2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/hardirq.h>
48 #include <linux/netdevice.h>
49 #include <linux/cache.h>
50 #include <linux/pci.h>
51 #include <linux/ethtool.h>
52 #include <linux/uaccess.h>
54 #include <net/ieee80211_radiotap.h>
56 #include <asm/unaligned.h>
62 static int ath5k_calinterval = 10; /* Calibrate PHY every 10 secs (TODO: Fixme) */
70 MODULE_AUTHOR("Jiri Slaby");
71 MODULE_AUTHOR("Nick Kossifidis");
72 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
73 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
74 MODULE_LICENSE("Dual BSD/GPL");
75 MODULE_VERSION("0.6.0 (EXPERIMENTAL)");
79 static struct pci_device_id ath5k_pci_id_table[] __devinitdata = {
80 { PCI_VDEVICE(ATHEROS, 0x0207), .driver_data = AR5K_AR5210 }, /* 5210 early */
81 { PCI_VDEVICE(ATHEROS, 0x0007), .driver_data = AR5K_AR5210 }, /* 5210 */
82 { PCI_VDEVICE(ATHEROS, 0x0011), .driver_data = AR5K_AR5211 }, /* 5311 - this is on AHB bus !*/
83 { PCI_VDEVICE(ATHEROS, 0x0012), .driver_data = AR5K_AR5211 }, /* 5211 */
84 { PCI_VDEVICE(ATHEROS, 0x0013), .driver_data = AR5K_AR5212 }, /* 5212 */
85 { PCI_VDEVICE(3COM_2, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 5212 */
86 { PCI_VDEVICE(3COM, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 3CRDAG675 5212 */
87 { PCI_VDEVICE(ATHEROS, 0x1014), .driver_data = AR5K_AR5212 }, /* IBM minipci 5212 */
88 { PCI_VDEVICE(ATHEROS, 0x0014), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
89 { PCI_VDEVICE(ATHEROS, 0x0015), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
90 { PCI_VDEVICE(ATHEROS, 0x0016), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
91 { PCI_VDEVICE(ATHEROS, 0x0017), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
92 { PCI_VDEVICE(ATHEROS, 0x0018), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
93 { PCI_VDEVICE(ATHEROS, 0x0019), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
94 { PCI_VDEVICE(ATHEROS, 0x001a), .driver_data = AR5K_AR5212 }, /* 2413 Griffin-lite */
95 { PCI_VDEVICE(ATHEROS, 0x001b), .driver_data = AR5K_AR5212 }, /* 5413 Eagle */
96 { PCI_VDEVICE(ATHEROS, 0x001c), .driver_data = AR5K_AR5212 }, /* PCI-E cards */
97 { PCI_VDEVICE(ATHEROS, 0x001d), .driver_data = AR5K_AR5212 }, /* 2417 Nala */
100 MODULE_DEVICE_TABLE(pci, ath5k_pci_id_table);
103 static struct ath5k_srev_name srev_names[] = {
104 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
105 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
106 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
107 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
108 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
109 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
110 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
111 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
112 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
113 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
114 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
115 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
116 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
117 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
118 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
119 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
120 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
121 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
122 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
123 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
124 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
125 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
126 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
127 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
128 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
129 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
130 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
131 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
132 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
133 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
134 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
135 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
136 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
137 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
138 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
139 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
142 static struct ieee80211_rate ath5k_rates[] = {
144 .hw_value = ATH5K_RATE_CODE_1M, },
146 .hw_value = ATH5K_RATE_CODE_2M,
147 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
148 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
150 .hw_value = ATH5K_RATE_CODE_5_5M,
151 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
152 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
154 .hw_value = ATH5K_RATE_CODE_11M,
155 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
156 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
158 .hw_value = ATH5K_RATE_CODE_6M,
161 .hw_value = ATH5K_RATE_CODE_9M,
164 .hw_value = ATH5K_RATE_CODE_12M,
167 .hw_value = ATH5K_RATE_CODE_18M,
170 .hw_value = ATH5K_RATE_CODE_24M,
173 .hw_value = ATH5K_RATE_CODE_36M,
176 .hw_value = ATH5K_RATE_CODE_48M,
179 .hw_value = ATH5K_RATE_CODE_54M,
185 * Prototypes - PCI stack related functions
187 static int __devinit ath5k_pci_probe(struct pci_dev *pdev,
188 const struct pci_device_id *id);
189 static void __devexit ath5k_pci_remove(struct pci_dev *pdev);
191 static int ath5k_pci_suspend(struct pci_dev *pdev,
193 static int ath5k_pci_resume(struct pci_dev *pdev);
195 #define ath5k_pci_suspend NULL
196 #define ath5k_pci_resume NULL
197 #endif /* CONFIG_PM */
199 static struct pci_driver ath5k_pci_driver = {
201 .id_table = ath5k_pci_id_table,
202 .probe = ath5k_pci_probe,
203 .remove = __devexit_p(ath5k_pci_remove),
204 .suspend = ath5k_pci_suspend,
205 .resume = ath5k_pci_resume,
211 * Prototypes - MAC 802.11 stack related functions
213 static int ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb);
214 static int ath5k_reset(struct ath5k_softc *sc, bool stop, bool change_channel);
215 static int ath5k_reset_wake(struct ath5k_softc *sc);
216 static int ath5k_start(struct ieee80211_hw *hw);
217 static void ath5k_stop(struct ieee80211_hw *hw);
218 static int ath5k_add_interface(struct ieee80211_hw *hw,
219 struct ieee80211_if_init_conf *conf);
220 static void ath5k_remove_interface(struct ieee80211_hw *hw,
221 struct ieee80211_if_init_conf *conf);
222 static int ath5k_config(struct ieee80211_hw *hw,
223 struct ieee80211_conf *conf);
224 static int ath5k_config_interface(struct ieee80211_hw *hw,
225 struct ieee80211_vif *vif,
226 struct ieee80211_if_conf *conf);
227 static void ath5k_configure_filter(struct ieee80211_hw *hw,
228 unsigned int changed_flags,
229 unsigned int *new_flags,
230 int mc_count, struct dev_mc_list *mclist);
231 static int ath5k_set_key(struct ieee80211_hw *hw,
232 enum set_key_cmd cmd,
233 const u8 *local_addr, const u8 *addr,
234 struct ieee80211_key_conf *key);
235 static int ath5k_get_stats(struct ieee80211_hw *hw,
236 struct ieee80211_low_level_stats *stats);
237 static int ath5k_get_tx_stats(struct ieee80211_hw *hw,
238 struct ieee80211_tx_queue_stats *stats);
239 static u64 ath5k_get_tsf(struct ieee80211_hw *hw);
240 static void ath5k_reset_tsf(struct ieee80211_hw *hw);
241 static int ath5k_beacon_update(struct ieee80211_hw *hw,
242 struct sk_buff *skb);
244 static struct ieee80211_ops ath5k_hw_ops = {
246 .start = ath5k_start,
248 .add_interface = ath5k_add_interface,
249 .remove_interface = ath5k_remove_interface,
250 .config = ath5k_config,
251 .config_interface = ath5k_config_interface,
252 .configure_filter = ath5k_configure_filter,
253 .set_key = ath5k_set_key,
254 .get_stats = ath5k_get_stats,
256 .get_tx_stats = ath5k_get_tx_stats,
257 .get_tsf = ath5k_get_tsf,
258 .reset_tsf = ath5k_reset_tsf,
262 * Prototypes - Internal functions
265 static int ath5k_attach(struct pci_dev *pdev,
266 struct ieee80211_hw *hw);
267 static void ath5k_detach(struct pci_dev *pdev,
268 struct ieee80211_hw *hw);
269 /* Channel/mode setup */
270 static inline short ath5k_ieee2mhz(short chan);
271 static unsigned int ath5k_copy_channels(struct ath5k_hw *ah,
272 struct ieee80211_channel *channels,
275 static int ath5k_setup_bands(struct ieee80211_hw *hw);
276 static int ath5k_chan_set(struct ath5k_softc *sc,
277 struct ieee80211_channel *chan);
278 static void ath5k_setcurmode(struct ath5k_softc *sc,
280 static void ath5k_mode_setup(struct ath5k_softc *sc);
282 /* Descriptor setup */
283 static int ath5k_desc_alloc(struct ath5k_softc *sc,
284 struct pci_dev *pdev);
285 static void ath5k_desc_free(struct ath5k_softc *sc,
286 struct pci_dev *pdev);
288 static int ath5k_rxbuf_setup(struct ath5k_softc *sc,
289 struct ath5k_buf *bf);
290 static int ath5k_txbuf_setup(struct ath5k_softc *sc,
291 struct ath5k_buf *bf);
292 static inline void ath5k_txbuf_free(struct ath5k_softc *sc,
293 struct ath5k_buf *bf)
298 pci_unmap_single(sc->pdev, bf->skbaddr, bf->skb->len,
300 dev_kfree_skb_any(bf->skb);
305 static struct ath5k_txq *ath5k_txq_setup(struct ath5k_softc *sc,
306 int qtype, int subtype);
307 static int ath5k_beaconq_setup(struct ath5k_hw *ah);
308 static int ath5k_beaconq_config(struct ath5k_softc *sc);
309 static void ath5k_txq_drainq(struct ath5k_softc *sc,
310 struct ath5k_txq *txq);
311 static void ath5k_txq_cleanup(struct ath5k_softc *sc);
312 static void ath5k_txq_release(struct ath5k_softc *sc);
314 static int ath5k_rx_start(struct ath5k_softc *sc);
315 static void ath5k_rx_stop(struct ath5k_softc *sc);
316 static unsigned int ath5k_rx_decrypted(struct ath5k_softc *sc,
317 struct ath5k_desc *ds,
319 struct ath5k_rx_status *rs);
320 static void ath5k_tasklet_rx(unsigned long data);
322 static void ath5k_tx_processq(struct ath5k_softc *sc,
323 struct ath5k_txq *txq);
324 static void ath5k_tasklet_tx(unsigned long data);
325 /* Beacon handling */
326 static int ath5k_beacon_setup(struct ath5k_softc *sc,
327 struct ath5k_buf *bf);
328 static void ath5k_beacon_send(struct ath5k_softc *sc);
329 static void ath5k_beacon_config(struct ath5k_softc *sc);
330 static void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
332 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
334 u64 tsf = ath5k_hw_get_tsf64(ah);
336 if ((tsf & 0x7fff) < rstamp)
339 return (tsf & ~0x7fff) | rstamp;
342 /* Interrupt handling */
343 static int ath5k_init(struct ath5k_softc *sc, bool is_resume);
344 static int ath5k_stop_locked(struct ath5k_softc *sc);
345 static int ath5k_stop_hw(struct ath5k_softc *sc, bool is_suspend);
346 static irqreturn_t ath5k_intr(int irq, void *dev_id);
347 static void ath5k_tasklet_reset(unsigned long data);
349 static void ath5k_calibrate(unsigned long data);
351 static int ath5k_init_leds(struct ath5k_softc *sc);
352 static void ath5k_led_enable(struct ath5k_softc *sc);
353 static void ath5k_led_off(struct ath5k_softc *sc);
354 static void ath5k_unregister_leds(struct ath5k_softc *sc);
357 * Module init/exit functions
366 ret = pci_register_driver(&ath5k_pci_driver);
368 printk(KERN_ERR "ath5k_pci: can't register pci driver\n");
378 pci_unregister_driver(&ath5k_pci_driver);
380 ath5k_debug_finish();
383 module_init(init_ath5k_pci);
384 module_exit(exit_ath5k_pci);
387 /********************\
388 * PCI Initialization *
389 \********************/
392 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
394 const char *name = "xxxxx";
397 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
398 if (srev_names[i].sr_type != type)
401 if ((val & 0xf0) == srev_names[i].sr_val)
402 name = srev_names[i].sr_name;
404 if ((val & 0xff) == srev_names[i].sr_val) {
405 name = srev_names[i].sr_name;
414 ath5k_pci_probe(struct pci_dev *pdev,
415 const struct pci_device_id *id)
418 struct ath5k_softc *sc;
419 struct ieee80211_hw *hw;
423 ret = pci_enable_device(pdev);
425 dev_err(&pdev->dev, "can't enable device\n");
429 /* XXX 32-bit addressing only */
430 ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
432 dev_err(&pdev->dev, "32-bit DMA not available\n");
437 * Cache line size is used to size and align various
438 * structures used to communicate with the hardware.
440 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
443 * Linux 2.4.18 (at least) writes the cache line size
444 * register as a 16-bit wide register which is wrong.
445 * We must have this setup properly for rx buffer
446 * DMA to work so force a reasonable value here if it
449 csz = L1_CACHE_BYTES / sizeof(u32);
450 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
453 * The default setting of latency timer yields poor results,
454 * set it to the value used by other systems. It may be worth
455 * tweaking this setting more.
457 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
459 /* Enable bus mastering */
460 pci_set_master(pdev);
463 * Disable the RETRY_TIMEOUT register (0x41) to keep
464 * PCI Tx retries from interfering with C3 CPU state.
466 pci_write_config_byte(pdev, 0x41, 0);
468 ret = pci_request_region(pdev, 0, "ath5k");
470 dev_err(&pdev->dev, "cannot reserve PCI memory region\n");
474 mem = pci_iomap(pdev, 0, 0);
476 dev_err(&pdev->dev, "cannot remap PCI memory region\n") ;
482 * Allocate hw (mac80211 main struct)
483 * and hw->priv (driver private data)
485 hw = ieee80211_alloc_hw(sizeof(*sc), &ath5k_hw_ops);
487 dev_err(&pdev->dev, "cannot allocate ieee80211_hw\n");
492 dev_info(&pdev->dev, "registered as '%s'\n", wiphy_name(hw->wiphy));
494 /* Initialize driver private data */
495 SET_IEEE80211_DEV(hw, &pdev->dev);
496 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
497 IEEE80211_HW_SIGNAL_DBM |
498 IEEE80211_HW_NOISE_DBM;
500 hw->wiphy->interface_modes =
501 BIT(NL80211_IFTYPE_STATION) |
502 BIT(NL80211_IFTYPE_ADHOC) |
503 BIT(NL80211_IFTYPE_MESH_POINT);
505 hw->extra_tx_headroom = 2;
506 hw->channel_change_time = 5000;
511 ath5k_debug_init_device(sc);
514 * Mark the device as detached to avoid processing
515 * interrupts until setup is complete.
517 __set_bit(ATH_STAT_INVALID, sc->status);
519 sc->iobase = mem; /* So we can unmap it on detach */
520 sc->cachelsz = csz * sizeof(u32); /* convert to bytes */
521 sc->opmode = NL80211_IFTYPE_STATION;
522 mutex_init(&sc->lock);
523 spin_lock_init(&sc->rxbuflock);
524 spin_lock_init(&sc->txbuflock);
525 spin_lock_init(&sc->block);
527 /* Set private data */
528 pci_set_drvdata(pdev, hw);
530 /* Setup interrupt handler */
531 ret = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
533 ATH5K_ERR(sc, "request_irq failed\n");
537 /* Initialize device */
538 sc->ah = ath5k_hw_attach(sc, id->driver_data);
539 if (IS_ERR(sc->ah)) {
540 ret = PTR_ERR(sc->ah);
544 /* set up multi-rate retry capabilities */
545 if (sc->ah->ah_version == AR5K_AR5212) {
546 hw->max_altrates = 3;
547 hw->max_altrate_tries = 11;
550 /* Finish private driver data initialization */
551 ret = ath5k_attach(pdev, hw);
555 ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
556 ath5k_chip_name(AR5K_VERSION_MAC, sc->ah->ah_mac_srev),
558 sc->ah->ah_phy_revision);
560 if (!sc->ah->ah_single_chip) {
561 /* Single chip radio (!RF5111) */
562 if (sc->ah->ah_radio_5ghz_revision &&
563 !sc->ah->ah_radio_2ghz_revision) {
564 /* No 5GHz support -> report 2GHz radio */
565 if (!test_bit(AR5K_MODE_11A,
566 sc->ah->ah_capabilities.cap_mode)) {
567 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
568 ath5k_chip_name(AR5K_VERSION_RAD,
569 sc->ah->ah_radio_5ghz_revision),
570 sc->ah->ah_radio_5ghz_revision);
571 /* No 2GHz support (5110 and some
572 * 5Ghz only cards) -> report 5Ghz radio */
573 } else if (!test_bit(AR5K_MODE_11B,
574 sc->ah->ah_capabilities.cap_mode)) {
575 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
576 ath5k_chip_name(AR5K_VERSION_RAD,
577 sc->ah->ah_radio_5ghz_revision),
578 sc->ah->ah_radio_5ghz_revision);
579 /* Multiband radio */
581 ATH5K_INFO(sc, "RF%s multiband radio found"
583 ath5k_chip_name(AR5K_VERSION_RAD,
584 sc->ah->ah_radio_5ghz_revision),
585 sc->ah->ah_radio_5ghz_revision);
588 /* Multi chip radio (RF5111 - RF2111) ->
589 * report both 2GHz/5GHz radios */
590 else if (sc->ah->ah_radio_5ghz_revision &&
591 sc->ah->ah_radio_2ghz_revision){
592 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
593 ath5k_chip_name(AR5K_VERSION_RAD,
594 sc->ah->ah_radio_5ghz_revision),
595 sc->ah->ah_radio_5ghz_revision);
596 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
597 ath5k_chip_name(AR5K_VERSION_RAD,
598 sc->ah->ah_radio_2ghz_revision),
599 sc->ah->ah_radio_2ghz_revision);
604 /* ready to process interrupts */
605 __clear_bit(ATH_STAT_INVALID, sc->status);
609 ath5k_hw_detach(sc->ah);
611 free_irq(pdev->irq, sc);
613 ieee80211_free_hw(hw);
615 pci_iounmap(pdev, mem);
617 pci_release_region(pdev, 0);
619 pci_disable_device(pdev);
624 static void __devexit
625 ath5k_pci_remove(struct pci_dev *pdev)
627 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
628 struct ath5k_softc *sc = hw->priv;
630 ath5k_debug_finish_device(sc);
631 ath5k_detach(pdev, hw);
632 ath5k_hw_detach(sc->ah);
633 free_irq(pdev->irq, sc);
634 pci_iounmap(pdev, sc->iobase);
635 pci_release_region(pdev, 0);
636 pci_disable_device(pdev);
637 ieee80211_free_hw(hw);
642 ath5k_pci_suspend(struct pci_dev *pdev, pm_message_t state)
644 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
645 struct ath5k_softc *sc = hw->priv;
649 ath5k_stop_hw(sc, true);
651 free_irq(pdev->irq, sc);
652 pci_save_state(pdev);
653 pci_disable_device(pdev);
654 pci_set_power_state(pdev, PCI_D3hot);
660 ath5k_pci_resume(struct pci_dev *pdev)
662 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
663 struct ath5k_softc *sc = hw->priv;
666 pci_restore_state(pdev);
668 err = pci_enable_device(pdev);
673 * Suspend/Resume resets the PCI configuration space, so we have to
674 * re-disable the RETRY_TIMEOUT register (0x41) to keep
675 * PCI Tx retries from interfering with C3 CPU state
677 pci_write_config_byte(pdev, 0x41, 0);
679 err = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
681 ATH5K_ERR(sc, "request_irq failed\n");
685 err = ath5k_init(sc, true);
688 ath5k_led_enable(sc);
692 free_irq(pdev->irq, sc);
694 pci_disable_device(pdev);
697 #endif /* CONFIG_PM */
700 /***********************\
701 * Driver Initialization *
702 \***********************/
705 ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
707 struct ath5k_softc *sc = hw->priv;
708 struct ath5k_hw *ah = sc->ah;
712 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "devid 0x%x\n", pdev->device);
715 * Check if the MAC has multi-rate retry support.
716 * We do this by trying to setup a fake extended
717 * descriptor. MAC's that don't have support will
718 * return false w/o doing anything. MAC's that do
719 * support it will return true w/o doing anything.
721 ret = ah->ah_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
725 __set_bit(ATH_STAT_MRRETRY, sc->status);
728 * Collect the channel list. The 802.11 layer
729 * is resposible for filtering this list based
730 * on settings like the phy mode and regulatory
731 * domain restrictions.
733 ret = ath5k_setup_bands(hw);
735 ATH5K_ERR(sc, "can't get channels\n");
739 /* NB: setup here so ath5k_rate_update is happy */
740 if (test_bit(AR5K_MODE_11A, ah->ah_modes))
741 ath5k_setcurmode(sc, AR5K_MODE_11A);
743 ath5k_setcurmode(sc, AR5K_MODE_11B);
746 * Allocate tx+rx descriptors and populate the lists.
748 ret = ath5k_desc_alloc(sc, pdev);
750 ATH5K_ERR(sc, "can't allocate descriptors\n");
755 * Allocate hardware transmit queues: one queue for
756 * beacon frames and one data queue for each QoS
757 * priority. Note that hw functions handle reseting
758 * these queues at the needed time.
760 ret = ath5k_beaconq_setup(ah);
762 ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
767 sc->txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
768 if (IS_ERR(sc->txq)) {
769 ATH5K_ERR(sc, "can't setup xmit queue\n");
770 ret = PTR_ERR(sc->txq);
774 tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
775 tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
776 tasklet_init(&sc->restq, ath5k_tasklet_reset, (unsigned long)sc);
777 setup_timer(&sc->calib_tim, ath5k_calibrate, (unsigned long)sc);
779 ath5k_hw_get_lladdr(ah, mac);
780 SET_IEEE80211_PERM_ADDR(hw, mac);
781 /* All MAC address bits matter for ACKs */
782 memset(sc->bssidmask, 0xff, ETH_ALEN);
783 ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
785 ret = ieee80211_register_hw(hw);
787 ATH5K_ERR(sc, "can't register ieee80211 hw\n");
795 ath5k_txq_release(sc);
797 ath5k_hw_release_tx_queue(ah, sc->bhalq);
799 ath5k_desc_free(sc, pdev);
805 ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw)
807 struct ath5k_softc *sc = hw->priv;
810 * NB: the order of these is important:
811 * o call the 802.11 layer before detaching ath5k_hw to
812 * insure callbacks into the driver to delete global
813 * key cache entries can be handled
814 * o reclaim the tx queue data structures after calling
815 * the 802.11 layer as we'll get called back to reclaim
816 * node state and potentially want to use them
817 * o to cleanup the tx queues the hal is called, so detach
819 * XXX: ??? detach ath5k_hw ???
820 * Other than that, it's straightforward...
822 ieee80211_unregister_hw(hw);
823 ath5k_desc_free(sc, pdev);
824 ath5k_txq_release(sc);
825 ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
826 ath5k_unregister_leds(sc);
829 * NB: can't reclaim these until after ieee80211_ifdetach
830 * returns because we'll get called back to reclaim node
831 * state and potentially want to use them.
838 /********************\
839 * Channel/mode setup *
840 \********************/
843 * Convert IEEE channel number to MHz frequency.
846 ath5k_ieee2mhz(short chan)
848 if (chan <= 14 || chan >= 27)
849 return ieee80211chan2mhz(chan);
851 return 2212 + chan * 20;
855 ath5k_copy_channels(struct ath5k_hw *ah,
856 struct ieee80211_channel *channels,
860 unsigned int i, count, size, chfreq, freq, ch;
862 if (!test_bit(mode, ah->ah_modes))
867 case AR5K_MODE_11A_TURBO:
868 /* 1..220, but 2GHz frequencies are filtered by check_channel */
870 chfreq = CHANNEL_5GHZ;
874 case AR5K_MODE_11G_TURBO:
876 chfreq = CHANNEL_2GHZ;
879 ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
883 for (i = 0, count = 0; i < size && max > 0; i++) {
885 freq = ath5k_ieee2mhz(ch);
887 /* Check if channel is supported by the chipset */
888 if (!ath5k_channel_ok(ah, freq, chfreq))
891 /* Write channel info and increment counter */
892 channels[count].center_freq = freq;
893 channels[count].band = (chfreq == CHANNEL_2GHZ) ?
894 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
898 channels[count].hw_value = chfreq | CHANNEL_OFDM;
900 case AR5K_MODE_11A_TURBO:
901 case AR5K_MODE_11G_TURBO:
902 channels[count].hw_value = chfreq |
903 CHANNEL_OFDM | CHANNEL_TURBO;
906 channels[count].hw_value = CHANNEL_B;
917 ath5k_setup_rate_idx(struct ath5k_softc *sc, struct ieee80211_supported_band *b)
921 for (i = 0; i < AR5K_MAX_RATES; i++)
922 sc->rate_idx[b->band][i] = -1;
924 for (i = 0; i < b->n_bitrates; i++) {
925 sc->rate_idx[b->band][b->bitrates[i].hw_value] = i;
926 if (b->bitrates[i].hw_value_short)
927 sc->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
932 ath5k_setup_bands(struct ieee80211_hw *hw)
934 struct ath5k_softc *sc = hw->priv;
935 struct ath5k_hw *ah = sc->ah;
936 struct ieee80211_supported_band *sband;
937 int max_c, count_c = 0;
940 BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
941 max_c = ARRAY_SIZE(sc->channels);
944 sband = &sc->sbands[IEEE80211_BAND_2GHZ];
945 sband->band = IEEE80211_BAND_2GHZ;
946 sband->bitrates = &sc->rates[IEEE80211_BAND_2GHZ][0];
948 if (test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
950 memcpy(sband->bitrates, &ath5k_rates[0],
951 sizeof(struct ieee80211_rate) * 12);
952 sband->n_bitrates = 12;
954 sband->channels = sc->channels;
955 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
956 AR5K_MODE_11G, max_c);
958 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
959 count_c = sband->n_channels;
961 } else if (test_bit(AR5K_MODE_11B, sc->ah->ah_capabilities.cap_mode)) {
963 memcpy(sband->bitrates, &ath5k_rates[0],
964 sizeof(struct ieee80211_rate) * 4);
965 sband->n_bitrates = 4;
967 /* 5211 only supports B rates and uses 4bit rate codes
968 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
971 if (ah->ah_version == AR5K_AR5211) {
972 for (i = 0; i < 4; i++) {
973 sband->bitrates[i].hw_value =
974 sband->bitrates[i].hw_value & 0xF;
975 sband->bitrates[i].hw_value_short =
976 sband->bitrates[i].hw_value_short & 0xF;
980 sband->channels = sc->channels;
981 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
982 AR5K_MODE_11B, max_c);
984 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
985 count_c = sband->n_channels;
988 ath5k_setup_rate_idx(sc, sband);
990 /* 5GHz band, A mode */
991 if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
992 sband = &sc->sbands[IEEE80211_BAND_5GHZ];
993 sband->band = IEEE80211_BAND_5GHZ;
994 sband->bitrates = &sc->rates[IEEE80211_BAND_5GHZ][0];
996 memcpy(sband->bitrates, &ath5k_rates[4],
997 sizeof(struct ieee80211_rate) * 8);
998 sband->n_bitrates = 8;
1000 sband->channels = &sc->channels[count_c];
1001 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
1002 AR5K_MODE_11A, max_c);
1004 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
1006 ath5k_setup_rate_idx(sc, sband);
1008 ath5k_debug_dump_bands(sc);
1014 * Set/change channels. If the channel is really being changed,
1015 * it's done by reseting the chip. To accomplish this we must
1016 * first cleanup any pending DMA, then restart stuff after a la
1020 ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
1022 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "(%u MHz) -> (%u MHz)\n",
1023 sc->curchan->center_freq, chan->center_freq);
1025 if (chan->center_freq != sc->curchan->center_freq ||
1026 chan->hw_value != sc->curchan->hw_value) {
1029 sc->curband = &sc->sbands[chan->band];
1032 * To switch channels clear any pending DMA operations;
1033 * wait long enough for the RX fifo to drain, reset the
1034 * hardware at the new frequency, and then re-enable
1035 * the relevant bits of the h/w.
1037 return ath5k_reset(sc, true, true);
1044 ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode)
1048 if (mode == AR5K_MODE_11A) {
1049 sc->curband = &sc->sbands[IEEE80211_BAND_5GHZ];
1051 sc->curband = &sc->sbands[IEEE80211_BAND_2GHZ];
1056 ath5k_mode_setup(struct ath5k_softc *sc)
1058 struct ath5k_hw *ah = sc->ah;
1061 /* configure rx filter */
1062 rfilt = sc->filter_flags;
1063 ath5k_hw_set_rx_filter(ah, rfilt);
1065 if (ath5k_hw_hasbssidmask(ah))
1066 ath5k_hw_set_bssid_mask(ah, sc->bssidmask);
1068 /* configure operational mode */
1069 ath5k_hw_set_opmode(ah);
1071 ath5k_hw_set_mcast_filter(ah, 0, 0);
1072 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
1076 ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix)
1078 WARN_ON(hw_rix < 0 || hw_rix > AR5K_MAX_RATES);
1079 return sc->rate_idx[sc->curband->band][hw_rix];
1087 ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1089 struct ath5k_hw *ah = sc->ah;
1090 struct sk_buff *skb = bf->skb;
1091 struct ath5k_desc *ds;
1093 if (likely(skb == NULL)) {
1097 * Allocate buffer with headroom_needed space for the
1098 * fake physical layer header at the start.
1100 skb = dev_alloc_skb(sc->rxbufsize + sc->cachelsz - 1);
1101 if (unlikely(skb == NULL)) {
1102 ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
1103 sc->rxbufsize + sc->cachelsz - 1);
1107 * Cache-line-align. This is important (for the
1108 * 5210 at least) as not doing so causes bogus data
1111 off = ((unsigned long)skb->data) % sc->cachelsz;
1113 skb_reserve(skb, sc->cachelsz - off);
1116 bf->skbaddr = pci_map_single(sc->pdev,
1117 skb->data, sc->rxbufsize, PCI_DMA_FROMDEVICE);
1118 if (unlikely(pci_dma_mapping_error(sc->pdev, bf->skbaddr))) {
1119 ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
1127 * Setup descriptors. For receive we always terminate
1128 * the descriptor list with a self-linked entry so we'll
1129 * not get overrun under high load (as can happen with a
1130 * 5212 when ANI processing enables PHY error frames).
1132 * To insure the last descriptor is self-linked we create
1133 * each descriptor as self-linked and add it to the end. As
1134 * each additional descriptor is added the previous self-linked
1135 * entry is ``fixed'' naturally. This should be safe even
1136 * if DMA is happening. When processing RX interrupts we
1137 * never remove/process the last, self-linked, entry on the
1138 * descriptor list. This insures the hardware always has
1139 * someplace to write a new frame.
1142 ds->ds_link = bf->daddr; /* link to self */
1143 ds->ds_data = bf->skbaddr;
1144 ah->ah_setup_rx_desc(ah, ds,
1145 skb_tailroom(skb), /* buffer size */
1148 if (sc->rxlink != NULL)
1149 *sc->rxlink = bf->daddr;
1150 sc->rxlink = &ds->ds_link;
1155 ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1157 struct ath5k_hw *ah = sc->ah;
1158 struct ath5k_txq *txq = sc->txq;
1159 struct ath5k_desc *ds = bf->desc;
1160 struct sk_buff *skb = bf->skb;
1161 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1162 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
1163 struct ieee80211_rate *rate;
1164 unsigned int mrr_rate[3], mrr_tries[3];
1167 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
1169 /* XXX endianness */
1170 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1173 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1174 flags |= AR5K_TXDESC_NOACK;
1178 if (info->control.hw_key) {
1179 keyidx = info->control.hw_key->hw_key_idx;
1180 pktlen += info->control.hw_key->icv_len;
1182 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
1183 ieee80211_get_hdrlen_from_skb(skb), AR5K_PKT_TYPE_NORMAL,
1184 (sc->power_level * 2),
1185 ieee80211_get_tx_rate(sc->hw, info)->hw_value,
1186 info->control.retry_limit, keyidx, 0, flags, 0, 0);
1190 memset(mrr_rate, 0, sizeof(mrr_rate));
1191 memset(mrr_tries, 0, sizeof(mrr_tries));
1192 for (i = 0; i < 3; i++) {
1193 rate = ieee80211_get_alt_retry_rate(sc->hw, info, i);
1197 mrr_rate[i] = rate->hw_value;
1198 mrr_tries[i] = info->control.retries[i].limit;
1201 ah->ah_setup_mrr_tx_desc(ah, ds,
1202 mrr_rate[0], mrr_tries[0],
1203 mrr_rate[1], mrr_tries[1],
1204 mrr_rate[2], mrr_tries[2]);
1207 ds->ds_data = bf->skbaddr;
1209 spin_lock_bh(&txq->lock);
1210 list_add_tail(&bf->list, &txq->q);
1211 sc->tx_stats[txq->qnum].len++;
1212 if (txq->link == NULL) /* is this first packet? */
1213 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
1214 else /* no, so only link it */
1215 *txq->link = bf->daddr;
1217 txq->link = &ds->ds_link;
1218 ath5k_hw_start_tx_dma(ah, txq->qnum);
1220 spin_unlock_bh(&txq->lock);
1224 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1228 /*******************\
1229 * Descriptors setup *
1230 \*******************/
1233 ath5k_desc_alloc(struct ath5k_softc *sc, struct pci_dev *pdev)
1235 struct ath5k_desc *ds;
1236 struct ath5k_buf *bf;
1241 /* allocate descriptors */
1242 sc->desc_len = sizeof(struct ath5k_desc) *
1243 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
1244 sc->desc = pci_alloc_consistent(pdev, sc->desc_len, &sc->desc_daddr);
1245 if (sc->desc == NULL) {
1246 ATH5K_ERR(sc, "can't allocate descriptors\n");
1251 da = sc->desc_daddr;
1252 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
1253 ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
1255 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
1256 sizeof(struct ath5k_buf), GFP_KERNEL);
1258 ATH5K_ERR(sc, "can't allocate bufptr\n");
1264 INIT_LIST_HEAD(&sc->rxbuf);
1265 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
1268 list_add_tail(&bf->list, &sc->rxbuf);
1271 INIT_LIST_HEAD(&sc->txbuf);
1272 sc->txbuf_len = ATH_TXBUF;
1273 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
1274 da += sizeof(*ds)) {
1277 list_add_tail(&bf->list, &sc->txbuf);
1287 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1294 ath5k_desc_free(struct ath5k_softc *sc, struct pci_dev *pdev)
1296 struct ath5k_buf *bf;
1298 ath5k_txbuf_free(sc, sc->bbuf);
1299 list_for_each_entry(bf, &sc->txbuf, list)
1300 ath5k_txbuf_free(sc, bf);
1301 list_for_each_entry(bf, &sc->rxbuf, list)
1302 ath5k_txbuf_free(sc, bf);
1304 /* Free memory associated with all descriptors */
1305 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1319 static struct ath5k_txq *
1320 ath5k_txq_setup(struct ath5k_softc *sc,
1321 int qtype, int subtype)
1323 struct ath5k_hw *ah = sc->ah;
1324 struct ath5k_txq *txq;
1325 struct ath5k_txq_info qi = {
1326 .tqi_subtype = subtype,
1327 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
1328 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1329 .tqi_cw_max = AR5K_TXQ_USEDEFAULT
1334 * Enable interrupts only for EOL and DESC conditions.
1335 * We mark tx descriptors to receive a DESC interrupt
1336 * when a tx queue gets deep; otherwise waiting for the
1337 * EOL to reap descriptors. Note that this is done to
1338 * reduce interrupt load and this only defers reaping
1339 * descriptors, never transmitting frames. Aside from
1340 * reducing interrupts this also permits more concurrency.
1341 * The only potential downside is if the tx queue backs
1342 * up in which case the top half of the kernel may backup
1343 * due to a lack of tx descriptors.
1345 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1346 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1347 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1350 * NB: don't print a message, this happens
1351 * normally on parts with too few tx queues
1353 return ERR_PTR(qnum);
1355 if (qnum >= ARRAY_SIZE(sc->txqs)) {
1356 ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
1357 qnum, ARRAY_SIZE(sc->txqs));
1358 ath5k_hw_release_tx_queue(ah, qnum);
1359 return ERR_PTR(-EINVAL);
1361 txq = &sc->txqs[qnum];
1365 INIT_LIST_HEAD(&txq->q);
1366 spin_lock_init(&txq->lock);
1369 return &sc->txqs[qnum];
1373 ath5k_beaconq_setup(struct ath5k_hw *ah)
1375 struct ath5k_txq_info qi = {
1376 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
1377 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1378 .tqi_cw_max = AR5K_TXQ_USEDEFAULT,
1379 /* NB: for dynamic turbo, don't enable any other interrupts */
1380 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1383 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1387 ath5k_beaconq_config(struct ath5k_softc *sc)
1389 struct ath5k_hw *ah = sc->ah;
1390 struct ath5k_txq_info qi;
1393 ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
1396 if (sc->opmode == NL80211_IFTYPE_AP ||
1397 sc->opmode == NL80211_IFTYPE_MESH_POINT) {
1399 * Always burst out beacon and CAB traffic
1400 * (aifs = cwmin = cwmax = 0)
1405 } else if (sc->opmode == NL80211_IFTYPE_ADHOC) {
1407 * Adhoc mode; backoff between 0 and (2 * cw_min).
1411 qi.tqi_cw_max = 2 * ah->ah_cw_min;
1414 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1415 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1416 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1418 ret = ath5k_hw_set_tx_queueprops(ah, sc->bhalq, &qi);
1420 ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1421 "hardware queue!\n", __func__);
1425 return ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */;
1429 ath5k_txq_drainq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1431 struct ath5k_buf *bf, *bf0;
1434 * NB: this assumes output has been stopped and
1435 * we do not need to block ath5k_tx_tasklet
1437 spin_lock_bh(&txq->lock);
1438 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1439 ath5k_debug_printtxbuf(sc, bf);
1441 ath5k_txbuf_free(sc, bf);
1443 spin_lock_bh(&sc->txbuflock);
1444 sc->tx_stats[txq->qnum].len--;
1445 list_move_tail(&bf->list, &sc->txbuf);
1447 spin_unlock_bh(&sc->txbuflock);
1450 spin_unlock_bh(&txq->lock);
1454 * Drain the transmit queues and reclaim resources.
1457 ath5k_txq_cleanup(struct ath5k_softc *sc)
1459 struct ath5k_hw *ah = sc->ah;
1462 /* XXX return value */
1463 if (likely(!test_bit(ATH_STAT_INVALID, sc->status))) {
1464 /* don't touch the hardware if marked invalid */
1465 ath5k_hw_stop_tx_dma(ah, sc->bhalq);
1466 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n",
1467 ath5k_hw_get_txdp(ah, sc->bhalq));
1468 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1469 if (sc->txqs[i].setup) {
1470 ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum);
1471 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, "
1474 ath5k_hw_get_txdp(ah,
1479 ieee80211_wake_queues(sc->hw); /* XXX move to callers */
1481 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1482 if (sc->txqs[i].setup)
1483 ath5k_txq_drainq(sc, &sc->txqs[i]);
1487 ath5k_txq_release(struct ath5k_softc *sc)
1489 struct ath5k_txq *txq = sc->txqs;
1492 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1494 ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1507 * Enable the receive h/w following a reset.
1510 ath5k_rx_start(struct ath5k_softc *sc)
1512 struct ath5k_hw *ah = sc->ah;
1513 struct ath5k_buf *bf;
1516 sc->rxbufsize = roundup(IEEE80211_MAX_LEN, sc->cachelsz);
1518 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rxbufsize %u\n",
1519 sc->cachelsz, sc->rxbufsize);
1523 spin_lock_bh(&sc->rxbuflock);
1524 list_for_each_entry(bf, &sc->rxbuf, list) {
1525 ret = ath5k_rxbuf_setup(sc, bf);
1527 spin_unlock_bh(&sc->rxbuflock);
1531 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1532 spin_unlock_bh(&sc->rxbuflock);
1534 ath5k_hw_set_rxdp(ah, bf->daddr);
1535 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
1536 ath5k_mode_setup(sc); /* set filters, etc. */
1537 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1545 * Disable the receive h/w in preparation for a reset.
1548 ath5k_rx_stop(struct ath5k_softc *sc)
1550 struct ath5k_hw *ah = sc->ah;
1552 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1553 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1554 ath5k_hw_stop_rx_dma(ah); /* disable DMA engine */
1556 ath5k_debug_printrxbuffs(sc, ah);
1558 sc->rxlink = NULL; /* just in case */
1562 ath5k_rx_decrypted(struct ath5k_softc *sc, struct ath5k_desc *ds,
1563 struct sk_buff *skb, struct ath5k_rx_status *rs)
1565 struct ieee80211_hdr *hdr = (void *)skb->data;
1566 unsigned int keyix, hlen;
1568 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1569 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1570 return RX_FLAG_DECRYPTED;
1572 /* Apparently when a default key is used to decrypt the packet
1573 the hw does not set the index used to decrypt. In such cases
1574 get the index from the packet. */
1575 hlen = ieee80211_hdrlen(hdr->frame_control);
1576 if (ieee80211_has_protected(hdr->frame_control) &&
1577 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1578 skb->len >= hlen + 4) {
1579 keyix = skb->data[hlen + 3] >> 6;
1581 if (test_bit(keyix, sc->keymap))
1582 return RX_FLAG_DECRYPTED;
1590 ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1591 struct ieee80211_rx_status *rxs)
1595 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1597 if (ieee80211_is_beacon(mgmt->frame_control) &&
1598 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1599 memcmp(mgmt->bssid, sc->ah->ah_bssid, ETH_ALEN) == 0) {
1601 * Received an IBSS beacon with the same BSSID. Hardware *must*
1602 * have updated the local TSF. We have to work around various
1603 * hardware bugs, though...
1605 tsf = ath5k_hw_get_tsf64(sc->ah);
1606 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1607 hw_tu = TSF_TO_TU(tsf);
1609 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1610 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1611 (unsigned long long)bc_tstamp,
1612 (unsigned long long)rxs->mactime,
1613 (unsigned long long)(rxs->mactime - bc_tstamp),
1614 (unsigned long long)tsf);
1617 * Sometimes the HW will give us a wrong tstamp in the rx
1618 * status, causing the timestamp extension to go wrong.
1619 * (This seems to happen especially with beacon frames bigger
1620 * than 78 byte (incl. FCS))
1621 * But we know that the receive timestamp must be later than the
1622 * timestamp of the beacon since HW must have synced to that.
1624 * NOTE: here we assume mactime to be after the frame was
1625 * received, not like mac80211 which defines it at the start.
1627 if (bc_tstamp > rxs->mactime) {
1628 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1629 "fixing mactime from %llx to %llx\n",
1630 (unsigned long long)rxs->mactime,
1631 (unsigned long long)tsf);
1636 * Local TSF might have moved higher than our beacon timers,
1637 * in that case we have to update them to continue sending
1638 * beacons. This also takes care of synchronizing beacon sending
1639 * times with other stations.
1641 if (hw_tu >= sc->nexttbtt)
1642 ath5k_beacon_update_timers(sc, bc_tstamp);
1648 ath5k_tasklet_rx(unsigned long data)
1650 struct ieee80211_rx_status rxs = {};
1651 struct ath5k_rx_status rs = {};
1652 struct sk_buff *skb;
1653 struct ath5k_softc *sc = (void *)data;
1654 struct ath5k_buf *bf, *bf_last;
1655 struct ath5k_desc *ds;
1660 spin_lock(&sc->rxbuflock);
1661 if (list_empty(&sc->rxbuf)) {
1662 ATH5K_WARN(sc, "empty rx buf pool\n");
1665 bf_last = list_entry(sc->rxbuf.prev, struct ath5k_buf, list);
1669 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1670 BUG_ON(bf->skb == NULL);
1675 * last buffer must not be freed to ensure proper hardware
1676 * function. When the hardware finishes also a packet next to
1677 * it, we are sure, it doesn't use it anymore and we can go on.
1682 struct ath5k_buf *bf_next = list_entry(bf->list.next,
1683 struct ath5k_buf, list);
1684 ret = sc->ah->ah_proc_rx_desc(sc->ah, bf_next->desc,
1689 /* skip the overwritten one (even status is martian) */
1693 ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1694 if (unlikely(ret == -EINPROGRESS))
1696 else if (unlikely(ret)) {
1697 ATH5K_ERR(sc, "error in processing rx descriptor\n");
1698 spin_unlock(&sc->rxbuflock);
1702 if (unlikely(rs.rs_more)) {
1703 ATH5K_WARN(sc, "unsupported jumbo\n");
1707 if (unlikely(rs.rs_status)) {
1708 if (rs.rs_status & AR5K_RXERR_PHY)
1710 if (rs.rs_status & AR5K_RXERR_DECRYPT) {
1712 * Decrypt error. If the error occurred
1713 * because there was no hardware key, then
1714 * let the frame through so the upper layers
1715 * can process it. This is necessary for 5210
1716 * parts which have no way to setup a ``clear''
1719 * XXX do key cache faulting
1721 if (rs.rs_keyix == AR5K_RXKEYIX_INVALID &&
1722 !(rs.rs_status & AR5K_RXERR_CRC))
1725 if (rs.rs_status & AR5K_RXERR_MIC) {
1726 rxs.flag |= RX_FLAG_MMIC_ERROR;
1730 /* let crypto-error packets fall through in MNTR */
1732 ~(AR5K_RXERR_DECRYPT|AR5K_RXERR_MIC)) ||
1733 sc->opmode != NL80211_IFTYPE_MONITOR)
1737 pci_unmap_single(sc->pdev, bf->skbaddr, sc->rxbufsize,
1738 PCI_DMA_FROMDEVICE);
1741 skb_put(skb, rs.rs_datalen);
1744 * the hardware adds a padding to 4 byte boundaries between
1745 * the header and the payload data if the header length is
1746 * not multiples of 4 - remove it
1748 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1751 memmove(skb->data + pad, skb->data, hdrlen);
1756 * always extend the mac timestamp, since this information is
1757 * also needed for proper IBSS merging.
1759 * XXX: it might be too late to do it here, since rs_tstamp is
1760 * 15bit only. that means TSF extension has to be done within
1761 * 32768usec (about 32ms). it might be necessary to move this to
1762 * the interrupt handler, like it is done in madwifi.
1764 * Unfortunately we don't know when the hardware takes the rx
1765 * timestamp (beginning of phy frame, data frame, end of rx?).
1766 * The only thing we know is that it is hardware specific...
1767 * On AR5213 it seems the rx timestamp is at the end of the
1768 * frame, but i'm not sure.
1770 * NOTE: mac80211 defines mactime at the beginning of the first
1771 * data symbol. Since we don't have any time references it's
1772 * impossible to comply to that. This affects IBSS merge only
1773 * right now, so it's not too bad...
1775 rxs.mactime = ath5k_extend_tsf(sc->ah, rs.rs_tstamp);
1776 rxs.flag |= RX_FLAG_TSFT;
1778 rxs.freq = sc->curchan->center_freq;
1779 rxs.band = sc->curband->band;
1781 rxs.noise = sc->ah->ah_noise_floor;
1782 rxs.signal = rxs.noise + rs.rs_rssi;
1783 rxs.qual = rs.rs_rssi * 100 / 64;
1785 rxs.antenna = rs.rs_antenna;
1786 rxs.rate_idx = ath5k_hw_to_driver_rix(sc, rs.rs_rate);
1787 rxs.flag |= ath5k_rx_decrypted(sc, ds, skb, &rs);
1789 if (rxs.rate_idx >= 0 && rs.rs_rate ==
1790 sc->curband->bitrates[rxs.rate_idx].hw_value_short)
1791 rxs.flag |= RX_FLAG_SHORTPRE;
1793 ath5k_debug_dump_skb(sc, skb, "RX ", 0);
1795 /* check beacons in IBSS mode */
1796 if (sc->opmode == NL80211_IFTYPE_ADHOC)
1797 ath5k_check_ibss_tsf(sc, skb, &rxs);
1799 __ieee80211_rx(sc->hw, skb, &rxs);
1801 list_move_tail(&bf->list, &sc->rxbuf);
1802 } while (ath5k_rxbuf_setup(sc, bf) == 0);
1804 spin_unlock(&sc->rxbuflock);
1815 ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1817 struct ath5k_tx_status ts = {};
1818 struct ath5k_buf *bf, *bf0;
1819 struct ath5k_desc *ds;
1820 struct sk_buff *skb;
1821 struct ieee80211_tx_info *info;
1824 spin_lock(&txq->lock);
1825 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1828 ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1829 if (unlikely(ret == -EINPROGRESS))
1831 else if (unlikely(ret)) {
1832 ATH5K_ERR(sc, "error %d while processing queue %u\n",
1838 info = IEEE80211_SKB_CB(skb);
1841 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len,
1844 memset(&info->status, 0, sizeof(info->status));
1845 info->tx_rate_idx = ath5k_hw_to_driver_rix(sc,
1846 ts.ts_rate[ts.ts_final_idx]);
1847 info->status.retry_count = ts.ts_longretry;
1849 for (i = 0; i < 4; i++) {
1850 struct ieee80211_tx_altrate *r =
1851 &info->status.retries[i];
1853 if (ts.ts_rate[i]) {
1854 r->rate_idx = ath5k_hw_to_driver_rix(sc, ts.ts_rate[i]);
1855 r->limit = ts.ts_retry[i];
1862 info->status.excessive_retries = 0;
1863 if (unlikely(ts.ts_status)) {
1864 sc->ll_stats.dot11ACKFailureCount++;
1865 if (ts.ts_status & AR5K_TXERR_XRETRY)
1866 info->status.excessive_retries = 1;
1867 else if (ts.ts_status & AR5K_TXERR_FILT)
1868 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1870 info->flags |= IEEE80211_TX_STAT_ACK;
1871 info->status.ack_signal = ts.ts_rssi;
1874 ieee80211_tx_status(sc->hw, skb);
1875 sc->tx_stats[txq->qnum].count++;
1877 spin_lock(&sc->txbuflock);
1878 sc->tx_stats[txq->qnum].len--;
1879 list_move_tail(&bf->list, &sc->txbuf);
1881 spin_unlock(&sc->txbuflock);
1883 if (likely(list_empty(&txq->q)))
1885 spin_unlock(&txq->lock);
1886 if (sc->txbuf_len > ATH_TXBUF / 5)
1887 ieee80211_wake_queues(sc->hw);
1891 ath5k_tasklet_tx(unsigned long data)
1893 struct ath5k_softc *sc = (void *)data;
1895 ath5k_tx_processq(sc, sc->txq);
1904 * Setup the beacon frame for transmit.
1907 ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1909 struct sk_buff *skb = bf->skb;
1910 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1911 struct ath5k_hw *ah = sc->ah;
1912 struct ath5k_desc *ds;
1913 int ret, antenna = 0;
1916 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1918 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1919 "skbaddr %llx\n", skb, skb->data, skb->len,
1920 (unsigned long long)bf->skbaddr);
1921 if (pci_dma_mapping_error(sc->pdev, bf->skbaddr)) {
1922 ATH5K_ERR(sc, "beacon DMA mapping failed\n");
1928 flags = AR5K_TXDESC_NOACK;
1929 if (sc->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1930 ds->ds_link = bf->daddr; /* self-linked */
1931 flags |= AR5K_TXDESC_VEOL;
1933 * Let hardware handle antenna switching if txantenna is not set
1938 * Switch antenna every 4 beacons if txantenna is not set
1939 * XXX assumes two antennas
1942 antenna = sc->bsent & 4 ? 2 : 1;
1945 ds->ds_data = bf->skbaddr;
1946 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1947 ieee80211_get_hdrlen_from_skb(skb),
1948 AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
1949 ieee80211_get_tx_rate(sc->hw, info)->hw_value,
1950 1, AR5K_TXKEYIX_INVALID,
1951 antenna, flags, 0, 0);
1957 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1962 * Transmit a beacon frame at SWBA. Dynamic updates to the
1963 * frame contents are done as needed and the slot time is
1964 * also adjusted based on current state.
1966 * this is usually called from interrupt context (ath5k_intr())
1967 * but also from ath5k_beacon_config() in IBSS mode which in turn
1968 * can be called from a tasklet and user context
1971 ath5k_beacon_send(struct ath5k_softc *sc)
1973 struct ath5k_buf *bf = sc->bbuf;
1974 struct ath5k_hw *ah = sc->ah;
1976 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1978 if (unlikely(bf->skb == NULL || sc->opmode == NL80211_IFTYPE_STATION ||
1979 sc->opmode == NL80211_IFTYPE_MONITOR)) {
1980 ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
1984 * Check if the previous beacon has gone out. If
1985 * not don't don't try to post another, skip this
1986 * period and wait for the next. Missed beacons
1987 * indicate a problem and should not occur. If we
1988 * miss too many consecutive beacons reset the device.
1990 if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
1992 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1993 "missed %u consecutive beacons\n", sc->bmisscount);
1994 if (sc->bmisscount > 3) { /* NB: 3 is a guess */
1995 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1996 "stuck beacon time (%u missed)\n",
1998 tasklet_schedule(&sc->restq);
2002 if (unlikely(sc->bmisscount != 0)) {
2003 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2004 "resume beacon xmit after %u misses\n",
2010 * Stop any current dma and put the new frame on the queue.
2011 * This should never fail since we check above that no frames
2012 * are still pending on the queue.
2014 if (unlikely(ath5k_hw_stop_tx_dma(ah, sc->bhalq))) {
2015 ATH5K_WARN(sc, "beacon queue %u didn't stop?\n", sc->bhalq);
2016 /* NB: hw still stops DMA, so proceed */
2019 ath5k_hw_set_txdp(ah, sc->bhalq, bf->daddr);
2020 ath5k_hw_start_tx_dma(ah, sc->bhalq);
2021 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2022 sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
2029 * ath5k_beacon_update_timers - update beacon timers
2031 * @sc: struct ath5k_softc pointer we are operating on
2032 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2033 * beacon timer update based on the current HW TSF.
2035 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2036 * of a received beacon or the current local hardware TSF and write it to the
2037 * beacon timer registers.
2039 * This is called in a variety of situations, e.g. when a beacon is received,
2040 * when a TSF update has been detected, but also when an new IBSS is created or
2041 * when we otherwise know we have to update the timers, but we keep it in this
2042 * function to have it all together in one place.
2045 ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
2047 struct ath5k_hw *ah = sc->ah;
2048 u32 nexttbtt, intval, hw_tu, bc_tu;
2051 intval = sc->bintval & AR5K_BEACON_PERIOD;
2052 if (WARN_ON(!intval))
2055 /* beacon TSF converted to TU */
2056 bc_tu = TSF_TO_TU(bc_tsf);
2058 /* current TSF converted to TU */
2059 hw_tsf = ath5k_hw_get_tsf64(ah);
2060 hw_tu = TSF_TO_TU(hw_tsf);
2063 /* we use FUDGE to make sure the next TBTT is ahead of the current TU */
2066 * no beacons received, called internally.
2067 * just need to refresh timers based on HW TSF.
2069 nexttbtt = roundup(hw_tu + FUDGE, intval);
2070 } else if (bc_tsf == 0) {
2072 * no beacon received, probably called by ath5k_reset_tsf().
2073 * reset TSF to start with 0.
2076 intval |= AR5K_BEACON_RESET_TSF;
2077 } else if (bc_tsf > hw_tsf) {
2079 * beacon received, SW merge happend but HW TSF not yet updated.
2080 * not possible to reconfigure timers yet, but next time we
2081 * receive a beacon with the same BSSID, the hardware will
2082 * automatically update the TSF and then we need to reconfigure
2085 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2086 "need to wait for HW TSF sync\n");
2090 * most important case for beacon synchronization between STA.
2092 * beacon received and HW TSF has been already updated by HW.
2093 * update next TBTT based on the TSF of the beacon, but make
2094 * sure it is ahead of our local TSF timer.
2096 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2100 sc->nexttbtt = nexttbtt;
2102 intval |= AR5K_BEACON_ENA;
2103 ath5k_hw_init_beacon(ah, nexttbtt, intval);
2106 * debugging output last in order to preserve the time critical aspect
2110 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2111 "reconfigured timers based on HW TSF\n");
2112 else if (bc_tsf == 0)
2113 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2114 "reset HW TSF and timers\n");
2116 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2117 "updated timers based on beacon TSF\n");
2119 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2120 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2121 (unsigned long long) bc_tsf,
2122 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2123 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2124 intval & AR5K_BEACON_PERIOD,
2125 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2126 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2131 * ath5k_beacon_config - Configure the beacon queues and interrupts
2133 * @sc: struct ath5k_softc pointer we are operating on
2135 * When operating in station mode we want to receive a BMISS interrupt when we
2136 * stop seeing beacons from the AP we've associated with so we can look for
2137 * another AP to associate with.
2139 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2140 * interrupts to detect TSF updates only.
2142 * AP mode is missing.
2145 ath5k_beacon_config(struct ath5k_softc *sc)
2147 struct ath5k_hw *ah = sc->ah;
2149 ath5k_hw_set_imr(ah, 0);
2151 sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2153 if (sc->opmode == NL80211_IFTYPE_STATION) {
2154 sc->imask |= AR5K_INT_BMISS;
2155 } else if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2157 * In IBSS mode we use a self-linked tx descriptor and let the
2158 * hardware send the beacons automatically. We have to load it
2160 * We use the SWBA interrupt only to keep track of the beacon
2161 * timers in order to detect automatic TSF updates.
2163 ath5k_beaconq_config(sc);
2165 sc->imask |= AR5K_INT_SWBA;
2167 if (ath5k_hw_hasveol(ah)) {
2168 spin_lock(&sc->block);
2169 ath5k_beacon_send(sc);
2170 spin_unlock(&sc->block);
2175 ath5k_hw_set_imr(ah, sc->imask);
2179 /********************\
2180 * Interrupt handling *
2181 \********************/
2184 ath5k_init(struct ath5k_softc *sc, bool is_resume)
2186 struct ath5k_hw *ah = sc->ah;
2189 mutex_lock(&sc->lock);
2191 if (is_resume && !test_bit(ATH_STAT_STARTED, sc->status))
2194 __clear_bit(ATH_STAT_STARTED, sc->status);
2196 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2199 * Stop anything previously setup. This is safe
2200 * no matter this is the first time through or not.
2202 ath5k_stop_locked(sc);
2205 * The basic interface to setting the hardware in a good
2206 * state is ``reset''. On return the hardware is known to
2207 * be powered up and with interrupts disabled. This must
2208 * be followed by initialization of the appropriate bits
2209 * and then setup of the interrupt mask.
2211 sc->curchan = sc->hw->conf.channel;
2212 sc->curband = &sc->sbands[sc->curchan->band];
2213 sc->imask = AR5K_INT_RX | AR5K_INT_TX | AR5K_INT_RXEOL |
2214 AR5K_INT_RXORN | AR5K_INT_FATAL | AR5K_INT_GLOBAL |
2216 ret = ath5k_reset(sc, false, false);
2221 * Reset the key cache since some parts do not reset the
2222 * contents on initial power up or resume from suspend.
2224 for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
2225 ath5k_hw_reset_key(ah, i);
2227 __set_bit(ATH_STAT_STARTED, sc->status);
2229 /* Set ack to be sent at low bit-rates */
2230 ath5k_hw_set_ack_bitrate_high(ah, false);
2232 mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2233 msecs_to_jiffies(ath5k_calinterval * 1000)));
2239 mutex_unlock(&sc->lock);
2244 ath5k_stop_locked(struct ath5k_softc *sc)
2246 struct ath5k_hw *ah = sc->ah;
2248 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2249 test_bit(ATH_STAT_INVALID, sc->status));
2252 * Shutdown the hardware and driver:
2253 * stop output from above
2254 * disable interrupts
2256 * turn off the radio
2257 * clear transmit machinery
2258 * clear receive machinery
2259 * drain and release tx queues
2260 * reclaim beacon resources
2261 * power down hardware
2263 * Note that some of this work is not possible if the
2264 * hardware is gone (invalid).
2266 ieee80211_stop_queues(sc->hw);
2268 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2270 ath5k_hw_set_imr(ah, 0);
2271 synchronize_irq(sc->pdev->irq);
2273 ath5k_txq_cleanup(sc);
2274 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2276 ath5k_hw_phy_disable(ah);
2284 * Stop the device, grabbing the top-level lock to protect
2285 * against concurrent entry through ath5k_init (which can happen
2286 * if another thread does a system call and the thread doing the
2287 * stop is preempted).
2290 ath5k_stop_hw(struct ath5k_softc *sc, bool is_suspend)
2294 mutex_lock(&sc->lock);
2295 ret = ath5k_stop_locked(sc);
2296 if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2298 * Set the chip in full sleep mode. Note that we are
2299 * careful to do this only when bringing the interface
2300 * completely to a stop. When the chip is in this state
2301 * it must be carefully woken up or references to
2302 * registers in the PCI clock domain may freeze the bus
2303 * (and system). This varies by chip and is mostly an
2304 * issue with newer parts that go to sleep more quickly.
2306 if (sc->ah->ah_mac_srev >= 0x78) {
2309 * don't put newer MAC revisions > 7.8 to sleep because
2310 * of the above mentioned problems
2312 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mac version > 7.8, "
2313 "not putting device to sleep\n");
2315 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2316 "putting device to full sleep\n");
2317 ath5k_hw_set_power(sc->ah, AR5K_PM_FULL_SLEEP, true, 0);
2320 ath5k_txbuf_free(sc, sc->bbuf);
2322 __clear_bit(ATH_STAT_STARTED, sc->status);
2325 mutex_unlock(&sc->lock);
2327 del_timer_sync(&sc->calib_tim);
2328 tasklet_kill(&sc->rxtq);
2329 tasklet_kill(&sc->txtq);
2330 tasklet_kill(&sc->restq);
2336 ath5k_intr(int irq, void *dev_id)
2338 struct ath5k_softc *sc = dev_id;
2339 struct ath5k_hw *ah = sc->ah;
2340 enum ath5k_int status;
2341 unsigned int counter = 1000;
2343 if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2344 !ath5k_hw_is_intr_pending(ah)))
2349 * Figure out the reason(s) for the interrupt. Note
2350 * that get_isr returns a pseudo-ISR that may include
2351 * bits we haven't explicitly enabled so we mask the
2352 * value to insure we only process bits we requested.
2354 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2355 ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2357 status &= sc->imask; /* discard unasked for bits */
2358 if (unlikely(status & AR5K_INT_FATAL)) {
2360 * Fatal errors are unrecoverable.
2361 * Typically these are caused by DMA errors.
2363 tasklet_schedule(&sc->restq);
2364 } else if (unlikely(status & AR5K_INT_RXORN)) {
2365 tasklet_schedule(&sc->restq);
2367 if (status & AR5K_INT_SWBA) {
2369 * Software beacon alert--time to send a beacon.
2370 * Handle beacon transmission directly; deferring
2371 * this is too slow to meet timing constraints
2374 * In IBSS mode we use this interrupt just to
2375 * keep track of the next TBTT (target beacon
2376 * transmission time) in order to detect wether
2377 * automatic TSF updates happened.
2379 if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2380 /* XXX: only if VEOL suppported */
2381 u64 tsf = ath5k_hw_get_tsf64(ah);
2382 sc->nexttbtt += sc->bintval;
2383 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2384 "SWBA nexttbtt: %x hw_tu: %x "
2388 (unsigned long long) tsf);
2390 spin_lock(&sc->block);
2391 ath5k_beacon_send(sc);
2392 spin_unlock(&sc->block);
2395 if (status & AR5K_INT_RXEOL) {
2397 * NB: the hardware should re-read the link when
2398 * RXE bit is written, but it doesn't work at
2399 * least on older hardware revs.
2403 if (status & AR5K_INT_TXURN) {
2404 /* bump tx trigger level */
2405 ath5k_hw_update_tx_triglevel(ah, true);
2407 if (status & AR5K_INT_RX)
2408 tasklet_schedule(&sc->rxtq);
2409 if (status & AR5K_INT_TX)
2410 tasklet_schedule(&sc->txtq);
2411 if (status & AR5K_INT_BMISS) {
2413 if (status & AR5K_INT_MIB) {
2415 * These stats are also used for ANI i think
2416 * so how about updating them more often ?
2418 ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
2421 } while (ath5k_hw_is_intr_pending(ah) && counter-- > 0);
2423 if (unlikely(!counter))
2424 ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2430 ath5k_tasklet_reset(unsigned long data)
2432 struct ath5k_softc *sc = (void *)data;
2434 ath5k_reset_wake(sc);
2438 * Periodically recalibrate the PHY to account
2439 * for temperature/environment changes.
2442 ath5k_calibrate(unsigned long data)
2444 struct ath5k_softc *sc = (void *)data;
2445 struct ath5k_hw *ah = sc->ah;
2447 ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2448 ieee80211_frequency_to_channel(sc->curchan->center_freq),
2449 sc->curchan->hw_value);
2451 if (ath5k_hw_get_rf_gain(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2453 * Rfgain is out of bounds, reset the chip
2454 * to load new gain values.
2456 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2457 ath5k_reset_wake(sc);
2459 if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2460 ATH5K_ERR(sc, "calibration of channel %u failed\n",
2461 ieee80211_frequency_to_channel(
2462 sc->curchan->center_freq));
2464 mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2465 msecs_to_jiffies(ath5k_calinterval * 1000)));
2475 ath5k_led_enable(struct ath5k_softc *sc)
2477 if (test_bit(ATH_STAT_LEDSOFT, sc->status)) {
2478 ath5k_hw_set_gpio_output(sc->ah, sc->led_pin);
2484 ath5k_led_on(struct ath5k_softc *sc)
2486 if (!test_bit(ATH_STAT_LEDSOFT, sc->status))
2488 ath5k_hw_set_gpio(sc->ah, sc->led_pin, sc->led_on);
2492 ath5k_led_off(struct ath5k_softc *sc)
2494 if (!test_bit(ATH_STAT_LEDSOFT, sc->status))
2496 ath5k_hw_set_gpio(sc->ah, sc->led_pin, !sc->led_on);
2500 ath5k_led_brightness_set(struct led_classdev *led_dev,
2501 enum led_brightness brightness)
2503 struct ath5k_led *led = container_of(led_dev, struct ath5k_led,
2506 if (brightness == LED_OFF)
2507 ath5k_led_off(led->sc);
2509 ath5k_led_on(led->sc);
2513 ath5k_register_led(struct ath5k_softc *sc, struct ath5k_led *led,
2514 const char *name, char *trigger)
2519 strncpy(led->name, name, sizeof(led->name));
2520 led->led_dev.name = led->name;
2521 led->led_dev.default_trigger = trigger;
2522 led->led_dev.brightness_set = ath5k_led_brightness_set;
2524 err = led_classdev_register(&sc->pdev->dev, &led->led_dev);
2527 ATH5K_WARN(sc, "could not register LED %s\n", name);
2534 ath5k_unregister_led(struct ath5k_led *led)
2538 led_classdev_unregister(&led->led_dev);
2539 ath5k_led_off(led->sc);
2544 ath5k_unregister_leds(struct ath5k_softc *sc)
2546 ath5k_unregister_led(&sc->rx_led);
2547 ath5k_unregister_led(&sc->tx_led);
2552 ath5k_init_leds(struct ath5k_softc *sc)
2555 struct ieee80211_hw *hw = sc->hw;
2556 struct pci_dev *pdev = sc->pdev;
2557 char name[ATH5K_LED_MAX_NAME_LEN + 1];
2560 * Auto-enable soft led processing for IBM cards and for
2561 * 5211 minipci cards.
2563 if (pdev->device == PCI_DEVICE_ID_ATHEROS_AR5212_IBM ||
2564 pdev->device == PCI_DEVICE_ID_ATHEROS_AR5211) {
2565 __set_bit(ATH_STAT_LEDSOFT, sc->status);
2567 sc->led_on = 0; /* active low */
2569 /* Enable softled on PIN1 on HP Compaq nc6xx, nc4000 & nx5000 laptops */
2570 if (pdev->subsystem_vendor == PCI_VENDOR_ID_COMPAQ) {
2571 __set_bit(ATH_STAT_LEDSOFT, sc->status);
2573 sc->led_on = 1; /* active high */
2575 if (!test_bit(ATH_STAT_LEDSOFT, sc->status))
2578 ath5k_led_enable(sc);
2580 snprintf(name, sizeof(name), "ath5k-%s::rx", wiphy_name(hw->wiphy));
2581 ret = ath5k_register_led(sc, &sc->rx_led, name,
2582 ieee80211_get_rx_led_name(hw));
2586 snprintf(name, sizeof(name), "ath5k-%s::tx", wiphy_name(hw->wiphy));
2587 ret = ath5k_register_led(sc, &sc->tx_led, name,
2588 ieee80211_get_tx_led_name(hw));
2594 /********************\
2595 * Mac80211 functions *
2596 \********************/
2599 ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
2601 struct ath5k_softc *sc = hw->priv;
2602 struct ath5k_buf *bf;
2603 unsigned long flags;
2607 ath5k_debug_dump_skb(sc, skb, "TX ", 1);
2609 if (sc->opmode == NL80211_IFTYPE_MONITOR)
2610 ATH5K_DBG(sc, ATH5K_DEBUG_XMIT, "tx in monitor (scan?)\n");
2613 * the hardware expects the header padded to 4 byte boundaries
2614 * if this is not the case we add the padding after the header
2616 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2619 if (skb_headroom(skb) < pad) {
2620 ATH5K_ERR(sc, "tx hdrlen not %%4: %d not enough"
2621 " headroom to pad %d\n", hdrlen, pad);
2625 memmove(skb->data, skb->data+pad, hdrlen);
2628 spin_lock_irqsave(&sc->txbuflock, flags);
2629 if (list_empty(&sc->txbuf)) {
2630 ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
2631 spin_unlock_irqrestore(&sc->txbuflock, flags);
2632 ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
2635 bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
2636 list_del(&bf->list);
2638 if (list_empty(&sc->txbuf))
2639 ieee80211_stop_queues(hw);
2640 spin_unlock_irqrestore(&sc->txbuflock, flags);
2644 if (ath5k_txbuf_setup(sc, bf)) {
2646 spin_lock_irqsave(&sc->txbuflock, flags);
2647 list_add_tail(&bf->list, &sc->txbuf);
2649 spin_unlock_irqrestore(&sc->txbuflock, flags);
2650 dev_kfree_skb_any(skb);
2658 ath5k_reset(struct ath5k_softc *sc, bool stop, bool change_channel)
2660 struct ath5k_hw *ah = sc->ah;
2663 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2666 ath5k_hw_set_imr(ah, 0);
2667 ath5k_txq_cleanup(sc);
2670 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, true);
2672 ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2677 * This is needed only to setup initial state
2678 * but it's best done after a reset.
2680 ath5k_hw_set_txpower_limit(sc->ah, 0);
2682 ret = ath5k_rx_start(sc);
2684 ATH5K_ERR(sc, "can't start recv logic\n");
2689 * Change channels and update the h/w rate map if we're switching;
2690 * e.g. 11a to 11b/g.
2692 * We may be doing a reset in response to an ioctl that changes the
2693 * channel so update any state that might change as a result.
2697 /* ath5k_chan_change(sc, c); */
2699 ath5k_beacon_config(sc);
2700 /* intrs are enabled by ath5k_beacon_config */
2708 ath5k_reset_wake(struct ath5k_softc *sc)
2712 ret = ath5k_reset(sc, true, true);
2714 ieee80211_wake_queues(sc->hw);
2719 static int ath5k_start(struct ieee80211_hw *hw)
2721 return ath5k_init(hw->priv, false);
2724 static void ath5k_stop(struct ieee80211_hw *hw)
2726 ath5k_stop_hw(hw->priv, false);
2729 static int ath5k_add_interface(struct ieee80211_hw *hw,
2730 struct ieee80211_if_init_conf *conf)
2732 struct ath5k_softc *sc = hw->priv;
2735 mutex_lock(&sc->lock);
2741 sc->vif = conf->vif;
2743 switch (conf->type) {
2744 case NL80211_IFTYPE_STATION:
2745 case NL80211_IFTYPE_ADHOC:
2746 case NL80211_IFTYPE_MONITOR:
2747 sc->opmode = conf->type;
2754 /* Set to a reasonable value. Note that this will
2755 * be set to mac80211's value at ath5k_config(). */
2760 mutex_unlock(&sc->lock);
2765 ath5k_remove_interface(struct ieee80211_hw *hw,
2766 struct ieee80211_if_init_conf *conf)
2768 struct ath5k_softc *sc = hw->priv;
2770 mutex_lock(&sc->lock);
2771 if (sc->vif != conf->vif)
2776 mutex_unlock(&sc->lock);
2780 * TODO: Phy disable/diversity etc
2783 ath5k_config(struct ieee80211_hw *hw,
2784 struct ieee80211_conf *conf)
2786 struct ath5k_softc *sc = hw->priv;
2788 sc->bintval = conf->beacon_int;
2789 sc->power_level = conf->power_level;
2791 return ath5k_chan_set(sc, conf->channel);
2795 ath5k_config_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2796 struct ieee80211_if_conf *conf)
2798 struct ath5k_softc *sc = hw->priv;
2799 struct ath5k_hw *ah = sc->ah;
2802 mutex_lock(&sc->lock);
2803 if (sc->vif != vif) {
2808 /* Cache for later use during resets */
2809 memcpy(ah->ah_bssid, conf->bssid, ETH_ALEN);
2810 /* XXX: assoc id is set to 0 for now, mac80211 doesn't have
2811 * a clean way of letting us retrieve this yet. */
2812 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
2816 if (conf->changed & IEEE80211_IFCC_BEACON &&
2817 vif->type == NL80211_IFTYPE_ADHOC) {
2818 struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
2823 /* call old handler for now */
2824 ath5k_beacon_update(hw, beacon);
2827 mutex_unlock(&sc->lock);
2829 return ath5k_reset_wake(sc);
2831 mutex_unlock(&sc->lock);
2835 #define SUPPORTED_FIF_FLAGS \
2836 FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | \
2837 FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
2838 FIF_BCN_PRBRESP_PROMISC
2840 * o always accept unicast, broadcast, and multicast traffic
2841 * o multicast traffic for all BSSIDs will be enabled if mac80211
2843 * o maintain current state of phy ofdm or phy cck error reception.
2844 * If the hardware detects any of these type of errors then
2845 * ath5k_hw_get_rx_filter() will pass to us the respective
2846 * hardware filters to be able to receive these type of frames.
2847 * o probe request frames are accepted only when operating in
2848 * hostap, adhoc, or monitor modes
2849 * o enable promiscuous mode according to the interface state
2851 * - when operating in adhoc mode so the 802.11 layer creates
2852 * node table entries for peers,
2853 * - when operating in station mode for collecting rssi data when
2854 * the station is otherwise quiet, or
2857 static void ath5k_configure_filter(struct ieee80211_hw *hw,
2858 unsigned int changed_flags,
2859 unsigned int *new_flags,
2860 int mc_count, struct dev_mc_list *mclist)
2862 struct ath5k_softc *sc = hw->priv;
2863 struct ath5k_hw *ah = sc->ah;
2864 u32 mfilt[2], val, rfilt;
2871 /* Only deal with supported flags */
2872 changed_flags &= SUPPORTED_FIF_FLAGS;
2873 *new_flags &= SUPPORTED_FIF_FLAGS;
2875 /* If HW detects any phy or radar errors, leave those filters on.
2876 * Also, always enable Unicast, Broadcasts and Multicast
2877 * XXX: move unicast, bssid broadcasts and multicast to mac80211 */
2878 rfilt = (ath5k_hw_get_rx_filter(ah) & (AR5K_RX_FILTER_PHYERR)) |
2879 (AR5K_RX_FILTER_UCAST | AR5K_RX_FILTER_BCAST |
2880 AR5K_RX_FILTER_MCAST);
2882 if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS)) {
2883 if (*new_flags & FIF_PROMISC_IN_BSS) {
2884 rfilt |= AR5K_RX_FILTER_PROM;
2885 __set_bit(ATH_STAT_PROMISC, sc->status);
2888 __clear_bit(ATH_STAT_PROMISC, sc->status);
2891 /* Note, AR5K_RX_FILTER_MCAST is already enabled */
2892 if (*new_flags & FIF_ALLMULTI) {
2896 for (i = 0; i < mc_count; i++) {
2899 /* calculate XOR of eight 6-bit values */
2900 val = get_unaligned_le32(mclist->dmi_addr + 0);
2901 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2902 val = get_unaligned_le32(mclist->dmi_addr + 3);
2903 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2905 mfilt[pos / 32] |= (1 << (pos % 32));
2906 /* XXX: we might be able to just do this instead,
2907 * but not sure, needs testing, if we do use this we'd
2908 * neet to inform below to not reset the mcast */
2909 /* ath5k_hw_set_mcast_filterindex(ah,
2910 * mclist->dmi_addr[5]); */
2911 mclist = mclist->next;
2915 /* This is the best we can do */
2916 if (*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))
2917 rfilt |= AR5K_RX_FILTER_PHYERR;
2919 /* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
2920 * and probes for any BSSID, this needs testing */
2921 if (*new_flags & FIF_BCN_PRBRESP_PROMISC)
2922 rfilt |= AR5K_RX_FILTER_BEACON | AR5K_RX_FILTER_PROBEREQ;
2924 /* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
2925 * set we should only pass on control frames for this
2926 * station. This needs testing. I believe right now this
2927 * enables *all* control frames, which is OK.. but
2928 * but we should see if we can improve on granularity */
2929 if (*new_flags & FIF_CONTROL)
2930 rfilt |= AR5K_RX_FILTER_CONTROL;
2932 /* Additional settings per mode -- this is per ath5k */
2934 /* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
2936 if (sc->opmode == NL80211_IFTYPE_MONITOR)
2937 rfilt |= AR5K_RX_FILTER_CONTROL | AR5K_RX_FILTER_BEACON |
2938 AR5K_RX_FILTER_PROBEREQ | AR5K_RX_FILTER_PROM;
2939 if (sc->opmode != NL80211_IFTYPE_STATION)
2940 rfilt |= AR5K_RX_FILTER_PROBEREQ;
2941 if (sc->opmode != NL80211_IFTYPE_AP &&
2942 sc->opmode != NL80211_IFTYPE_MESH_POINT &&
2943 test_bit(ATH_STAT_PROMISC, sc->status))
2944 rfilt |= AR5K_RX_FILTER_PROM;
2945 if (sc->opmode == NL80211_IFTYPE_STATION ||
2946 sc->opmode == NL80211_IFTYPE_ADHOC) {
2947 rfilt |= AR5K_RX_FILTER_BEACON;
2951 ath5k_hw_set_rx_filter(ah,rfilt);
2953 /* Set multicast bits */
2954 ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]);
2955 /* Set the cached hw filter flags, this will alter actually
2957 sc->filter_flags = rfilt;
2961 ath5k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
2962 const u8 *local_addr, const u8 *addr,
2963 struct ieee80211_key_conf *key)
2965 struct ath5k_softc *sc = hw->priv;
2970 /* XXX: fix hardware encryption, its not working. For now
2971 * allow software encryption */
2981 mutex_lock(&sc->lock);
2985 ret = ath5k_hw_set_key(sc->ah, key->keyidx, key, addr);
2987 ATH5K_ERR(sc, "can't set the key\n");
2990 __set_bit(key->keyidx, sc->keymap);
2991 key->hw_key_idx = key->keyidx;
2994 ath5k_hw_reset_key(sc->ah, key->keyidx);
2995 __clear_bit(key->keyidx, sc->keymap);
3004 mutex_unlock(&sc->lock);
3009 ath5k_get_stats(struct ieee80211_hw *hw,
3010 struct ieee80211_low_level_stats *stats)
3012 struct ath5k_softc *sc = hw->priv;
3013 struct ath5k_hw *ah = sc->ah;
3016 ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
3018 memcpy(stats, &sc->ll_stats, sizeof(sc->ll_stats));
3024 ath5k_get_tx_stats(struct ieee80211_hw *hw,
3025 struct ieee80211_tx_queue_stats *stats)
3027 struct ath5k_softc *sc = hw->priv;
3029 memcpy(stats, &sc->tx_stats, sizeof(sc->tx_stats));
3035 ath5k_get_tsf(struct ieee80211_hw *hw)
3037 struct ath5k_softc *sc = hw->priv;
3039 return ath5k_hw_get_tsf64(sc->ah);
3043 ath5k_reset_tsf(struct ieee80211_hw *hw)
3045 struct ath5k_softc *sc = hw->priv;
3048 * in IBSS mode we need to update the beacon timers too.
3049 * this will also reset the TSF if we call it with 0
3051 if (sc->opmode == NL80211_IFTYPE_ADHOC)
3052 ath5k_beacon_update_timers(sc, 0);
3054 ath5k_hw_reset_tsf(sc->ah);
3058 ath5k_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb)
3060 struct ath5k_softc *sc = hw->priv;
3061 unsigned long flags;
3064 ath5k_debug_dump_skb(sc, skb, "BC ", 1);
3066 if (sc->opmode != NL80211_IFTYPE_ADHOC) {
3071 spin_lock_irqsave(&sc->block, flags);
3072 ath5k_txbuf_free(sc, sc->bbuf);
3073 sc->bbuf->skb = skb;
3074 ret = ath5k_beacon_setup(sc, sc->bbuf);
3076 sc->bbuf->skb = NULL;
3077 spin_unlock_irqrestore(&sc->block, flags);
3079 ath5k_beacon_config(sc);