4 * Copyright © 2006 Red Hat, Inc.
5 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
10 #include <linux/device.h>
12 #include <linux/mtd/mtd.h>
13 #include <linux/mtd/nand.h>
14 #include <linux/pci.h>
15 #include <linux/delay.h>
16 #include <linux/interrupt.h>
19 #define CAFE_NAND_CTRL1 0x00
20 #define CAFE_NAND_CTRL2 0x04
21 #define CAFE_NAND_CTRL3 0x08
22 #define CAFE_NAND_STATUS 0x0c
23 #define CAFE_NAND_IRQ 0x10
24 #define CAFE_NAND_IRQ_MASK 0x14
25 #define CAFE_NAND_DATA_LEN 0x18
26 #define CAFE_NAND_ADDR1 0x1c
27 #define CAFE_NAND_ADDR2 0x20
28 #define CAFE_NAND_TIMING1 0x24
29 #define CAFE_NAND_TIMING2 0x28
30 #define CAFE_NAND_TIMING3 0x2c
31 #define CAFE_NAND_NONMEM 0x30
32 #define CAFE_NAND_DMA_CTRL 0x40
33 #define CAFE_NAND_DMA_ADDR0 0x44
34 #define CAFE_NAND_DMA_ADDR1 0x48
35 #define CAFE_NAND_READ_DATA 0x1000
36 #define CAFE_NAND_WRITE_DATA 0x2000
39 struct nand_chip nand;
49 unsigned char *dmabuf;
53 static int usedma = 1;
54 module_param(usedma, int, 0644);
56 static int cafe_device_ready(struct mtd_info *mtd)
58 struct cafe_priv *cafe = mtd->priv;
59 int result = !!(readl(cafe->mmio + CAFE_NAND_STATUS) | 0x40000000);
61 uint32_t irqs = readl(cafe->mmio + 0x10);
62 writel(irqs, cafe->mmio+0x10);
63 dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
64 result?"":" not", irqs, readl(cafe->mmio + 0x10),
65 readl(cafe->mmio + 0x3008), readl(cafe->mmio + 0x300c));
70 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
72 struct cafe_priv *cafe = mtd->priv;
75 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
77 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
80 dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
84 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
86 struct cafe_priv *cafe = mtd->priv;
89 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
91 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
93 dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
98 static uint8_t cafe_read_byte(struct mtd_info *mtd)
100 struct cafe_priv *cafe = mtd->priv;
103 cafe_read_buf(mtd, &d, 1);
104 dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
109 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
110 int column, int page_addr)
112 struct cafe_priv *cafe = mtd->priv;
115 uint32_t doneint = 0x80000000;
118 dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
119 command, column, page_addr);
121 if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
122 /* Second half of a command we already calculated */
123 writel(cafe->ctl2 | 0x100 | command, cafe->mmio + 0x04);
125 dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
126 cafe->ctl1, cafe->nr_data);
129 /* Reset ECC engine */
130 writel(0, cafe->mmio + CAFE_NAND_CTRL2);
132 /* Emulate NAND_CMD_READOOB on large-page chips */
133 if (mtd->writesize > 512 &&
134 command == NAND_CMD_READOOB) {
135 column += mtd->writesize;
136 command = NAND_CMD_READ0;
139 /* FIXME: Do we need to send read command before sending data
140 for small-page chips, to position the buffer correctly? */
143 writel(column, cafe->mmio + 0x1c);
147 } else if (page_addr != -1) {
148 writel(page_addr & 0xffff, cafe->mmio + 0x1c);
151 writel(page_addr, cafe->mmio+0x20);
153 if (mtd->size > mtd->writesize << 16)
157 cafe->data_pos = cafe->datalen = 0;
159 /* Set command valid bit */
160 ctl1 = 0x80000000 | command;
162 /* Set RD or WR bits as appropriate */
163 if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
164 ctl1 |= (1<<26); /* rd */
165 /* Always 5 bytes, for now */
167 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
169 } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
170 command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
171 ctl1 |= 1<<26; /* rd */
172 /* For now, assume just read to end of page */
173 cafe->datalen = mtd->writesize + mtd->oobsize - column;
174 } else if (command == NAND_CMD_SEQIN)
175 ctl1 |= 1<<25; /* wr */
177 /* Set number of address bytes */
179 ctl1 |= ((adrbytes-1)|8) << 27;
181 if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
182 /* Ignore the first command of a pair; the hardware
183 deals with them both at once, later */
186 dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
187 cafe->ctl1, cafe->datalen);
190 /* RNDOUT and READ0 commands need a following byte */
191 if (command == NAND_CMD_RNDOUT)
192 writel(cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, cafe->mmio + CAFE_NAND_CTRL2);
193 else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
194 writel(cafe->ctl2 | 0x100 | NAND_CMD_READSTART, cafe->mmio + CAFE_NAND_CTRL2);
197 if (cafe->datalen == 2112)
198 cafe->datalen = 2062;
199 dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
200 cafe->datalen, ctl1, readl(cafe->mmio+CAFE_NAND_CTRL2));
201 /* NB: The datasheet lies -- we really should be subtracting 1 here */
202 writel(cafe->datalen, cafe->mmio + CAFE_NAND_DATA_LEN);
203 writel(0x90000000, cafe->mmio + 0x10);
204 if (usedma && (ctl1 & (3<<25))) {
205 uint32_t dmactl = 0xc0000000 + cafe->datalen;
206 /* If WR or RD bits set, set up DMA */
207 if (ctl1 & (1<<26)) {
210 /* ... so it's done when the DMA is done, not just
212 doneint = 0x10000000;
214 writel(dmactl, cafe->mmio + 0x40);
217 printk("DMA setup is %x, status %x, ctl1 %x\n", readl(cafe->mmio + 0x40), readl(cafe->mmio + 0x0c), readl(cafe->mmio));
218 printk("DMA setup is %x, status %x, ctl1 %x\n", readl(cafe->mmio + 0x40), readl(cafe->mmio + 0x0c), readl(cafe->mmio));
223 printk("About to write command %08x\n", ctl1);
224 for (i=0; i< 0x5c; i+=4)
225 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
227 writel(ctl1, cafe->mmio + CAFE_NAND_CTRL1);
228 /* Apply this short delay always to ensure that we do wait tWB in
229 * any case on any machine. */
237 irqs = readl(cafe->mmio + 0x10);
242 dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
245 writel(doneint, cafe->mmio + 0x10);
246 dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n", command, 50000-c, irqs, readl(cafe->mmio + 0x10));
250 cafe->ctl2 &= ~(1<<8);
251 cafe->ctl2 &= ~(1<<30);
255 case NAND_CMD_CACHEDPROG:
256 case NAND_CMD_PAGEPROG:
257 case NAND_CMD_ERASE1:
258 case NAND_CMD_ERASE2:
261 case NAND_CMD_STATUS:
262 case NAND_CMD_DEPLETE1:
263 case NAND_CMD_RNDOUT:
264 case NAND_CMD_STATUS_ERROR:
265 case NAND_CMD_STATUS_ERROR0:
266 case NAND_CMD_STATUS_ERROR1:
267 case NAND_CMD_STATUS_ERROR2:
268 case NAND_CMD_STATUS_ERROR3:
269 writel(cafe->ctl2, cafe->mmio + CAFE_NAND_CTRL2);
272 nand_wait_ready(mtd);
273 writel(cafe->ctl2, cafe->mmio + CAFE_NAND_CTRL2);
276 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
278 //struct cafe_priv *cafe = mtd->priv;
279 // dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
281 static int cafe_nand_interrupt(int irq, void *id, struct pt_regs *regs)
283 struct mtd_info *mtd = id;
284 struct cafe_priv *cafe = mtd->priv;
285 uint32_t irqs = readl(cafe->mmio + 0x10);
286 writel(irqs & ~0x90000000, cafe->mmio + 0x10);
290 dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, readl(cafe->mmio + 0x10));
294 static void cafe_nand_bug(struct mtd_info *mtd)
299 static int cafe_nand_write_oob(struct mtd_info *mtd,
300 struct nand_chip *chip, int page)
304 WARN_ON(chip->oob_poi != chip->buffers->oobwbuf);
306 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
307 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
308 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
309 status = chip->waitfunc(mtd, chip);
311 return status & NAND_STATUS_FAIL ? -EIO : 0;
314 /* Don't use -- use nand_read_oob_std for now */
315 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
316 int page, int sndcmd)
318 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
319 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
323 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
324 * @mtd: mtd info structure
325 * @chip: nand chip info structure
326 * @buf: buffer to store read data
328 * The hw generator calculates the error syndrome automatically. Therefor
329 * we need a special oob layout and handling.
331 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
334 struct cafe_priv *cafe = mtd->priv;
336 WARN_ON(chip->oob_poi != chip->buffers->oobrbuf);
338 dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n", readl(cafe->mmio + 0x3c), readl(cafe->mmio + 0x50));
340 chip->read_buf(mtd, buf, mtd->writesize);
341 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
347 static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
348 struct nand_chip *chip, const uint8_t *buf)
350 struct cafe_priv *cafe = mtd->priv;
352 WARN_ON(chip->oob_poi != chip->buffers->oobwbuf);
354 chip->write_buf(mtd, buf, mtd->writesize);
355 chip->write_buf(mtd, foo, 14);
356 // chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
358 /* Set up ECC autogeneration */
359 cafe->ctl2 |= (1<<27) | (1<<30);
360 if (mtd->writesize == 2048)
361 cafe->ctl2 |= (1<<29);
364 static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
365 const uint8_t *buf, int page, int cached, int raw)
369 WARN_ON(chip->oob_poi != chip->buffers->oobwbuf);
371 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
374 chip->ecc.write_page_raw(mtd, chip, buf);
376 chip->ecc.write_page(mtd, chip, buf);
379 * Cached progamming disabled for now, Not sure if its worth the
380 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
384 if (!cached || !(chip->options & NAND_CACHEPRG)) {
386 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
387 status = chip->waitfunc(mtd, chip);
389 * See if operation failed and additional status checks are
392 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
393 status = chip->errstat(mtd, chip, FL_WRITING, status,
396 if (status & NAND_STATUS_FAIL)
399 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
400 status = chip->waitfunc(mtd, chip);
403 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
404 /* Send command to read back the data */
405 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
407 if (chip->verify_buf(mtd, buf, mtd->writesize))
414 static int __devinit cafe_nand_probe(struct pci_dev *pdev,
415 const struct pci_device_id *ent)
417 struct mtd_info *mtd;
418 struct cafe_priv *cafe;
422 err = pci_enable_device(pdev);
426 pci_set_master(pdev);
428 mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
430 dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
433 cafe = (void *)(&mtd[1]);
436 mtd->owner = THIS_MODULE;
439 cafe->mmio = pci_iomap(pdev, 0, 0);
441 dev_warn(&pdev->dev, "failed to iomap\n");
445 cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
446 &cafe->dmaaddr, GFP_KERNEL);
451 cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
453 cafe->nand.cmdfunc = cafe_nand_cmdfunc;
454 cafe->nand.dev_ready = cafe_device_ready;
455 cafe->nand.read_byte = cafe_read_byte;
456 cafe->nand.read_buf = cafe_read_buf;
457 cafe->nand.write_buf = cafe_write_buf;
458 cafe->nand.select_chip = cafe_select_chip;
460 cafe->nand.chip_delay = 0;
462 /* Enable the following for a flash based bad block table */
463 cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
465 /* Timings from Marvell's test code (not verified or calculated by us) */
466 writel(0xffffffff, cafe->mmio + CAFE_NAND_IRQ_MASK);
468 writel(0x01010a0a, cafe->mmio + CAFE_NAND_TIMING1);
469 writel(0x24121212, cafe->mmio + CAFE_NAND_TIMING2);
470 writel(0x11000000, cafe->mmio + CAFE_NAND_TIMING3);
472 writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING1);
473 writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING2);
474 writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING3);
476 writel(0xdfffffff, cafe->mmio + 0x14);
477 err = request_irq(pdev->irq, &cafe_nand_interrupt, SA_SHIRQ, "CAFE NAND", mtd);
479 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
484 /* Disable master reset, enable NAND clock */
485 ctrl = readl(cafe->mmio + 0x3004);
488 writel(ctrl | 0x05, cafe->mmio + 0x3004);
489 writel(ctrl | 0x0a, cafe->mmio + 0x3004);
490 writel(0, cafe->mmio + 0x40);
492 writel(0x7006, cafe->mmio + 0x3004);
493 writel(0x700a, cafe->mmio + 0x3004);
495 /* Set up DMA address */
496 writel(cafe->dmaaddr & 0xffffffff, cafe->mmio + 0x44);
497 if (sizeof(cafe->dmaaddr) > 4)
498 writel((cafe->dmaaddr >> 16) >> 16, cafe->mmio + 0x48);
500 writel(0, cafe->mmio + 0x48);
501 dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
502 readl(cafe->mmio+0x44), cafe->dmabuf);
504 /* Enable NAND IRQ in global IRQ mask register */
505 writel(0x80000007, cafe->mmio + 0x300c);
506 dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
507 readl(cafe->mmio + 0x3004), readl(cafe->mmio + 0x300c));
512 memset(cafe->dmabuf, 0xa5, 2112);
513 cafe->nand.cmdfunc(mtd, NAND_CMD_READID, 0, -1);
514 cafe->nand.read_byte(mtd);
515 cafe->nand.read_byte(mtd);
516 cafe->nand.read_byte(mtd);
517 cafe->nand.read_byte(mtd);
518 cafe->nand.read_byte(mtd);
521 cafe->nand.cmdfunc(mtd, NAND_CMD_READ0, 0, 0);
522 // nand_wait_ready(mtd);
523 cafe->nand.read_byte(mtd);
524 cafe->nand.read_byte(mtd);
525 cafe->nand.read_byte(mtd);
526 cafe->nand.read_byte(mtd);
529 writel(0x84600070, cafe->mmio);
531 dev_dbg(&cafe->pdev->dev, "Status %x\n", readl(cafe->mmio + 0x30));
533 /* Scan to find existance of the device */
534 if (nand_scan_ident(mtd, 1)) {
539 cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
540 if (mtd->writesize == 2048)
541 cafe->ctl2 |= 1<<29; /* 2KiB page size */
543 /* Set up ECC according to the type of chip we found */
544 if (mtd->writesize == 512 || mtd->writesize == 2048) {
545 cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
546 cafe->nand.ecc.size = mtd->writesize;
547 cafe->nand.ecc.bytes = 14;
548 cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
549 cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
550 cafe->nand.ecc.correct = (void *)cafe_nand_bug;
551 cafe->nand.write_page = cafe_nand_write_page;
552 cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
553 cafe->nand.ecc.write_oob = cafe_nand_write_oob;
554 cafe->nand.ecc.read_page = cafe_nand_read_page;
555 cafe->nand.ecc.read_oob = cafe_nand_read_oob;
558 printk(KERN_WARNING "Unexpected NAND flash writesize %d. Using software ECC\n",
560 cafe->nand.ecc.mode = NAND_ECC_NONE;
563 err = nand_scan_tail(mtd);
568 pci_set_drvdata(pdev, mtd);
573 /* Disable NAND IRQ in global IRQ mask register */
574 writel(~1 & readl(cafe->mmio + 0x300c), cafe->mmio + 0x300c);
575 free_irq(pdev->irq, mtd);
577 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
579 pci_iounmap(pdev, cafe->mmio);
586 static void __devexit cafe_nand_remove(struct pci_dev *pdev)
588 struct mtd_info *mtd = pci_get_drvdata(pdev);
589 struct cafe_priv *cafe = mtd->priv;
592 /* Disable NAND IRQ in global IRQ mask register */
593 writel(~1 & readl(cafe->mmio + 0x300c), cafe->mmio + 0x300c);
594 free_irq(pdev->irq, mtd);
596 pci_iounmap(pdev, cafe->mmio);
597 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
601 static struct pci_device_id cafe_nand_tbl[] = {
602 { 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MEMORY_FLASH << 8, 0xFFFF0 }
605 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
607 static struct pci_driver cafe_nand_pci_driver = {
609 .id_table = cafe_nand_tbl,
610 .probe = cafe_nand_probe,
611 .remove = __devexit_p(cafe_nand_remove),
613 .suspend = cafe_nand_suspend,
614 .resume = cafe_nand_resume,
618 static int cafe_nand_init(void)
620 return pci_register_driver(&cafe_nand_pci_driver);
623 static void cafe_nand_exit(void)
625 pci_unregister_driver(&cafe_nand_pci_driver);
627 module_init(cafe_nand_init);
628 module_exit(cafe_nand_exit);
630 MODULE_LICENSE("GPL");
631 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
632 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFE chip");
634 /* Correct ECC for 2048 bytes of 0xff:
635 41 a0 71 65 54 27 f3 93 ec a9 be ed 0b a1 */