Merge branch 'core/printk' into tracing/ftrace
[linux-2.6] / drivers / pci / dmar.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  *
22  * This file implements early detection/parsing of Remapping Devices
23  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24  * tables.
25  *
26  * These routines are used by both DMA-remapping and Interrupt-remapping
27  */
28
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34
35 #undef PREFIX
36 #define PREFIX "DMAR:"
37
38 /* No locks are needed as DMA remapping hardware unit
39  * list is constructed at boot time and hotplug of
40  * these units are not supported by the architecture.
41  */
42 LIST_HEAD(dmar_drhd_units);
43
44 static struct acpi_table_header * __initdata dmar_tbl;
45
46 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
47 {
48         /*
49          * add INCLUDE_ALL at the tail, so scan the list will find it at
50          * the very end.
51          */
52         if (drhd->include_all)
53                 list_add_tail(&drhd->list, &dmar_drhd_units);
54         else
55                 list_add(&drhd->list, &dmar_drhd_units);
56 }
57
58 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
59                                            struct pci_dev **dev, u16 segment)
60 {
61         struct pci_bus *bus;
62         struct pci_dev *pdev = NULL;
63         struct acpi_dmar_pci_path *path;
64         int count;
65
66         bus = pci_find_bus(segment, scope->bus);
67         path = (struct acpi_dmar_pci_path *)(scope + 1);
68         count = (scope->length - sizeof(struct acpi_dmar_device_scope))
69                 / sizeof(struct acpi_dmar_pci_path);
70
71         while (count) {
72                 if (pdev)
73                         pci_dev_put(pdev);
74                 /*
75                  * Some BIOSes list non-exist devices in DMAR table, just
76                  * ignore it
77                  */
78                 if (!bus) {
79                         printk(KERN_WARNING
80                         PREFIX "Device scope bus [%d] not found\n",
81                         scope->bus);
82                         break;
83                 }
84                 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
85                 if (!pdev) {
86                         printk(KERN_WARNING PREFIX
87                         "Device scope device [%04x:%02x:%02x.%02x] not found\n",
88                                 segment, bus->number, path->dev, path->fn);
89                         break;
90                 }
91                 path ++;
92                 count --;
93                 bus = pdev->subordinate;
94         }
95         if (!pdev) {
96                 printk(KERN_WARNING PREFIX
97                 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
98                 segment, scope->bus, path->dev, path->fn);
99                 *dev = NULL;
100                 return 0;
101         }
102         if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
103                         pdev->subordinate) || (scope->entry_type == \
104                         ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
105                 pci_dev_put(pdev);
106                 printk(KERN_WARNING PREFIX
107                         "Device scope type does not match for %s\n",
108                          pci_name(pdev));
109                 return -EINVAL;
110         }
111         *dev = pdev;
112         return 0;
113 }
114
115 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
116                                        struct pci_dev ***devices, u16 segment)
117 {
118         struct acpi_dmar_device_scope *scope;
119         void * tmp = start;
120         int index;
121         int ret;
122
123         *cnt = 0;
124         while (start < end) {
125                 scope = start;
126                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
127                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
128                         (*cnt)++;
129                 else
130                         printk(KERN_WARNING PREFIX
131                                 "Unsupported device scope\n");
132                 start += scope->length;
133         }
134         if (*cnt == 0)
135                 return 0;
136
137         *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
138         if (!*devices)
139                 return -ENOMEM;
140
141         start = tmp;
142         index = 0;
143         while (start < end) {
144                 scope = start;
145                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
146                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
147                         ret = dmar_parse_one_dev_scope(scope,
148                                 &(*devices)[index], segment);
149                         if (ret) {
150                                 kfree(*devices);
151                                 return ret;
152                         }
153                         index ++;
154                 }
155                 start += scope->length;
156         }
157
158         return 0;
159 }
160
161 /**
162  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
163  * structure which uniquely represent one DMA remapping hardware unit
164  * present in the platform
165  */
166 static int __init
167 dmar_parse_one_drhd(struct acpi_dmar_header *header)
168 {
169         struct acpi_dmar_hardware_unit *drhd;
170         struct dmar_drhd_unit *dmaru;
171         int ret = 0;
172
173         dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
174         if (!dmaru)
175                 return -ENOMEM;
176
177         dmaru->hdr = header;
178         drhd = (struct acpi_dmar_hardware_unit *)header;
179         dmaru->reg_base_addr = drhd->address;
180         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
181
182         ret = alloc_iommu(dmaru);
183         if (ret) {
184                 kfree(dmaru);
185                 return ret;
186         }
187         dmar_register_drhd_unit(dmaru);
188         return 0;
189 }
190
191 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
192 {
193         struct acpi_dmar_hardware_unit *drhd;
194         int ret = 0;
195
196         drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
197
198         if (dmaru->include_all)
199                 return 0;
200
201         ret = dmar_parse_dev_scope((void *)(drhd + 1),
202                                 ((void *)drhd) + drhd->header.length,
203                                 &dmaru->devices_cnt, &dmaru->devices,
204                                 drhd->segment);
205         if (ret) {
206                 list_del(&dmaru->list);
207                 kfree(dmaru);
208         }
209         return ret;
210 }
211
212 #ifdef CONFIG_DMAR
213 LIST_HEAD(dmar_rmrr_units);
214
215 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
216 {
217         list_add(&rmrr->list, &dmar_rmrr_units);
218 }
219
220
221 static int __init
222 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
223 {
224         struct acpi_dmar_reserved_memory *rmrr;
225         struct dmar_rmrr_unit *rmrru;
226
227         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
228         if (!rmrru)
229                 return -ENOMEM;
230
231         rmrru->hdr = header;
232         rmrr = (struct acpi_dmar_reserved_memory *)header;
233         rmrru->base_address = rmrr->base_address;
234         rmrru->end_address = rmrr->end_address;
235
236         dmar_register_rmrr_unit(rmrru);
237         return 0;
238 }
239
240 static int __init
241 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
242 {
243         struct acpi_dmar_reserved_memory *rmrr;
244         int ret;
245
246         rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
247         ret = dmar_parse_dev_scope((void *)(rmrr + 1),
248                 ((void *)rmrr) + rmrr->header.length,
249                 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
250
251         if (ret || (rmrru->devices_cnt == 0)) {
252                 list_del(&rmrru->list);
253                 kfree(rmrru);
254         }
255         return ret;
256 }
257 #endif
258
259 static void __init
260 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
261 {
262         struct acpi_dmar_hardware_unit *drhd;
263         struct acpi_dmar_reserved_memory *rmrr;
264
265         switch (header->type) {
266         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
267                 drhd = (struct acpi_dmar_hardware_unit *)header;
268                 printk (KERN_INFO PREFIX
269                         "DRHD (flags: 0x%08x)base: 0x%016Lx\n",
270                         drhd->flags, (unsigned long long)drhd->address);
271                 break;
272         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
273                 rmrr = (struct acpi_dmar_reserved_memory *)header;
274
275                 printk (KERN_INFO PREFIX
276                         "RMRR base: 0x%016Lx end: 0x%016Lx\n",
277                         (unsigned long long)rmrr->base_address,
278                         (unsigned long long)rmrr->end_address);
279                 break;
280         }
281 }
282
283 /**
284  * dmar_table_detect - checks to see if the platform supports DMAR devices
285  */
286 static int __init dmar_table_detect(void)
287 {
288         acpi_status status = AE_OK;
289
290         /* if we could find DMAR table, then there are DMAR devices */
291         status = acpi_get_table(ACPI_SIG_DMAR, 0,
292                                 (struct acpi_table_header **)&dmar_tbl);
293
294         if (ACPI_SUCCESS(status) && !dmar_tbl) {
295                 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
296                 status = AE_NOT_FOUND;
297         }
298
299         return (ACPI_SUCCESS(status) ? 1 : 0);
300 }
301
302 /**
303  * parse_dmar_table - parses the DMA reporting table
304  */
305 static int __init
306 parse_dmar_table(void)
307 {
308         struct acpi_table_dmar *dmar;
309         struct acpi_dmar_header *entry_header;
310         int ret = 0;
311
312         /*
313          * Do it again, earlier dmar_tbl mapping could be mapped with
314          * fixed map.
315          */
316         dmar_table_detect();
317
318         dmar = (struct acpi_table_dmar *)dmar_tbl;
319         if (!dmar)
320                 return -ENODEV;
321
322         if (dmar->width < PAGE_SHIFT - 1) {
323                 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
324                 return -EINVAL;
325         }
326
327         printk (KERN_INFO PREFIX "Host address width %d\n",
328                 dmar->width + 1);
329
330         entry_header = (struct acpi_dmar_header *)(dmar + 1);
331         while (((unsigned long)entry_header) <
332                         (((unsigned long)dmar) + dmar_tbl->length)) {
333                 /* Avoid looping forever on bad ACPI tables */
334                 if (entry_header->length == 0) {
335                         printk(KERN_WARNING PREFIX
336                                 "Invalid 0-length structure\n");
337                         ret = -EINVAL;
338                         break;
339                 }
340
341                 dmar_table_print_dmar_entry(entry_header);
342
343                 switch (entry_header->type) {
344                 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
345                         ret = dmar_parse_one_drhd(entry_header);
346                         break;
347                 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
348 #ifdef CONFIG_DMAR
349                         ret = dmar_parse_one_rmrr(entry_header);
350 #endif
351                         break;
352                 default:
353                         printk(KERN_WARNING PREFIX
354                                 "Unknown DMAR structure type\n");
355                         ret = 0; /* for forward compatibility */
356                         break;
357                 }
358                 if (ret)
359                         break;
360
361                 entry_header = ((void *)entry_header + entry_header->length);
362         }
363         return ret;
364 }
365
366 int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
367                           struct pci_dev *dev)
368 {
369         int index;
370
371         while (dev) {
372                 for (index = 0; index < cnt; index++)
373                         if (dev == devices[index])
374                                 return 1;
375
376                 /* Check our parent */
377                 dev = dev->bus->self;
378         }
379
380         return 0;
381 }
382
383 struct dmar_drhd_unit *
384 dmar_find_matched_drhd_unit(struct pci_dev *dev)
385 {
386         struct dmar_drhd_unit *dmaru = NULL;
387         struct acpi_dmar_hardware_unit *drhd;
388
389         list_for_each_entry(dmaru, &dmar_drhd_units, list) {
390                 drhd = container_of(dmaru->hdr,
391                                     struct acpi_dmar_hardware_unit,
392                                     header);
393
394                 if (dmaru->include_all &&
395                     drhd->segment == pci_domain_nr(dev->bus))
396                         return dmaru;
397
398                 if (dmar_pci_device_match(dmaru->devices,
399                                           dmaru->devices_cnt, dev))
400                         return dmaru;
401         }
402
403         return NULL;
404 }
405
406 int __init dmar_dev_scope_init(void)
407 {
408         struct dmar_drhd_unit *drhd, *drhd_n;
409         int ret = -ENODEV;
410
411         list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
412                 ret = dmar_parse_dev(drhd);
413                 if (ret)
414                         return ret;
415         }
416
417 #ifdef CONFIG_DMAR
418         {
419                 struct dmar_rmrr_unit *rmrr, *rmrr_n;
420                 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
421                         ret = rmrr_parse_dev(rmrr);
422                         if (ret)
423                                 return ret;
424                 }
425         }
426 #endif
427
428         return ret;
429 }
430
431
432 int __init dmar_table_init(void)
433 {
434         static int dmar_table_initialized;
435         int ret;
436
437         if (dmar_table_initialized)
438                 return 0;
439
440         dmar_table_initialized = 1;
441
442         ret = parse_dmar_table();
443         if (ret) {
444                 if (ret != -ENODEV)
445                         printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
446                 return ret;
447         }
448
449         if (list_empty(&dmar_drhd_units)) {
450                 printk(KERN_INFO PREFIX "No DMAR devices found\n");
451                 return -ENODEV;
452         }
453
454 #ifdef CONFIG_DMAR
455         if (list_empty(&dmar_rmrr_units))
456                 printk(KERN_INFO PREFIX "No RMRR found\n");
457 #endif
458
459 #ifdef CONFIG_INTR_REMAP
460         parse_ioapics_under_ir();
461 #endif
462         return 0;
463 }
464
465 void __init detect_intel_iommu(void)
466 {
467         int ret;
468
469         ret = dmar_table_detect();
470
471         {
472 #ifdef CONFIG_INTR_REMAP
473                 struct acpi_table_dmar *dmar;
474                 /*
475                  * for now we will disable dma-remapping when interrupt
476                  * remapping is enabled.
477                  * When support for queued invalidation for IOTLB invalidation
478                  * is added, we will not need this any more.
479                  */
480                 dmar = (struct acpi_table_dmar *) dmar_tbl;
481                 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
482                         printk(KERN_INFO
483                                "Queued invalidation will be enabled to support "
484                                "x2apic and Intr-remapping.\n");
485 #endif
486 #ifdef CONFIG_DMAR
487                 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
488                     !dmar_disabled)
489                         iommu_detected = 1;
490 #endif
491         }
492         dmar_tbl = NULL;
493 }
494
495
496 int alloc_iommu(struct dmar_drhd_unit *drhd)
497 {
498         struct intel_iommu *iommu;
499         int map_size;
500         u32 ver;
501         static int iommu_allocated = 0;
502         int agaw = 0;
503
504         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
505         if (!iommu)
506                 return -ENOMEM;
507
508         iommu->seq_id = iommu_allocated++;
509
510         iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
511         if (!iommu->reg) {
512                 printk(KERN_ERR "IOMMU: can't map the region\n");
513                 goto error;
514         }
515         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
516         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
517
518 #ifdef CONFIG_DMAR
519         agaw = iommu_calculate_agaw(iommu);
520         if (agaw < 0) {
521                 printk(KERN_ERR
522                         "Cannot get a valid agaw for iommu (seq_id = %d)\n",
523                         iommu->seq_id);
524                 goto error;
525         }
526 #endif
527         iommu->agaw = agaw;
528
529         /* the registers might be more than one page */
530         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
531                 cap_max_fault_reg_offset(iommu->cap));
532         map_size = VTD_PAGE_ALIGN(map_size);
533         if (map_size > VTD_PAGE_SIZE) {
534                 iounmap(iommu->reg);
535                 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
536                 if (!iommu->reg) {
537                         printk(KERN_ERR "IOMMU: can't map the region\n");
538                         goto error;
539                 }
540         }
541
542         ver = readl(iommu->reg + DMAR_VER_REG);
543         pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
544                 (unsigned long long)drhd->reg_base_addr,
545                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
546                 (unsigned long long)iommu->cap,
547                 (unsigned long long)iommu->ecap);
548
549         spin_lock_init(&iommu->register_lock);
550
551         drhd->iommu = iommu;
552         return 0;
553 error:
554         kfree(iommu);
555         return -1;
556 }
557
558 void free_iommu(struct intel_iommu *iommu)
559 {
560         if (!iommu)
561                 return;
562
563 #ifdef CONFIG_DMAR
564         free_dmar_iommu(iommu);
565 #endif
566
567         if (iommu->reg)
568                 iounmap(iommu->reg);
569         kfree(iommu);
570 }
571
572 /*
573  * Reclaim all the submitted descriptors which have completed its work.
574  */
575 static inline void reclaim_free_desc(struct q_inval *qi)
576 {
577         while (qi->desc_status[qi->free_tail] == QI_DONE) {
578                 qi->desc_status[qi->free_tail] = QI_FREE;
579                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
580                 qi->free_cnt++;
581         }
582 }
583
584 static int qi_check_fault(struct intel_iommu *iommu, int index)
585 {
586         u32 fault;
587         int head;
588         struct q_inval *qi = iommu->qi;
589         int wait_index = (index + 1) % QI_LENGTH;
590
591         fault = readl(iommu->reg + DMAR_FSTS_REG);
592
593         /*
594          * If IQE happens, the head points to the descriptor associated
595          * with the error. No new descriptors are fetched until the IQE
596          * is cleared.
597          */
598         if (fault & DMA_FSTS_IQE) {
599                 head = readl(iommu->reg + DMAR_IQH_REG);
600                 if ((head >> 4) == index) {
601                         memcpy(&qi->desc[index], &qi->desc[wait_index],
602                                         sizeof(struct qi_desc));
603                         __iommu_flush_cache(iommu, &qi->desc[index],
604                                         sizeof(struct qi_desc));
605                         writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
606                         return -EINVAL;
607                 }
608         }
609
610         return 0;
611 }
612
613 /*
614  * Submit the queued invalidation descriptor to the remapping
615  * hardware unit and wait for its completion.
616  */
617 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
618 {
619         int rc = 0;
620         struct q_inval *qi = iommu->qi;
621         struct qi_desc *hw, wait_desc;
622         int wait_index, index;
623         unsigned long flags;
624
625         if (!qi)
626                 return 0;
627
628         hw = qi->desc;
629
630         spin_lock_irqsave(&qi->q_lock, flags);
631         while (qi->free_cnt < 3) {
632                 spin_unlock_irqrestore(&qi->q_lock, flags);
633                 cpu_relax();
634                 spin_lock_irqsave(&qi->q_lock, flags);
635         }
636
637         index = qi->free_head;
638         wait_index = (index + 1) % QI_LENGTH;
639
640         qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
641
642         hw[index] = *desc;
643
644         wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
645                         QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
646         wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
647
648         hw[wait_index] = wait_desc;
649
650         __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
651         __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
652
653         qi->free_head = (qi->free_head + 2) % QI_LENGTH;
654         qi->free_cnt -= 2;
655
656         /*
657          * update the HW tail register indicating the presence of
658          * new descriptors.
659          */
660         writel(qi->free_head << 4, iommu->reg + DMAR_IQT_REG);
661
662         while (qi->desc_status[wait_index] != QI_DONE) {
663                 /*
664                  * We will leave the interrupts disabled, to prevent interrupt
665                  * context to queue another cmd while a cmd is already submitted
666                  * and waiting for completion on this cpu. This is to avoid
667                  * a deadlock where the interrupt context can wait indefinitely
668                  * for free slots in the queue.
669                  */
670                 rc = qi_check_fault(iommu, index);
671                 if (rc)
672                         goto out;
673
674                 spin_unlock(&qi->q_lock);
675                 cpu_relax();
676                 spin_lock(&qi->q_lock);
677         }
678 out:
679         qi->desc_status[index] = qi->desc_status[wait_index] = QI_DONE;
680
681         reclaim_free_desc(qi);
682         spin_unlock_irqrestore(&qi->q_lock, flags);
683
684         return rc;
685 }
686
687 /*
688  * Flush the global interrupt entry cache.
689  */
690 void qi_global_iec(struct intel_iommu *iommu)
691 {
692         struct qi_desc desc;
693
694         desc.low = QI_IEC_TYPE;
695         desc.high = 0;
696
697         /* should never fail */
698         qi_submit_sync(&desc, iommu);
699 }
700
701 int qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
702                      u64 type, int non_present_entry_flush)
703 {
704         struct qi_desc desc;
705
706         if (non_present_entry_flush) {
707                 if (!cap_caching_mode(iommu->cap))
708                         return 1;
709                 else
710                         did = 0;
711         }
712
713         desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
714                         | QI_CC_GRAN(type) | QI_CC_TYPE;
715         desc.high = 0;
716
717         return qi_submit_sync(&desc, iommu);
718 }
719
720 int qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
721                    unsigned int size_order, u64 type,
722                    int non_present_entry_flush)
723 {
724         u8 dw = 0, dr = 0;
725
726         struct qi_desc desc;
727         int ih = 0;
728
729         if (non_present_entry_flush) {
730                 if (!cap_caching_mode(iommu->cap))
731                         return 1;
732                 else
733                         did = 0;
734         }
735
736         if (cap_write_drain(iommu->cap))
737                 dw = 1;
738
739         if (cap_read_drain(iommu->cap))
740                 dr = 1;
741
742         desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
743                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
744         desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
745                 | QI_IOTLB_AM(size_order);
746
747         return qi_submit_sync(&desc, iommu);
748 }
749
750 /*
751  * Enable Queued Invalidation interface. This is a must to support
752  * interrupt-remapping. Also used by DMA-remapping, which replaces
753  * register based IOTLB invalidation.
754  */
755 int dmar_enable_qi(struct intel_iommu *iommu)
756 {
757         u32 cmd, sts;
758         unsigned long flags;
759         struct q_inval *qi;
760
761         if (!ecap_qis(iommu->ecap))
762                 return -ENOENT;
763
764         /*
765          * queued invalidation is already setup and enabled.
766          */
767         if (iommu->qi)
768                 return 0;
769
770         iommu->qi = kmalloc(sizeof(*qi), GFP_KERNEL);
771         if (!iommu->qi)
772                 return -ENOMEM;
773
774         qi = iommu->qi;
775
776         qi->desc = (void *)(get_zeroed_page(GFP_KERNEL));
777         if (!qi->desc) {
778                 kfree(qi);
779                 iommu->qi = 0;
780                 return -ENOMEM;
781         }
782
783         qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_KERNEL);
784         if (!qi->desc_status) {
785                 free_page((unsigned long) qi->desc);
786                 kfree(qi);
787                 iommu->qi = 0;
788                 return -ENOMEM;
789         }
790
791         qi->free_head = qi->free_tail = 0;
792         qi->free_cnt = QI_LENGTH;
793
794         spin_lock_init(&qi->q_lock);
795
796         spin_lock_irqsave(&iommu->register_lock, flags);
797         /* write zero to the tail reg */
798         writel(0, iommu->reg + DMAR_IQT_REG);
799
800         dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
801
802         cmd = iommu->gcmd | DMA_GCMD_QIE;
803         iommu->gcmd |= DMA_GCMD_QIE;
804         writel(cmd, iommu->reg + DMAR_GCMD_REG);
805
806         /* Make sure hardware complete it */
807         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
808         spin_unlock_irqrestore(&iommu->register_lock, flags);
809
810         return 0;
811 }