Merge branch 'topic/asoc' into for-linus
[linux-2.6] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include "kvm_cache_regs.h"
29 #include "x86.h"
30
31 #include <asm/io.h>
32 #include <asm/desc.h>
33 #include <asm/vmx.h>
34 #include <asm/virtext.h>
35
36 #define __ex(x) __kvm_handle_fault_on_reboot(x)
37
38 MODULE_AUTHOR("Qumranet");
39 MODULE_LICENSE("GPL");
40
41 static int bypass_guest_pf = 1;
42 module_param(bypass_guest_pf, bool, 0);
43
44 static int enable_vpid = 1;
45 module_param(enable_vpid, bool, 0);
46
47 static int flexpriority_enabled = 1;
48 module_param(flexpriority_enabled, bool, 0);
49
50 static int enable_ept = 1;
51 module_param(enable_ept, bool, 0);
52
53 static int emulate_invalid_guest_state = 0;
54 module_param(emulate_invalid_guest_state, bool, 0);
55
56 struct vmcs {
57         u32 revision_id;
58         u32 abort;
59         char data[0];
60 };
61
62 struct vcpu_vmx {
63         struct kvm_vcpu       vcpu;
64         struct list_head      local_vcpus_link;
65         unsigned long         host_rsp;
66         int                   launched;
67         u8                    fail;
68         u32                   idt_vectoring_info;
69         struct kvm_msr_entry *guest_msrs;
70         struct kvm_msr_entry *host_msrs;
71         int                   nmsrs;
72         int                   save_nmsrs;
73         int                   msr_offset_efer;
74 #ifdef CONFIG_X86_64
75         int                   msr_offset_kernel_gs_base;
76 #endif
77         struct vmcs          *vmcs;
78         struct {
79                 int           loaded;
80                 u16           fs_sel, gs_sel, ldt_sel;
81                 int           gs_ldt_reload_needed;
82                 int           fs_reload_needed;
83                 int           guest_efer_loaded;
84         } host_state;
85         struct {
86                 struct {
87                         bool pending;
88                         u8 vector;
89                         unsigned rip;
90                 } irq;
91         } rmode;
92         int vpid;
93         bool emulation_required;
94
95         /* Support for vnmi-less CPUs */
96         int soft_vnmi_blocked;
97         ktime_t entry_time;
98         s64 vnmi_blocked_time;
99 };
100
101 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
102 {
103         return container_of(vcpu, struct vcpu_vmx, vcpu);
104 }
105
106 static int init_rmode(struct kvm *kvm);
107 static u64 construct_eptp(unsigned long root_hpa);
108
109 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
110 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
111 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
112
113 static struct page *vmx_io_bitmap_a;
114 static struct page *vmx_io_bitmap_b;
115 static struct page *vmx_msr_bitmap;
116
117 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
118 static DEFINE_SPINLOCK(vmx_vpid_lock);
119
120 static struct vmcs_config {
121         int size;
122         int order;
123         u32 revision_id;
124         u32 pin_based_exec_ctrl;
125         u32 cpu_based_exec_ctrl;
126         u32 cpu_based_2nd_exec_ctrl;
127         u32 vmexit_ctrl;
128         u32 vmentry_ctrl;
129 } vmcs_config;
130
131 static struct vmx_capability {
132         u32 ept;
133         u32 vpid;
134 } vmx_capability;
135
136 #define VMX_SEGMENT_FIELD(seg)                                  \
137         [VCPU_SREG_##seg] = {                                   \
138                 .selector = GUEST_##seg##_SELECTOR,             \
139                 .base = GUEST_##seg##_BASE,                     \
140                 .limit = GUEST_##seg##_LIMIT,                   \
141                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
142         }
143
144 static struct kvm_vmx_segment_field {
145         unsigned selector;
146         unsigned base;
147         unsigned limit;
148         unsigned ar_bytes;
149 } kvm_vmx_segment_fields[] = {
150         VMX_SEGMENT_FIELD(CS),
151         VMX_SEGMENT_FIELD(DS),
152         VMX_SEGMENT_FIELD(ES),
153         VMX_SEGMENT_FIELD(FS),
154         VMX_SEGMENT_FIELD(GS),
155         VMX_SEGMENT_FIELD(SS),
156         VMX_SEGMENT_FIELD(TR),
157         VMX_SEGMENT_FIELD(LDTR),
158 };
159
160 /*
161  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
162  * away by decrementing the array size.
163  */
164 static const u32 vmx_msr_index[] = {
165 #ifdef CONFIG_X86_64
166         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
167 #endif
168         MSR_EFER, MSR_K6_STAR,
169 };
170 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
171
172 static void load_msrs(struct kvm_msr_entry *e, int n)
173 {
174         int i;
175
176         for (i = 0; i < n; ++i)
177                 wrmsrl(e[i].index, e[i].data);
178 }
179
180 static void save_msrs(struct kvm_msr_entry *e, int n)
181 {
182         int i;
183
184         for (i = 0; i < n; ++i)
185                 rdmsrl(e[i].index, e[i].data);
186 }
187
188 static inline int is_page_fault(u32 intr_info)
189 {
190         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
191                              INTR_INFO_VALID_MASK)) ==
192                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
193 }
194
195 static inline int is_no_device(u32 intr_info)
196 {
197         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
198                              INTR_INFO_VALID_MASK)) ==
199                 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
200 }
201
202 static inline int is_invalid_opcode(u32 intr_info)
203 {
204         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
205                              INTR_INFO_VALID_MASK)) ==
206                 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
207 }
208
209 static inline int is_external_interrupt(u32 intr_info)
210 {
211         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
212                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
213 }
214
215 static inline int cpu_has_vmx_msr_bitmap(void)
216 {
217         return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
218 }
219
220 static inline int cpu_has_vmx_tpr_shadow(void)
221 {
222         return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
223 }
224
225 static inline int vm_need_tpr_shadow(struct kvm *kvm)
226 {
227         return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
228 }
229
230 static inline int cpu_has_secondary_exec_ctrls(void)
231 {
232         return (vmcs_config.cpu_based_exec_ctrl &
233                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
234 }
235
236 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
237 {
238         return flexpriority_enabled
239                 && (vmcs_config.cpu_based_2nd_exec_ctrl &
240                     SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
241 }
242
243 static inline int cpu_has_vmx_invept_individual_addr(void)
244 {
245         return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
246 }
247
248 static inline int cpu_has_vmx_invept_context(void)
249 {
250         return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
251 }
252
253 static inline int cpu_has_vmx_invept_global(void)
254 {
255         return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
256 }
257
258 static inline int cpu_has_vmx_ept(void)
259 {
260         return (vmcs_config.cpu_based_2nd_exec_ctrl &
261                 SECONDARY_EXEC_ENABLE_EPT);
262 }
263
264 static inline int vm_need_ept(void)
265 {
266         return (cpu_has_vmx_ept() && enable_ept);
267 }
268
269 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
270 {
271         return ((cpu_has_vmx_virtualize_apic_accesses()) &&
272                 (irqchip_in_kernel(kvm)));
273 }
274
275 static inline int cpu_has_vmx_vpid(void)
276 {
277         return (vmcs_config.cpu_based_2nd_exec_ctrl &
278                 SECONDARY_EXEC_ENABLE_VPID);
279 }
280
281 static inline int cpu_has_virtual_nmis(void)
282 {
283         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
284 }
285
286 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
287 {
288         int i;
289
290         for (i = 0; i < vmx->nmsrs; ++i)
291                 if (vmx->guest_msrs[i].index == msr)
292                         return i;
293         return -1;
294 }
295
296 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
297 {
298     struct {
299         u64 vpid : 16;
300         u64 rsvd : 48;
301         u64 gva;
302     } operand = { vpid, 0, gva };
303
304     asm volatile (__ex(ASM_VMX_INVVPID)
305                   /* CF==1 or ZF==1 --> rc = -1 */
306                   "; ja 1f ; ud2 ; 1:"
307                   : : "a"(&operand), "c"(ext) : "cc", "memory");
308 }
309
310 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
311 {
312         struct {
313                 u64 eptp, gpa;
314         } operand = {eptp, gpa};
315
316         asm volatile (__ex(ASM_VMX_INVEPT)
317                         /* CF==1 or ZF==1 --> rc = -1 */
318                         "; ja 1f ; ud2 ; 1:\n"
319                         : : "a" (&operand), "c" (ext) : "cc", "memory");
320 }
321
322 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
323 {
324         int i;
325
326         i = __find_msr_index(vmx, msr);
327         if (i >= 0)
328                 return &vmx->guest_msrs[i];
329         return NULL;
330 }
331
332 static void vmcs_clear(struct vmcs *vmcs)
333 {
334         u64 phys_addr = __pa(vmcs);
335         u8 error;
336
337         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
338                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
339                       : "cc", "memory");
340         if (error)
341                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
342                        vmcs, phys_addr);
343 }
344
345 static void __vcpu_clear(void *arg)
346 {
347         struct vcpu_vmx *vmx = arg;
348         int cpu = raw_smp_processor_id();
349
350         if (vmx->vcpu.cpu == cpu)
351                 vmcs_clear(vmx->vmcs);
352         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
353                 per_cpu(current_vmcs, cpu) = NULL;
354         rdtscll(vmx->vcpu.arch.host_tsc);
355         list_del(&vmx->local_vcpus_link);
356         vmx->vcpu.cpu = -1;
357         vmx->launched = 0;
358 }
359
360 static void vcpu_clear(struct vcpu_vmx *vmx)
361 {
362         if (vmx->vcpu.cpu == -1)
363                 return;
364         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
365 }
366
367 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
368 {
369         if (vmx->vpid == 0)
370                 return;
371
372         __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
373 }
374
375 static inline void ept_sync_global(void)
376 {
377         if (cpu_has_vmx_invept_global())
378                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
379 }
380
381 static inline void ept_sync_context(u64 eptp)
382 {
383         if (vm_need_ept()) {
384                 if (cpu_has_vmx_invept_context())
385                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
386                 else
387                         ept_sync_global();
388         }
389 }
390
391 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
392 {
393         if (vm_need_ept()) {
394                 if (cpu_has_vmx_invept_individual_addr())
395                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
396                                         eptp, gpa);
397                 else
398                         ept_sync_context(eptp);
399         }
400 }
401
402 static unsigned long vmcs_readl(unsigned long field)
403 {
404         unsigned long value;
405
406         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
407                       : "=a"(value) : "d"(field) : "cc");
408         return value;
409 }
410
411 static u16 vmcs_read16(unsigned long field)
412 {
413         return vmcs_readl(field);
414 }
415
416 static u32 vmcs_read32(unsigned long field)
417 {
418         return vmcs_readl(field);
419 }
420
421 static u64 vmcs_read64(unsigned long field)
422 {
423 #ifdef CONFIG_X86_64
424         return vmcs_readl(field);
425 #else
426         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
427 #endif
428 }
429
430 static noinline void vmwrite_error(unsigned long field, unsigned long value)
431 {
432         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
433                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
434         dump_stack();
435 }
436
437 static void vmcs_writel(unsigned long field, unsigned long value)
438 {
439         u8 error;
440
441         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
442                        : "=q"(error) : "a"(value), "d"(field) : "cc");
443         if (unlikely(error))
444                 vmwrite_error(field, value);
445 }
446
447 static void vmcs_write16(unsigned long field, u16 value)
448 {
449         vmcs_writel(field, value);
450 }
451
452 static void vmcs_write32(unsigned long field, u32 value)
453 {
454         vmcs_writel(field, value);
455 }
456
457 static void vmcs_write64(unsigned long field, u64 value)
458 {
459         vmcs_writel(field, value);
460 #ifndef CONFIG_X86_64
461         asm volatile ("");
462         vmcs_writel(field+1, value >> 32);
463 #endif
464 }
465
466 static void vmcs_clear_bits(unsigned long field, u32 mask)
467 {
468         vmcs_writel(field, vmcs_readl(field) & ~mask);
469 }
470
471 static void vmcs_set_bits(unsigned long field, u32 mask)
472 {
473         vmcs_writel(field, vmcs_readl(field) | mask);
474 }
475
476 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
477 {
478         u32 eb;
479
480         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
481         if (!vcpu->fpu_active)
482                 eb |= 1u << NM_VECTOR;
483         if (vcpu->guest_debug.enabled)
484                 eb |= 1u << DB_VECTOR;
485         if (vcpu->arch.rmode.active)
486                 eb = ~0;
487         if (vm_need_ept())
488                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
489         vmcs_write32(EXCEPTION_BITMAP, eb);
490 }
491
492 static void reload_tss(void)
493 {
494         /*
495          * VT restores TR but not its size.  Useless.
496          */
497         struct descriptor_table gdt;
498         struct desc_struct *descs;
499
500         kvm_get_gdt(&gdt);
501         descs = (void *)gdt.base;
502         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
503         load_TR_desc();
504 }
505
506 static void load_transition_efer(struct vcpu_vmx *vmx)
507 {
508         int efer_offset = vmx->msr_offset_efer;
509         u64 host_efer = vmx->host_msrs[efer_offset].data;
510         u64 guest_efer = vmx->guest_msrs[efer_offset].data;
511         u64 ignore_bits;
512
513         if (efer_offset < 0)
514                 return;
515         /*
516          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
517          * outside long mode
518          */
519         ignore_bits = EFER_NX | EFER_SCE;
520 #ifdef CONFIG_X86_64
521         ignore_bits |= EFER_LMA | EFER_LME;
522         /* SCE is meaningful only in long mode on Intel */
523         if (guest_efer & EFER_LMA)
524                 ignore_bits &= ~(u64)EFER_SCE;
525 #endif
526         if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
527                 return;
528
529         vmx->host_state.guest_efer_loaded = 1;
530         guest_efer &= ~ignore_bits;
531         guest_efer |= host_efer & ignore_bits;
532         wrmsrl(MSR_EFER, guest_efer);
533         vmx->vcpu.stat.efer_reload++;
534 }
535
536 static void reload_host_efer(struct vcpu_vmx *vmx)
537 {
538         if (vmx->host_state.guest_efer_loaded) {
539                 vmx->host_state.guest_efer_loaded = 0;
540                 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
541         }
542 }
543
544 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
545 {
546         struct vcpu_vmx *vmx = to_vmx(vcpu);
547
548         if (vmx->host_state.loaded)
549                 return;
550
551         vmx->host_state.loaded = 1;
552         /*
553          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
554          * allow segment selectors with cpl > 0 or ti == 1.
555          */
556         vmx->host_state.ldt_sel = kvm_read_ldt();
557         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
558         vmx->host_state.fs_sel = kvm_read_fs();
559         if (!(vmx->host_state.fs_sel & 7)) {
560                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
561                 vmx->host_state.fs_reload_needed = 0;
562         } else {
563                 vmcs_write16(HOST_FS_SELECTOR, 0);
564                 vmx->host_state.fs_reload_needed = 1;
565         }
566         vmx->host_state.gs_sel = kvm_read_gs();
567         if (!(vmx->host_state.gs_sel & 7))
568                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
569         else {
570                 vmcs_write16(HOST_GS_SELECTOR, 0);
571                 vmx->host_state.gs_ldt_reload_needed = 1;
572         }
573
574 #ifdef CONFIG_X86_64
575         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
576         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
577 #else
578         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
579         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
580 #endif
581
582 #ifdef CONFIG_X86_64
583         if (is_long_mode(&vmx->vcpu))
584                 save_msrs(vmx->host_msrs +
585                           vmx->msr_offset_kernel_gs_base, 1);
586
587 #endif
588         load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
589         load_transition_efer(vmx);
590 }
591
592 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
593 {
594         unsigned long flags;
595
596         if (!vmx->host_state.loaded)
597                 return;
598
599         ++vmx->vcpu.stat.host_state_reload;
600         vmx->host_state.loaded = 0;
601         if (vmx->host_state.fs_reload_needed)
602                 kvm_load_fs(vmx->host_state.fs_sel);
603         if (vmx->host_state.gs_ldt_reload_needed) {
604                 kvm_load_ldt(vmx->host_state.ldt_sel);
605                 /*
606                  * If we have to reload gs, we must take care to
607                  * preserve our gs base.
608                  */
609                 local_irq_save(flags);
610                 kvm_load_gs(vmx->host_state.gs_sel);
611 #ifdef CONFIG_X86_64
612                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
613 #endif
614                 local_irq_restore(flags);
615         }
616         reload_tss();
617         save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
618         load_msrs(vmx->host_msrs, vmx->save_nmsrs);
619         reload_host_efer(vmx);
620 }
621
622 static void vmx_load_host_state(struct vcpu_vmx *vmx)
623 {
624         preempt_disable();
625         __vmx_load_host_state(vmx);
626         preempt_enable();
627 }
628
629 /*
630  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
631  * vcpu mutex is already taken.
632  */
633 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
634 {
635         struct vcpu_vmx *vmx = to_vmx(vcpu);
636         u64 phys_addr = __pa(vmx->vmcs);
637         u64 tsc_this, delta, new_offset;
638
639         if (vcpu->cpu != cpu) {
640                 vcpu_clear(vmx);
641                 kvm_migrate_timers(vcpu);
642                 vpid_sync_vcpu_all(vmx);
643                 local_irq_disable();
644                 list_add(&vmx->local_vcpus_link,
645                          &per_cpu(vcpus_on_cpu, cpu));
646                 local_irq_enable();
647         }
648
649         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
650                 u8 error;
651
652                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
653                 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
654                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
655                               : "cc");
656                 if (error)
657                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
658                                vmx->vmcs, phys_addr);
659         }
660
661         if (vcpu->cpu != cpu) {
662                 struct descriptor_table dt;
663                 unsigned long sysenter_esp;
664
665                 vcpu->cpu = cpu;
666                 /*
667                  * Linux uses per-cpu TSS and GDT, so set these when switching
668                  * processors.
669                  */
670                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
671                 kvm_get_gdt(&dt);
672                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
673
674                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
675                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
676
677                 /*
678                  * Make sure the time stamp counter is monotonous.
679                  */
680                 rdtscll(tsc_this);
681                 if (tsc_this < vcpu->arch.host_tsc) {
682                         delta = vcpu->arch.host_tsc - tsc_this;
683                         new_offset = vmcs_read64(TSC_OFFSET) + delta;
684                         vmcs_write64(TSC_OFFSET, new_offset);
685                 }
686         }
687 }
688
689 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
690 {
691         __vmx_load_host_state(to_vmx(vcpu));
692 }
693
694 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
695 {
696         if (vcpu->fpu_active)
697                 return;
698         vcpu->fpu_active = 1;
699         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
700         if (vcpu->arch.cr0 & X86_CR0_TS)
701                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
702         update_exception_bitmap(vcpu);
703 }
704
705 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
706 {
707         if (!vcpu->fpu_active)
708                 return;
709         vcpu->fpu_active = 0;
710         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
711         update_exception_bitmap(vcpu);
712 }
713
714 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
715 {
716         return vmcs_readl(GUEST_RFLAGS);
717 }
718
719 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
720 {
721         if (vcpu->arch.rmode.active)
722                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
723         vmcs_writel(GUEST_RFLAGS, rflags);
724 }
725
726 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
727 {
728         unsigned long rip;
729         u32 interruptibility;
730
731         rip = kvm_rip_read(vcpu);
732         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
733         kvm_rip_write(vcpu, rip);
734
735         /*
736          * We emulated an instruction, so temporary interrupt blocking
737          * should be removed, if set.
738          */
739         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
740         if (interruptibility & 3)
741                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
742                              interruptibility & ~3);
743         vcpu->arch.interrupt_window_open = 1;
744 }
745
746 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
747                                 bool has_error_code, u32 error_code)
748 {
749         struct vcpu_vmx *vmx = to_vmx(vcpu);
750
751         if (has_error_code)
752                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
753
754         if (vcpu->arch.rmode.active) {
755                 vmx->rmode.irq.pending = true;
756                 vmx->rmode.irq.vector = nr;
757                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
758                 if (nr == BP_VECTOR)
759                         vmx->rmode.irq.rip++;
760                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
761                              nr | INTR_TYPE_SOFT_INTR
762                              | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
763                              | INTR_INFO_VALID_MASK);
764                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
765                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
766                 return;
767         }
768
769         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
770                      nr | INTR_TYPE_EXCEPTION
771                      | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
772                      | INTR_INFO_VALID_MASK);
773 }
774
775 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
776 {
777         return false;
778 }
779
780 /*
781  * Swap MSR entry in host/guest MSR entry array.
782  */
783 #ifdef CONFIG_X86_64
784 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
785 {
786         struct kvm_msr_entry tmp;
787
788         tmp = vmx->guest_msrs[to];
789         vmx->guest_msrs[to] = vmx->guest_msrs[from];
790         vmx->guest_msrs[from] = tmp;
791         tmp = vmx->host_msrs[to];
792         vmx->host_msrs[to] = vmx->host_msrs[from];
793         vmx->host_msrs[from] = tmp;
794 }
795 #endif
796
797 /*
798  * Set up the vmcs to automatically save and restore system
799  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
800  * mode, as fiddling with msrs is very expensive.
801  */
802 static void setup_msrs(struct vcpu_vmx *vmx)
803 {
804         int save_nmsrs;
805
806         vmx_load_host_state(vmx);
807         save_nmsrs = 0;
808 #ifdef CONFIG_X86_64
809         if (is_long_mode(&vmx->vcpu)) {
810                 int index;
811
812                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
813                 if (index >= 0)
814                         move_msr_up(vmx, index, save_nmsrs++);
815                 index = __find_msr_index(vmx, MSR_LSTAR);
816                 if (index >= 0)
817                         move_msr_up(vmx, index, save_nmsrs++);
818                 index = __find_msr_index(vmx, MSR_CSTAR);
819                 if (index >= 0)
820                         move_msr_up(vmx, index, save_nmsrs++);
821                 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
822                 if (index >= 0)
823                         move_msr_up(vmx, index, save_nmsrs++);
824                 /*
825                  * MSR_K6_STAR is only needed on long mode guests, and only
826                  * if efer.sce is enabled.
827                  */
828                 index = __find_msr_index(vmx, MSR_K6_STAR);
829                 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
830                         move_msr_up(vmx, index, save_nmsrs++);
831         }
832 #endif
833         vmx->save_nmsrs = save_nmsrs;
834
835 #ifdef CONFIG_X86_64
836         vmx->msr_offset_kernel_gs_base =
837                 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
838 #endif
839         vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
840 }
841
842 /*
843  * reads and returns guest's timestamp counter "register"
844  * guest_tsc = host_tsc + tsc_offset    -- 21.3
845  */
846 static u64 guest_read_tsc(void)
847 {
848         u64 host_tsc, tsc_offset;
849
850         rdtscll(host_tsc);
851         tsc_offset = vmcs_read64(TSC_OFFSET);
852         return host_tsc + tsc_offset;
853 }
854
855 /*
856  * writes 'guest_tsc' into guest's timestamp counter "register"
857  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
858  */
859 static void guest_write_tsc(u64 guest_tsc)
860 {
861         u64 host_tsc;
862
863         rdtscll(host_tsc);
864         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
865 }
866
867 /*
868  * Reads an msr value (of 'msr_index') into 'pdata'.
869  * Returns 0 on success, non-0 otherwise.
870  * Assumes vcpu_load() was already called.
871  */
872 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
873 {
874         u64 data;
875         struct kvm_msr_entry *msr;
876
877         if (!pdata) {
878                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
879                 return -EINVAL;
880         }
881
882         switch (msr_index) {
883 #ifdef CONFIG_X86_64
884         case MSR_FS_BASE:
885                 data = vmcs_readl(GUEST_FS_BASE);
886                 break;
887         case MSR_GS_BASE:
888                 data = vmcs_readl(GUEST_GS_BASE);
889                 break;
890         case MSR_EFER:
891                 return kvm_get_msr_common(vcpu, msr_index, pdata);
892 #endif
893         case MSR_IA32_TIME_STAMP_COUNTER:
894                 data = guest_read_tsc();
895                 break;
896         case MSR_IA32_SYSENTER_CS:
897                 data = vmcs_read32(GUEST_SYSENTER_CS);
898                 break;
899         case MSR_IA32_SYSENTER_EIP:
900                 data = vmcs_readl(GUEST_SYSENTER_EIP);
901                 break;
902         case MSR_IA32_SYSENTER_ESP:
903                 data = vmcs_readl(GUEST_SYSENTER_ESP);
904                 break;
905         default:
906                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
907                 if (msr) {
908                         data = msr->data;
909                         break;
910                 }
911                 return kvm_get_msr_common(vcpu, msr_index, pdata);
912         }
913
914         *pdata = data;
915         return 0;
916 }
917
918 /*
919  * Writes msr value into into the appropriate "register".
920  * Returns 0 on success, non-0 otherwise.
921  * Assumes vcpu_load() was already called.
922  */
923 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
924 {
925         struct vcpu_vmx *vmx = to_vmx(vcpu);
926         struct kvm_msr_entry *msr;
927         int ret = 0;
928
929         switch (msr_index) {
930 #ifdef CONFIG_X86_64
931         case MSR_EFER:
932                 vmx_load_host_state(vmx);
933                 ret = kvm_set_msr_common(vcpu, msr_index, data);
934                 break;
935         case MSR_FS_BASE:
936                 vmcs_writel(GUEST_FS_BASE, data);
937                 break;
938         case MSR_GS_BASE:
939                 vmcs_writel(GUEST_GS_BASE, data);
940                 break;
941 #endif
942         case MSR_IA32_SYSENTER_CS:
943                 vmcs_write32(GUEST_SYSENTER_CS, data);
944                 break;
945         case MSR_IA32_SYSENTER_EIP:
946                 vmcs_writel(GUEST_SYSENTER_EIP, data);
947                 break;
948         case MSR_IA32_SYSENTER_ESP:
949                 vmcs_writel(GUEST_SYSENTER_ESP, data);
950                 break;
951         case MSR_IA32_TIME_STAMP_COUNTER:
952                 guest_write_tsc(data);
953                 break;
954         case MSR_P6_PERFCTR0:
955         case MSR_P6_PERFCTR1:
956         case MSR_P6_EVNTSEL0:
957         case MSR_P6_EVNTSEL1:
958                 /*
959                  * Just discard all writes to the performance counters; this
960                  * should keep both older linux and windows 64-bit guests
961                  * happy
962                  */
963                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
964
965                 break;
966         case MSR_IA32_CR_PAT:
967                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
968                         vmcs_write64(GUEST_IA32_PAT, data);
969                         vcpu->arch.pat = data;
970                         break;
971                 }
972                 /* Otherwise falls through to kvm_set_msr_common */
973         default:
974                 vmx_load_host_state(vmx);
975                 msr = find_msr_entry(vmx, msr_index);
976                 if (msr) {
977                         msr->data = data;
978                         break;
979                 }
980                 ret = kvm_set_msr_common(vcpu, msr_index, data);
981         }
982
983         return ret;
984 }
985
986 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
987 {
988         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
989         switch (reg) {
990         case VCPU_REGS_RSP:
991                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
992                 break;
993         case VCPU_REGS_RIP:
994                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
995                 break;
996         default:
997                 break;
998         }
999 }
1000
1001 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
1002 {
1003         unsigned long dr7 = 0x400;
1004         int old_singlestep;
1005
1006         old_singlestep = vcpu->guest_debug.singlestep;
1007
1008         vcpu->guest_debug.enabled = dbg->enabled;
1009         if (vcpu->guest_debug.enabled) {
1010                 int i;
1011
1012                 dr7 |= 0x200;  /* exact */
1013                 for (i = 0; i < 4; ++i) {
1014                         if (!dbg->breakpoints[i].enabled)
1015                                 continue;
1016                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
1017                         dr7 |= 2 << (i*2);    /* global enable */
1018                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
1019                 }
1020
1021                 vcpu->guest_debug.singlestep = dbg->singlestep;
1022         } else
1023                 vcpu->guest_debug.singlestep = 0;
1024
1025         if (old_singlestep && !vcpu->guest_debug.singlestep) {
1026                 unsigned long flags;
1027
1028                 flags = vmcs_readl(GUEST_RFLAGS);
1029                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1030                 vmcs_writel(GUEST_RFLAGS, flags);
1031         }
1032
1033         update_exception_bitmap(vcpu);
1034         vmcs_writel(GUEST_DR7, dr7);
1035
1036         return 0;
1037 }
1038
1039 static int vmx_get_irq(struct kvm_vcpu *vcpu)
1040 {
1041         if (!vcpu->arch.interrupt.pending)
1042                 return -1;
1043         return vcpu->arch.interrupt.nr;
1044 }
1045
1046 static __init int cpu_has_kvm_support(void)
1047 {
1048         return cpu_has_vmx();
1049 }
1050
1051 static __init int vmx_disabled_by_bios(void)
1052 {
1053         u64 msr;
1054
1055         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1056         return (msr & (FEATURE_CONTROL_LOCKED |
1057                        FEATURE_CONTROL_VMXON_ENABLED))
1058             == FEATURE_CONTROL_LOCKED;
1059         /* locked but not enabled */
1060 }
1061
1062 static void hardware_enable(void *garbage)
1063 {
1064         int cpu = raw_smp_processor_id();
1065         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1066         u64 old;
1067
1068         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1069         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1070         if ((old & (FEATURE_CONTROL_LOCKED |
1071                     FEATURE_CONTROL_VMXON_ENABLED))
1072             != (FEATURE_CONTROL_LOCKED |
1073                 FEATURE_CONTROL_VMXON_ENABLED))
1074                 /* enable and lock */
1075                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1076                        FEATURE_CONTROL_LOCKED |
1077                        FEATURE_CONTROL_VMXON_ENABLED);
1078         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1079         asm volatile (ASM_VMX_VMXON_RAX
1080                       : : "a"(&phys_addr), "m"(phys_addr)
1081                       : "memory", "cc");
1082 }
1083
1084 static void vmclear_local_vcpus(void)
1085 {
1086         int cpu = raw_smp_processor_id();
1087         struct vcpu_vmx *vmx, *n;
1088
1089         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1090                                  local_vcpus_link)
1091                 __vcpu_clear(vmx);
1092 }
1093
1094
1095 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1096  * tricks.
1097  */
1098 static void kvm_cpu_vmxoff(void)
1099 {
1100         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1101         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1102 }
1103
1104 static void hardware_disable(void *garbage)
1105 {
1106         vmclear_local_vcpus();
1107         kvm_cpu_vmxoff();
1108 }
1109
1110 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1111                                       u32 msr, u32 *result)
1112 {
1113         u32 vmx_msr_low, vmx_msr_high;
1114         u32 ctl = ctl_min | ctl_opt;
1115
1116         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1117
1118         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1119         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1120
1121         /* Ensure minimum (required) set of control bits are supported. */
1122         if (ctl_min & ~ctl)
1123                 return -EIO;
1124
1125         *result = ctl;
1126         return 0;
1127 }
1128
1129 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1130 {
1131         u32 vmx_msr_low, vmx_msr_high;
1132         u32 min, opt, min2, opt2;
1133         u32 _pin_based_exec_control = 0;
1134         u32 _cpu_based_exec_control = 0;
1135         u32 _cpu_based_2nd_exec_control = 0;
1136         u32 _vmexit_control = 0;
1137         u32 _vmentry_control = 0;
1138
1139         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1140         opt = PIN_BASED_VIRTUAL_NMIS;
1141         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1142                                 &_pin_based_exec_control) < 0)
1143                 return -EIO;
1144
1145         min = CPU_BASED_HLT_EXITING |
1146 #ifdef CONFIG_X86_64
1147               CPU_BASED_CR8_LOAD_EXITING |
1148               CPU_BASED_CR8_STORE_EXITING |
1149 #endif
1150               CPU_BASED_CR3_LOAD_EXITING |
1151               CPU_BASED_CR3_STORE_EXITING |
1152               CPU_BASED_USE_IO_BITMAPS |
1153               CPU_BASED_MOV_DR_EXITING |
1154               CPU_BASED_USE_TSC_OFFSETING |
1155               CPU_BASED_INVLPG_EXITING;
1156         opt = CPU_BASED_TPR_SHADOW |
1157               CPU_BASED_USE_MSR_BITMAPS |
1158               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1159         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1160                                 &_cpu_based_exec_control) < 0)
1161                 return -EIO;
1162 #ifdef CONFIG_X86_64
1163         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1164                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1165                                            ~CPU_BASED_CR8_STORE_EXITING;
1166 #endif
1167         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1168                 min2 = 0;
1169                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1170                         SECONDARY_EXEC_WBINVD_EXITING |
1171                         SECONDARY_EXEC_ENABLE_VPID |
1172                         SECONDARY_EXEC_ENABLE_EPT;
1173                 if (adjust_vmx_controls(min2, opt2,
1174                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1175                                         &_cpu_based_2nd_exec_control) < 0)
1176                         return -EIO;
1177         }
1178 #ifndef CONFIG_X86_64
1179         if (!(_cpu_based_2nd_exec_control &
1180                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1181                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1182 #endif
1183         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1184                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1185                    enabled */
1186                 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1187                          CPU_BASED_CR3_STORE_EXITING |
1188                          CPU_BASED_INVLPG_EXITING);
1189                 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1190                                         &_cpu_based_exec_control) < 0)
1191                         return -EIO;
1192                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1193                       vmx_capability.ept, vmx_capability.vpid);
1194         }
1195
1196         min = 0;
1197 #ifdef CONFIG_X86_64
1198         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1199 #endif
1200         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1201         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1202                                 &_vmexit_control) < 0)
1203                 return -EIO;
1204
1205         min = 0;
1206         opt = VM_ENTRY_LOAD_IA32_PAT;
1207         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1208                                 &_vmentry_control) < 0)
1209                 return -EIO;
1210
1211         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1212
1213         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1214         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1215                 return -EIO;
1216
1217 #ifdef CONFIG_X86_64
1218         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1219         if (vmx_msr_high & (1u<<16))
1220                 return -EIO;
1221 #endif
1222
1223         /* Require Write-Back (WB) memory type for VMCS accesses. */
1224         if (((vmx_msr_high >> 18) & 15) != 6)
1225                 return -EIO;
1226
1227         vmcs_conf->size = vmx_msr_high & 0x1fff;
1228         vmcs_conf->order = get_order(vmcs_config.size);
1229         vmcs_conf->revision_id = vmx_msr_low;
1230
1231         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1232         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1233         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1234         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1235         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1236
1237         return 0;
1238 }
1239
1240 static struct vmcs *alloc_vmcs_cpu(int cpu)
1241 {
1242         int node = cpu_to_node(cpu);
1243         struct page *pages;
1244         struct vmcs *vmcs;
1245
1246         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1247         if (!pages)
1248                 return NULL;
1249         vmcs = page_address(pages);
1250         memset(vmcs, 0, vmcs_config.size);
1251         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1252         return vmcs;
1253 }
1254
1255 static struct vmcs *alloc_vmcs(void)
1256 {
1257         return alloc_vmcs_cpu(raw_smp_processor_id());
1258 }
1259
1260 static void free_vmcs(struct vmcs *vmcs)
1261 {
1262         free_pages((unsigned long)vmcs, vmcs_config.order);
1263 }
1264
1265 static void free_kvm_area(void)
1266 {
1267         int cpu;
1268
1269         for_each_online_cpu(cpu)
1270                 free_vmcs(per_cpu(vmxarea, cpu));
1271 }
1272
1273 static __init int alloc_kvm_area(void)
1274 {
1275         int cpu;
1276
1277         for_each_online_cpu(cpu) {
1278                 struct vmcs *vmcs;
1279
1280                 vmcs = alloc_vmcs_cpu(cpu);
1281                 if (!vmcs) {
1282                         free_kvm_area();
1283                         return -ENOMEM;
1284                 }
1285
1286                 per_cpu(vmxarea, cpu) = vmcs;
1287         }
1288         return 0;
1289 }
1290
1291 static __init int hardware_setup(void)
1292 {
1293         if (setup_vmcs_config(&vmcs_config) < 0)
1294                 return -EIO;
1295
1296         if (boot_cpu_has(X86_FEATURE_NX))
1297                 kvm_enable_efer_bits(EFER_NX);
1298
1299         return alloc_kvm_area();
1300 }
1301
1302 static __exit void hardware_unsetup(void)
1303 {
1304         free_kvm_area();
1305 }
1306
1307 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1308 {
1309         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1310
1311         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1312                 vmcs_write16(sf->selector, save->selector);
1313                 vmcs_writel(sf->base, save->base);
1314                 vmcs_write32(sf->limit, save->limit);
1315                 vmcs_write32(sf->ar_bytes, save->ar);
1316         } else {
1317                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1318                         << AR_DPL_SHIFT;
1319                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1320         }
1321 }
1322
1323 static void enter_pmode(struct kvm_vcpu *vcpu)
1324 {
1325         unsigned long flags;
1326         struct vcpu_vmx *vmx = to_vmx(vcpu);
1327
1328         vmx->emulation_required = 1;
1329         vcpu->arch.rmode.active = 0;
1330
1331         vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1332         vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1333         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1334
1335         flags = vmcs_readl(GUEST_RFLAGS);
1336         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1337         flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1338         vmcs_writel(GUEST_RFLAGS, flags);
1339
1340         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1341                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1342
1343         update_exception_bitmap(vcpu);
1344
1345         if (emulate_invalid_guest_state)
1346                 return;
1347
1348         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1349         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1350         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1351         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1352
1353         vmcs_write16(GUEST_SS_SELECTOR, 0);
1354         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1355
1356         vmcs_write16(GUEST_CS_SELECTOR,
1357                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1358         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1359 }
1360
1361 static gva_t rmode_tss_base(struct kvm *kvm)
1362 {
1363         if (!kvm->arch.tss_addr) {
1364                 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1365                                  kvm->memslots[0].npages - 3;
1366                 return base_gfn << PAGE_SHIFT;
1367         }
1368         return kvm->arch.tss_addr;
1369 }
1370
1371 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1372 {
1373         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1374
1375         save->selector = vmcs_read16(sf->selector);
1376         save->base = vmcs_readl(sf->base);
1377         save->limit = vmcs_read32(sf->limit);
1378         save->ar = vmcs_read32(sf->ar_bytes);
1379         vmcs_write16(sf->selector, save->base >> 4);
1380         vmcs_write32(sf->base, save->base & 0xfffff);
1381         vmcs_write32(sf->limit, 0xffff);
1382         vmcs_write32(sf->ar_bytes, 0xf3);
1383 }
1384
1385 static void enter_rmode(struct kvm_vcpu *vcpu)
1386 {
1387         unsigned long flags;
1388         struct vcpu_vmx *vmx = to_vmx(vcpu);
1389
1390         vmx->emulation_required = 1;
1391         vcpu->arch.rmode.active = 1;
1392
1393         vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1394         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1395
1396         vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1397         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1398
1399         vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1400         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1401
1402         flags = vmcs_readl(GUEST_RFLAGS);
1403         vcpu->arch.rmode.save_iopl
1404                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1405
1406         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1407
1408         vmcs_writel(GUEST_RFLAGS, flags);
1409         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1410         update_exception_bitmap(vcpu);
1411
1412         if (emulate_invalid_guest_state)
1413                 goto continue_rmode;
1414
1415         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1416         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1417         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1418
1419         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1420         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1421         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1422                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1423         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1424
1425         fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1426         fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1427         fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1428         fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1429
1430 continue_rmode:
1431         kvm_mmu_reset_context(vcpu);
1432         init_rmode(vcpu->kvm);
1433 }
1434
1435 #ifdef CONFIG_X86_64
1436
1437 static void enter_lmode(struct kvm_vcpu *vcpu)
1438 {
1439         u32 guest_tr_ar;
1440
1441         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1442         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1443                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1444                        __func__);
1445                 vmcs_write32(GUEST_TR_AR_BYTES,
1446                              (guest_tr_ar & ~AR_TYPE_MASK)
1447                              | AR_TYPE_BUSY_64_TSS);
1448         }
1449
1450         vcpu->arch.shadow_efer |= EFER_LMA;
1451
1452         find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1453         vmcs_write32(VM_ENTRY_CONTROLS,
1454                      vmcs_read32(VM_ENTRY_CONTROLS)
1455                      | VM_ENTRY_IA32E_MODE);
1456 }
1457
1458 static void exit_lmode(struct kvm_vcpu *vcpu)
1459 {
1460         vcpu->arch.shadow_efer &= ~EFER_LMA;
1461
1462         vmcs_write32(VM_ENTRY_CONTROLS,
1463                      vmcs_read32(VM_ENTRY_CONTROLS)
1464                      & ~VM_ENTRY_IA32E_MODE);
1465 }
1466
1467 #endif
1468
1469 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1470 {
1471         vpid_sync_vcpu_all(to_vmx(vcpu));
1472         if (vm_need_ept())
1473                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1474 }
1475
1476 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1477 {
1478         vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1479         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1480 }
1481
1482 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1483 {
1484         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1485                 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1486                         printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1487                         return;
1488                 }
1489                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1490                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1491                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1492                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1493         }
1494 }
1495
1496 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1497
1498 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1499                                         unsigned long cr0,
1500                                         struct kvm_vcpu *vcpu)
1501 {
1502         if (!(cr0 & X86_CR0_PG)) {
1503                 /* From paging/starting to nonpaging */
1504                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1505                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1506                              (CPU_BASED_CR3_LOAD_EXITING |
1507                               CPU_BASED_CR3_STORE_EXITING));
1508                 vcpu->arch.cr0 = cr0;
1509                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1510                 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1511                 *hw_cr0 &= ~X86_CR0_WP;
1512         } else if (!is_paging(vcpu)) {
1513                 /* From nonpaging to paging */
1514                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1515                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1516                              ~(CPU_BASED_CR3_LOAD_EXITING |
1517                                CPU_BASED_CR3_STORE_EXITING));
1518                 vcpu->arch.cr0 = cr0;
1519                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1520                 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1521                         *hw_cr0 &= ~X86_CR0_WP;
1522         }
1523 }
1524
1525 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1526                                         struct kvm_vcpu *vcpu)
1527 {
1528         if (!is_paging(vcpu)) {
1529                 *hw_cr4 &= ~X86_CR4_PAE;
1530                 *hw_cr4 |= X86_CR4_PSE;
1531         } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1532                 *hw_cr4 &= ~X86_CR4_PAE;
1533 }
1534
1535 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1536 {
1537         unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1538                                 KVM_VM_CR0_ALWAYS_ON;
1539
1540         vmx_fpu_deactivate(vcpu);
1541
1542         if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1543                 enter_pmode(vcpu);
1544
1545         if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1546                 enter_rmode(vcpu);
1547
1548 #ifdef CONFIG_X86_64
1549         if (vcpu->arch.shadow_efer & EFER_LME) {
1550                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1551                         enter_lmode(vcpu);
1552                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1553                         exit_lmode(vcpu);
1554         }
1555 #endif
1556
1557         if (vm_need_ept())
1558                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1559
1560         vmcs_writel(CR0_READ_SHADOW, cr0);
1561         vmcs_writel(GUEST_CR0, hw_cr0);
1562         vcpu->arch.cr0 = cr0;
1563
1564         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1565                 vmx_fpu_activate(vcpu);
1566 }
1567
1568 static u64 construct_eptp(unsigned long root_hpa)
1569 {
1570         u64 eptp;
1571
1572         /* TODO write the value reading from MSR */
1573         eptp = VMX_EPT_DEFAULT_MT |
1574                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1575         eptp |= (root_hpa & PAGE_MASK);
1576
1577         return eptp;
1578 }
1579
1580 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1581 {
1582         unsigned long guest_cr3;
1583         u64 eptp;
1584
1585         guest_cr3 = cr3;
1586         if (vm_need_ept()) {
1587                 eptp = construct_eptp(cr3);
1588                 vmcs_write64(EPT_POINTER, eptp);
1589                 ept_sync_context(eptp);
1590                 ept_load_pdptrs(vcpu);
1591                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1592                         VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1593         }
1594
1595         vmx_flush_tlb(vcpu);
1596         vmcs_writel(GUEST_CR3, guest_cr3);
1597         if (vcpu->arch.cr0 & X86_CR0_PE)
1598                 vmx_fpu_deactivate(vcpu);
1599 }
1600
1601 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1602 {
1603         unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1604                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1605
1606         vcpu->arch.cr4 = cr4;
1607         if (vm_need_ept())
1608                 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1609
1610         vmcs_writel(CR4_READ_SHADOW, cr4);
1611         vmcs_writel(GUEST_CR4, hw_cr4);
1612 }
1613
1614 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1615 {
1616         struct vcpu_vmx *vmx = to_vmx(vcpu);
1617         struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1618
1619         vcpu->arch.shadow_efer = efer;
1620         if (!msr)
1621                 return;
1622         if (efer & EFER_LMA) {
1623                 vmcs_write32(VM_ENTRY_CONTROLS,
1624                                      vmcs_read32(VM_ENTRY_CONTROLS) |
1625                                      VM_ENTRY_IA32E_MODE);
1626                 msr->data = efer;
1627
1628         } else {
1629                 vmcs_write32(VM_ENTRY_CONTROLS,
1630                                      vmcs_read32(VM_ENTRY_CONTROLS) &
1631                                      ~VM_ENTRY_IA32E_MODE);
1632
1633                 msr->data = efer & ~EFER_LME;
1634         }
1635         setup_msrs(vmx);
1636 }
1637
1638 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1639 {
1640         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1641
1642         return vmcs_readl(sf->base);
1643 }
1644
1645 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1646                             struct kvm_segment *var, int seg)
1647 {
1648         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1649         u32 ar;
1650
1651         var->base = vmcs_readl(sf->base);
1652         var->limit = vmcs_read32(sf->limit);
1653         var->selector = vmcs_read16(sf->selector);
1654         ar = vmcs_read32(sf->ar_bytes);
1655         if (ar & AR_UNUSABLE_MASK)
1656                 ar = 0;
1657         var->type = ar & 15;
1658         var->s = (ar >> 4) & 1;
1659         var->dpl = (ar >> 5) & 3;
1660         var->present = (ar >> 7) & 1;
1661         var->avl = (ar >> 12) & 1;
1662         var->l = (ar >> 13) & 1;
1663         var->db = (ar >> 14) & 1;
1664         var->g = (ar >> 15) & 1;
1665         var->unusable = (ar >> 16) & 1;
1666 }
1667
1668 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1669 {
1670         struct kvm_segment kvm_seg;
1671
1672         if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1673                 return 0;
1674
1675         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1676                 return 3;
1677
1678         vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1679         return kvm_seg.selector & 3;
1680 }
1681
1682 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1683 {
1684         u32 ar;
1685
1686         if (var->unusable)
1687                 ar = 1 << 16;
1688         else {
1689                 ar = var->type & 15;
1690                 ar |= (var->s & 1) << 4;
1691                 ar |= (var->dpl & 3) << 5;
1692                 ar |= (var->present & 1) << 7;
1693                 ar |= (var->avl & 1) << 12;
1694                 ar |= (var->l & 1) << 13;
1695                 ar |= (var->db & 1) << 14;
1696                 ar |= (var->g & 1) << 15;
1697         }
1698         if (ar == 0) /* a 0 value means unusable */
1699                 ar = AR_UNUSABLE_MASK;
1700
1701         return ar;
1702 }
1703
1704 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1705                             struct kvm_segment *var, int seg)
1706 {
1707         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1708         u32 ar;
1709
1710         if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1711                 vcpu->arch.rmode.tr.selector = var->selector;
1712                 vcpu->arch.rmode.tr.base = var->base;
1713                 vcpu->arch.rmode.tr.limit = var->limit;
1714                 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1715                 return;
1716         }
1717         vmcs_writel(sf->base, var->base);
1718         vmcs_write32(sf->limit, var->limit);
1719         vmcs_write16(sf->selector, var->selector);
1720         if (vcpu->arch.rmode.active && var->s) {
1721                 /*
1722                  * Hack real-mode segments into vm86 compatibility.
1723                  */
1724                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1725                         vmcs_writel(sf->base, 0xf0000);
1726                 ar = 0xf3;
1727         } else
1728                 ar = vmx_segment_access_rights(var);
1729         vmcs_write32(sf->ar_bytes, ar);
1730 }
1731
1732 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1733 {
1734         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1735
1736         *db = (ar >> 14) & 1;
1737         *l = (ar >> 13) & 1;
1738 }
1739
1740 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1741 {
1742         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1743         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1744 }
1745
1746 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1747 {
1748         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1749         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1750 }
1751
1752 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1753 {
1754         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1755         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1756 }
1757
1758 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1759 {
1760         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1761         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1762 }
1763
1764 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1765 {
1766         struct kvm_segment var;
1767         u32 ar;
1768
1769         vmx_get_segment(vcpu, &var, seg);
1770         ar = vmx_segment_access_rights(&var);
1771
1772         if (var.base != (var.selector << 4))
1773                 return false;
1774         if (var.limit != 0xffff)
1775                 return false;
1776         if (ar != 0xf3)
1777                 return false;
1778
1779         return true;
1780 }
1781
1782 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1783 {
1784         struct kvm_segment cs;
1785         unsigned int cs_rpl;
1786
1787         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1788         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1789
1790         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1791                 return false;
1792         if (!cs.s)
1793                 return false;
1794         if (!(~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK))) {
1795                 if (cs.dpl > cs_rpl)
1796                         return false;
1797         } else if (cs.type & AR_TYPE_CODE_MASK) {
1798                 if (cs.dpl != cs_rpl)
1799                         return false;
1800         }
1801         if (!cs.present)
1802                 return false;
1803
1804         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1805         return true;
1806 }
1807
1808 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1809 {
1810         struct kvm_segment ss;
1811         unsigned int ss_rpl;
1812
1813         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1814         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1815
1816         if ((ss.type != 3) || (ss.type != 7))
1817                 return false;
1818         if (!ss.s)
1819                 return false;
1820         if (ss.dpl != ss_rpl) /* DPL != RPL */
1821                 return false;
1822         if (!ss.present)
1823                 return false;
1824
1825         return true;
1826 }
1827
1828 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1829 {
1830         struct kvm_segment var;
1831         unsigned int rpl;
1832
1833         vmx_get_segment(vcpu, &var, seg);
1834         rpl = var.selector & SELECTOR_RPL_MASK;
1835
1836         if (!var.s)
1837                 return false;
1838         if (!var.present)
1839                 return false;
1840         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1841                 if (var.dpl < rpl) /* DPL < RPL */
1842                         return false;
1843         }
1844
1845         /* TODO: Add other members to kvm_segment_field to allow checking for other access
1846          * rights flags
1847          */
1848         return true;
1849 }
1850
1851 static bool tr_valid(struct kvm_vcpu *vcpu)
1852 {
1853         struct kvm_segment tr;
1854
1855         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1856
1857         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
1858                 return false;
1859         if ((tr.type != 3) || (tr.type != 11)) /* TODO: Check if guest is in IA32e mode */
1860                 return false;
1861         if (!tr.present)
1862                 return false;
1863
1864         return true;
1865 }
1866
1867 static bool ldtr_valid(struct kvm_vcpu *vcpu)
1868 {
1869         struct kvm_segment ldtr;
1870
1871         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
1872
1873         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
1874                 return false;
1875         if (ldtr.type != 2)
1876                 return false;
1877         if (!ldtr.present)
1878                 return false;
1879
1880         return true;
1881 }
1882
1883 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
1884 {
1885         struct kvm_segment cs, ss;
1886
1887         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1888         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1889
1890         return ((cs.selector & SELECTOR_RPL_MASK) ==
1891                  (ss.selector & SELECTOR_RPL_MASK));
1892 }
1893
1894 /*
1895  * Check if guest state is valid. Returns true if valid, false if
1896  * not.
1897  * We assume that registers are always usable
1898  */
1899 static bool guest_state_valid(struct kvm_vcpu *vcpu)
1900 {
1901         /* real mode guest state checks */
1902         if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
1903                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
1904                         return false;
1905                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
1906                         return false;
1907                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
1908                         return false;
1909                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
1910                         return false;
1911                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
1912                         return false;
1913                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
1914                         return false;
1915         } else {
1916         /* protected mode guest state checks */
1917                 if (!cs_ss_rpl_check(vcpu))
1918                         return false;
1919                 if (!code_segment_valid(vcpu))
1920                         return false;
1921                 if (!stack_segment_valid(vcpu))
1922                         return false;
1923                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
1924                         return false;
1925                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
1926                         return false;
1927                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
1928                         return false;
1929                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
1930                         return false;
1931                 if (!tr_valid(vcpu))
1932                         return false;
1933                 if (!ldtr_valid(vcpu))
1934                         return false;
1935         }
1936         /* TODO:
1937          * - Add checks on RIP
1938          * - Add checks on RFLAGS
1939          */
1940
1941         return true;
1942 }
1943
1944 static int init_rmode_tss(struct kvm *kvm)
1945 {
1946         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1947         u16 data = 0;
1948         int ret = 0;
1949         int r;
1950
1951         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1952         if (r < 0)
1953                 goto out;
1954         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1955         r = kvm_write_guest_page(kvm, fn++, &data,
1956                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
1957         if (r < 0)
1958                 goto out;
1959         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1960         if (r < 0)
1961                 goto out;
1962         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1963         if (r < 0)
1964                 goto out;
1965         data = ~0;
1966         r = kvm_write_guest_page(kvm, fn, &data,
1967                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1968                                  sizeof(u8));
1969         if (r < 0)
1970                 goto out;
1971
1972         ret = 1;
1973 out:
1974         return ret;
1975 }
1976
1977 static int init_rmode_identity_map(struct kvm *kvm)
1978 {
1979         int i, r, ret;
1980         pfn_t identity_map_pfn;
1981         u32 tmp;
1982
1983         if (!vm_need_ept())
1984                 return 1;
1985         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
1986                 printk(KERN_ERR "EPT: identity-mapping pagetable "
1987                         "haven't been allocated!\n");
1988                 return 0;
1989         }
1990         if (likely(kvm->arch.ept_identity_pagetable_done))
1991                 return 1;
1992         ret = 0;
1993         identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
1994         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
1995         if (r < 0)
1996                 goto out;
1997         /* Set up identity-mapping pagetable for EPT in real mode */
1998         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
1999                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2000                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2001                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2002                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2003                 if (r < 0)
2004                         goto out;
2005         }
2006         kvm->arch.ept_identity_pagetable_done = true;
2007         ret = 1;
2008 out:
2009         return ret;
2010 }
2011
2012 static void seg_setup(int seg)
2013 {
2014         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2015
2016         vmcs_write16(sf->selector, 0);
2017         vmcs_writel(sf->base, 0);
2018         vmcs_write32(sf->limit, 0xffff);
2019         vmcs_write32(sf->ar_bytes, 0xf3);
2020 }
2021
2022 static int alloc_apic_access_page(struct kvm *kvm)
2023 {
2024         struct kvm_userspace_memory_region kvm_userspace_mem;
2025         int r = 0;
2026
2027         down_write(&kvm->slots_lock);
2028         if (kvm->arch.apic_access_page)
2029                 goto out;
2030         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2031         kvm_userspace_mem.flags = 0;
2032         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2033         kvm_userspace_mem.memory_size = PAGE_SIZE;
2034         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2035         if (r)
2036                 goto out;
2037
2038         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2039 out:
2040         up_write(&kvm->slots_lock);
2041         return r;
2042 }
2043
2044 static int alloc_identity_pagetable(struct kvm *kvm)
2045 {
2046         struct kvm_userspace_memory_region kvm_userspace_mem;
2047         int r = 0;
2048
2049         down_write(&kvm->slots_lock);
2050         if (kvm->arch.ept_identity_pagetable)
2051                 goto out;
2052         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2053         kvm_userspace_mem.flags = 0;
2054         kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
2055         kvm_userspace_mem.memory_size = PAGE_SIZE;
2056         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2057         if (r)
2058                 goto out;
2059
2060         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2061                         VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
2062 out:
2063         up_write(&kvm->slots_lock);
2064         return r;
2065 }
2066
2067 static void allocate_vpid(struct vcpu_vmx *vmx)
2068 {
2069         int vpid;
2070
2071         vmx->vpid = 0;
2072         if (!enable_vpid || !cpu_has_vmx_vpid())
2073                 return;
2074         spin_lock(&vmx_vpid_lock);
2075         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2076         if (vpid < VMX_NR_VPIDS) {
2077                 vmx->vpid = vpid;
2078                 __set_bit(vpid, vmx_vpid_bitmap);
2079         }
2080         spin_unlock(&vmx_vpid_lock);
2081 }
2082
2083 static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
2084 {
2085         void *va;
2086
2087         if (!cpu_has_vmx_msr_bitmap())
2088                 return;
2089
2090         /*
2091          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2092          * have the write-low and read-high bitmap offsets the wrong way round.
2093          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2094          */
2095         va = kmap(msr_bitmap);
2096         if (msr <= 0x1fff) {
2097                 __clear_bit(msr, va + 0x000); /* read-low */
2098                 __clear_bit(msr, va + 0x800); /* write-low */
2099         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2100                 msr &= 0x1fff;
2101                 __clear_bit(msr, va + 0x400); /* read-high */
2102                 __clear_bit(msr, va + 0xc00); /* write-high */
2103         }
2104         kunmap(msr_bitmap);
2105 }
2106
2107 /*
2108  * Sets up the vmcs for emulated real mode.
2109  */
2110 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2111 {
2112         u32 host_sysenter_cs, msr_low, msr_high;
2113         u32 junk;
2114         u64 host_pat;
2115         unsigned long a;
2116         struct descriptor_table dt;
2117         int i;
2118         unsigned long kvm_vmx_return;
2119         u32 exec_control;
2120
2121         /* I/O */
2122         vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
2123         vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
2124
2125         if (cpu_has_vmx_msr_bitmap())
2126                 vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
2127
2128         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2129
2130         /* Control */
2131         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2132                 vmcs_config.pin_based_exec_ctrl);
2133
2134         exec_control = vmcs_config.cpu_based_exec_ctrl;
2135         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2136                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2137 #ifdef CONFIG_X86_64
2138                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2139                                 CPU_BASED_CR8_LOAD_EXITING;
2140 #endif
2141         }
2142         if (!vm_need_ept())
2143                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2144                                 CPU_BASED_CR3_LOAD_EXITING  |
2145                                 CPU_BASED_INVLPG_EXITING;
2146         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2147
2148         if (cpu_has_secondary_exec_ctrls()) {
2149                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2150                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2151                         exec_control &=
2152                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2153                 if (vmx->vpid == 0)
2154                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2155                 if (!vm_need_ept())
2156                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2157                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2158         }
2159
2160         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2161         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2162         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2163
2164         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
2165         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2166         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2167
2168         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2169         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2170         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2171         vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs());    /* 22.2.4 */
2172         vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs());    /* 22.2.4 */
2173         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2174 #ifdef CONFIG_X86_64
2175         rdmsrl(MSR_FS_BASE, a);
2176         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2177         rdmsrl(MSR_GS_BASE, a);
2178         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2179 #else
2180         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2181         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2182 #endif
2183
2184         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2185
2186         kvm_get_idt(&dt);
2187         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
2188
2189         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2190         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2191         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2192         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2193         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2194
2195         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2196         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2197         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2198         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2199         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2200         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2201
2202         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2203                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2204                 host_pat = msr_low | ((u64) msr_high << 32);
2205                 vmcs_write64(HOST_IA32_PAT, host_pat);
2206         }
2207         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2208                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2209                 host_pat = msr_low | ((u64) msr_high << 32);
2210                 /* Write the default value follow host pat */
2211                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2212                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2213                 vmx->vcpu.arch.pat = host_pat;
2214         }
2215
2216         for (i = 0; i < NR_VMX_MSR; ++i) {
2217                 u32 index = vmx_msr_index[i];
2218                 u32 data_low, data_high;
2219                 u64 data;
2220                 int j = vmx->nmsrs;
2221
2222                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2223                         continue;
2224                 if (wrmsr_safe(index, data_low, data_high) < 0)
2225                         continue;
2226                 data = data_low | ((u64)data_high << 32);
2227                 vmx->host_msrs[j].index = index;
2228                 vmx->host_msrs[j].reserved = 0;
2229                 vmx->host_msrs[j].data = data;
2230                 vmx->guest_msrs[j] = vmx->host_msrs[j];
2231                 ++vmx->nmsrs;
2232         }
2233
2234         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2235
2236         /* 22.2.1, 20.8.1 */
2237         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2238
2239         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2240         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2241
2242
2243         return 0;
2244 }
2245
2246 static int init_rmode(struct kvm *kvm)
2247 {
2248         if (!init_rmode_tss(kvm))
2249                 return 0;
2250         if (!init_rmode_identity_map(kvm))
2251                 return 0;
2252         return 1;
2253 }
2254
2255 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2256 {
2257         struct vcpu_vmx *vmx = to_vmx(vcpu);
2258         u64 msr;
2259         int ret;
2260
2261         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2262         down_read(&vcpu->kvm->slots_lock);
2263         if (!init_rmode(vmx->vcpu.kvm)) {
2264                 ret = -ENOMEM;
2265                 goto out;
2266         }
2267
2268         vmx->vcpu.arch.rmode.active = 0;
2269
2270         vmx->soft_vnmi_blocked = 0;
2271
2272         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2273         kvm_set_cr8(&vmx->vcpu, 0);
2274         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2275         if (vmx->vcpu.vcpu_id == 0)
2276                 msr |= MSR_IA32_APICBASE_BSP;
2277         kvm_set_apic_base(&vmx->vcpu, msr);
2278
2279         fx_init(&vmx->vcpu);
2280
2281         seg_setup(VCPU_SREG_CS);
2282         /*
2283          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2284          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2285          */
2286         if (vmx->vcpu.vcpu_id == 0) {
2287                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2288                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2289         } else {
2290                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2291                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2292         }
2293
2294         seg_setup(VCPU_SREG_DS);
2295         seg_setup(VCPU_SREG_ES);
2296         seg_setup(VCPU_SREG_FS);
2297         seg_setup(VCPU_SREG_GS);
2298         seg_setup(VCPU_SREG_SS);
2299
2300         vmcs_write16(GUEST_TR_SELECTOR, 0);
2301         vmcs_writel(GUEST_TR_BASE, 0);
2302         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2303         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2304
2305         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2306         vmcs_writel(GUEST_LDTR_BASE, 0);
2307         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2308         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2309
2310         vmcs_write32(GUEST_SYSENTER_CS, 0);
2311         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2312         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2313
2314         vmcs_writel(GUEST_RFLAGS, 0x02);
2315         if (vmx->vcpu.vcpu_id == 0)
2316                 kvm_rip_write(vcpu, 0xfff0);
2317         else
2318                 kvm_rip_write(vcpu, 0);
2319         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2320
2321         /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
2322         vmcs_writel(GUEST_DR7, 0x400);
2323
2324         vmcs_writel(GUEST_GDTR_BASE, 0);
2325         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2326
2327         vmcs_writel(GUEST_IDTR_BASE, 0);
2328         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2329
2330         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2331         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2332         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2333
2334         guest_write_tsc(0);
2335
2336         /* Special registers */
2337         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2338
2339         setup_msrs(vmx);
2340
2341         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2342
2343         if (cpu_has_vmx_tpr_shadow()) {
2344                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2345                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2346                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2347                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2348                 vmcs_write32(TPR_THRESHOLD, 0);
2349         }
2350
2351         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2352                 vmcs_write64(APIC_ACCESS_ADDR,
2353                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2354
2355         if (vmx->vpid != 0)
2356                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2357
2358         vmx->vcpu.arch.cr0 = 0x60000010;
2359         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2360         vmx_set_cr4(&vmx->vcpu, 0);
2361         vmx_set_efer(&vmx->vcpu, 0);
2362         vmx_fpu_activate(&vmx->vcpu);
2363         update_exception_bitmap(&vmx->vcpu);
2364
2365         vpid_sync_vcpu_all(vmx);
2366
2367         ret = 0;
2368
2369         /* HACK: Don't enable emulation on guest boot/reset */
2370         vmx->emulation_required = 0;
2371
2372 out:
2373         up_read(&vcpu->kvm->slots_lock);
2374         return ret;
2375 }
2376
2377 static void enable_irq_window(struct kvm_vcpu *vcpu)
2378 {
2379         u32 cpu_based_vm_exec_control;
2380
2381         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2382         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2383         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2384 }
2385
2386 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2387 {
2388         u32 cpu_based_vm_exec_control;
2389
2390         if (!cpu_has_virtual_nmis()) {
2391                 enable_irq_window(vcpu);
2392                 return;
2393         }
2394
2395         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2396         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2397         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2398 }
2399
2400 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
2401 {
2402         struct vcpu_vmx *vmx = to_vmx(vcpu);
2403
2404         KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2405
2406         ++vcpu->stat.irq_injections;
2407         if (vcpu->arch.rmode.active) {
2408                 vmx->rmode.irq.pending = true;
2409                 vmx->rmode.irq.vector = irq;
2410                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2411                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2412                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2413                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2414                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2415                 return;
2416         }
2417         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2418                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
2419 }
2420
2421 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2422 {
2423         struct vcpu_vmx *vmx = to_vmx(vcpu);
2424
2425         if (!cpu_has_virtual_nmis()) {
2426                 /*
2427                  * Tracking the NMI-blocked state in software is built upon
2428                  * finding the next open IRQ window. This, in turn, depends on
2429                  * well-behaving guests: They have to keep IRQs disabled at
2430                  * least as long as the NMI handler runs. Otherwise we may
2431                  * cause NMI nesting, maybe breaking the guest. But as this is
2432                  * highly unlikely, we can live with the residual risk.
2433                  */
2434                 vmx->soft_vnmi_blocked = 1;
2435                 vmx->vnmi_blocked_time = 0;
2436         }
2437
2438         ++vcpu->stat.nmi_injections;
2439         if (vcpu->arch.rmode.active) {
2440                 vmx->rmode.irq.pending = true;
2441                 vmx->rmode.irq.vector = NMI_VECTOR;
2442                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2443                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2444                              NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2445                              INTR_INFO_VALID_MASK);
2446                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2447                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2448                 return;
2449         }
2450         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2451                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2452 }
2453
2454 static void vmx_update_window_states(struct kvm_vcpu *vcpu)
2455 {
2456         u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2457
2458         vcpu->arch.nmi_window_open =
2459                 !(guest_intr & (GUEST_INTR_STATE_STI |
2460                                 GUEST_INTR_STATE_MOV_SS |
2461                                 GUEST_INTR_STATE_NMI));
2462         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2463                 vcpu->arch.nmi_window_open = 0;
2464
2465         vcpu->arch.interrupt_window_open =
2466                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2467                  !(guest_intr & (GUEST_INTR_STATE_STI |
2468                                  GUEST_INTR_STATE_MOV_SS)));
2469 }
2470
2471 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
2472 {
2473         int word_index = __ffs(vcpu->arch.irq_summary);
2474         int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
2475         int irq = word_index * BITS_PER_LONG + bit_index;
2476
2477         clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
2478         if (!vcpu->arch.irq_pending[word_index])
2479                 clear_bit(word_index, &vcpu->arch.irq_summary);
2480         kvm_queue_interrupt(vcpu, irq);
2481 }
2482
2483 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
2484                                        struct kvm_run *kvm_run)
2485 {
2486         vmx_update_window_states(vcpu);
2487
2488         if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
2489                 if (vcpu->arch.interrupt.pending) {
2490                         enable_nmi_window(vcpu);
2491                 } else if (vcpu->arch.nmi_window_open) {
2492                         vcpu->arch.nmi_pending = false;
2493                         vcpu->arch.nmi_injected = true;
2494                 } else {
2495                         enable_nmi_window(vcpu);
2496                         return;
2497                 }
2498         }
2499         if (vcpu->arch.nmi_injected) {
2500                 vmx_inject_nmi(vcpu);
2501                 if (vcpu->arch.nmi_pending)
2502                         enable_nmi_window(vcpu);
2503                 else if (vcpu->arch.irq_summary
2504                          || kvm_run->request_interrupt_window)
2505                         enable_irq_window(vcpu);
2506                 return;
2507         }
2508
2509         if (vcpu->arch.interrupt_window_open) {
2510                 if (vcpu->arch.irq_summary && !vcpu->arch.interrupt.pending)
2511                         kvm_do_inject_irq(vcpu);
2512
2513                 if (vcpu->arch.interrupt.pending)
2514                         vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
2515         }
2516         if (!vcpu->arch.interrupt_window_open &&
2517             (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
2518                 enable_irq_window(vcpu);
2519 }
2520
2521 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2522 {
2523         int ret;
2524         struct kvm_userspace_memory_region tss_mem = {
2525                 .slot = TSS_PRIVATE_MEMSLOT,
2526                 .guest_phys_addr = addr,
2527                 .memory_size = PAGE_SIZE * 3,
2528                 .flags = 0,
2529         };
2530
2531         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2532         if (ret)
2533                 return ret;
2534         kvm->arch.tss_addr = addr;
2535         return 0;
2536 }
2537
2538 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
2539 {
2540         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
2541
2542         set_debugreg(dbg->bp[0], 0);
2543         set_debugreg(dbg->bp[1], 1);
2544         set_debugreg(dbg->bp[2], 2);
2545         set_debugreg(dbg->bp[3], 3);
2546
2547         if (dbg->singlestep) {
2548                 unsigned long flags;
2549
2550                 flags = vmcs_readl(GUEST_RFLAGS);
2551                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
2552                 vmcs_writel(GUEST_RFLAGS, flags);
2553         }
2554 }
2555
2556 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2557                                   int vec, u32 err_code)
2558 {
2559         /*
2560          * Instruction with address size override prefix opcode 0x67
2561          * Cause the #SS fault with 0 error code in VM86 mode.
2562          */
2563         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2564                 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2565                         return 1;
2566         /*
2567          * Forward all other exceptions that are valid in real mode.
2568          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2569          *        the required debugging infrastructure rework.
2570          */
2571         switch (vec) {
2572         case DE_VECTOR:
2573         case DB_VECTOR:
2574         case BP_VECTOR:
2575         case OF_VECTOR:
2576         case BR_VECTOR:
2577         case UD_VECTOR:
2578         case DF_VECTOR:
2579         case SS_VECTOR:
2580         case GP_VECTOR:
2581         case MF_VECTOR:
2582                 kvm_queue_exception(vcpu, vec);
2583                 return 1;
2584         }
2585         return 0;
2586 }
2587
2588 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2589 {
2590         struct vcpu_vmx *vmx = to_vmx(vcpu);
2591         u32 intr_info, error_code;
2592         unsigned long cr2, rip;
2593         u32 vect_info;
2594         enum emulation_result er;
2595
2596         vect_info = vmx->idt_vectoring_info;
2597         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2598
2599         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2600                                                 !is_page_fault(intr_info))
2601                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2602                        "intr info 0x%x\n", __func__, vect_info, intr_info);
2603
2604         if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
2605                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
2606                 set_bit(irq, vcpu->arch.irq_pending);
2607                 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
2608         }
2609
2610         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2611                 return 1;  /* already handled by vmx_vcpu_run() */
2612
2613         if (is_no_device(intr_info)) {
2614                 vmx_fpu_activate(vcpu);
2615                 return 1;
2616         }
2617
2618         if (is_invalid_opcode(intr_info)) {
2619                 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2620                 if (er != EMULATE_DONE)
2621                         kvm_queue_exception(vcpu, UD_VECTOR);
2622                 return 1;
2623         }
2624
2625         error_code = 0;
2626         rip = kvm_rip_read(vcpu);
2627         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2628                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2629         if (is_page_fault(intr_info)) {
2630                 /* EPT won't cause page fault directly */
2631                 if (vm_need_ept())
2632                         BUG();
2633                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2634                 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2635                             (u32)((u64)cr2 >> 32), handler);
2636                 if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
2637                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
2638                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2639         }
2640
2641         if (vcpu->arch.rmode.active &&
2642             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2643                                                                 error_code)) {
2644                 if (vcpu->arch.halt_request) {
2645                         vcpu->arch.halt_request = 0;
2646                         return kvm_emulate_halt(vcpu);
2647                 }
2648                 return 1;
2649         }
2650
2651         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
2652             (INTR_TYPE_EXCEPTION | 1)) {
2653                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2654                 return 0;
2655         }
2656         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2657         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
2658         kvm_run->ex.error_code = error_code;
2659         return 0;
2660 }
2661
2662 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2663                                      struct kvm_run *kvm_run)
2664 {
2665         ++vcpu->stat.irq_exits;
2666         KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2667         return 1;
2668 }
2669
2670 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2671 {
2672         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2673         return 0;
2674 }
2675
2676 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2677 {
2678         unsigned long exit_qualification;
2679         int size, down, in, string, rep;
2680         unsigned port;
2681
2682         ++vcpu->stat.io_exits;
2683         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2684         string = (exit_qualification & 16) != 0;
2685
2686         if (string) {
2687                 if (emulate_instruction(vcpu,
2688                                         kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2689                         return 0;
2690                 return 1;
2691         }
2692
2693         size = (exit_qualification & 7) + 1;
2694         in = (exit_qualification & 8) != 0;
2695         down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
2696         rep = (exit_qualification & 32) != 0;
2697         port = exit_qualification >> 16;
2698
2699         skip_emulated_instruction(vcpu);
2700         return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2701 }
2702
2703 static void
2704 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2705 {
2706         /*
2707          * Patch in the VMCALL instruction:
2708          */
2709         hypercall[0] = 0x0f;
2710         hypercall[1] = 0x01;
2711         hypercall[2] = 0xc1;
2712 }
2713
2714 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2715 {
2716         unsigned long exit_qualification;
2717         int cr;
2718         int reg;
2719
2720         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2721         cr = exit_qualification & 15;
2722         reg = (exit_qualification >> 8) & 15;
2723         switch ((exit_qualification >> 4) & 3) {
2724         case 0: /* mov to cr */
2725                 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
2726                             (u32)kvm_register_read(vcpu, reg),
2727                             (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2728                             handler);
2729                 switch (cr) {
2730                 case 0:
2731                         kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
2732                         skip_emulated_instruction(vcpu);
2733                         return 1;
2734                 case 3:
2735                         kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
2736                         skip_emulated_instruction(vcpu);
2737                         return 1;
2738                 case 4:
2739                         kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
2740                         skip_emulated_instruction(vcpu);
2741                         return 1;
2742                 case 8:
2743                         kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
2744                         skip_emulated_instruction(vcpu);
2745                         if (irqchip_in_kernel(vcpu->kvm))
2746                                 return 1;
2747                         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2748                         return 0;
2749                 };
2750                 break;
2751         case 2: /* clts */
2752                 vmx_fpu_deactivate(vcpu);
2753                 vcpu->arch.cr0 &= ~X86_CR0_TS;
2754                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2755                 vmx_fpu_activate(vcpu);
2756                 KVMTRACE_0D(CLTS, vcpu, handler);
2757                 skip_emulated_instruction(vcpu);
2758                 return 1;
2759         case 1: /*mov from cr*/
2760                 switch (cr) {
2761                 case 3:
2762                         kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2763                         KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2764                                     (u32)kvm_register_read(vcpu, reg),
2765                                     (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2766                                     handler);
2767                         skip_emulated_instruction(vcpu);
2768                         return 1;
2769                 case 8:
2770                         kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
2771                         KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2772                                     (u32)kvm_register_read(vcpu, reg), handler);
2773                         skip_emulated_instruction(vcpu);
2774                         return 1;
2775                 }
2776                 break;
2777         case 3: /* lmsw */
2778                 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2779
2780                 skip_emulated_instruction(vcpu);
2781                 return 1;
2782         default:
2783                 break;
2784         }
2785         kvm_run->exit_reason = 0;
2786         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2787                (int)(exit_qualification >> 4) & 3, cr);
2788         return 0;
2789 }
2790
2791 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2792 {
2793         unsigned long exit_qualification;
2794         unsigned long val;
2795         int dr, reg;
2796
2797         /*
2798          * FIXME: this code assumes the host is debugging the guest.
2799          *        need to deal with guest debugging itself too.
2800          */
2801         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2802         dr = exit_qualification & 7;
2803         reg = (exit_qualification >> 8) & 15;
2804         if (exit_qualification & 16) {
2805                 /* mov from dr */
2806                 switch (dr) {
2807                 case 6:
2808                         val = 0xffff0ff0;
2809                         break;
2810                 case 7:
2811                         val = 0x400;
2812                         break;
2813                 default:
2814                         val = 0;
2815                 }
2816                 kvm_register_write(vcpu, reg, val);
2817                 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2818         } else {
2819                 /* mov to dr */
2820         }
2821         skip_emulated_instruction(vcpu);
2822         return 1;
2823 }
2824
2825 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2826 {
2827         kvm_emulate_cpuid(vcpu);
2828         return 1;
2829 }
2830
2831 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2832 {
2833         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2834         u64 data;
2835
2836         if (vmx_get_msr(vcpu, ecx, &data)) {
2837                 kvm_inject_gp(vcpu, 0);
2838                 return 1;
2839         }
2840
2841         KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2842                     handler);
2843
2844         /* FIXME: handling of bits 32:63 of rax, rdx */
2845         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2846         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2847         skip_emulated_instruction(vcpu);
2848         return 1;
2849 }
2850
2851 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2852 {
2853         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2854         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2855                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2856
2857         KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2858                     handler);
2859
2860         if (vmx_set_msr(vcpu, ecx, data) != 0) {
2861                 kvm_inject_gp(vcpu, 0);
2862                 return 1;
2863         }
2864
2865         skip_emulated_instruction(vcpu);
2866         return 1;
2867 }
2868
2869 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2870                                       struct kvm_run *kvm_run)
2871 {
2872         return 1;
2873 }
2874
2875 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2876                                    struct kvm_run *kvm_run)
2877 {
2878         u32 cpu_based_vm_exec_control;
2879
2880         /* clear pending irq */
2881         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2882         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2883         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2884
2885         KVMTRACE_0D(PEND_INTR, vcpu, handler);
2886         ++vcpu->stat.irq_window_exits;
2887
2888         /*
2889          * If the user space waits to inject interrupts, exit as soon as
2890          * possible
2891          */
2892         if (kvm_run->request_interrupt_window &&
2893             !vcpu->arch.irq_summary) {
2894                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2895                 return 0;
2896         }
2897         return 1;
2898 }
2899
2900 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2901 {
2902         skip_emulated_instruction(vcpu);
2903         return kvm_emulate_halt(vcpu);
2904 }
2905
2906 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2907 {
2908         skip_emulated_instruction(vcpu);
2909         kvm_emulate_hypercall(vcpu);
2910         return 1;
2911 }
2912
2913 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2914 {
2915         u64 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2916
2917         kvm_mmu_invlpg(vcpu, exit_qualification);
2918         skip_emulated_instruction(vcpu);
2919         return 1;
2920 }
2921
2922 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2923 {
2924         skip_emulated_instruction(vcpu);
2925         /* TODO: Add support for VT-d/pass-through device */
2926         return 1;
2927 }
2928
2929 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2930 {
2931         u64 exit_qualification;
2932         enum emulation_result er;
2933         unsigned long offset;
2934
2935         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2936         offset = exit_qualification & 0xffful;
2937
2938         er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2939
2940         if (er !=  EMULATE_DONE) {
2941                 printk(KERN_ERR
2942                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2943                        offset);
2944                 return -ENOTSUPP;
2945         }
2946         return 1;
2947 }
2948
2949 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2950 {
2951         struct vcpu_vmx *vmx = to_vmx(vcpu);
2952         unsigned long exit_qualification;
2953         u16 tss_selector;
2954         int reason;
2955
2956         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2957
2958         reason = (u32)exit_qualification >> 30;
2959         if (reason == TASK_SWITCH_GATE && vmx->vcpu.arch.nmi_injected &&
2960             (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
2961             (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK)
2962             == INTR_TYPE_NMI_INTR) {
2963                 vcpu->arch.nmi_injected = false;
2964                 if (cpu_has_virtual_nmis())
2965                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2966                                       GUEST_INTR_STATE_NMI);
2967         }
2968         tss_selector = exit_qualification;
2969
2970         return kvm_task_switch(vcpu, tss_selector, reason);
2971 }
2972
2973 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2974 {
2975         u64 exit_qualification;
2976         enum emulation_result er;
2977         gpa_t gpa;
2978         unsigned long hva;
2979         int gla_validity;
2980         int r;
2981
2982         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2983
2984         if (exit_qualification & (1 << 6)) {
2985                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
2986                 return -ENOTSUPP;
2987         }
2988
2989         gla_validity = (exit_qualification >> 7) & 0x3;
2990         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
2991                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
2992                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2993                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2994                         (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2995                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2996                         (long unsigned int)exit_qualification);
2997                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2998                 kvm_run->hw.hardware_exit_reason = 0;
2999                 return -ENOTSUPP;
3000         }
3001
3002         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3003         hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
3004         if (!kvm_is_error_hva(hva)) {
3005                 r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3006                 if (r < 0) {
3007                         printk(KERN_ERR "EPT: Not enough memory!\n");
3008                         return -ENOMEM;
3009                 }
3010                 return 1;
3011         } else {
3012                 /* must be MMIO */
3013                 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3014
3015                 if (er == EMULATE_FAIL) {
3016                         printk(KERN_ERR
3017                          "EPT: Fail to handle EPT violation vmexit!er is %d\n",
3018                          er);
3019                         printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3020                          (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3021                          (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
3022                         printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3023                                 (long unsigned int)exit_qualification);
3024                         return -ENOTSUPP;
3025                 } else if (er == EMULATE_DO_MMIO)
3026                         return 0;
3027         }
3028         return 1;
3029 }
3030
3031 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3032 {
3033         u32 cpu_based_vm_exec_control;
3034
3035         /* clear pending NMI */
3036         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3037         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3038         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3039         ++vcpu->stat.nmi_window_exits;
3040
3041         return 1;
3042 }
3043
3044 static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
3045                                 struct kvm_run *kvm_run)
3046 {
3047         struct vcpu_vmx *vmx = to_vmx(vcpu);
3048         int err;
3049
3050         preempt_enable();
3051         local_irq_enable();
3052
3053         while (!guest_state_valid(vcpu)) {
3054                 err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3055
3056                 if (err == EMULATE_DO_MMIO)
3057                         break;
3058
3059                 if (err != EMULATE_DONE) {
3060                         kvm_report_emulation_failure(vcpu, "emulation failure");
3061                         return;
3062                 }
3063
3064                 if (signal_pending(current))
3065                         break;
3066                 if (need_resched())
3067                         schedule();
3068         }
3069
3070         local_irq_disable();
3071         preempt_disable();
3072
3073         /* Guest state should be valid now except if we need to
3074          * emulate an MMIO */
3075         if (guest_state_valid(vcpu))
3076                 vmx->emulation_required = 0;
3077 }
3078
3079 /*
3080  * The exit handlers return 1 if the exit was handled fully and guest execution
3081  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3082  * to be done to userspace and return 0.
3083  */
3084 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
3085                                       struct kvm_run *kvm_run) = {
3086         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3087         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3088         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3089         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3090         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3091         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3092         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3093         [EXIT_REASON_CPUID]                   = handle_cpuid,
3094         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3095         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3096         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3097         [EXIT_REASON_HLT]                     = handle_halt,
3098         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3099         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3100         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3101         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3102         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3103         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3104         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3105 };
3106
3107 static const int kvm_vmx_max_exit_handlers =
3108         ARRAY_SIZE(kvm_vmx_exit_handlers);
3109
3110 /*
3111  * The guest has exited.  See if we can fix it or if we need userspace
3112  * assistance.
3113  */
3114 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3115 {
3116         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
3117         struct vcpu_vmx *vmx = to_vmx(vcpu);
3118         u32 vectoring_info = vmx->idt_vectoring_info;
3119
3120         KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
3121                     (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
3122
3123         /* If we need to emulate an MMIO from handle_invalid_guest_state
3124          * we just return 0 */
3125         if (vmx->emulation_required && emulate_invalid_guest_state)
3126                 return 0;
3127
3128         /* Access CR3 don't cause VMExit in paging mode, so we need
3129          * to sync with guest real CR3. */
3130         if (vm_need_ept() && is_paging(vcpu)) {
3131                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3132                 ept_load_pdptrs(vcpu);
3133         }
3134
3135         if (unlikely(vmx->fail)) {
3136                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3137                 kvm_run->fail_entry.hardware_entry_failure_reason
3138                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3139                 return 0;
3140         }
3141
3142         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3143                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3144                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3145                         exit_reason != EXIT_REASON_TASK_SWITCH))
3146                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3147                        "(0x%x) and exit reason is 0x%x\n",
3148                        __func__, vectoring_info, exit_reason);
3149
3150         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3151                 if (vcpu->arch.interrupt_window_open) {
3152                         vmx->soft_vnmi_blocked = 0;
3153                         vcpu->arch.nmi_window_open = 1;
3154                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3155                            vcpu->arch.nmi_pending) {
3156                         /*
3157                          * This CPU don't support us in finding the end of an
3158                          * NMI-blocked window if the guest runs with IRQs
3159                          * disabled. So we pull the trigger after 1 s of
3160                          * futile waiting, but inform the user about this.
3161                          */
3162                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3163                                "state on VCPU %d after 1 s timeout\n",
3164                                __func__, vcpu->vcpu_id);
3165                         vmx->soft_vnmi_blocked = 0;
3166                         vmx->vcpu.arch.nmi_window_open = 1;
3167                 }
3168         }
3169
3170         if (exit_reason < kvm_vmx_max_exit_handlers
3171             && kvm_vmx_exit_handlers[exit_reason])
3172                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
3173         else {
3174                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3175                 kvm_run->hw.hardware_exit_reason = exit_reason;
3176         }
3177         return 0;
3178 }
3179
3180 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
3181 {
3182         int max_irr, tpr;
3183
3184         if (!vm_need_tpr_shadow(vcpu->kvm))
3185                 return;
3186
3187         if (!kvm_lapic_enabled(vcpu) ||
3188             ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
3189                 vmcs_write32(TPR_THRESHOLD, 0);
3190                 return;
3191         }
3192
3193         tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
3194         vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
3195 }
3196
3197 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3198 {
3199         u32 exit_intr_info;
3200         u32 idt_vectoring_info;
3201         bool unblock_nmi;
3202         u8 vector;
3203         int type;
3204         bool idtv_info_valid;
3205         u32 error;
3206
3207         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3208         if (cpu_has_virtual_nmis()) {
3209                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3210                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3211                 /*
3212                  * SDM 3: 25.7.1.2
3213                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3214                  * a guest IRET fault.
3215                  */
3216                 if (unblock_nmi && vector != DF_VECTOR)
3217                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3218                                       GUEST_INTR_STATE_NMI);
3219         } else if (unlikely(vmx->soft_vnmi_blocked))
3220                 vmx->vnmi_blocked_time +=
3221                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3222
3223         idt_vectoring_info = vmx->idt_vectoring_info;
3224         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3225         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3226         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3227         if (vmx->vcpu.arch.nmi_injected) {
3228                 /*
3229                  * SDM 3: 25.7.1.2
3230                  * Clear bit "block by NMI" before VM entry if a NMI delivery
3231                  * faulted.
3232                  */
3233                 if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
3234                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3235                                         GUEST_INTR_STATE_NMI);
3236                 else
3237                         vmx->vcpu.arch.nmi_injected = false;
3238         }
3239         kvm_clear_exception_queue(&vmx->vcpu);
3240         if (idtv_info_valid && type == INTR_TYPE_EXCEPTION) {
3241                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3242                         error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3243                         kvm_queue_exception_e(&vmx->vcpu, vector, error);
3244                 } else
3245                         kvm_queue_exception(&vmx->vcpu, vector);
3246                 vmx->idt_vectoring_info = 0;
3247         }
3248         kvm_clear_interrupt_queue(&vmx->vcpu);
3249         if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
3250                 kvm_queue_interrupt(&vmx->vcpu, vector);
3251                 vmx->idt_vectoring_info = 0;
3252         }
3253 }
3254
3255 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
3256 {
3257         update_tpr_threshold(vcpu);
3258
3259         vmx_update_window_states(vcpu);
3260
3261         if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
3262                 if (vcpu->arch.interrupt.pending) {
3263                         enable_nmi_window(vcpu);
3264                 } else if (vcpu->arch.nmi_window_open) {
3265                         vcpu->arch.nmi_pending = false;
3266                         vcpu->arch.nmi_injected = true;
3267                 } else {
3268                         enable_nmi_window(vcpu);
3269                         return;
3270                 }
3271         }
3272         if (vcpu->arch.nmi_injected) {
3273                 vmx_inject_nmi(vcpu);
3274                 if (vcpu->arch.nmi_pending)
3275                         enable_nmi_window(vcpu);
3276                 else if (kvm_cpu_has_interrupt(vcpu))
3277                         enable_irq_window(vcpu);
3278                 return;
3279         }
3280         if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
3281                 if (vcpu->arch.interrupt_window_open)
3282                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
3283                 else
3284                         enable_irq_window(vcpu);
3285         }
3286         if (vcpu->arch.interrupt.pending) {
3287                 vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
3288                 kvm_timer_intr_post(vcpu, vcpu->arch.interrupt.nr);
3289                 if (kvm_cpu_has_interrupt(vcpu))
3290                         enable_irq_window(vcpu);
3291         }
3292 }
3293
3294 /*
3295  * Failure to inject an interrupt should give us the information
3296  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
3297  * when fetching the interrupt redirection bitmap in the real-mode
3298  * tss, this doesn't happen.  So we do it ourselves.
3299  */
3300 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3301 {
3302         vmx->rmode.irq.pending = 0;
3303         if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3304                 return;
3305         kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3306         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3307                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3308                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3309                 return;
3310         }
3311         vmx->idt_vectoring_info =
3312                 VECTORING_INFO_VALID_MASK
3313                 | INTR_TYPE_EXT_INTR
3314                 | vmx->rmode.irq.vector;
3315 }
3316
3317 #ifdef CONFIG_X86_64
3318 #define R "r"
3319 #define Q "q"
3320 #else
3321 #define R "e"
3322 #define Q "l"
3323 #endif
3324
3325 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3326 {
3327         struct vcpu_vmx *vmx = to_vmx(vcpu);
3328         u32 intr_info;
3329
3330         /* Record the guest's net vcpu time for enforced NMI injections. */
3331         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3332                 vmx->entry_time = ktime_get();
3333
3334         /* Handle invalid guest state instead of entering VMX */
3335         if (vmx->emulation_required && emulate_invalid_guest_state) {
3336                 handle_invalid_guest_state(vcpu, kvm_run);
3337                 return;
3338         }
3339
3340         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3341                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3342         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3343                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3344
3345         /*
3346          * Loading guest fpu may have cleared host cr0.ts
3347          */
3348         vmcs_writel(HOST_CR0, read_cr0());
3349
3350         asm(
3351                 /* Store host registers */
3352                 "push %%"R"dx; push %%"R"bp;"
3353                 "push %%"R"cx \n\t"
3354                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3355                 "je 1f \n\t"
3356                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3357                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3358                 "1: \n\t"
3359                 /* Check if vmlaunch of vmresume is needed */
3360                 "cmpl $0, %c[launched](%0) \n\t"
3361                 /* Load guest registers.  Don't clobber flags. */
3362                 "mov %c[cr2](%0), %%"R"ax \n\t"
3363                 "mov %%"R"ax, %%cr2 \n\t"
3364                 "mov %c[rax](%0), %%"R"ax \n\t"
3365                 "mov %c[rbx](%0), %%"R"bx \n\t"
3366                 "mov %c[rdx](%0), %%"R"dx \n\t"
3367                 "mov %c[rsi](%0), %%"R"si \n\t"
3368                 "mov %c[rdi](%0), %%"R"di \n\t"
3369                 "mov %c[rbp](%0), %%"R"bp \n\t"
3370 #ifdef CONFIG_X86_64
3371                 "mov %c[r8](%0),  %%r8  \n\t"
3372                 "mov %c[r9](%0),  %%r9  \n\t"
3373                 "mov %c[r10](%0), %%r10 \n\t"
3374                 "mov %c[r11](%0), %%r11 \n\t"
3375                 "mov %c[r12](%0), %%r12 \n\t"
3376                 "mov %c[r13](%0), %%r13 \n\t"
3377                 "mov %c[r14](%0), %%r14 \n\t"
3378                 "mov %c[r15](%0), %%r15 \n\t"
3379 #endif
3380                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3381
3382                 /* Enter guest mode */
3383                 "jne .Llaunched \n\t"
3384                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3385                 "jmp .Lkvm_vmx_return \n\t"
3386                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3387                 ".Lkvm_vmx_return: "
3388                 /* Save guest registers, load host registers, keep flags */
3389                 "xchg %0,     (%%"R"sp) \n\t"
3390                 "mov %%"R"ax, %c[rax](%0) \n\t"
3391                 "mov %%"R"bx, %c[rbx](%0) \n\t"
3392                 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3393                 "mov %%"R"dx, %c[rdx](%0) \n\t"
3394                 "mov %%"R"si, %c[rsi](%0) \n\t"
3395                 "mov %%"R"di, %c[rdi](%0) \n\t"
3396                 "mov %%"R"bp, %c[rbp](%0) \n\t"
3397 #ifdef CONFIG_X86_64
3398                 "mov %%r8,  %c[r8](%0) \n\t"
3399                 "mov %%r9,  %c[r9](%0) \n\t"
3400                 "mov %%r10, %c[r10](%0) \n\t"
3401                 "mov %%r11, %c[r11](%0) \n\t"
3402                 "mov %%r12, %c[r12](%0) \n\t"
3403                 "mov %%r13, %c[r13](%0) \n\t"
3404                 "mov %%r14, %c[r14](%0) \n\t"
3405                 "mov %%r15, %c[r15](%0) \n\t"
3406 #endif
3407                 "mov %%cr2, %%"R"ax   \n\t"
3408                 "mov %%"R"ax, %c[cr2](%0) \n\t"
3409
3410                 "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
3411                 "setbe %c[fail](%0) \n\t"
3412               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3413                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3414                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3415                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3416                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3417                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3418                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3419                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3420                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3421                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3422                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3423 #ifdef CONFIG_X86_64
3424                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3425                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3426                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3427                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3428                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3429                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3430                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3431                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3432 #endif
3433                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3434               : "cc", "memory"
3435                 , R"bx", R"di", R"si"
3436 #ifdef CONFIG_X86_64
3437                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3438 #endif
3439               );
3440
3441         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3442         vcpu->arch.regs_dirty = 0;
3443
3444         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3445         if (vmx->rmode.irq.pending)
3446                 fixup_rmode_irq(vmx);
3447
3448         vmx_update_window_states(vcpu);
3449
3450         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3451         vmx->launched = 1;
3452
3453         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3454
3455         /* We need to handle NMIs before interrupts are enabled */
3456         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3457             (intr_info & INTR_INFO_VALID_MASK)) {
3458                 KVMTRACE_0D(NMI, vcpu, handler);
3459                 asm("int $2");
3460         }
3461
3462         vmx_complete_interrupts(vmx);
3463 }
3464
3465 #undef R
3466 #undef Q
3467
3468 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3469 {
3470         struct vcpu_vmx *vmx = to_vmx(vcpu);
3471
3472         if (vmx->vmcs) {
3473                 vcpu_clear(vmx);
3474                 free_vmcs(vmx->vmcs);
3475                 vmx->vmcs = NULL;
3476         }
3477 }
3478
3479 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3480 {
3481         struct vcpu_vmx *vmx = to_vmx(vcpu);
3482
3483         spin_lock(&vmx_vpid_lock);
3484         if (vmx->vpid != 0)
3485                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3486         spin_unlock(&vmx_vpid_lock);
3487         vmx_free_vmcs(vcpu);
3488         kfree(vmx->host_msrs);
3489         kfree(vmx->guest_msrs);
3490         kvm_vcpu_uninit(vcpu);
3491         kmem_cache_free(kvm_vcpu_cache, vmx);
3492 }
3493
3494 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3495 {
3496         int err;
3497         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3498         int cpu;
3499
3500         if (!vmx)
3501                 return ERR_PTR(-ENOMEM);
3502
3503         allocate_vpid(vmx);
3504
3505         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3506         if (err)
3507                 goto free_vcpu;
3508
3509         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3510         if (!vmx->guest_msrs) {
3511                 err = -ENOMEM;
3512                 goto uninit_vcpu;
3513         }
3514
3515         vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3516         if (!vmx->host_msrs)
3517                 goto free_guest_msrs;
3518
3519         vmx->vmcs = alloc_vmcs();
3520         if (!vmx->vmcs)
3521                 goto free_msrs;
3522
3523         vmcs_clear(vmx->vmcs);
3524
3525         cpu = get_cpu();
3526         vmx_vcpu_load(&vmx->vcpu, cpu);
3527         err = vmx_vcpu_setup(vmx);
3528         vmx_vcpu_put(&vmx->vcpu);
3529         put_cpu();
3530         if (err)
3531                 goto free_vmcs;
3532         if (vm_need_virtualize_apic_accesses(kvm))
3533                 if (alloc_apic_access_page(kvm) != 0)
3534                         goto free_vmcs;
3535
3536         if (vm_need_ept())
3537                 if (alloc_identity_pagetable(kvm) != 0)
3538                         goto free_vmcs;
3539
3540         return &vmx->vcpu;
3541
3542 free_vmcs:
3543         free_vmcs(vmx->vmcs);
3544 free_msrs:
3545         kfree(vmx->host_msrs);
3546 free_guest_msrs:
3547         kfree(vmx->guest_msrs);
3548 uninit_vcpu:
3549         kvm_vcpu_uninit(&vmx->vcpu);
3550 free_vcpu:
3551         kmem_cache_free(kvm_vcpu_cache, vmx);
3552         return ERR_PTR(err);
3553 }
3554
3555 static void __init vmx_check_processor_compat(void *rtn)
3556 {
3557         struct vmcs_config vmcs_conf;
3558
3559         *(int *)rtn = 0;
3560         if (setup_vmcs_config(&vmcs_conf) < 0)
3561                 *(int *)rtn = -EIO;
3562         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3563                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3564                                 smp_processor_id());
3565                 *(int *)rtn = -EIO;
3566         }
3567 }
3568
3569 static int get_ept_level(void)
3570 {
3571         return VMX_EPT_DEFAULT_GAW + 1;
3572 }
3573
3574 static int vmx_get_mt_mask_shift(void)
3575 {
3576         return VMX_EPT_MT_EPTE_SHIFT;
3577 }
3578
3579 static struct kvm_x86_ops vmx_x86_ops = {
3580         .cpu_has_kvm_support = cpu_has_kvm_support,
3581         .disabled_by_bios = vmx_disabled_by_bios,
3582         .hardware_setup = hardware_setup,
3583         .hardware_unsetup = hardware_unsetup,
3584         .check_processor_compatibility = vmx_check_processor_compat,
3585         .hardware_enable = hardware_enable,
3586         .hardware_disable = hardware_disable,
3587         .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
3588
3589         .vcpu_create = vmx_create_vcpu,
3590         .vcpu_free = vmx_free_vcpu,
3591         .vcpu_reset = vmx_vcpu_reset,
3592
3593         .prepare_guest_switch = vmx_save_host_state,
3594         .vcpu_load = vmx_vcpu_load,
3595         .vcpu_put = vmx_vcpu_put,
3596
3597         .set_guest_debug = set_guest_debug,
3598         .guest_debug_pre = kvm_guest_debug_pre,
3599         .get_msr = vmx_get_msr,
3600         .set_msr = vmx_set_msr,
3601         .get_segment_base = vmx_get_segment_base,
3602         .get_segment = vmx_get_segment,
3603         .set_segment = vmx_set_segment,
3604         .get_cpl = vmx_get_cpl,
3605         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3606         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3607         .set_cr0 = vmx_set_cr0,
3608         .set_cr3 = vmx_set_cr3,
3609         .set_cr4 = vmx_set_cr4,
3610         .set_efer = vmx_set_efer,
3611         .get_idt = vmx_get_idt,
3612         .set_idt = vmx_set_idt,
3613         .get_gdt = vmx_get_gdt,
3614         .set_gdt = vmx_set_gdt,
3615         .cache_reg = vmx_cache_reg,
3616         .get_rflags = vmx_get_rflags,
3617         .set_rflags = vmx_set_rflags,
3618
3619         .tlb_flush = vmx_flush_tlb,
3620
3621         .run = vmx_vcpu_run,
3622         .handle_exit = kvm_handle_exit,
3623         .skip_emulated_instruction = skip_emulated_instruction,
3624         .patch_hypercall = vmx_patch_hypercall,
3625         .get_irq = vmx_get_irq,
3626         .set_irq = vmx_inject_irq,
3627         .queue_exception = vmx_queue_exception,
3628         .exception_injected = vmx_exception_injected,
3629         .inject_pending_irq = vmx_intr_assist,
3630         .inject_pending_vectors = do_interrupt_requests,
3631
3632         .set_tss_addr = vmx_set_tss_addr,
3633         .get_tdp_level = get_ept_level,
3634         .get_mt_mask_shift = vmx_get_mt_mask_shift,
3635 };
3636
3637 static int __init vmx_init(void)
3638 {
3639         void *va;
3640         int r;
3641
3642         vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3643         if (!vmx_io_bitmap_a)
3644                 return -ENOMEM;
3645
3646         vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3647         if (!vmx_io_bitmap_b) {
3648                 r = -ENOMEM;
3649                 goto out;
3650         }
3651
3652         vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3653         if (!vmx_msr_bitmap) {
3654                 r = -ENOMEM;
3655                 goto out1;
3656         }
3657
3658         /*
3659          * Allow direct access to the PC debug port (it is often used for I/O
3660          * delays, but the vmexits simply slow things down).
3661          */
3662         va = kmap(vmx_io_bitmap_a);
3663         memset(va, 0xff, PAGE_SIZE);
3664         clear_bit(0x80, va);
3665         kunmap(vmx_io_bitmap_a);
3666
3667         va = kmap(vmx_io_bitmap_b);
3668         memset(va, 0xff, PAGE_SIZE);
3669         kunmap(vmx_io_bitmap_b);
3670
3671         va = kmap(vmx_msr_bitmap);
3672         memset(va, 0xff, PAGE_SIZE);
3673         kunmap(vmx_msr_bitmap);
3674
3675         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3676
3677         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3678         if (r)
3679                 goto out2;
3680
3681         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
3682         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
3683         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
3684         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
3685         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
3686
3687         if (vm_need_ept()) {
3688                 bypass_guest_pf = 0;
3689                 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3690                         VMX_EPT_WRITABLE_MASK |
3691                         VMX_EPT_IGMT_BIT);
3692                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3693                                 VMX_EPT_EXECUTABLE_MASK,
3694                                 VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
3695                 kvm_enable_tdp();
3696         } else
3697                 kvm_disable_tdp();
3698
3699         if (bypass_guest_pf)
3700                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3701
3702         ept_sync_global();
3703
3704         return 0;
3705
3706 out2:
3707         __free_page(vmx_msr_bitmap);
3708 out1:
3709         __free_page(vmx_io_bitmap_b);
3710 out:
3711         __free_page(vmx_io_bitmap_a);
3712         return r;
3713 }
3714
3715 static void __exit vmx_exit(void)
3716 {
3717         __free_page(vmx_msr_bitmap);
3718         __free_page(vmx_io_bitmap_b);
3719         __free_page(vmx_io_bitmap_a);
3720
3721         kvm_exit();
3722 }
3723
3724 module_init(vmx_init)
3725 module_exit(vmx_exit)