sfc: Replaced various macros with inline functions
[linux-2.6] / drivers / net / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G-2 10/100 Network Connection
31  * 82562GT 10/100 Network Connection
32  * 82562GT-2 10/100 Network Connection
33  * 82562V 10/100 Network Connection
34  * 82562V-2 10/100 Network Connection
35  * 82566DC-2 Gigabit Network Connection
36  * 82566DC Gigabit Network Connection
37  * 82566DM-2 Gigabit Network Connection
38  * 82566DM Gigabit Network Connection
39  * 82566MC Gigabit Network Connection
40  * 82566MM Gigabit Network Connection
41  * 82567LM Gigabit Network Connection
42  * 82567LF Gigabit Network Connection
43  * 82567LM-2 Gigabit Network Connection
44  * 82567LF-2 Gigabit Network Connection
45  * 82567V-2 Gigabit Network Connection
46  * 82562GT-3 10/100 Network Connection
47  */
48
49 #include <linux/netdevice.h>
50 #include <linux/ethtool.h>
51 #include <linux/delay.h>
52 #include <linux/pci.h>
53
54 #include "e1000.h"
55
56 #define ICH_FLASH_GFPREG                0x0000
57 #define ICH_FLASH_HSFSTS                0x0004
58 #define ICH_FLASH_HSFCTL                0x0006
59 #define ICH_FLASH_FADDR                 0x0008
60 #define ICH_FLASH_FDATA0                0x0010
61
62 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
63 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
64 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
65 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
66 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
67
68 #define ICH_CYCLE_READ                  0
69 #define ICH_CYCLE_WRITE                 2
70 #define ICH_CYCLE_ERASE                 3
71
72 #define FLASH_GFPREG_BASE_MASK          0x1FFF
73 #define FLASH_SECTOR_ADDR_SHIFT         12
74
75 #define ICH_FLASH_SEG_SIZE_256          256
76 #define ICH_FLASH_SEG_SIZE_4K           4096
77 #define ICH_FLASH_SEG_SIZE_8K           8192
78 #define ICH_FLASH_SEG_SIZE_64K          65536
79
80
81 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
82
83 #define E1000_ICH_MNG_IAMT_MODE         0x2
84
85 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
86                                  (ID_LED_DEF1_OFF2 <<  8) | \
87                                  (ID_LED_DEF1_ON2  <<  4) | \
88                                  (ID_LED_DEF1_DEF2))
89
90 #define E1000_ICH_NVM_SIG_WORD          0x13
91 #define E1000_ICH_NVM_SIG_MASK          0xC000
92
93 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
94
95 #define E1000_FEXTNVM_SW_CONFIG         1
96 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
97
98 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
99
100 #define E1000_ICH_RAR_ENTRIES           7
101
102 #define PHY_PAGE_SHIFT 5
103 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
104                            ((reg) & MAX_PHY_REG_ADDRESS))
105 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
106 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
107
108 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
109 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
110 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
111
112 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
113 /* Offset 04h HSFSTS */
114 union ich8_hws_flash_status {
115         struct ich8_hsfsts {
116                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
117                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
118                 u16 dael       :1; /* bit 2 Direct Access error Log */
119                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
120                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
121                 u16 reserved1  :2; /* bit 13:6 Reserved */
122                 u16 reserved2  :6; /* bit 13:6 Reserved */
123                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
124                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
125         } hsf_status;
126         u16 regval;
127 };
128
129 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
130 /* Offset 06h FLCTL */
131 union ich8_hws_flash_ctrl {
132         struct ich8_hsflctl {
133                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
134                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
135                 u16 reserved   :5;   /* 7:3 Reserved  */
136                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
137                 u16 flockdn    :6;   /* 15:10 Reserved */
138         } hsf_ctrl;
139         u16 regval;
140 };
141
142 /* ICH Flash Region Access Permissions */
143 union ich8_hws_flash_regacc {
144         struct ich8_flracc {
145                 u32 grra      :8; /* 0:7 GbE region Read Access */
146                 u32 grwa      :8; /* 8:15 GbE region Write Access */
147                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
148                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
149         } hsf_flregacc;
150         u16 regval;
151 };
152
153 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
154 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
155 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
156 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
157 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
158 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
159                                                 u32 offset, u8 byte);
160 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
161                                          u16 *data);
162 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
163                                          u8 size, u16 *data);
164 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
165 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
166
167 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
168 {
169         return readw(hw->flash_address + reg);
170 }
171
172 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
173 {
174         return readl(hw->flash_address + reg);
175 }
176
177 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
178 {
179         writew(val, hw->flash_address + reg);
180 }
181
182 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
183 {
184         writel(val, hw->flash_address + reg);
185 }
186
187 #define er16flash(reg)          __er16flash(hw, (reg))
188 #define er32flash(reg)          __er32flash(hw, (reg))
189 #define ew16flash(reg,val)      __ew16flash(hw, (reg), (val))
190 #define ew32flash(reg,val)      __ew32flash(hw, (reg), (val))
191
192 /**
193  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
194  *  @hw: pointer to the HW structure
195  *
196  *  Initialize family-specific PHY parameters and function pointers.
197  **/
198 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
199 {
200         struct e1000_phy_info *phy = &hw->phy;
201         s32 ret_val;
202         u16 i = 0;
203
204         phy->addr                       = 1;
205         phy->reset_delay_us             = 100;
206
207         /*
208          * We may need to do this twice - once for IGP and if that fails,
209          * we'll set BM func pointers and try again
210          */
211         ret_val = e1000e_determine_phy_address(hw);
212         if (ret_val) {
213                 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
214                 hw->phy.ops.read_phy_reg  = e1000e_read_phy_reg_bm;
215                 ret_val = e1000e_determine_phy_address(hw);
216                 if (ret_val)
217                         return ret_val;
218         }
219
220         phy->id = 0;
221         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
222                (i++ < 100)) {
223                 msleep(1);
224                 ret_val = e1000e_get_phy_id(hw);
225                 if (ret_val)
226                         return ret_val;
227         }
228
229         /* Verify phy id */
230         switch (phy->id) {
231         case IGP03E1000_E_PHY_ID:
232                 phy->type = e1000_phy_igp_3;
233                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
234                 break;
235         case IFE_E_PHY_ID:
236         case IFE_PLUS_E_PHY_ID:
237         case IFE_C_E_PHY_ID:
238                 phy->type = e1000_phy_ife;
239                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
240                 break;
241         case BME1000_E_PHY_ID:
242                 phy->type = e1000_phy_bm;
243                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
244                 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
245                 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
246                 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
247                 break;
248         default:
249                 return -E1000_ERR_PHY;
250                 break;
251         }
252
253         return 0;
254 }
255
256 /**
257  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
258  *  @hw: pointer to the HW structure
259  *
260  *  Initialize family-specific NVM parameters and function
261  *  pointers.
262  **/
263 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
264 {
265         struct e1000_nvm_info *nvm = &hw->nvm;
266         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
267         u32 gfpreg;
268         u32 sector_base_addr;
269         u32 sector_end_addr;
270         u16 i;
271
272         /* Can't read flash registers if the register set isn't mapped. */
273         if (!hw->flash_address) {
274                 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
275                 return -E1000_ERR_CONFIG;
276         }
277
278         nvm->type = e1000_nvm_flash_sw;
279
280         gfpreg = er32flash(ICH_FLASH_GFPREG);
281
282         /*
283          * sector_X_addr is a "sector"-aligned address (4096 bytes)
284          * Add 1 to sector_end_addr since this sector is included in
285          * the overall size.
286          */
287         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
288         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
289
290         /* flash_base_addr is byte-aligned */
291         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
292
293         /*
294          * find total size of the NVM, then cut in half since the total
295          * size represents two separate NVM banks.
296          */
297         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
298                                 << FLASH_SECTOR_ADDR_SHIFT;
299         nvm->flash_bank_size /= 2;
300         /* Adjust to word count */
301         nvm->flash_bank_size /= sizeof(u16);
302
303         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
304
305         /* Clear shadow ram */
306         for (i = 0; i < nvm->word_size; i++) {
307                 dev_spec->shadow_ram[i].modified = 0;
308                 dev_spec->shadow_ram[i].value    = 0xFFFF;
309         }
310
311         return 0;
312 }
313
314 /**
315  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
316  *  @hw: pointer to the HW structure
317  *
318  *  Initialize family-specific MAC parameters and function
319  *  pointers.
320  **/
321 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
322 {
323         struct e1000_hw *hw = &adapter->hw;
324         struct e1000_mac_info *mac = &hw->mac;
325
326         /* Set media type function pointer */
327         hw->phy.media_type = e1000_media_type_copper;
328
329         /* Set mta register count */
330         mac->mta_reg_count = 32;
331         /* Set rar entry count */
332         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
333         if (mac->type == e1000_ich8lan)
334                 mac->rar_entry_count--;
335         /* Set if manageability features are enabled. */
336         mac->arc_subsystem_valid = 1;
337
338         /* Enable PCS Lock-loss workaround for ICH8 */
339         if (mac->type == e1000_ich8lan)
340                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
341
342         return 0;
343 }
344
345 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
346 {
347         struct e1000_hw *hw = &adapter->hw;
348         s32 rc;
349
350         rc = e1000_init_mac_params_ich8lan(adapter);
351         if (rc)
352                 return rc;
353
354         rc = e1000_init_nvm_params_ich8lan(hw);
355         if (rc)
356                 return rc;
357
358         rc = e1000_init_phy_params_ich8lan(hw);
359         if (rc)
360                 return rc;
361
362         if ((adapter->hw.mac.type == e1000_ich8lan) &&
363             (adapter->hw.phy.type == e1000_phy_igp_3))
364                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
365
366         return 0;
367 }
368
369 /**
370  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
371  *  @hw: pointer to the HW structure
372  *
373  *  Acquires the software control flag for performing NVM and PHY
374  *  operations.  This is a function pointer entry point only called by
375  *  read/write routines for the PHY and NVM parts.
376  **/
377 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
378 {
379         u32 extcnf_ctrl;
380         u32 timeout = PHY_CFG_TIMEOUT;
381
382         while (timeout) {
383                 extcnf_ctrl = er32(EXTCNF_CTRL);
384                 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
385                 ew32(EXTCNF_CTRL, extcnf_ctrl);
386
387                 extcnf_ctrl = er32(EXTCNF_CTRL);
388                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
389                         break;
390                 mdelay(1);
391                 timeout--;
392         }
393
394         if (!timeout) {
395                 hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
396                 return -E1000_ERR_CONFIG;
397         }
398
399         return 0;
400 }
401
402 /**
403  *  e1000_release_swflag_ich8lan - Release software control flag
404  *  @hw: pointer to the HW structure
405  *
406  *  Releases the software control flag for performing NVM and PHY operations.
407  *  This is a function pointer entry point only called by read/write
408  *  routines for the PHY and NVM parts.
409  **/
410 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
411 {
412         u32 extcnf_ctrl;
413
414         extcnf_ctrl = er32(EXTCNF_CTRL);
415         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
416         ew32(EXTCNF_CTRL, extcnf_ctrl);
417 }
418
419 /**
420  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
421  *  @hw: pointer to the HW structure
422  *
423  *  Checks if firmware is blocking the reset of the PHY.
424  *  This is a function pointer entry point only called by
425  *  reset routines.
426  **/
427 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
428 {
429         u32 fwsm;
430
431         fwsm = er32(FWSM);
432
433         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
434 }
435
436 /**
437  *  e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
438  *  @hw: pointer to the HW structure
439  *
440  *  Forces the speed and duplex settings of the PHY.
441  *  This is a function pointer entry point only called by
442  *  PHY setup routines.
443  **/
444 static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
445 {
446         struct e1000_phy_info *phy = &hw->phy;
447         s32 ret_val;
448         u16 data;
449         bool link;
450
451         if (phy->type != e1000_phy_ife) {
452                 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
453                 return ret_val;
454         }
455
456         ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
457         if (ret_val)
458                 return ret_val;
459
460         e1000e_phy_force_speed_duplex_setup(hw, &data);
461
462         ret_val = e1e_wphy(hw, PHY_CONTROL, data);
463         if (ret_val)
464                 return ret_val;
465
466         /* Disable MDI-X support for 10/100 */
467         ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
468         if (ret_val)
469                 return ret_val;
470
471         data &= ~IFE_PMC_AUTO_MDIX;
472         data &= ~IFE_PMC_FORCE_MDIX;
473
474         ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
475         if (ret_val)
476                 return ret_val;
477
478         hw_dbg(hw, "IFE PMC: %X\n", data);
479
480         udelay(1);
481
482         if (phy->autoneg_wait_to_complete) {
483                 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
484
485                 ret_val = e1000e_phy_has_link_generic(hw,
486                                                      PHY_FORCE_LIMIT,
487                                                      100000,
488                                                      &link);
489                 if (ret_val)
490                         return ret_val;
491
492                 if (!link)
493                         hw_dbg(hw, "Link taking longer than expected.\n");
494
495                 /* Try once more */
496                 ret_val = e1000e_phy_has_link_generic(hw,
497                                                      PHY_FORCE_LIMIT,
498                                                      100000,
499                                                      &link);
500                 if (ret_val)
501                         return ret_val;
502         }
503
504         return 0;
505 }
506
507 /**
508  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
509  *  @hw: pointer to the HW structure
510  *
511  *  Resets the PHY
512  *  This is a function pointer entry point called by drivers
513  *  or other shared routines.
514  **/
515 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
516 {
517         struct e1000_phy_info *phy = &hw->phy;
518         u32 i;
519         u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
520         s32 ret_val;
521         u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
522         u16 word_addr, reg_data, reg_addr, phy_page = 0;
523
524         ret_val = e1000e_phy_hw_reset_generic(hw);
525         if (ret_val)
526                 return ret_val;
527
528         /*
529          * Initialize the PHY from the NVM on ICH platforms.  This
530          * is needed due to an issue where the NVM configuration is
531          * not properly autoloaded after power transitions.
532          * Therefore, after each PHY reset, we will load the
533          * configuration data out of the NVM manually.
534          */
535         if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
536                 struct e1000_adapter *adapter = hw->adapter;
537
538                 /* Check if SW needs configure the PHY */
539                 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
540                     (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
541                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
542                 else
543                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
544
545                 data = er32(FEXTNVM);
546                 if (!(data & sw_cfg_mask))
547                         return 0;
548
549                 /* Wait for basic configuration completes before proceeding*/
550                 do {
551                         data = er32(STATUS);
552                         data &= E1000_STATUS_LAN_INIT_DONE;
553                         udelay(100);
554                 } while ((!data) && --loop);
555
556                 /*
557                  * If basic configuration is incomplete before the above loop
558                  * count reaches 0, loading the configuration from NVM will
559                  * leave the PHY in a bad state possibly resulting in no link.
560                  */
561                 if (loop == 0) {
562                         hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
563                 }
564
565                 /* Clear the Init Done bit for the next init event */
566                 data = er32(STATUS);
567                 data &= ~E1000_STATUS_LAN_INIT_DONE;
568                 ew32(STATUS, data);
569
570                 /*
571                  * Make sure HW does not configure LCD from PHY
572                  * extended configuration before SW configuration
573                  */
574                 data = er32(EXTCNF_CTRL);
575                 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
576                         return 0;
577
578                 cnf_size = er32(EXTCNF_SIZE);
579                 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
580                 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
581                 if (!cnf_size)
582                         return 0;
583
584                 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
585                 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
586
587                 /* Configure LCD from extended configuration region. */
588
589                 /* cnf_base_addr is in DWORD */
590                 word_addr = (u16)(cnf_base_addr << 1);
591
592                 for (i = 0; i < cnf_size; i++) {
593                         ret_val = e1000_read_nvm(hw,
594                                                 (word_addr + i * 2),
595                                                 1,
596                                                 &reg_data);
597                         if (ret_val)
598                                 return ret_val;
599
600                         ret_val = e1000_read_nvm(hw,
601                                                 (word_addr + i * 2 + 1),
602                                                 1,
603                                                 &reg_addr);
604                         if (ret_val)
605                                 return ret_val;
606
607                         /* Save off the PHY page for future writes. */
608                         if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
609                                 phy_page = reg_data;
610                                 continue;
611                         }
612
613                         reg_addr |= phy_page;
614
615                         ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
616                         if (ret_val)
617                                 return ret_val;
618                 }
619         }
620
621         return 0;
622 }
623
624 /**
625  *  e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
626  *  @hw: pointer to the HW structure
627  *
628  *  Populates "phy" structure with various feature states.
629  *  This function is only called by other family-specific
630  *  routines.
631  **/
632 static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
633 {
634         struct e1000_phy_info *phy = &hw->phy;
635         s32 ret_val;
636         u16 data;
637         bool link;
638
639         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
640         if (ret_val)
641                 return ret_val;
642
643         if (!link) {
644                 hw_dbg(hw, "Phy info is only valid if link is up\n");
645                 return -E1000_ERR_CONFIG;
646         }
647
648         ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
649         if (ret_val)
650                 return ret_val;
651         phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
652
653         if (phy->polarity_correction) {
654                 ret_val = e1000_check_polarity_ife_ich8lan(hw);
655                 if (ret_val)
656                         return ret_val;
657         } else {
658                 /* Polarity is forced */
659                 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
660                                       ? e1000_rev_polarity_reversed
661                                       : e1000_rev_polarity_normal;
662         }
663
664         ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
665         if (ret_val)
666                 return ret_val;
667
668         phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
669
670         /* The following parameters are undefined for 10/100 operation. */
671         phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
672         phy->local_rx = e1000_1000t_rx_status_undefined;
673         phy->remote_rx = e1000_1000t_rx_status_undefined;
674
675         return 0;
676 }
677
678 /**
679  *  e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
680  *  @hw: pointer to the HW structure
681  *
682  *  Wrapper for calling the get_phy_info routines for the appropriate phy type.
683  *  This is a function pointer entry point called by drivers
684  *  or other shared routines.
685  **/
686 static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
687 {
688         switch (hw->phy.type) {
689         case e1000_phy_ife:
690                 return e1000_get_phy_info_ife_ich8lan(hw);
691                 break;
692         case e1000_phy_igp_3:
693         case e1000_phy_bm:
694                 return e1000e_get_phy_info_igp(hw);
695                 break;
696         default:
697                 break;
698         }
699
700         return -E1000_ERR_PHY_TYPE;
701 }
702
703 /**
704  *  e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
705  *  @hw: pointer to the HW structure
706  *
707  *  Polarity is determined on the polarity reversal feature being enabled.
708  *  This function is only called by other family-specific
709  *  routines.
710  **/
711 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
712 {
713         struct e1000_phy_info *phy = &hw->phy;
714         s32 ret_val;
715         u16 phy_data, offset, mask;
716
717         /*
718          * Polarity is determined based on the reversal feature being enabled.
719          */
720         if (phy->polarity_correction) {
721                 offset  = IFE_PHY_EXTENDED_STATUS_CONTROL;
722                 mask    = IFE_PESC_POLARITY_REVERSED;
723         } else {
724                 offset  = IFE_PHY_SPECIAL_CONTROL;
725                 mask    = IFE_PSC_FORCE_POLARITY;
726         }
727
728         ret_val = e1e_rphy(hw, offset, &phy_data);
729
730         if (!ret_val)
731                 phy->cable_polarity = (phy_data & mask)
732                                       ? e1000_rev_polarity_reversed
733                                       : e1000_rev_polarity_normal;
734
735         return ret_val;
736 }
737
738 /**
739  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
740  *  @hw: pointer to the HW structure
741  *  @active: TRUE to enable LPLU, FALSE to disable
742  *
743  *  Sets the LPLU D0 state according to the active flag.  When
744  *  activating LPLU this function also disables smart speed
745  *  and vice versa.  LPLU will not be activated unless the
746  *  device autonegotiation advertisement meets standards of
747  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
748  *  This is a function pointer entry point only called by
749  *  PHY setup routines.
750  **/
751 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
752 {
753         struct e1000_phy_info *phy = &hw->phy;
754         u32 phy_ctrl;
755         s32 ret_val = 0;
756         u16 data;
757
758         if (phy->type == e1000_phy_ife)
759                 return ret_val;
760
761         phy_ctrl = er32(PHY_CTRL);
762
763         if (active) {
764                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
765                 ew32(PHY_CTRL, phy_ctrl);
766
767                 /*
768                  * Call gig speed drop workaround on LPLU before accessing
769                  * any PHY registers
770                  */
771                 if ((hw->mac.type == e1000_ich8lan) &&
772                     (hw->phy.type == e1000_phy_igp_3))
773                         e1000e_gig_downshift_workaround_ich8lan(hw);
774
775                 /* When LPLU is enabled, we should disable SmartSpeed */
776                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
777                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
778                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
779                 if (ret_val)
780                         return ret_val;
781         } else {
782                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
783                 ew32(PHY_CTRL, phy_ctrl);
784
785                 /*
786                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
787                  * during Dx states where the power conservation is most
788                  * important.  During driver activity we should enable
789                  * SmartSpeed, so performance is maintained.
790                  */
791                 if (phy->smart_speed == e1000_smart_speed_on) {
792                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
793                                            &data);
794                         if (ret_val)
795                                 return ret_val;
796
797                         data |= IGP01E1000_PSCFR_SMART_SPEED;
798                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
799                                            data);
800                         if (ret_val)
801                                 return ret_val;
802                 } else if (phy->smart_speed == e1000_smart_speed_off) {
803                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
804                                            &data);
805                         if (ret_val)
806                                 return ret_val;
807
808                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
809                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
810                                            data);
811                         if (ret_val)
812                                 return ret_val;
813                 }
814         }
815
816         return 0;
817 }
818
819 /**
820  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
821  *  @hw: pointer to the HW structure
822  *  @active: TRUE to enable LPLU, FALSE to disable
823  *
824  *  Sets the LPLU D3 state according to the active flag.  When
825  *  activating LPLU this function also disables smart speed
826  *  and vice versa.  LPLU will not be activated unless the
827  *  device autonegotiation advertisement meets standards of
828  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
829  *  This is a function pointer entry point only called by
830  *  PHY setup routines.
831  **/
832 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
833 {
834         struct e1000_phy_info *phy = &hw->phy;
835         u32 phy_ctrl;
836         s32 ret_val;
837         u16 data;
838
839         phy_ctrl = er32(PHY_CTRL);
840
841         if (!active) {
842                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
843                 ew32(PHY_CTRL, phy_ctrl);
844                 /*
845                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
846                  * during Dx states where the power conservation is most
847                  * important.  During driver activity we should enable
848                  * SmartSpeed, so performance is maintained.
849                  */
850                 if (phy->smart_speed == e1000_smart_speed_on) {
851                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
852                                            &data);
853                         if (ret_val)
854                                 return ret_val;
855
856                         data |= IGP01E1000_PSCFR_SMART_SPEED;
857                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
858                                            data);
859                         if (ret_val)
860                                 return ret_val;
861                 } else if (phy->smart_speed == e1000_smart_speed_off) {
862                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
863                                            &data);
864                         if (ret_val)
865                                 return ret_val;
866
867                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
868                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
869                                            data);
870                         if (ret_val)
871                                 return ret_val;
872                 }
873         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
874                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
875                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
876                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
877                 ew32(PHY_CTRL, phy_ctrl);
878
879                 /*
880                  * Call gig speed drop workaround on LPLU before accessing
881                  * any PHY registers
882                  */
883                 if ((hw->mac.type == e1000_ich8lan) &&
884                     (hw->phy.type == e1000_phy_igp_3))
885                         e1000e_gig_downshift_workaround_ich8lan(hw);
886
887                 /* When LPLU is enabled, we should disable SmartSpeed */
888                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
889                 if (ret_val)
890                         return ret_val;
891
892                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
893                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
894         }
895
896         return 0;
897 }
898
899 /**
900  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
901  *  @hw: pointer to the HW structure
902  *  @offset: The offset (in bytes) of the word(s) to read.
903  *  @words: Size of data to read in words
904  *  @data: Pointer to the word(s) to read at offset.
905  *
906  *  Reads a word(s) from the NVM using the flash access registers.
907  **/
908 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
909                                   u16 *data)
910 {
911         struct e1000_nvm_info *nvm = &hw->nvm;
912         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
913         u32 act_offset;
914         s32 ret_val;
915         u16 i, word;
916
917         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
918             (words == 0)) {
919                 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
920                 return -E1000_ERR_NVM;
921         }
922
923         ret_val = e1000_acquire_swflag_ich8lan(hw);
924         if (ret_val)
925                 return ret_val;
926
927         /* Start with the bank offset, then add the relative offset. */
928         act_offset = (er32(EECD) & E1000_EECD_SEC1VAL)
929                      ? nvm->flash_bank_size
930                      : 0;
931         act_offset += offset;
932
933         for (i = 0; i < words; i++) {
934                 if ((dev_spec->shadow_ram) &&
935                     (dev_spec->shadow_ram[offset+i].modified)) {
936                         data[i] = dev_spec->shadow_ram[offset+i].value;
937                 } else {
938                         ret_val = e1000_read_flash_word_ich8lan(hw,
939                                                                 act_offset + i,
940                                                                 &word);
941                         if (ret_val)
942                                 break;
943                         data[i] = word;
944                 }
945         }
946
947         e1000_release_swflag_ich8lan(hw);
948
949         return ret_val;
950 }
951
952 /**
953  *  e1000_flash_cycle_init_ich8lan - Initialize flash
954  *  @hw: pointer to the HW structure
955  *
956  *  This function does initial flash setup so that a new read/write/erase cycle
957  *  can be started.
958  **/
959 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
960 {
961         union ich8_hws_flash_status hsfsts;
962         s32 ret_val = -E1000_ERR_NVM;
963         s32 i = 0;
964
965         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
966
967         /* Check if the flash descriptor is valid */
968         if (hsfsts.hsf_status.fldesvalid == 0) {
969                 hw_dbg(hw, "Flash descriptor invalid.  "
970                          "SW Sequencing must be used.");
971                 return -E1000_ERR_NVM;
972         }
973
974         /* Clear FCERR and DAEL in hw status by writing 1 */
975         hsfsts.hsf_status.flcerr = 1;
976         hsfsts.hsf_status.dael = 1;
977
978         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
979
980         /*
981          * Either we should have a hardware SPI cycle in progress
982          * bit to check against, in order to start a new cycle or
983          * FDONE bit should be changed in the hardware so that it
984          * is 1 after hardware reset, which can then be used as an
985          * indication whether a cycle is in progress or has been
986          * completed.
987          */
988
989         if (hsfsts.hsf_status.flcinprog == 0) {
990                 /*
991                  * There is no cycle running at present,
992                  * so we can start a cycle
993                  * Begin by setting Flash Cycle Done.
994                  */
995                 hsfsts.hsf_status.flcdone = 1;
996                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
997                 ret_val = 0;
998         } else {
999                 /*
1000                  * otherwise poll for sometime so the current
1001                  * cycle has a chance to end before giving up.
1002                  */
1003                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1004                         hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1005                         if (hsfsts.hsf_status.flcinprog == 0) {
1006                                 ret_val = 0;
1007                                 break;
1008                         }
1009                         udelay(1);
1010                 }
1011                 if (ret_val == 0) {
1012                         /*
1013                          * Successful in waiting for previous cycle to timeout,
1014                          * now set the Flash Cycle Done.
1015                          */
1016                         hsfsts.hsf_status.flcdone = 1;
1017                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1018                 } else {
1019                         hw_dbg(hw, "Flash controller busy, cannot get access");
1020                 }
1021         }
1022
1023         return ret_val;
1024 }
1025
1026 /**
1027  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1028  *  @hw: pointer to the HW structure
1029  *  @timeout: maximum time to wait for completion
1030  *
1031  *  This function starts a flash cycle and waits for its completion.
1032  **/
1033 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1034 {
1035         union ich8_hws_flash_ctrl hsflctl;
1036         union ich8_hws_flash_status hsfsts;
1037         s32 ret_val = -E1000_ERR_NVM;
1038         u32 i = 0;
1039
1040         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1041         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1042         hsflctl.hsf_ctrl.flcgo = 1;
1043         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1044
1045         /* wait till FDONE bit is set to 1 */
1046         do {
1047                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1048                 if (hsfsts.hsf_status.flcdone == 1)
1049                         break;
1050                 udelay(1);
1051         } while (i++ < timeout);
1052
1053         if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1054                 return 0;
1055
1056         return ret_val;
1057 }
1058
1059 /**
1060  *  e1000_read_flash_word_ich8lan - Read word from flash
1061  *  @hw: pointer to the HW structure
1062  *  @offset: offset to data location
1063  *  @data: pointer to the location for storing the data
1064  *
1065  *  Reads the flash word at offset into data.  Offset is converted
1066  *  to bytes before read.
1067  **/
1068 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1069                                          u16 *data)
1070 {
1071         /* Must convert offset into bytes. */
1072         offset <<= 1;
1073
1074         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1075 }
1076
1077 /**
1078  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
1079  *  @hw: pointer to the HW structure
1080  *  @offset: The offset (in bytes) of the byte or word to read.
1081  *  @size: Size of data to read, 1=byte 2=word
1082  *  @data: Pointer to the word to store the value read.
1083  *
1084  *  Reads a byte or word from the NVM using the flash access registers.
1085  **/
1086 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1087                                          u8 size, u16 *data)
1088 {
1089         union ich8_hws_flash_status hsfsts;
1090         union ich8_hws_flash_ctrl hsflctl;
1091         u32 flash_linear_addr;
1092         u32 flash_data = 0;
1093         s32 ret_val = -E1000_ERR_NVM;
1094         u8 count = 0;
1095
1096         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1097                 return -E1000_ERR_NVM;
1098
1099         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1100                             hw->nvm.flash_base_addr;
1101
1102         do {
1103                 udelay(1);
1104                 /* Steps */
1105                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1106                 if (ret_val != 0)
1107                         break;
1108
1109                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1110                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1111                 hsflctl.hsf_ctrl.fldbcount = size - 1;
1112                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1113                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1114
1115                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1116
1117                 ret_val = e1000_flash_cycle_ich8lan(hw,
1118                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
1119
1120                 /*
1121                  * Check if FCERR is set to 1, if set to 1, clear it
1122                  * and try the whole sequence a few more times, else
1123                  * read in (shift in) the Flash Data0, the order is
1124                  * least significant byte first msb to lsb
1125                  */
1126                 if (ret_val == 0) {
1127                         flash_data = er32flash(ICH_FLASH_FDATA0);
1128                         if (size == 1) {
1129                                 *data = (u8)(flash_data & 0x000000FF);
1130                         } else if (size == 2) {
1131                                 *data = (u16)(flash_data & 0x0000FFFF);
1132                         }
1133                         break;
1134                 } else {
1135                         /*
1136                          * If we've gotten here, then things are probably
1137                          * completely hosed, but if the error condition is
1138                          * detected, it won't hurt to give it another try...
1139                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1140                          */
1141                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1142                         if (hsfsts.hsf_status.flcerr == 1) {
1143                                 /* Repeat for some time before giving up. */
1144                                 continue;
1145                         } else if (hsfsts.hsf_status.flcdone == 0) {
1146                                 hw_dbg(hw, "Timeout error - flash cycle "
1147                                          "did not complete.");
1148                                 break;
1149                         }
1150                 }
1151         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1152
1153         return ret_val;
1154 }
1155
1156 /**
1157  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
1158  *  @hw: pointer to the HW structure
1159  *  @offset: The offset (in bytes) of the word(s) to write.
1160  *  @words: Size of data to write in words
1161  *  @data: Pointer to the word(s) to write at offset.
1162  *
1163  *  Writes a byte or word to the NVM using the flash access registers.
1164  **/
1165 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1166                                    u16 *data)
1167 {
1168         struct e1000_nvm_info *nvm = &hw->nvm;
1169         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1170         s32 ret_val;
1171         u16 i;
1172
1173         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1174             (words == 0)) {
1175                 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1176                 return -E1000_ERR_NVM;
1177         }
1178
1179         ret_val = e1000_acquire_swflag_ich8lan(hw);
1180         if (ret_val)
1181                 return ret_val;
1182
1183         for (i = 0; i < words; i++) {
1184                 dev_spec->shadow_ram[offset+i].modified = 1;
1185                 dev_spec->shadow_ram[offset+i].value = data[i];
1186         }
1187
1188         e1000_release_swflag_ich8lan(hw);
1189
1190         return 0;
1191 }
1192
1193 /**
1194  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1195  *  @hw: pointer to the HW structure
1196  *
1197  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
1198  *  which writes the checksum to the shadow ram.  The changes in the shadow
1199  *  ram are then committed to the EEPROM by processing each bank at a time
1200  *  checking for the modified bit and writing only the pending changes.
1201  *  After a successful commit, the shadow ram is cleared and is ready for
1202  *  future writes.
1203  **/
1204 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1205 {
1206         struct e1000_nvm_info *nvm = &hw->nvm;
1207         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1208         u32 i, act_offset, new_bank_offset, old_bank_offset;
1209         s32 ret_val;
1210         u16 data;
1211
1212         ret_val = e1000e_update_nvm_checksum_generic(hw);
1213         if (ret_val)
1214                 return ret_val;
1215
1216         if (nvm->type != e1000_nvm_flash_sw)
1217                 return ret_val;
1218
1219         ret_val = e1000_acquire_swflag_ich8lan(hw);
1220         if (ret_val)
1221                 return ret_val;
1222
1223         /*
1224          * We're writing to the opposite bank so if we're on bank 1,
1225          * write to bank 0 etc.  We also need to erase the segment that
1226          * is going to be written
1227          */
1228         if (!(er32(EECD) & E1000_EECD_SEC1VAL)) {
1229                 new_bank_offset = nvm->flash_bank_size;
1230                 old_bank_offset = 0;
1231                 e1000_erase_flash_bank_ich8lan(hw, 1);
1232         } else {
1233                 old_bank_offset = nvm->flash_bank_size;
1234                 new_bank_offset = 0;
1235                 e1000_erase_flash_bank_ich8lan(hw, 0);
1236         }
1237
1238         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1239                 /*
1240                  * Determine whether to write the value stored
1241                  * in the other NVM bank or a modified value stored
1242                  * in the shadow RAM
1243                  */
1244                 if (dev_spec->shadow_ram[i].modified) {
1245                         data = dev_spec->shadow_ram[i].value;
1246                 } else {
1247                         e1000_read_flash_word_ich8lan(hw,
1248                                                       i + old_bank_offset,
1249                                                       &data);
1250                 }
1251
1252                 /*
1253                  * If the word is 0x13, then make sure the signature bits
1254                  * (15:14) are 11b until the commit has completed.
1255                  * This will allow us to write 10b which indicates the
1256                  * signature is valid.  We want to do this after the write
1257                  * has completed so that we don't mark the segment valid
1258                  * while the write is still in progress
1259                  */
1260                 if (i == E1000_ICH_NVM_SIG_WORD)
1261                         data |= E1000_ICH_NVM_SIG_MASK;
1262
1263                 /* Convert offset to bytes. */
1264                 act_offset = (i + new_bank_offset) << 1;
1265
1266                 udelay(100);
1267                 /* Write the bytes to the new bank. */
1268                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1269                                                                act_offset,
1270                                                                (u8)data);
1271                 if (ret_val)
1272                         break;
1273
1274                 udelay(100);
1275                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1276                                                           act_offset + 1,
1277                                                           (u8)(data >> 8));
1278                 if (ret_val)
1279                         break;
1280         }
1281
1282         /*
1283          * Don't bother writing the segment valid bits if sector
1284          * programming failed.
1285          */
1286         if (ret_val) {
1287                 hw_dbg(hw, "Flash commit failed.\n");
1288                 e1000_release_swflag_ich8lan(hw);
1289                 return ret_val;
1290         }
1291
1292         /*
1293          * Finally validate the new segment by setting bit 15:14
1294          * to 10b in word 0x13 , this can be done without an
1295          * erase as well since these bits are 11 to start with
1296          * and we need to change bit 14 to 0b
1297          */
1298         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1299         e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1300         data &= 0xBFFF;
1301         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1302                                                        act_offset * 2 + 1,
1303                                                        (u8)(data >> 8));
1304         if (ret_val) {
1305                 e1000_release_swflag_ich8lan(hw);
1306                 return ret_val;
1307         }
1308
1309         /*
1310          * And invalidate the previously valid segment by setting
1311          * its signature word (0x13) high_byte to 0b. This can be
1312          * done without an erase because flash erase sets all bits
1313          * to 1's. We can write 1's to 0's without an erase
1314          */
1315         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1316         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1317         if (ret_val) {
1318                 e1000_release_swflag_ich8lan(hw);
1319                 return ret_val;
1320         }
1321
1322         /* Great!  Everything worked, we can now clear the cached entries. */
1323         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1324                 dev_spec->shadow_ram[i].modified = 0;
1325                 dev_spec->shadow_ram[i].value = 0xFFFF;
1326         }
1327
1328         e1000_release_swflag_ich8lan(hw);
1329
1330         /*
1331          * Reload the EEPROM, or else modifications will not appear
1332          * until after the next adapter reset.
1333          */
1334         e1000e_reload_nvm(hw);
1335         msleep(10);
1336
1337         return ret_val;
1338 }
1339
1340 /**
1341  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1342  *  @hw: pointer to the HW structure
1343  *
1344  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1345  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
1346  *  calculated, in which case we need to calculate the checksum and set bit 6.
1347  **/
1348 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1349 {
1350         s32 ret_val;
1351         u16 data;
1352
1353         /*
1354          * Read 0x19 and check bit 6.  If this bit is 0, the checksum
1355          * needs to be fixed.  This bit is an indication that the NVM
1356          * was prepared by OEM software and did not calculate the
1357          * checksum...a likely scenario.
1358          */
1359         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1360         if (ret_val)
1361                 return ret_val;
1362
1363         if ((data & 0x40) == 0) {
1364                 data |= 0x40;
1365                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1366                 if (ret_val)
1367                         return ret_val;
1368                 ret_val = e1000e_update_nvm_checksum(hw);
1369                 if (ret_val)
1370                         return ret_val;
1371         }
1372
1373         return e1000e_validate_nvm_checksum_generic(hw);
1374 }
1375
1376 /**
1377  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1378  *  @hw: pointer to the HW structure
1379  *  @offset: The offset (in bytes) of the byte/word to read.
1380  *  @size: Size of data to read, 1=byte 2=word
1381  *  @data: The byte(s) to write to the NVM.
1382  *
1383  *  Writes one/two bytes to the NVM using the flash access registers.
1384  **/
1385 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1386                                           u8 size, u16 data)
1387 {
1388         union ich8_hws_flash_status hsfsts;
1389         union ich8_hws_flash_ctrl hsflctl;
1390         u32 flash_linear_addr;
1391         u32 flash_data = 0;
1392         s32 ret_val;
1393         u8 count = 0;
1394
1395         if (size < 1 || size > 2 || data > size * 0xff ||
1396             offset > ICH_FLASH_LINEAR_ADDR_MASK)
1397                 return -E1000_ERR_NVM;
1398
1399         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1400                             hw->nvm.flash_base_addr;
1401
1402         do {
1403                 udelay(1);
1404                 /* Steps */
1405                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1406                 if (ret_val)
1407                         break;
1408
1409                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1410                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1411                 hsflctl.hsf_ctrl.fldbcount = size -1;
1412                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1413                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1414
1415                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1416
1417                 if (size == 1)
1418                         flash_data = (u32)data & 0x00FF;
1419                 else
1420                         flash_data = (u32)data;
1421
1422                 ew32flash(ICH_FLASH_FDATA0, flash_data);
1423
1424                 /*
1425                  * check if FCERR is set to 1 , if set to 1, clear it
1426                  * and try the whole sequence a few more times else done
1427                  */
1428                 ret_val = e1000_flash_cycle_ich8lan(hw,
1429                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1430                 if (!ret_val)
1431                         break;
1432
1433                 /*
1434                  * If we're here, then things are most likely
1435                  * completely hosed, but if the error condition
1436                  * is detected, it won't hurt to give it another
1437                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1438                  */
1439                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1440                 if (hsfsts.hsf_status.flcerr == 1)
1441                         /* Repeat for some time before giving up. */
1442                         continue;
1443                 if (hsfsts.hsf_status.flcdone == 0) {
1444                         hw_dbg(hw, "Timeout error - flash cycle "
1445                                  "did not complete.");
1446                         break;
1447                 }
1448         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1449
1450         return ret_val;
1451 }
1452
1453 /**
1454  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1455  *  @hw: pointer to the HW structure
1456  *  @offset: The index of the byte to read.
1457  *  @data: The byte to write to the NVM.
1458  *
1459  *  Writes a single byte to the NVM using the flash access registers.
1460  **/
1461 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1462                                           u8 data)
1463 {
1464         u16 word = (u16)data;
1465
1466         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
1467 }
1468
1469 /**
1470  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1471  *  @hw: pointer to the HW structure
1472  *  @offset: The offset of the byte to write.
1473  *  @byte: The byte to write to the NVM.
1474  *
1475  *  Writes a single byte to the NVM using the flash access registers.
1476  *  Goes through a retry algorithm before giving up.
1477  **/
1478 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
1479                                                 u32 offset, u8 byte)
1480 {
1481         s32 ret_val;
1482         u16 program_retries;
1483
1484         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1485         if (!ret_val)
1486                 return ret_val;
1487
1488         for (program_retries = 0; program_retries < 100; program_retries++) {
1489                 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
1490                 udelay(100);
1491                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1492                 if (!ret_val)
1493                         break;
1494         }
1495         if (program_retries == 100)
1496                 return -E1000_ERR_NVM;
1497
1498         return 0;
1499 }
1500
1501 /**
1502  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1503  *  @hw: pointer to the HW structure
1504  *  @bank: 0 for first bank, 1 for second bank, etc.
1505  *
1506  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1507  *  bank N is 4096 * N + flash_reg_addr.
1508  **/
1509 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
1510 {
1511         struct e1000_nvm_info *nvm = &hw->nvm;
1512         union ich8_hws_flash_status hsfsts;
1513         union ich8_hws_flash_ctrl hsflctl;
1514         u32 flash_linear_addr;
1515         /* bank size is in 16bit words - adjust to bytes */
1516         u32 flash_bank_size = nvm->flash_bank_size * 2;
1517         s32 ret_val;
1518         s32 count = 0;
1519         s32 iteration;
1520         s32 sector_size;
1521         s32 j;
1522
1523         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1524
1525         /*
1526          * Determine HW Sector size: Read BERASE bits of hw flash status
1527          * register
1528          * 00: The Hw sector is 256 bytes, hence we need to erase 16
1529          *     consecutive sectors.  The start index for the nth Hw sector
1530          *     can be calculated as = bank * 4096 + n * 256
1531          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1532          *     The start index for the nth Hw sector can be calculated
1533          *     as = bank * 4096
1534          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1535          *     (ich9 only, otherwise error condition)
1536          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1537          */
1538         switch (hsfsts.hsf_status.berasesz) {
1539         case 0:
1540                 /* Hw sector size 256 */
1541                 sector_size = ICH_FLASH_SEG_SIZE_256;
1542                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
1543                 break;
1544         case 1:
1545                 sector_size = ICH_FLASH_SEG_SIZE_4K;
1546                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
1547                 break;
1548         case 2:
1549                 if (hw->mac.type == e1000_ich9lan) {
1550                         sector_size = ICH_FLASH_SEG_SIZE_8K;
1551                         iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
1552                 } else {
1553                         return -E1000_ERR_NVM;
1554                 }
1555                 break;
1556         case 3:
1557                 sector_size = ICH_FLASH_SEG_SIZE_64K;
1558                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
1559                 break;
1560         default:
1561                 return -E1000_ERR_NVM;
1562         }
1563
1564         /* Start with the base address, then add the sector offset. */
1565         flash_linear_addr = hw->nvm.flash_base_addr;
1566         flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
1567
1568         for (j = 0; j < iteration ; j++) {
1569                 do {
1570                         /* Steps */
1571                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
1572                         if (ret_val)
1573                                 return ret_val;
1574
1575                         /*
1576                          * Write a value 11 (block Erase) in Flash
1577                          * Cycle field in hw flash control
1578                          */
1579                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1580                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
1581                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1582
1583                         /*
1584                          * Write the last 24 bits of an index within the
1585                          * block into Flash Linear address field in Flash
1586                          * Address.
1587                          */
1588                         flash_linear_addr += (j * sector_size);
1589                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1590
1591                         ret_val = e1000_flash_cycle_ich8lan(hw,
1592                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
1593                         if (ret_val == 0)
1594                                 break;
1595
1596                         /*
1597                          * Check if FCERR is set to 1.  If 1,
1598                          * clear it and try the whole sequence
1599                          * a few more times else Done
1600                          */
1601                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1602                         if (hsfsts.hsf_status.flcerr == 1)
1603                                 /* repeat for some time before giving up */
1604                                 continue;
1605                         else if (hsfsts.hsf_status.flcdone == 0)
1606                                 return ret_val;
1607                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
1608         }
1609
1610         return 0;
1611 }
1612
1613 /**
1614  *  e1000_valid_led_default_ich8lan - Set the default LED settings
1615  *  @hw: pointer to the HW structure
1616  *  @data: Pointer to the LED settings
1617  *
1618  *  Reads the LED default settings from the NVM to data.  If the NVM LED
1619  *  settings is all 0's or F's, set the LED default to a valid LED default
1620  *  setting.
1621  **/
1622 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
1623 {
1624         s32 ret_val;
1625
1626         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1627         if (ret_val) {
1628                 hw_dbg(hw, "NVM Read Error\n");
1629                 return ret_val;
1630         }
1631
1632         if (*data == ID_LED_RESERVED_0000 ||
1633             *data == ID_LED_RESERVED_FFFF)
1634                 *data = ID_LED_DEFAULT_ICH8LAN;
1635
1636         return 0;
1637 }
1638
1639 /**
1640  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
1641  *  @hw: pointer to the HW structure
1642  *
1643  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
1644  *  register, so the the bus width is hard coded.
1645  **/
1646 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
1647 {
1648         struct e1000_bus_info *bus = &hw->bus;
1649         s32 ret_val;
1650
1651         ret_val = e1000e_get_bus_info_pcie(hw);
1652
1653         /*
1654          * ICH devices are "PCI Express"-ish.  They have
1655          * a configuration space, but do not contain
1656          * PCI Express Capability registers, so bus width
1657          * must be hardcoded.
1658          */
1659         if (bus->width == e1000_bus_width_unknown)
1660                 bus->width = e1000_bus_width_pcie_x1;
1661
1662         return ret_val;
1663 }
1664
1665 /**
1666  *  e1000_reset_hw_ich8lan - Reset the hardware
1667  *  @hw: pointer to the HW structure
1668  *
1669  *  Does a full reset of the hardware which includes a reset of the PHY and
1670  *  MAC.
1671  **/
1672 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
1673 {
1674         u32 ctrl, icr, kab;
1675         s32 ret_val;
1676
1677         /*
1678          * Prevent the PCI-E bus from sticking if there is no TLP connection
1679          * on the last TLP read/write transaction when MAC is reset.
1680          */
1681         ret_val = e1000e_disable_pcie_master(hw);
1682         if (ret_val) {
1683                 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
1684         }
1685
1686         hw_dbg(hw, "Masking off all interrupts\n");
1687         ew32(IMC, 0xffffffff);
1688
1689         /*
1690          * Disable the Transmit and Receive units.  Then delay to allow
1691          * any pending transactions to complete before we hit the MAC
1692          * with the global reset.
1693          */
1694         ew32(RCTL, 0);
1695         ew32(TCTL, E1000_TCTL_PSP);
1696         e1e_flush();
1697
1698         msleep(10);
1699
1700         /* Workaround for ICH8 bit corruption issue in FIFO memory */
1701         if (hw->mac.type == e1000_ich8lan) {
1702                 /* Set Tx and Rx buffer allocation to 8k apiece. */
1703                 ew32(PBA, E1000_PBA_8K);
1704                 /* Set Packet Buffer Size to 16k. */
1705                 ew32(PBS, E1000_PBS_16K);
1706         }
1707
1708         ctrl = er32(CTRL);
1709
1710         if (!e1000_check_reset_block(hw)) {
1711                 /*
1712                  * PHY HW reset requires MAC CORE reset at the same
1713                  * time to make sure the interface between MAC and the
1714                  * external PHY is reset.
1715                  */
1716                 ctrl |= E1000_CTRL_PHY_RST;
1717         }
1718         ret_val = e1000_acquire_swflag_ich8lan(hw);
1719         hw_dbg(hw, "Issuing a global reset to ich8lan");
1720         ew32(CTRL, (ctrl | E1000_CTRL_RST));
1721         msleep(20);
1722
1723         ret_val = e1000e_get_auto_rd_done(hw);
1724         if (ret_val) {
1725                 /*
1726                  * When auto config read does not complete, do not
1727                  * return with an error. This can happen in situations
1728                  * where there is no eeprom and prevents getting link.
1729                  */
1730                 hw_dbg(hw, "Auto Read Done did not complete\n");
1731         }
1732
1733         ew32(IMC, 0xffffffff);
1734         icr = er32(ICR);
1735
1736         kab = er32(KABGTXD);
1737         kab |= E1000_KABGTXD_BGSQLBIAS;
1738         ew32(KABGTXD, kab);
1739
1740         return ret_val;
1741 }
1742
1743 /**
1744  *  e1000_init_hw_ich8lan - Initialize the hardware
1745  *  @hw: pointer to the HW structure
1746  *
1747  *  Prepares the hardware for transmit and receive by doing the following:
1748  *   - initialize hardware bits
1749  *   - initialize LED identification
1750  *   - setup receive address registers
1751  *   - setup flow control
1752  *   - setup transmit descriptors
1753  *   - clear statistics
1754  **/
1755 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
1756 {
1757         struct e1000_mac_info *mac = &hw->mac;
1758         u32 ctrl_ext, txdctl, snoop;
1759         s32 ret_val;
1760         u16 i;
1761
1762         e1000_initialize_hw_bits_ich8lan(hw);
1763
1764         /* Initialize identification LED */
1765         ret_val = e1000e_id_led_init(hw);
1766         if (ret_val) {
1767                 hw_dbg(hw, "Error initializing identification LED\n");
1768                 return ret_val;
1769         }
1770
1771         /* Setup the receive address. */
1772         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
1773
1774         /* Zero out the Multicast HASH table */
1775         hw_dbg(hw, "Zeroing the MTA\n");
1776         for (i = 0; i < mac->mta_reg_count; i++)
1777                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1778
1779         /* Setup link and flow control */
1780         ret_val = e1000_setup_link_ich8lan(hw);
1781
1782         /* Set the transmit descriptor write-back policy for both queues */
1783         txdctl = er32(TXDCTL(0));
1784         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
1785                  E1000_TXDCTL_FULL_TX_DESC_WB;
1786         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
1787                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
1788         ew32(TXDCTL(0), txdctl);
1789         txdctl = er32(TXDCTL(1));
1790         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
1791                  E1000_TXDCTL_FULL_TX_DESC_WB;
1792         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
1793                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
1794         ew32(TXDCTL(1), txdctl);
1795
1796         /*
1797          * ICH8 has opposite polarity of no_snoop bits.
1798          * By default, we should use snoop behavior.
1799          */
1800         if (mac->type == e1000_ich8lan)
1801                 snoop = PCIE_ICH8_SNOOP_ALL;
1802         else
1803                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
1804         e1000e_set_pcie_no_snoop(hw, snoop);
1805
1806         ctrl_ext = er32(CTRL_EXT);
1807         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1808         ew32(CTRL_EXT, ctrl_ext);
1809
1810         /*
1811          * Clear all of the statistics registers (clear on read).  It is
1812          * important that we do this after we have tried to establish link
1813          * because the symbol error count will increment wildly if there
1814          * is no link.
1815          */
1816         e1000_clear_hw_cntrs_ich8lan(hw);
1817
1818         return 0;
1819 }
1820 /**
1821  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
1822  *  @hw: pointer to the HW structure
1823  *
1824  *  Sets/Clears required hardware bits necessary for correctly setting up the
1825  *  hardware for transmit and receive.
1826  **/
1827 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
1828 {
1829         u32 reg;
1830
1831         /* Extended Device Control */
1832         reg = er32(CTRL_EXT);
1833         reg |= (1 << 22);
1834         ew32(CTRL_EXT, reg);
1835
1836         /* Transmit Descriptor Control 0 */
1837         reg = er32(TXDCTL(0));
1838         reg |= (1 << 22);
1839         ew32(TXDCTL(0), reg);
1840
1841         /* Transmit Descriptor Control 1 */
1842         reg = er32(TXDCTL(1));
1843         reg |= (1 << 22);
1844         ew32(TXDCTL(1), reg);
1845
1846         /* Transmit Arbitration Control 0 */
1847         reg = er32(TARC(0));
1848         if (hw->mac.type == e1000_ich8lan)
1849                 reg |= (1 << 28) | (1 << 29);
1850         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
1851         ew32(TARC(0), reg);
1852
1853         /* Transmit Arbitration Control 1 */
1854         reg = er32(TARC(1));
1855         if (er32(TCTL) & E1000_TCTL_MULR)
1856                 reg &= ~(1 << 28);
1857         else
1858                 reg |= (1 << 28);
1859         reg |= (1 << 24) | (1 << 26) | (1 << 30);
1860         ew32(TARC(1), reg);
1861
1862         /* Device Status */
1863         if (hw->mac.type == e1000_ich8lan) {
1864                 reg = er32(STATUS);
1865                 reg &= ~(1 << 31);
1866                 ew32(STATUS, reg);
1867         }
1868 }
1869
1870 /**
1871  *  e1000_setup_link_ich8lan - Setup flow control and link settings
1872  *  @hw: pointer to the HW structure
1873  *
1874  *  Determines which flow control settings to use, then configures flow
1875  *  control.  Calls the appropriate media-specific link configuration
1876  *  function.  Assuming the adapter has a valid link partner, a valid link
1877  *  should be established.  Assumes the hardware has previously been reset
1878  *  and the transmitter and receiver are not enabled.
1879  **/
1880 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
1881 {
1882         s32 ret_val;
1883
1884         if (e1000_check_reset_block(hw))
1885                 return 0;
1886
1887         /*
1888          * ICH parts do not have a word in the NVM to determine
1889          * the default flow control setting, so we explicitly
1890          * set it to full.
1891          */
1892         if (hw->fc.type == e1000_fc_default)
1893                 hw->fc.type = e1000_fc_full;
1894
1895         hw->fc.original_type = hw->fc.type;
1896
1897         hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", hw->fc.type);
1898
1899         /* Continue to configure the copper link. */
1900         ret_val = e1000_setup_copper_link_ich8lan(hw);
1901         if (ret_val)
1902                 return ret_val;
1903
1904         ew32(FCTTV, hw->fc.pause_time);
1905
1906         return e1000e_set_fc_watermarks(hw);
1907 }
1908
1909 /**
1910  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
1911  *  @hw: pointer to the HW structure
1912  *
1913  *  Configures the kumeran interface to the PHY to wait the appropriate time
1914  *  when polling the PHY, then call the generic setup_copper_link to finish
1915  *  configuring the copper link.
1916  **/
1917 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
1918 {
1919         u32 ctrl;
1920         s32 ret_val;
1921         u16 reg_data;
1922
1923         ctrl = er32(CTRL);
1924         ctrl |= E1000_CTRL_SLU;
1925         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1926         ew32(CTRL, ctrl);
1927
1928         /*
1929          * Set the mac to wait the maximum time between each iteration
1930          * and increase the max iterations when polling the phy;
1931          * this fixes erroneous timeouts at 10Mbps.
1932          */
1933         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1934         if (ret_val)
1935                 return ret_val;
1936         ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1937         if (ret_val)
1938                 return ret_val;
1939         reg_data |= 0x3F;
1940         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1941         if (ret_val)
1942                 return ret_val;
1943
1944         if (hw->phy.type == e1000_phy_igp_3) {
1945                 ret_val = e1000e_copper_link_setup_igp(hw);
1946                 if (ret_val)
1947                         return ret_val;
1948         } else if (hw->phy.type == e1000_phy_bm) {
1949                 ret_val = e1000e_copper_link_setup_m88(hw);
1950                 if (ret_val)
1951                         return ret_val;
1952         }
1953
1954         if (hw->phy.type == e1000_phy_ife) {
1955                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
1956                 if (ret_val)
1957                         return ret_val;
1958
1959                 reg_data &= ~IFE_PMC_AUTO_MDIX;
1960
1961                 switch (hw->phy.mdix) {
1962                 case 1:
1963                         reg_data &= ~IFE_PMC_FORCE_MDIX;
1964                         break;
1965                 case 2:
1966                         reg_data |= IFE_PMC_FORCE_MDIX;
1967                         break;
1968                 case 0:
1969                 default:
1970                         reg_data |= IFE_PMC_AUTO_MDIX;
1971                         break;
1972                 }
1973                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
1974                 if (ret_val)
1975                         return ret_val;
1976         }
1977         return e1000e_setup_copper_link(hw);
1978 }
1979
1980 /**
1981  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
1982  *  @hw: pointer to the HW structure
1983  *  @speed: pointer to store current link speed
1984  *  @duplex: pointer to store the current link duplex
1985  *
1986  *  Calls the generic get_speed_and_duplex to retrieve the current link
1987  *  information and then calls the Kumeran lock loss workaround for links at
1988  *  gigabit speeds.
1989  **/
1990 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
1991                                           u16 *duplex)
1992 {
1993         s32 ret_val;
1994
1995         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
1996         if (ret_val)
1997                 return ret_val;
1998
1999         if ((hw->mac.type == e1000_ich8lan) &&
2000             (hw->phy.type == e1000_phy_igp_3) &&
2001             (*speed == SPEED_1000)) {
2002                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2003         }
2004
2005         return ret_val;
2006 }
2007
2008 /**
2009  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2010  *  @hw: pointer to the HW structure
2011  *
2012  *  Work-around for 82566 Kumeran PCS lock loss:
2013  *  On link status change (i.e. PCI reset, speed change) and link is up and
2014  *  speed is gigabit-
2015  *    0) if workaround is optionally disabled do nothing
2016  *    1) wait 1ms for Kumeran link to come up
2017  *    2) check Kumeran Diagnostic register PCS lock loss bit
2018  *    3) if not set the link is locked (all is good), otherwise...
2019  *    4) reset the PHY
2020  *    5) repeat up to 10 times
2021  *  Note: this is only called for IGP3 copper when speed is 1gb.
2022  **/
2023 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2024 {
2025         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2026         u32 phy_ctrl;
2027         s32 ret_val;
2028         u16 i, data;
2029         bool link;
2030
2031         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2032                 return 0;
2033
2034         /*
2035          * Make sure link is up before proceeding.  If not just return.
2036          * Attempting this while link is negotiating fouled up link
2037          * stability
2038          */
2039         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2040         if (!link)
2041                 return 0;
2042
2043         for (i = 0; i < 10; i++) {
2044                 /* read once to clear */
2045                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2046                 if (ret_val)
2047                         return ret_val;
2048                 /* and again to get new status */
2049                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2050                 if (ret_val)
2051                         return ret_val;
2052
2053                 /* check for PCS lock */
2054                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2055                         return 0;
2056
2057                 /* Issue PHY reset */
2058                 e1000_phy_hw_reset(hw);
2059                 mdelay(5);
2060         }
2061         /* Disable GigE link negotiation */
2062         phy_ctrl = er32(PHY_CTRL);
2063         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2064                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2065         ew32(PHY_CTRL, phy_ctrl);
2066
2067         /*
2068          * Call gig speed drop workaround on Gig disable before accessing
2069          * any PHY registers
2070          */
2071         e1000e_gig_downshift_workaround_ich8lan(hw);
2072
2073         /* unable to acquire PCS lock */
2074         return -E1000_ERR_PHY;
2075 }
2076
2077 /**
2078  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2079  *  @hw: pointer to the HW structure
2080  *  @state: boolean value used to set the current Kumeran workaround state
2081  *
2082  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
2083  *  /disabled - FALSE).
2084  **/
2085 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2086                                                  bool state)
2087 {
2088         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2089
2090         if (hw->mac.type != e1000_ich8lan) {
2091                 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2092                 return;
2093         }
2094
2095         dev_spec->kmrn_lock_loss_workaround_enabled = state;
2096 }
2097
2098 /**
2099  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2100  *  @hw: pointer to the HW structure
2101  *
2102  *  Workaround for 82566 power-down on D3 entry:
2103  *    1) disable gigabit link
2104  *    2) write VR power-down enable
2105  *    3) read it back
2106  *  Continue if successful, else issue LCD reset and repeat
2107  **/
2108 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2109 {
2110         u32 reg;
2111         u16 data;
2112         u8  retry = 0;
2113
2114         if (hw->phy.type != e1000_phy_igp_3)
2115                 return;
2116
2117         /* Try the workaround twice (if needed) */
2118         do {
2119                 /* Disable link */
2120                 reg = er32(PHY_CTRL);
2121                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2122                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2123                 ew32(PHY_CTRL, reg);
2124
2125                 /*
2126                  * Call gig speed drop workaround on Gig disable before
2127                  * accessing any PHY registers
2128                  */
2129                 if (hw->mac.type == e1000_ich8lan)
2130                         e1000e_gig_downshift_workaround_ich8lan(hw);
2131
2132                 /* Write VR power-down enable */
2133                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2134                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2135                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2136
2137                 /* Read it back and test */
2138                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2139                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2140                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2141                         break;
2142
2143                 /* Issue PHY reset and repeat at most one more time */
2144                 reg = er32(CTRL);
2145                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2146                 retry++;
2147         } while (retry);
2148 }
2149
2150 /**
2151  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2152  *  @hw: pointer to the HW structure
2153  *
2154  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2155  *  LPLU, Gig disable, MDIC PHY reset):
2156  *    1) Set Kumeran Near-end loopback
2157  *    2) Clear Kumeran Near-end loopback
2158  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
2159  **/
2160 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2161 {
2162         s32 ret_val;
2163         u16 reg_data;
2164
2165         if ((hw->mac.type != e1000_ich8lan) ||
2166             (hw->phy.type != e1000_phy_igp_3))
2167                 return;
2168
2169         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2170                                       &reg_data);
2171         if (ret_val)
2172                 return;
2173         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2174         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2175                                        reg_data);
2176         if (ret_val)
2177                 return;
2178         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2179         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2180                                        reg_data);
2181 }
2182
2183 /**
2184  *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2185  *  @hw: pointer to the HW structure
2186  *
2187  *  During S0 to Sx transition, it is possible the link remains at gig
2188  *  instead of negotiating to a lower speed.  Before going to Sx, set
2189  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2190  *  to a lower speed.
2191  *
2192  *  Should only be called for ICH9 devices.
2193  **/
2194 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2195 {
2196         u32 phy_ctrl;
2197
2198         if (hw->mac.type == e1000_ich9lan) {
2199                 phy_ctrl = er32(PHY_CTRL);
2200                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2201                             E1000_PHY_CTRL_GBE_DISABLE;
2202                 ew32(PHY_CTRL, phy_ctrl);
2203         }
2204
2205         return;
2206 }
2207
2208 /**
2209  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
2210  *  @hw: pointer to the HW structure
2211  *
2212  *  Return the LED back to the default configuration.
2213  **/
2214 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2215 {
2216         if (hw->phy.type == e1000_phy_ife)
2217                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2218
2219         ew32(LEDCTL, hw->mac.ledctl_default);
2220         return 0;
2221 }
2222
2223 /**
2224  *  e1000_led_on_ich8lan - Turn LEDs on
2225  *  @hw: pointer to the HW structure
2226  *
2227  *  Turn on the LEDs.
2228  **/
2229 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2230 {
2231         if (hw->phy.type == e1000_phy_ife)
2232                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2233                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2234
2235         ew32(LEDCTL, hw->mac.ledctl_mode2);
2236         return 0;
2237 }
2238
2239 /**
2240  *  e1000_led_off_ich8lan - Turn LEDs off
2241  *  @hw: pointer to the HW structure
2242  *
2243  *  Turn off the LEDs.
2244  **/
2245 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2246 {
2247         if (hw->phy.type == e1000_phy_ife)
2248                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2249                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2250
2251         ew32(LEDCTL, hw->mac.ledctl_mode1);
2252         return 0;
2253 }
2254
2255 /**
2256  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2257  *  @hw: pointer to the HW structure
2258  *
2259  *  Clears hardware counters specific to the silicon family and calls
2260  *  clear_hw_cntrs_generic to clear all general purpose counters.
2261  **/
2262 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
2263 {
2264         u32 temp;
2265
2266         e1000e_clear_hw_cntrs_base(hw);
2267
2268         temp = er32(ALGNERRC);
2269         temp = er32(RXERRC);
2270         temp = er32(TNCRS);
2271         temp = er32(CEXTERR);
2272         temp = er32(TSCTC);
2273         temp = er32(TSCTFC);
2274
2275         temp = er32(MGTPRC);
2276         temp = er32(MGTPDC);
2277         temp = er32(MGTPTC);
2278
2279         temp = er32(IAC);
2280         temp = er32(ICRXOC);
2281
2282 }
2283
2284 static struct e1000_mac_operations ich8_mac_ops = {
2285         .mng_mode_enab          = E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
2286         .check_for_link         = e1000e_check_for_copper_link,
2287         .cleanup_led            = e1000_cleanup_led_ich8lan,
2288         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
2289         .get_bus_info           = e1000_get_bus_info_ich8lan,
2290         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
2291         .led_on                 = e1000_led_on_ich8lan,
2292         .led_off                = e1000_led_off_ich8lan,
2293         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
2294         .reset_hw               = e1000_reset_hw_ich8lan,
2295         .init_hw                = e1000_init_hw_ich8lan,
2296         .setup_link             = e1000_setup_link_ich8lan,
2297         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
2298 };
2299
2300 static struct e1000_phy_operations ich8_phy_ops = {
2301         .acquire_phy            = e1000_acquire_swflag_ich8lan,
2302         .check_reset_block      = e1000_check_reset_block_ich8lan,
2303         .commit_phy             = NULL,
2304         .force_speed_duplex     = e1000_phy_force_speed_duplex_ich8lan,
2305         .get_cfg_done           = e1000e_get_cfg_done,
2306         .get_cable_length       = e1000e_get_cable_length_igp_2,
2307         .get_phy_info           = e1000_get_phy_info_ich8lan,
2308         .read_phy_reg           = e1000e_read_phy_reg_igp,
2309         .release_phy            = e1000_release_swflag_ich8lan,
2310         .reset_phy              = e1000_phy_hw_reset_ich8lan,
2311         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
2312         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
2313         .write_phy_reg          = e1000e_write_phy_reg_igp,
2314 };
2315
2316 static struct e1000_nvm_operations ich8_nvm_ops = {
2317         .acquire_nvm            = e1000_acquire_swflag_ich8lan,
2318         .read_nvm               = e1000_read_nvm_ich8lan,
2319         .release_nvm            = e1000_release_swflag_ich8lan,
2320         .update_nvm             = e1000_update_nvm_checksum_ich8lan,
2321         .valid_led_default      = e1000_valid_led_default_ich8lan,
2322         .validate_nvm           = e1000_validate_nvm_checksum_ich8lan,
2323         .write_nvm              = e1000_write_nvm_ich8lan,
2324 };
2325
2326 struct e1000_info e1000_ich8_info = {
2327         .mac                    = e1000_ich8lan,
2328         .flags                  = FLAG_HAS_WOL
2329                                   | FLAG_IS_ICH
2330                                   | FLAG_RX_CSUM_ENABLED
2331                                   | FLAG_HAS_CTRLEXT_ON_LOAD
2332                                   | FLAG_HAS_AMT
2333                                   | FLAG_HAS_FLASH
2334                                   | FLAG_APME_IN_WUC,
2335         .pba                    = 8,
2336         .get_variants           = e1000_get_variants_ich8lan,
2337         .mac_ops                = &ich8_mac_ops,
2338         .phy_ops                = &ich8_phy_ops,
2339         .nvm_ops                = &ich8_nvm_ops,
2340 };
2341
2342 struct e1000_info e1000_ich9_info = {
2343         .mac                    = e1000_ich9lan,
2344         .flags                  = FLAG_HAS_JUMBO_FRAMES
2345                                   | FLAG_IS_ICH
2346                                   | FLAG_HAS_WOL
2347                                   | FLAG_RX_CSUM_ENABLED
2348                                   | FLAG_HAS_CTRLEXT_ON_LOAD
2349                                   | FLAG_HAS_AMT
2350                                   | FLAG_HAS_ERT
2351                                   | FLAG_HAS_FLASH
2352                                   | FLAG_APME_IN_WUC,
2353         .pba                    = 10,
2354         .get_variants           = e1000_get_variants_ich8lan,
2355         .mac_ops                = &ich8_mac_ops,
2356         .phy_ops                = &ich8_phy_ops,
2357         .nvm_ops                = &ich8_nvm_ops,
2358 };
2359