_return \n\t"
2878 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2879 ".Lkvm_vmx_return: "
2880 /* Save guest registers, load host registers, keep flags */
2881 #ifdef CONFIG_X86_64
2882 "xchg %0, (%%rsp) \n\t"
2883 "mov %%rax, %c[rax](%0) \n\t"
2884 "mov %%rbx, %c[rbx](%0) \n\t"
2885 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2886 "mov %%rdx, %c[rdx](%0) \n\t"
2887 "mov %%rsi, %c[rsi](%0) \n\t"
2888 "mov %%rdi, %c[rdi](%0) \n\t"
2889 "mov %%rbp, %c[rbp](%0) \n\t"
2890 "mov %%r8, %c[r8](%0) \n\t"
2891 "mov %%r9, %c[r9](%0) \n\t"
2892 "mov %%r10, %c[r10](%0) \n\t"
2893 "mov %%r11, %c[r11](%0) \n\t"
2894 "mov %%r12, %c[r12](%0) \n\t"
2895 "mov %%r13, %c[r13](%0) \n\t"
2896 "mov %%r14, %c[r14](%0) \n\t"
2897 "mov %%r15, %c[r15](%0) \n\t"
2898 "mov %%cr2, %%rax \n\t"
2899 "mov %%rax, %c[cr2](%0) \n\t"
2901 "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
2903 "xchg %0, (%%esp) \n\t"
2904 "mov %%eax, %c[rax](%0) \n\t"
2905 "mov %%ebx, %c[rbx](%0) \n\t"
2906 "pushl (%%esp); popl %c[rcx](%0) \n\t"
2907 "mov %%edx, %c[rdx](%0) \n\t"
2908 "mov %%esi, %c[rsi](%0) \n\t"
2909 "mov %%edi, %c[rdi](%0) \n\t"
2910 "mov %%ebp, %c[rbp](%0) \n\t"
2911 "mov %%cr2, %%eax \n\t"
2912 "mov %%eax, %c[cr2](%0) \n\t"
2914 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
2916 "setbe %c[fail](%0) \n\t"
2917 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
2918 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
2919 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2920 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
2921 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
2922 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
2923 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
2924 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
2925 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
2926 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
2927 #ifdef CONFIG_X86_64
2928 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
2929 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
2930 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
2931 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
2932 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
2933 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
2934 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
2935 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
2937 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
2939 #ifdef CONFIG_X86_64
2940 , "rbx", "rdi", "rsi"
2941 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2943 , "ebx", "edi", "rsi"
2947 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2948 if (vmx->rmode.irq.pending)
2949 fixup_rmode_irq(vmx);
2951 vcpu->arch.interrupt_window_open =
2952 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2954 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2957 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2959 /* We need to handle NMIs before interrupts are enabled */
2960 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
2961 KVMTRACE_0D(NMI, vcpu, handler);
2966 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2968 struct vcpu_vmx *vmx = to_vmx(vcpu);
2971 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2972 free_vmcs(vmx->vmcs);
2977 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2979 struct vcpu_vmx *vmx = to_vmx(vcpu);
2981 spin_lock(&vmx_vpid_lock);
2983 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2984 spin_unlock(&vmx_vpid_lock);
2985 vmx_free_vmcs(vcpu);
2986 kfree(vmx->host_msrs);
2987 kfree(vmx->guest_msrs);
2988 kvm_vcpu_uninit(vcpu);
2989 kmem_cache_free(kvm_vcpu_cache, vmx);
2992 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2995 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2999 return ERR_PTR(-ENOMEM);
3002 if (id == 0 && vm_need_ept()) {
3003 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3004 VMX_EPT_WRITABLE_MASK |
3005 VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
3006 kvm_mmu_set_mask_ptes(0ull, VMX_EPT_FAKE_ACCESSED_MASK,
3007 VMX_EPT_FAKE_DIRTY_MASK, 0ull,
3008 VMX_EPT_EXECUTABLE_MASK);
3012 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3016 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3017 if (!vmx->guest_msrs) {
3022 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3023 if (!vmx->host_msrs)
3024 goto free_guest_msrs;
3026 vmx->vmcs = alloc_vmcs();
3030 vmcs_clear(vmx->vmcs);
3033 vmx_vcpu_load(&vmx->vcpu, cpu);
3034 err = vmx_vcpu_setup(vmx);
3035 vmx_vcpu_put(&vmx->vcpu);
3039 if (vm_need_virtualize_apic_accesses(kvm))
3040 if (alloc_apic_access_page(kvm) != 0)
3044 if (alloc_identity_pagetable(kvm) != 0)
3050 free_vmcs(vmx->vmcs);
3052 kfree(vmx->host_msrs);
3054 kfree(vmx->guest_msrs);
3056 kvm_vcpu_uninit(&vmx->vcpu);
3058 kmem_cache_free(kvm_vcpu_cache, vmx);
3059 return ERR_PTR(err);
3062 static void __init vmx_check_processor_compat(void *rtn)
3064 struct vmcs_config vmcs_conf;
3067 if (setup_vmcs_config(&vmcs_conf) < 0)
3069 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3070 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3071 smp_processor_id());
3076 static int get_ept_level(void)
3078 return VMX_EPT_DEFAULT_GAW + 1;
3081 static struct kvm_x86_ops vmx_x86_ops = {
3082 .cpu_has_kvm_support = cpu_has_kvm_support,
3083 .disabled_by_bios = vmx_disabled_by_bios,
3084 .hardware_setup = hardware_setup,
3085 .hardware_unsetup = hardware_unsetup,
3086 .check_processor_compatibility = vmx_check_processor_compat,
3087 .hardware_enable = hardware_enable,
3088 .hardware_disable = hardware_disable,
3089 .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
3091 .vcpu_create = vmx_create_vcpu,
3092 .vcpu_free = vmx_free_vcpu,
3093 .vcpu_reset = vmx_vcpu_reset,
3095 .prepare_guest_switch = vmx_save_host_state,
3096 .vcpu_load = vmx_vcpu_load,
3097 .vcpu_put = vmx_vcpu_put,
3098 .vcpu_decache = vmx_vcpu_decache,
3100 .set_guest_debug = set_guest_debug,
3101 .guest_debug_pre = kvm_guest_debug_pre,
3102 .get_msr = vmx_get_msr,
3103 .set_msr = vmx_set_msr,
3104 .get_segment_base = vmx_get_segment_base,
3105 .get_segment = vmx_get_segment,
3106 .set_segment = vmx_set_segment,
3107 .get_cpl = vmx_get_cpl,
3108 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3109 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3110 .set_cr0 = vmx_set_cr0,
3111 .set_cr3 = vmx_set_cr3,
3112 .set_cr4 = vmx_set_cr4,
3113 .set_efer = vmx_set_efer,
3114 .get_idt = vmx_get_idt,
3115 .set_idt = vmx_set_idt,
3116 .get_gdt = vmx_get_gdt,
3117 .set_gdt = vmx_set_gdt,
3118 .cache_regs = vcpu_load_rsp_rip,
3119 .decache_regs = vcpu_put_rsp_rip,
3120 .get_rflags = vmx_get_rflags,
3121 .set_rflags = vmx_set_rflags,
3123 .tlb_flush = vmx_flush_tlb,
3125 .run = vmx_vcpu_run,
3126 .handle_exit = kvm_handle_exit,
3127 .skip_emulated_instruction = skip_emulated_instruction,
3128 .patch_hypercall = vmx_patch_hypercall,
3129 .get_irq = vmx_get_irq,
3130 .set_irq = vmx_inject_irq,
3131 .queue_exception = vmx_queue_exception,
3132 .exception_injected = vmx_exception_injected,
3133 .inject_pending_irq = vmx_intr_assist,
3134 .inject_pending_vectors = do_interrupt_requests,
3136 .set_tss_addr = vmx_set_tss_addr,
3137 .get_tdp_level = get_ept_level,
3140 static int __init vmx_init(void)
3145 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3146 if (!vmx_io_bitmap_a)
3149 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3150 if (!vmx_io_bitmap_b) {
3155 vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3156 if (!vmx_msr_bitmap) {
3162 * Allow direct access to the PC debug port (it is often used for I/O
3163 * delays, but the vmexits simply slow things down).
3165 va = kmap(vmx_io_bitmap_a);
3166 memset(va, 0xff, PAGE_SIZE);
3167 clear_bit(0x80, va);
3168 kunmap(vmx_io_bitmap_a);
3170 va = kmap(vmx_io_bitmap_b);
3171 memset(va, 0xff, PAGE_SIZE);
3172 kunmap(vmx_io_bitmap_b);
3174 va = kmap(vmx_msr_bitmap);
3175 memset(va, 0xff, PAGE_SIZE);
3176 kunmap(vmx_msr_bitmap);
3178 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3180 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3184 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
3185 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
3186 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
3187 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
3188 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
3190 if (cpu_has_vmx_ept())
3191 bypass_guest_pf = 0;
3193 if (bypass_guest_pf)
3194 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3201 __free_page(vmx_msr_bitmap);
3203 __free_page(vmx_io_bitmap_b);
3205 __free_page(vmx_io_bitmap_a);
3209 static void __exit vmx_exit(void)
3211 __free_page(vmx_msr_bitmap);
3212 __free_page(vmx_io_bitmap_b);
3213 __free_page(vmx_io_bitmap_a);
3218 module_init(vmx_init)
3219 module_exit(vmx_exit)