Merge ../linus
[linux-2.6] / arch / sparc64 / mm / init.c
1 /*  $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/config.h>
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/slab.h>
18 #include <linux/initrd.h>
19 #include <linux/swap.h>
20 #include <linux/pagemap.h>
21 #include <linux/poison.h>
22 #include <linux/fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kprobes.h>
25 #include <linux/cache.h>
26 #include <linux/sort.h>
27
28 #include <asm/head.h>
29 #include <asm/system.h>
30 #include <asm/page.h>
31 #include <asm/pgalloc.h>
32 #include <asm/pgtable.h>
33 #include <asm/oplib.h>
34 #include <asm/iommu.h>
35 #include <asm/io.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/dma.h>
40 #include <asm/starfire.h>
41 #include <asm/tlb.h>
42 #include <asm/spitfire.h>
43 #include <asm/sections.h>
44 #include <asm/tsb.h>
45 #include <asm/hypervisor.h>
46 #include <asm/prom.h>
47
48 extern void device_scan(void);
49
50 #define MAX_PHYS_ADDRESS        (1UL << 42UL)
51 #define KPTE_BITMAP_CHUNK_SZ    (256UL * 1024UL * 1024UL)
52 #define KPTE_BITMAP_BYTES       \
53         ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
54
55 unsigned long kern_linear_pte_xor[2] __read_mostly;
56
57 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
58  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60  */
61 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
62
63 /* A special kernel TSB for 4MB and 256MB linear mappings.  */
64 struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
65
66 #define MAX_BANKS       32
67
68 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
69 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
70 static int pavail_ents __initdata;
71 static int pavail_rescan_ents __initdata;
72
73 static int cmp_p64(const void *a, const void *b)
74 {
75         const struct linux_prom64_registers *x = a, *y = b;
76
77         if (x->phys_addr > y->phys_addr)
78                 return 1;
79         if (x->phys_addr < y->phys_addr)
80                 return -1;
81         return 0;
82 }
83
84 static void __init read_obp_memory(const char *property,
85                                    struct linux_prom64_registers *regs,
86                                    int *num_ents)
87 {
88         int node = prom_finddevice("/memory");
89         int prop_size = prom_getproplen(node, property);
90         int ents, ret, i;
91
92         ents = prop_size / sizeof(struct linux_prom64_registers);
93         if (ents > MAX_BANKS) {
94                 prom_printf("The machine has more %s property entries than "
95                             "this kernel can support (%d).\n",
96                             property, MAX_BANKS);
97                 prom_halt();
98         }
99
100         ret = prom_getproperty(node, property, (char *) regs, prop_size);
101         if (ret == -1) {
102                 prom_printf("Couldn't get %s property from /memory.\n");
103                 prom_halt();
104         }
105
106         /* Sanitize what we got from the firmware, by page aligning
107          * everything.
108          */
109         for (i = 0; i < ents; i++) {
110                 unsigned long base, size;
111
112                 base = regs[i].phys_addr;
113                 size = regs[i].reg_size;
114
115                 size &= PAGE_MASK;
116                 if (base & ~PAGE_MASK) {
117                         unsigned long new_base = PAGE_ALIGN(base);
118
119                         size -= new_base - base;
120                         if ((long) size < 0L)
121                                 size = 0UL;
122                         base = new_base;
123                 }
124                 regs[i].phys_addr = base;
125                 regs[i].reg_size = size;
126         }
127
128         for (i = 0; i < ents; i++) {
129                 if (regs[i].reg_size == 0UL) {
130                         int j;
131
132                         for (j = i; j < ents - 1; j++) {
133                                 regs[j].phys_addr =
134                                         regs[j+1].phys_addr;
135                                 regs[j].reg_size =
136                                         regs[j+1].reg_size;
137                         }
138
139                         ents--;
140                         i--;
141                 }
142         }
143
144         *num_ents = ents;
145
146         sort(regs, ents, sizeof(struct linux_prom64_registers),
147              cmp_p64, NULL);
148 }
149
150 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
151
152 /* Kernel physical address base and size in bytes.  */
153 unsigned long kern_base __read_mostly;
154 unsigned long kern_size __read_mostly;
155
156 /* get_new_mmu_context() uses "cache + 1".  */
157 DEFINE_SPINLOCK(ctx_alloc_lock);
158 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
159 #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
160 unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
161
162 /* References to special section boundaries */
163 extern char  _start[], _end[];
164
165 /* Initial ramdisk setup */
166 extern unsigned long sparc_ramdisk_image64;
167 extern unsigned int sparc_ramdisk_image;
168 extern unsigned int sparc_ramdisk_size;
169
170 struct page *mem_map_zero __read_mostly;
171
172 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
173
174 unsigned long sparc64_kern_pri_context __read_mostly;
175 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
176 unsigned long sparc64_kern_sec_context __read_mostly;
177
178 int bigkernel = 0;
179
180 kmem_cache_t *pgtable_cache __read_mostly;
181
182 static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
183 {
184         clear_page(addr);
185 }
186
187 extern void tsb_cache_init(void);
188
189 void pgtable_cache_init(void)
190 {
191         pgtable_cache = kmem_cache_create("pgtable_cache",
192                                           PAGE_SIZE, PAGE_SIZE,
193                                           SLAB_HWCACHE_ALIGN |
194                                           SLAB_MUST_HWCACHE_ALIGN,
195                                           zero_ctor,
196                                           NULL);
197         if (!pgtable_cache) {
198                 prom_printf("Could not create pgtable_cache\n");
199                 prom_halt();
200         }
201         tsb_cache_init();
202 }
203
204 #ifdef CONFIG_DEBUG_DCFLUSH
205 atomic_t dcpage_flushes = ATOMIC_INIT(0);
206 #ifdef CONFIG_SMP
207 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
208 #endif
209 #endif
210
211 inline void flush_dcache_page_impl(struct page *page)
212 {
213         BUG_ON(tlb_type == hypervisor);
214 #ifdef CONFIG_DEBUG_DCFLUSH
215         atomic_inc(&dcpage_flushes);
216 #endif
217
218 #ifdef DCACHE_ALIASING_POSSIBLE
219         __flush_dcache_page(page_address(page),
220                             ((tlb_type == spitfire) &&
221                              page_mapping(page) != NULL));
222 #else
223         if (page_mapping(page) != NULL &&
224             tlb_type == spitfire)
225                 __flush_icache_page(__pa(page_address(page)));
226 #endif
227 }
228
229 #define PG_dcache_dirty         PG_arch_1
230 #define PG_dcache_cpu_shift     24UL
231 #define PG_dcache_cpu_mask      (256UL - 1UL)
232
233 #if NR_CPUS > 256
234 #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
235 #endif
236
237 #define dcache_dirty_cpu(page) \
238         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
239
240 static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
241 {
242         unsigned long mask = this_cpu;
243         unsigned long non_cpu_bits;
244
245         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
246         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
247
248         __asm__ __volatile__("1:\n\t"
249                              "ldx       [%2], %%g7\n\t"
250                              "and       %%g7, %1, %%g1\n\t"
251                              "or        %%g1, %0, %%g1\n\t"
252                              "casx      [%2], %%g7, %%g1\n\t"
253                              "cmp       %%g7, %%g1\n\t"
254                              "membar    #StoreLoad | #StoreStore\n\t"
255                              "bne,pn    %%xcc, 1b\n\t"
256                              " nop"
257                              : /* no outputs */
258                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
259                              : "g1", "g7");
260 }
261
262 static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
263 {
264         unsigned long mask = (1UL << PG_dcache_dirty);
265
266         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
267                              "1:\n\t"
268                              "ldx       [%2], %%g7\n\t"
269                              "srlx      %%g7, %4, %%g1\n\t"
270                              "and       %%g1, %3, %%g1\n\t"
271                              "cmp       %%g1, %0\n\t"
272                              "bne,pn    %%icc, 2f\n\t"
273                              " andn     %%g7, %1, %%g1\n\t"
274                              "casx      [%2], %%g7, %%g1\n\t"
275                              "cmp       %%g7, %%g1\n\t"
276                              "membar    #StoreLoad | #StoreStore\n\t"
277                              "bne,pn    %%xcc, 1b\n\t"
278                              " nop\n"
279                              "2:"
280                              : /* no outputs */
281                              : "r" (cpu), "r" (mask), "r" (&page->flags),
282                                "i" (PG_dcache_cpu_mask),
283                                "i" (PG_dcache_cpu_shift)
284                              : "g1", "g7");
285 }
286
287 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
288 {
289         unsigned long tsb_addr = (unsigned long) ent;
290
291         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
292                 tsb_addr = __pa(tsb_addr);
293
294         __tsb_insert(tsb_addr, tag, pte);
295 }
296
297 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
298 unsigned long _PAGE_SZBITS __read_mostly;
299
300 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
301 {
302         struct mm_struct *mm;
303         struct tsb *tsb;
304         unsigned long tag, flags;
305         unsigned long tsb_index, tsb_hash_shift;
306
307         if (tlb_type != hypervisor) {
308                 unsigned long pfn = pte_pfn(pte);
309                 unsigned long pg_flags;
310                 struct page *page;
311
312                 if (pfn_valid(pfn) &&
313                     (page = pfn_to_page(pfn), page_mapping(page)) &&
314                     ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
315                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
316                                    PG_dcache_cpu_mask);
317                         int this_cpu = get_cpu();
318
319                         /* This is just to optimize away some function calls
320                          * in the SMP case.
321                          */
322                         if (cpu == this_cpu)
323                                 flush_dcache_page_impl(page);
324                         else
325                                 smp_flush_dcache_page_impl(page, cpu);
326
327                         clear_dcache_dirty_cpu(page, cpu);
328
329                         put_cpu();
330                 }
331         }
332
333         mm = vma->vm_mm;
334
335         tsb_index = MM_TSB_BASE;
336         tsb_hash_shift = PAGE_SHIFT;
337
338         spin_lock_irqsave(&mm->context.lock, flags);
339
340 #ifdef CONFIG_HUGETLB_PAGE
341         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
342                 if ((tlb_type == hypervisor &&
343                      (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
344                     (tlb_type != hypervisor &&
345                      (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
346                         tsb_index = MM_TSB_HUGE;
347                         tsb_hash_shift = HPAGE_SHIFT;
348                 }
349         }
350 #endif
351
352         tsb = mm->context.tsb_block[tsb_index].tsb;
353         tsb += ((address >> tsb_hash_shift) &
354                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
355         tag = (address >> 22UL);
356         tsb_insert(tsb, tag, pte_val(pte));
357
358         spin_unlock_irqrestore(&mm->context.lock, flags);
359 }
360
361 void flush_dcache_page(struct page *page)
362 {
363         struct address_space *mapping;
364         int this_cpu;
365
366         if (tlb_type == hypervisor)
367                 return;
368
369         /* Do not bother with the expensive D-cache flush if it
370          * is merely the zero page.  The 'bigcore' testcase in GDB
371          * causes this case to run millions of times.
372          */
373         if (page == ZERO_PAGE(0))
374                 return;
375
376         this_cpu = get_cpu();
377
378         mapping = page_mapping(page);
379         if (mapping && !mapping_mapped(mapping)) {
380                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
381                 if (dirty) {
382                         int dirty_cpu = dcache_dirty_cpu(page);
383
384                         if (dirty_cpu == this_cpu)
385                                 goto out;
386                         smp_flush_dcache_page_impl(page, dirty_cpu);
387                 }
388                 set_dcache_dirty(page, this_cpu);
389         } else {
390                 /* We could delay the flush for the !page_mapping
391                  * case too.  But that case is for exec env/arg
392                  * pages and those are %99 certainly going to get
393                  * faulted into the tlb (and thus flushed) anyways.
394                  */
395                 flush_dcache_page_impl(page);
396         }
397
398 out:
399         put_cpu();
400 }
401
402 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
403 {
404         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
405         if (tlb_type == spitfire) {
406                 unsigned long kaddr;
407
408                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
409                         __flush_icache_page(__get_phys(kaddr));
410         }
411 }
412
413 void show_mem(void)
414 {
415         printk("Mem-info:\n");
416         show_free_areas();
417         printk("Free swap:       %6ldkB\n",
418                nr_swap_pages << (PAGE_SHIFT-10));
419         printk("%ld pages of RAM\n", num_physpages);
420         printk("%d free pages\n", nr_free_pages());
421 }
422
423 void mmu_info(struct seq_file *m)
424 {
425         if (tlb_type == cheetah)
426                 seq_printf(m, "MMU Type\t: Cheetah\n");
427         else if (tlb_type == cheetah_plus)
428                 seq_printf(m, "MMU Type\t: Cheetah+\n");
429         else if (tlb_type == spitfire)
430                 seq_printf(m, "MMU Type\t: Spitfire\n");
431         else if (tlb_type == hypervisor)
432                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
433         else
434                 seq_printf(m, "MMU Type\t: ???\n");
435
436 #ifdef CONFIG_DEBUG_DCFLUSH
437         seq_printf(m, "DCPageFlushes\t: %d\n",
438                    atomic_read(&dcpage_flushes));
439 #ifdef CONFIG_SMP
440         seq_printf(m, "DCPageFlushesXC\t: %d\n",
441                    atomic_read(&dcpage_flushes_xcall));
442 #endif /* CONFIG_SMP */
443 #endif /* CONFIG_DEBUG_DCFLUSH */
444 }
445
446 struct linux_prom_translation {
447         unsigned long virt;
448         unsigned long size;
449         unsigned long data;
450 };
451
452 /* Exported for kernel TLB miss handling in ktlb.S */
453 struct linux_prom_translation prom_trans[512] __read_mostly;
454 unsigned int prom_trans_ents __read_mostly;
455
456 /* Exported for SMP bootup purposes. */
457 unsigned long kern_locked_tte_data;
458
459 /* The obp translations are saved based on 8k pagesize, since obp can
460  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
461  * HI_OBP_ADDRESS range are handled in ktlb.S.
462  */
463 static inline int in_obp_range(unsigned long vaddr)
464 {
465         return (vaddr >= LOW_OBP_ADDRESS &&
466                 vaddr < HI_OBP_ADDRESS);
467 }
468
469 static int cmp_ptrans(const void *a, const void *b)
470 {
471         const struct linux_prom_translation *x = a, *y = b;
472
473         if (x->virt > y->virt)
474                 return 1;
475         if (x->virt < y->virt)
476                 return -1;
477         return 0;
478 }
479
480 /* Read OBP translations property into 'prom_trans[]'.  */
481 static void __init read_obp_translations(void)
482 {
483         int n, node, ents, first, last, i;
484
485         node = prom_finddevice("/virtual-memory");
486         n = prom_getproplen(node, "translations");
487         if (unlikely(n == 0 || n == -1)) {
488                 prom_printf("prom_mappings: Couldn't get size.\n");
489                 prom_halt();
490         }
491         if (unlikely(n > sizeof(prom_trans))) {
492                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
493                 prom_halt();
494         }
495
496         if ((n = prom_getproperty(node, "translations",
497                                   (char *)&prom_trans[0],
498                                   sizeof(prom_trans))) == -1) {
499                 prom_printf("prom_mappings: Couldn't get property.\n");
500                 prom_halt();
501         }
502
503         n = n / sizeof(struct linux_prom_translation);
504
505         ents = n;
506
507         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
508              cmp_ptrans, NULL);
509
510         /* Now kick out all the non-OBP entries.  */
511         for (i = 0; i < ents; i++) {
512                 if (in_obp_range(prom_trans[i].virt))
513                         break;
514         }
515         first = i;
516         for (; i < ents; i++) {
517                 if (!in_obp_range(prom_trans[i].virt))
518                         break;
519         }
520         last = i;
521
522         for (i = 0; i < (last - first); i++) {
523                 struct linux_prom_translation *src = &prom_trans[i + first];
524                 struct linux_prom_translation *dest = &prom_trans[i];
525
526                 *dest = *src;
527         }
528         for (; i < ents; i++) {
529                 struct linux_prom_translation *dest = &prom_trans[i];
530                 dest->virt = dest->size = dest->data = 0x0UL;
531         }
532
533         prom_trans_ents = last - first;
534
535         if (tlb_type == spitfire) {
536                 /* Clear diag TTE bits. */
537                 for (i = 0; i < prom_trans_ents; i++)
538                         prom_trans[i].data &= ~0x0003fe0000000000UL;
539         }
540 }
541
542 static void __init hypervisor_tlb_lock(unsigned long vaddr,
543                                        unsigned long pte,
544                                        unsigned long mmu)
545 {
546         register unsigned long func asm("%o5");
547         register unsigned long arg0 asm("%o0");
548         register unsigned long arg1 asm("%o1");
549         register unsigned long arg2 asm("%o2");
550         register unsigned long arg3 asm("%o3");
551
552         func = HV_FAST_MMU_MAP_PERM_ADDR;
553         arg0 = vaddr;
554         arg1 = 0;
555         arg2 = pte;
556         arg3 = mmu;
557         __asm__ __volatile__("ta        0x80"
558                              : "=&r" (func), "=&r" (arg0),
559                                "=&r" (arg1), "=&r" (arg2),
560                                "=&r" (arg3)
561                              : "0" (func), "1" (arg0), "2" (arg1),
562                                "3" (arg2), "4" (arg3));
563         if (arg0 != 0) {
564                 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
565                             "errors with %lx\n", vaddr, 0, pte, mmu, arg0);
566                 prom_halt();
567         }
568 }
569
570 static unsigned long kern_large_tte(unsigned long paddr);
571
572 static void __init remap_kernel(void)
573 {
574         unsigned long phys_page, tte_vaddr, tte_data;
575         int tlb_ent = sparc64_highest_locked_tlbent();
576
577         tte_vaddr = (unsigned long) KERNBASE;
578         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
579         tte_data = kern_large_tte(phys_page);
580
581         kern_locked_tte_data = tte_data;
582
583         /* Now lock us into the TLBs via Hypervisor or OBP. */
584         if (tlb_type == hypervisor) {
585                 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
586                 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
587                 if (bigkernel) {
588                         tte_vaddr += 0x400000;
589                         tte_data += 0x400000;
590                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
591                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
592                 }
593         } else {
594                 prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
595                 prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
596                 if (bigkernel) {
597                         tlb_ent -= 1;
598                         prom_dtlb_load(tlb_ent,
599                                        tte_data + 0x400000, 
600                                        tte_vaddr + 0x400000);
601                         prom_itlb_load(tlb_ent,
602                                        tte_data + 0x400000, 
603                                        tte_vaddr + 0x400000);
604                 }
605                 sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
606         }
607         if (tlb_type == cheetah_plus) {
608                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
609                                             CTX_CHEETAH_PLUS_NUC);
610                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
611                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
612         }
613 }
614
615
616 static void __init inherit_prom_mappings(void)
617 {
618         read_obp_translations();
619
620         /* Now fixup OBP's idea about where we really are mapped. */
621         prom_printf("Remapping the kernel... ");
622         remap_kernel();
623         prom_printf("done.\n");
624 }
625
626 void prom_world(int enter)
627 {
628         if (!enter)
629                 set_fs((mm_segment_t) { get_thread_current_ds() });
630
631         __asm__ __volatile__("flushw");
632 }
633
634 #ifdef DCACHE_ALIASING_POSSIBLE
635 void __flush_dcache_range(unsigned long start, unsigned long end)
636 {
637         unsigned long va;
638
639         if (tlb_type == spitfire) {
640                 int n = 0;
641
642                 for (va = start; va < end; va += 32) {
643                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
644                         if (++n >= 512)
645                                 break;
646                 }
647         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
648                 start = __pa(start);
649                 end = __pa(end);
650                 for (va = start; va < end; va += 32)
651                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
652                                              "membar #Sync"
653                                              : /* no outputs */
654                                              : "r" (va),
655                                                "i" (ASI_DCACHE_INVALIDATE));
656         }
657 }
658 #endif /* DCACHE_ALIASING_POSSIBLE */
659
660 /* Caller does TLB context flushing on local CPU if necessary.
661  * The caller also ensures that CTX_VALID(mm->context) is false.
662  *
663  * We must be careful about boundary cases so that we never
664  * let the user have CTX 0 (nucleus) or we ever use a CTX
665  * version of zero (and thus NO_CONTEXT would not be caught
666  * by version mis-match tests in mmu_context.h).
667  *
668  * Always invoked with interrupts disabled.
669  */
670 void get_new_mmu_context(struct mm_struct *mm)
671 {
672         unsigned long ctx, new_ctx;
673         unsigned long orig_pgsz_bits;
674         unsigned long flags;
675         int new_version;
676
677         spin_lock_irqsave(&ctx_alloc_lock, flags);
678         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
679         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
680         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
681         new_version = 0;
682         if (new_ctx >= (1 << CTX_NR_BITS)) {
683                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
684                 if (new_ctx >= ctx) {
685                         int i;
686                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
687                                 CTX_FIRST_VERSION;
688                         if (new_ctx == 1)
689                                 new_ctx = CTX_FIRST_VERSION;
690
691                         /* Don't call memset, for 16 entries that's just
692                          * plain silly...
693                          */
694                         mmu_context_bmap[0] = 3;
695                         mmu_context_bmap[1] = 0;
696                         mmu_context_bmap[2] = 0;
697                         mmu_context_bmap[3] = 0;
698                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
699                                 mmu_context_bmap[i + 0] = 0;
700                                 mmu_context_bmap[i + 1] = 0;
701                                 mmu_context_bmap[i + 2] = 0;
702                                 mmu_context_bmap[i + 3] = 0;
703                         }
704                         new_version = 1;
705                         goto out;
706                 }
707         }
708         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
709         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
710 out:
711         tlb_context_cache = new_ctx;
712         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
713         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
714
715         if (unlikely(new_version))
716                 smp_new_mmu_context_version();
717 }
718
719 void sparc_ultra_dump_itlb(void)
720 {
721         int slot;
722
723         if (tlb_type == spitfire) {
724                 printk ("Contents of itlb: ");
725                 for (slot = 0; slot < 14; slot++) printk ("    ");
726                 printk ("%2x:%016lx,%016lx\n",
727                         0,
728                         spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
729                 for (slot = 1; slot < 64; slot+=3) {
730                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n", 
731                                 slot,
732                                 spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
733                                 slot+1,
734                                 spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
735                                 slot+2,
736                                 spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
737                 }
738         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
739                 printk ("Contents of itlb0:\n");
740                 for (slot = 0; slot < 16; slot+=2) {
741                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
742                                 slot,
743                                 cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
744                                 slot+1,
745                                 cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
746                 }
747                 printk ("Contents of itlb2:\n");
748                 for (slot = 0; slot < 128; slot+=2) {
749                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
750                                 slot,
751                                 cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
752                                 slot+1,
753                                 cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
754                 }
755         }
756 }
757
758 void sparc_ultra_dump_dtlb(void)
759 {
760         int slot;
761
762         if (tlb_type == spitfire) {
763                 printk ("Contents of dtlb: ");
764                 for (slot = 0; slot < 14; slot++) printk ("    ");
765                 printk ("%2x:%016lx,%016lx\n", 0,
766                         spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
767                 for (slot = 1; slot < 64; slot+=3) {
768                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n", 
769                                 slot,
770                                 spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
771                                 slot+1,
772                                 spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
773                                 slot+2,
774                                 spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
775                 }
776         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
777                 printk ("Contents of dtlb0:\n");
778                 for (slot = 0; slot < 16; slot+=2) {
779                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
780                                 slot,
781                                 cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
782                                 slot+1,
783                                 cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
784                 }
785                 printk ("Contents of dtlb2:\n");
786                 for (slot = 0; slot < 512; slot+=2) {
787                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
788                                 slot,
789                                 cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
790                                 slot+1,
791                                 cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
792                 }
793                 if (tlb_type == cheetah_plus) {
794                         printk ("Contents of dtlb3:\n");
795                         for (slot = 0; slot < 512; slot+=2) {
796                                 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
797                                         slot,
798                                         cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
799                                         slot+1,
800                                         cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
801                         }
802                 }
803         }
804 }
805
806 extern unsigned long cmdline_memory_size;
807
808 /* Find a free area for the bootmem map, avoiding the kernel image
809  * and the initial ramdisk.
810  */
811 static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
812                                                unsigned long end_pfn)
813 {
814         unsigned long avoid_start, avoid_end, bootmap_size;
815         int i;
816
817         bootmap_size = ((end_pfn - start_pfn) + 7) / 8;
818         bootmap_size = ALIGN(bootmap_size, sizeof(long));
819
820         avoid_start = avoid_end = 0;
821 #ifdef CONFIG_BLK_DEV_INITRD
822         avoid_start = initrd_start;
823         avoid_end = PAGE_ALIGN(initrd_end);
824 #endif
825
826 #ifdef CONFIG_DEBUG_BOOTMEM
827         prom_printf("choose_bootmap_pfn: kern[%lx:%lx] avoid[%lx:%lx]\n",
828                     kern_base, PAGE_ALIGN(kern_base + kern_size),
829                     avoid_start, avoid_end);
830 #endif
831         for (i = 0; i < pavail_ents; i++) {
832                 unsigned long start, end;
833
834                 start = pavail[i].phys_addr;
835                 end = start + pavail[i].reg_size;
836
837                 while (start < end) {
838                         if (start >= kern_base &&
839                             start < PAGE_ALIGN(kern_base + kern_size)) {
840                                 start = PAGE_ALIGN(kern_base + kern_size);
841                                 continue;
842                         }
843                         if (start >= avoid_start && start < avoid_end) {
844                                 start = avoid_end;
845                                 continue;
846                         }
847
848                         if ((end - start) < bootmap_size)
849                                 break;
850
851                         if (start < kern_base &&
852                             (start + bootmap_size) > kern_base) {
853                                 start = PAGE_ALIGN(kern_base + kern_size);
854                                 continue;
855                         }
856
857                         if (start < avoid_start &&
858                             (start + bootmap_size) > avoid_start) {
859                                 start = avoid_end;
860                                 continue;
861                         }
862
863                         /* OK, it doesn't overlap anything, use it.  */
864 #ifdef CONFIG_DEBUG_BOOTMEM
865                         prom_printf("choose_bootmap_pfn: Using %lx [%lx]\n",
866                                     start >> PAGE_SHIFT, start);
867 #endif
868                         return start >> PAGE_SHIFT;
869                 }
870         }
871
872         prom_printf("Cannot find free area for bootmap, aborting.\n");
873         prom_halt();
874 }
875
876 static unsigned long __init bootmem_init(unsigned long *pages_avail,
877                                          unsigned long phys_base)
878 {
879         unsigned long bootmap_size, end_pfn;
880         unsigned long end_of_phys_memory = 0UL;
881         unsigned long bootmap_pfn, bytes_avail, size;
882         int i;
883
884 #ifdef CONFIG_DEBUG_BOOTMEM
885         prom_printf("bootmem_init: Scan pavail, ");
886 #endif
887
888         bytes_avail = 0UL;
889         for (i = 0; i < pavail_ents; i++) {
890                 end_of_phys_memory = pavail[i].phys_addr +
891                         pavail[i].reg_size;
892                 bytes_avail += pavail[i].reg_size;
893                 if (cmdline_memory_size) {
894                         if (bytes_avail > cmdline_memory_size) {
895                                 unsigned long slack = bytes_avail - cmdline_memory_size;
896
897                                 bytes_avail -= slack;
898                                 end_of_phys_memory -= slack;
899
900                                 pavail[i].reg_size -= slack;
901                                 if ((long)pavail[i].reg_size <= 0L) {
902                                         pavail[i].phys_addr = 0xdeadbeefUL;
903                                         pavail[i].reg_size = 0UL;
904                                         pavail_ents = i;
905                                 } else {
906                                         pavail[i+1].reg_size = 0Ul;
907                                         pavail[i+1].phys_addr = 0xdeadbeefUL;
908                                         pavail_ents = i + 1;
909                                 }
910                                 break;
911                         }
912                 }
913         }
914
915         *pages_avail = bytes_avail >> PAGE_SHIFT;
916
917         end_pfn = end_of_phys_memory >> PAGE_SHIFT;
918
919 #ifdef CONFIG_BLK_DEV_INITRD
920         /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
921         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
922                 unsigned long ramdisk_image = sparc_ramdisk_image ?
923                         sparc_ramdisk_image : sparc_ramdisk_image64;
924                 if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
925                         ramdisk_image -= KERNBASE;
926                 initrd_start = ramdisk_image + phys_base;
927                 initrd_end = initrd_start + sparc_ramdisk_size;
928                 if (initrd_end > end_of_phys_memory) {
929                         printk(KERN_CRIT "initrd extends beyond end of memory "
930                                          "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
931                                initrd_end, end_of_phys_memory);
932                         initrd_start = 0;
933                         initrd_end = 0;
934                 }
935         }
936 #endif  
937         /* Initialize the boot-time allocator. */
938         max_pfn = max_low_pfn = end_pfn;
939         min_low_pfn = (phys_base >> PAGE_SHIFT);
940
941         bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn);
942
943 #ifdef CONFIG_DEBUG_BOOTMEM
944         prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
945                     min_low_pfn, bootmap_pfn, max_low_pfn);
946 #endif
947         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn,
948                                          min_low_pfn, end_pfn);
949
950         /* Now register the available physical memory with the
951          * allocator.
952          */
953         for (i = 0; i < pavail_ents; i++) {
954 #ifdef CONFIG_DEBUG_BOOTMEM
955                 prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
956                             i, pavail[i].phys_addr, pavail[i].reg_size);
957 #endif
958                 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
959         }
960
961 #ifdef CONFIG_BLK_DEV_INITRD
962         if (initrd_start) {
963                 size = initrd_end - initrd_start;
964
965                 /* Resert the initrd image area. */
966 #ifdef CONFIG_DEBUG_BOOTMEM
967                 prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
968                         initrd_start, initrd_end);
969 #endif
970                 reserve_bootmem(initrd_start, size);
971                 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
972
973                 initrd_start += PAGE_OFFSET;
974                 initrd_end += PAGE_OFFSET;
975         }
976 #endif
977         /* Reserve the kernel text/data/bss. */
978 #ifdef CONFIG_DEBUG_BOOTMEM
979         prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
980 #endif
981         reserve_bootmem(kern_base, kern_size);
982         *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
983
984         /* Reserve the bootmem map.   We do not account for it
985          * in pages_avail because we will release that memory
986          * in free_all_bootmem.
987          */
988         size = bootmap_size;
989 #ifdef CONFIG_DEBUG_BOOTMEM
990         prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
991                     (bootmap_pfn << PAGE_SHIFT), size);
992 #endif
993         reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
994         *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
995
996         for (i = 0; i < pavail_ents; i++) {
997                 unsigned long start_pfn, end_pfn;
998
999                 start_pfn = pavail[i].phys_addr >> PAGE_SHIFT;
1000                 end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT));
1001 #ifdef CONFIG_DEBUG_BOOTMEM
1002                 prom_printf("memory_present(0, %lx, %lx)\n",
1003                             start_pfn, end_pfn);
1004 #endif
1005                 memory_present(0, start_pfn, end_pfn);
1006         }
1007
1008         sparse_init();
1009
1010         return end_pfn;
1011 }
1012
1013 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1014 static int pall_ents __initdata;
1015
1016 #ifdef CONFIG_DEBUG_PAGEALLOC
1017 static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
1018 {
1019         unsigned long vstart = PAGE_OFFSET + pstart;
1020         unsigned long vend = PAGE_OFFSET + pend;
1021         unsigned long alloc_bytes = 0UL;
1022
1023         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1024                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1025                             vstart, vend);
1026                 prom_halt();
1027         }
1028
1029         while (vstart < vend) {
1030                 unsigned long this_end, paddr = __pa(vstart);
1031                 pgd_t *pgd = pgd_offset_k(vstart);
1032                 pud_t *pud;
1033                 pmd_t *pmd;
1034                 pte_t *pte;
1035
1036                 pud = pud_offset(pgd, vstart);
1037                 if (pud_none(*pud)) {
1038                         pmd_t *new;
1039
1040                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1041                         alloc_bytes += PAGE_SIZE;
1042                         pud_populate(&init_mm, pud, new);
1043                 }
1044
1045                 pmd = pmd_offset(pud, vstart);
1046                 if (!pmd_present(*pmd)) {
1047                         pte_t *new;
1048
1049                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1050                         alloc_bytes += PAGE_SIZE;
1051                         pmd_populate_kernel(&init_mm, pmd, new);
1052                 }
1053
1054                 pte = pte_offset_kernel(pmd, vstart);
1055                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1056                 if (this_end > vend)
1057                         this_end = vend;
1058
1059                 while (vstart < this_end) {
1060                         pte_val(*pte) = (paddr | pgprot_val(prot));
1061
1062                         vstart += PAGE_SIZE;
1063                         paddr += PAGE_SIZE;
1064                         pte++;
1065                 }
1066         }
1067
1068         return alloc_bytes;
1069 }
1070
1071 extern unsigned int kvmap_linear_patch[1];
1072 #endif /* CONFIG_DEBUG_PAGEALLOC */
1073
1074 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1075 {
1076         const unsigned long shift_256MB = 28;
1077         const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1078         const unsigned long size_256MB = (1UL << shift_256MB);
1079
1080         while (start < end) {
1081                 long remains;
1082
1083                 remains = end - start;
1084                 if (remains < size_256MB)
1085                         break;
1086
1087                 if (start & mask_256MB) {
1088                         start = (start + size_256MB) & ~mask_256MB;
1089                         continue;
1090                 }
1091
1092                 while (remains >= size_256MB) {
1093                         unsigned long index = start >> shift_256MB;
1094
1095                         __set_bit(index, kpte_linear_bitmap);
1096
1097                         start += size_256MB;
1098                         remains -= size_256MB;
1099                 }
1100         }
1101 }
1102
1103 static void __init kernel_physical_mapping_init(void)
1104 {
1105         unsigned long i;
1106 #ifdef CONFIG_DEBUG_PAGEALLOC
1107         unsigned long mem_alloced = 0UL;
1108 #endif
1109
1110         read_obp_memory("reg", &pall[0], &pall_ents);
1111
1112         for (i = 0; i < pall_ents; i++) {
1113                 unsigned long phys_start, phys_end;
1114
1115                 phys_start = pall[i].phys_addr;
1116                 phys_end = phys_start + pall[i].reg_size;
1117
1118                 mark_kpte_bitmap(phys_start, phys_end);
1119
1120 #ifdef CONFIG_DEBUG_PAGEALLOC
1121                 mem_alloced += kernel_map_range(phys_start, phys_end,
1122                                                 PAGE_KERNEL);
1123 #endif
1124         }
1125
1126 #ifdef CONFIG_DEBUG_PAGEALLOC
1127         printk("Allocated %ld bytes for kernel page tables.\n",
1128                mem_alloced);
1129
1130         kvmap_linear_patch[0] = 0x01000000; /* nop */
1131         flushi(&kvmap_linear_patch[0]);
1132
1133         __flush_tlb_all();
1134 #endif
1135 }
1136
1137 #ifdef CONFIG_DEBUG_PAGEALLOC
1138 void kernel_map_pages(struct page *page, int numpages, int enable)
1139 {
1140         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1141         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1142
1143         kernel_map_range(phys_start, phys_end,
1144                          (enable ? PAGE_KERNEL : __pgprot(0)));
1145
1146         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1147                                PAGE_OFFSET + phys_end);
1148
1149         /* we should perform an IPI and flush all tlbs,
1150          * but that can deadlock->flush only current cpu.
1151          */
1152         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1153                                  PAGE_OFFSET + phys_end);
1154 }
1155 #endif
1156
1157 unsigned long __init find_ecache_flush_span(unsigned long size)
1158 {
1159         int i;
1160
1161         for (i = 0; i < pavail_ents; i++) {
1162                 if (pavail[i].reg_size >= size)
1163                         return pavail[i].phys_addr;
1164         }
1165
1166         return ~0UL;
1167 }
1168
1169 static void __init tsb_phys_patch(void)
1170 {
1171         struct tsb_ldquad_phys_patch_entry *pquad;
1172         struct tsb_phys_patch_entry *p;
1173
1174         pquad = &__tsb_ldquad_phys_patch;
1175         while (pquad < &__tsb_ldquad_phys_patch_end) {
1176                 unsigned long addr = pquad->addr;
1177
1178                 if (tlb_type == hypervisor)
1179                         *(unsigned int *) addr = pquad->sun4v_insn;
1180                 else
1181                         *(unsigned int *) addr = pquad->sun4u_insn;
1182                 wmb();
1183                 __asm__ __volatile__("flush     %0"
1184                                      : /* no outputs */
1185                                      : "r" (addr));
1186
1187                 pquad++;
1188         }
1189
1190         p = &__tsb_phys_patch;
1191         while (p < &__tsb_phys_patch_end) {
1192                 unsigned long addr = p->addr;
1193
1194                 *(unsigned int *) addr = p->insn;
1195                 wmb();
1196                 __asm__ __volatile__("flush     %0"
1197                                      : /* no outputs */
1198                                      : "r" (addr));
1199
1200                 p++;
1201         }
1202 }
1203
1204 /* Don't mark as init, we give this to the Hypervisor.  */
1205 static struct hv_tsb_descr ktsb_descr[2];
1206 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1207
1208 static void __init sun4v_ktsb_init(void)
1209 {
1210         unsigned long ktsb_pa;
1211
1212         /* First KTSB for PAGE_SIZE mappings.  */
1213         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1214
1215         switch (PAGE_SIZE) {
1216         case 8 * 1024:
1217         default:
1218                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1219                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1220                 break;
1221
1222         case 64 * 1024:
1223                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1224                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1225                 break;
1226
1227         case 512 * 1024:
1228                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1229                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1230                 break;
1231
1232         case 4 * 1024 * 1024:
1233                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1234                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1235                 break;
1236         };
1237
1238         ktsb_descr[0].assoc = 1;
1239         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1240         ktsb_descr[0].ctx_idx = 0;
1241         ktsb_descr[0].tsb_base = ktsb_pa;
1242         ktsb_descr[0].resv = 0;
1243
1244         /* Second KTSB for 4MB/256MB mappings.  */
1245         ktsb_pa = (kern_base +
1246                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1247
1248         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1249         ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1250                                    HV_PGSZ_MASK_256MB);
1251         ktsb_descr[1].assoc = 1;
1252         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1253         ktsb_descr[1].ctx_idx = 0;
1254         ktsb_descr[1].tsb_base = ktsb_pa;
1255         ktsb_descr[1].resv = 0;
1256 }
1257
1258 void __cpuinit sun4v_ktsb_register(void)
1259 {
1260         register unsigned long func asm("%o5");
1261         register unsigned long arg0 asm("%o0");
1262         register unsigned long arg1 asm("%o1");
1263         unsigned long pa;
1264
1265         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1266
1267         func = HV_FAST_MMU_TSB_CTX0;
1268         arg0 = 2;
1269         arg1 = pa;
1270         __asm__ __volatile__("ta        %6"
1271                              : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
1272                              : "0" (func), "1" (arg0), "2" (arg1),
1273                                "i" (HV_FAST_TRAP));
1274 }
1275
1276 /* paging_init() sets up the page tables */
1277
1278 extern void cheetah_ecache_flush_init(void);
1279 extern void sun4v_patch_tlb_handlers(void);
1280
1281 static unsigned long last_valid_pfn;
1282 pgd_t swapper_pg_dir[2048];
1283
1284 static void sun4u_pgprot_init(void);
1285 static void sun4v_pgprot_init(void);
1286
1287 void __init paging_init(void)
1288 {
1289         unsigned long end_pfn, pages_avail, shift, phys_base;
1290         unsigned long real_end, i;
1291
1292         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1293         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1294
1295         /* Invalidate both kernel TSBs.  */
1296         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1297         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1298
1299         if (tlb_type == hypervisor)
1300                 sun4v_pgprot_init();
1301         else
1302                 sun4u_pgprot_init();
1303
1304         if (tlb_type == cheetah_plus ||
1305             tlb_type == hypervisor)
1306                 tsb_phys_patch();
1307
1308         if (tlb_type == hypervisor) {
1309                 sun4v_patch_tlb_handlers();
1310                 sun4v_ktsb_init();
1311         }
1312
1313         /* Find available physical memory... */
1314         read_obp_memory("available", &pavail[0], &pavail_ents);
1315
1316         phys_base = 0xffffffffffffffffUL;
1317         for (i = 0; i < pavail_ents; i++)
1318                 phys_base = min(phys_base, pavail[i].phys_addr);
1319
1320         set_bit(0, mmu_context_bmap);
1321
1322         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1323
1324         real_end = (unsigned long)_end;
1325         if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
1326                 bigkernel = 1;
1327         if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
1328                 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1329                 prom_halt();
1330         }
1331
1332         /* Set kernel pgd to upper alias so physical page computations
1333          * work.
1334          */
1335         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1336         
1337         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1338
1339         /* Now can init the kernel/bad page tables. */
1340         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1341                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1342         
1343         inherit_prom_mappings();
1344         
1345         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1346         setup_tba();
1347
1348         __flush_tlb_all();
1349
1350         if (tlb_type == hypervisor)
1351                 sun4v_ktsb_register();
1352
1353         /* Setup bootmem... */
1354         pages_avail = 0;
1355         last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
1356
1357         max_mapnr = last_valid_pfn;
1358
1359         kernel_physical_mapping_init();
1360
1361         prom_build_devicetree();
1362
1363         {
1364                 unsigned long zones_size[MAX_NR_ZONES];
1365                 unsigned long zholes_size[MAX_NR_ZONES];
1366                 int znum;
1367
1368                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1369                         zones_size[znum] = zholes_size[znum] = 0;
1370
1371                 zones_size[ZONE_DMA] = end_pfn;
1372                 zholes_size[ZONE_DMA] = end_pfn - pages_avail;
1373
1374                 free_area_init_node(0, &contig_page_data, zones_size,
1375                                     __pa(PAGE_OFFSET) >> PAGE_SHIFT,
1376                                     zholes_size);
1377         }
1378
1379         device_scan();
1380 }
1381
1382 static void __init taint_real_pages(void)
1383 {
1384         int i;
1385
1386         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1387
1388         /* Find changes discovered in the physmem available rescan and
1389          * reserve the lost portions in the bootmem maps.
1390          */
1391         for (i = 0; i < pavail_ents; i++) {
1392                 unsigned long old_start, old_end;
1393
1394                 old_start = pavail[i].phys_addr;
1395                 old_end = old_start +
1396                         pavail[i].reg_size;
1397                 while (old_start < old_end) {
1398                         int n;
1399
1400                         for (n = 0; n < pavail_rescan_ents; n++) {
1401                                 unsigned long new_start, new_end;
1402
1403                                 new_start = pavail_rescan[n].phys_addr;
1404                                 new_end = new_start +
1405                                         pavail_rescan[n].reg_size;
1406
1407                                 if (new_start <= old_start &&
1408                                     new_end >= (old_start + PAGE_SIZE)) {
1409                                         set_bit(old_start >> 22,
1410                                                 sparc64_valid_addr_bitmap);
1411                                         goto do_next_page;
1412                                 }
1413                         }
1414                         reserve_bootmem(old_start, PAGE_SIZE);
1415
1416                 do_next_page:
1417                         old_start += PAGE_SIZE;
1418                 }
1419         }
1420 }
1421
1422 int __init page_in_phys_avail(unsigned long paddr)
1423 {
1424         int i;
1425
1426         paddr &= PAGE_MASK;
1427
1428         for (i = 0; i < pavail_rescan_ents; i++) {
1429                 unsigned long start, end;
1430
1431                 start = pavail_rescan[i].phys_addr;
1432                 end = start + pavail_rescan[i].reg_size;
1433
1434                 if (paddr >= start && paddr < end)
1435                         return 1;
1436         }
1437         if (paddr >= kern_base && paddr < (kern_base + kern_size))
1438                 return 1;
1439 #ifdef CONFIG_BLK_DEV_INITRD
1440         if (paddr >= __pa(initrd_start) &&
1441             paddr < __pa(PAGE_ALIGN(initrd_end)))
1442                 return 1;
1443 #endif
1444
1445         return 0;
1446 }
1447
1448 void __init mem_init(void)
1449 {
1450         unsigned long codepages, datapages, initpages;
1451         unsigned long addr, last;
1452         int i;
1453
1454         i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1455         i += 1;
1456         sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1457         if (sparc64_valid_addr_bitmap == NULL) {
1458                 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1459                 prom_halt();
1460         }
1461         memset(sparc64_valid_addr_bitmap, 0, i << 3);
1462
1463         addr = PAGE_OFFSET + kern_base;
1464         last = PAGE_ALIGN(kern_size) + addr;
1465         while (addr < last) {
1466                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1467                 addr += PAGE_SIZE;
1468         }
1469
1470         taint_real_pages();
1471
1472         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1473
1474 #ifdef CONFIG_DEBUG_BOOTMEM
1475         prom_printf("mem_init: Calling free_all_bootmem().\n");
1476 #endif
1477         totalram_pages = num_physpages = free_all_bootmem() - 1;
1478
1479         /*
1480          * Set up the zero page, mark it reserved, so that page count
1481          * is not manipulated when freeing the page from user ptes.
1482          */
1483         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1484         if (mem_map_zero == NULL) {
1485                 prom_printf("paging_init: Cannot alloc zero page.\n");
1486                 prom_halt();
1487         }
1488         SetPageReserved(mem_map_zero);
1489
1490         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1491         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1492         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1493         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1494         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1495         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1496
1497         printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1498                nr_free_pages() << (PAGE_SHIFT-10),
1499                codepages << (PAGE_SHIFT-10),
1500                datapages << (PAGE_SHIFT-10), 
1501                initpages << (PAGE_SHIFT-10), 
1502                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1503
1504         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1505                 cheetah_ecache_flush_init();
1506 }
1507
1508 void free_initmem(void)
1509 {
1510         unsigned long addr, initend;
1511
1512         /*
1513          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1514          */
1515         addr = PAGE_ALIGN((unsigned long)(__init_begin));
1516         initend = (unsigned long)(__init_end) & PAGE_MASK;
1517         for (; addr < initend; addr += PAGE_SIZE) {
1518                 unsigned long page;
1519                 struct page *p;
1520
1521                 page = (addr +
1522                         ((unsigned long) __va(kern_base)) -
1523                         ((unsigned long) KERNBASE));
1524                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1525                 p = virt_to_page(page);
1526
1527                 ClearPageReserved(p);
1528                 init_page_count(p);
1529                 __free_page(p);
1530                 num_physpages++;
1531                 totalram_pages++;
1532         }
1533 }
1534
1535 #ifdef CONFIG_BLK_DEV_INITRD
1536 void free_initrd_mem(unsigned long start, unsigned long end)
1537 {
1538         if (start < end)
1539                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1540         for (; start < end; start += PAGE_SIZE) {
1541                 struct page *p = virt_to_page(start);
1542
1543                 ClearPageReserved(p);
1544                 init_page_count(p);
1545                 __free_page(p);
1546                 num_physpages++;
1547                 totalram_pages++;
1548         }
1549 }
1550 #endif
1551
1552 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
1553 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
1554 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1555 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1556 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1557 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1558
1559 pgprot_t PAGE_KERNEL __read_mostly;
1560 EXPORT_SYMBOL(PAGE_KERNEL);
1561
1562 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
1563 pgprot_t PAGE_COPY __read_mostly;
1564
1565 pgprot_t PAGE_SHARED __read_mostly;
1566 EXPORT_SYMBOL(PAGE_SHARED);
1567
1568 pgprot_t PAGE_EXEC __read_mostly;
1569 unsigned long pg_iobits __read_mostly;
1570
1571 unsigned long _PAGE_IE __read_mostly;
1572 EXPORT_SYMBOL(_PAGE_IE);
1573
1574 unsigned long _PAGE_E __read_mostly;
1575 EXPORT_SYMBOL(_PAGE_E);
1576
1577 unsigned long _PAGE_CACHE __read_mostly;
1578 EXPORT_SYMBOL(_PAGE_CACHE);
1579
1580 static void prot_init_common(unsigned long page_none,
1581                              unsigned long page_shared,
1582                              unsigned long page_copy,
1583                              unsigned long page_readonly,
1584                              unsigned long page_exec_bit)
1585 {
1586         PAGE_COPY = __pgprot(page_copy);
1587         PAGE_SHARED = __pgprot(page_shared);
1588
1589         protection_map[0x0] = __pgprot(page_none);
1590         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
1591         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
1592         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
1593         protection_map[0x4] = __pgprot(page_readonly);
1594         protection_map[0x5] = __pgprot(page_readonly);
1595         protection_map[0x6] = __pgprot(page_copy);
1596         protection_map[0x7] = __pgprot(page_copy);
1597         protection_map[0x8] = __pgprot(page_none);
1598         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
1599         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
1600         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
1601         protection_map[0xc] = __pgprot(page_readonly);
1602         protection_map[0xd] = __pgprot(page_readonly);
1603         protection_map[0xe] = __pgprot(page_shared);
1604         protection_map[0xf] = __pgprot(page_shared);
1605 }
1606
1607 static void __init sun4u_pgprot_init(void)
1608 {
1609         unsigned long page_none, page_shared, page_copy, page_readonly;
1610         unsigned long page_exec_bit;
1611
1612         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1613                                 _PAGE_CACHE_4U | _PAGE_P_4U |
1614                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1615                                 _PAGE_EXEC_4U);
1616         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1617                                        _PAGE_CACHE_4U | _PAGE_P_4U |
1618                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1619                                        _PAGE_EXEC_4U | _PAGE_L_4U);
1620         PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
1621
1622         _PAGE_IE = _PAGE_IE_4U;
1623         _PAGE_E = _PAGE_E_4U;
1624         _PAGE_CACHE = _PAGE_CACHE_4U;
1625
1626         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
1627                      __ACCESS_BITS_4U | _PAGE_E_4U);
1628
1629         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
1630                 0xfffff80000000000;
1631         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
1632                                    _PAGE_P_4U | _PAGE_W_4U);
1633
1634         /* XXX Should use 256MB on Panther. XXX */
1635         kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1636
1637         _PAGE_SZBITS = _PAGE_SZBITS_4U;
1638         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
1639                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
1640                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
1641
1642
1643         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
1644         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1645                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
1646         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1647                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1648         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1649                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1650
1651         page_exec_bit = _PAGE_EXEC_4U;
1652
1653         prot_init_common(page_none, page_shared, page_copy, page_readonly,
1654                          page_exec_bit);
1655 }
1656
1657 static void __init sun4v_pgprot_init(void)
1658 {
1659         unsigned long page_none, page_shared, page_copy, page_readonly;
1660         unsigned long page_exec_bit;
1661
1662         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
1663                                 _PAGE_CACHE_4V | _PAGE_P_4V |
1664                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
1665                                 _PAGE_EXEC_4V);
1666         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
1667         PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
1668
1669         _PAGE_IE = _PAGE_IE_4V;
1670         _PAGE_E = _PAGE_E_4V;
1671         _PAGE_CACHE = _PAGE_CACHE_4V;
1672
1673         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
1674                 0xfffff80000000000;
1675         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1676                                    _PAGE_P_4V | _PAGE_W_4V);
1677
1678         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1679                 0xfffff80000000000;
1680         kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1681                                    _PAGE_P_4V | _PAGE_W_4V);
1682
1683         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
1684                      __ACCESS_BITS_4V | _PAGE_E_4V);
1685
1686         _PAGE_SZBITS = _PAGE_SZBITS_4V;
1687         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
1688                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
1689                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
1690                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
1691
1692         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
1693         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1694                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
1695         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1696                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1697         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1698                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1699
1700         page_exec_bit = _PAGE_EXEC_4V;
1701
1702         prot_init_common(page_none, page_shared, page_copy, page_readonly,
1703                          page_exec_bit);
1704 }
1705
1706 unsigned long pte_sz_bits(unsigned long sz)
1707 {
1708         if (tlb_type == hypervisor) {
1709                 switch (sz) {
1710                 case 8 * 1024:
1711                 default:
1712                         return _PAGE_SZ8K_4V;
1713                 case 64 * 1024:
1714                         return _PAGE_SZ64K_4V;
1715                 case 512 * 1024:
1716                         return _PAGE_SZ512K_4V;
1717                 case 4 * 1024 * 1024:
1718                         return _PAGE_SZ4MB_4V;
1719                 };
1720         } else {
1721                 switch (sz) {
1722                 case 8 * 1024:
1723                 default:
1724                         return _PAGE_SZ8K_4U;
1725                 case 64 * 1024:
1726                         return _PAGE_SZ64K_4U;
1727                 case 512 * 1024:
1728                         return _PAGE_SZ512K_4U;
1729                 case 4 * 1024 * 1024:
1730                         return _PAGE_SZ4MB_4U;
1731                 };
1732         }
1733 }
1734
1735 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
1736 {
1737         pte_t pte;
1738
1739         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
1740         pte_val(pte) |= (((unsigned long)space) << 32);
1741         pte_val(pte) |= pte_sz_bits(page_size);
1742
1743         return pte;
1744 }
1745
1746 static unsigned long kern_large_tte(unsigned long paddr)
1747 {
1748         unsigned long val;
1749
1750         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1751                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
1752                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
1753         if (tlb_type == hypervisor)
1754                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1755                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
1756                        _PAGE_EXEC_4V | _PAGE_W_4V);
1757
1758         return val | paddr;
1759 }
1760
1761 /*
1762  * Translate PROM's mapping we capture at boot time into physical address.
1763  * The second parameter is only set from prom_callback() invocations.
1764  */
1765 unsigned long prom_virt_to_phys(unsigned long promva, int *error)
1766 {
1767         unsigned long mask;
1768         int i;
1769
1770         mask = _PAGE_PADDR_4U;
1771         if (tlb_type == hypervisor)
1772                 mask = _PAGE_PADDR_4V;
1773
1774         for (i = 0; i < prom_trans_ents; i++) {
1775                 struct linux_prom_translation *p = &prom_trans[i];
1776
1777                 if (promva >= p->virt &&
1778                     promva < (p->virt + p->size)) {
1779                         unsigned long base = p->data & mask;
1780
1781                         if (error)
1782                                 *error = 0;
1783                         return base + (promva & (8192 - 1));
1784                 }
1785         }
1786         if (error)
1787                 *error = 1;
1788         return 0UL;
1789 }
1790
1791 /* XXX We should kill off this ugly thing at so me point. XXX */
1792 unsigned long sun4u_get_pte(unsigned long addr)
1793 {
1794         pgd_t *pgdp;
1795         pud_t *pudp;
1796         pmd_t *pmdp;
1797         pte_t *ptep;
1798         unsigned long mask = _PAGE_PADDR_4U;
1799
1800         if (tlb_type == hypervisor)
1801                 mask = _PAGE_PADDR_4V;
1802
1803         if (addr >= PAGE_OFFSET)
1804                 return addr & mask;
1805
1806         if ((addr >= LOW_OBP_ADDRESS) && (addr < HI_OBP_ADDRESS))
1807                 return prom_virt_to_phys(addr, NULL);
1808
1809         pgdp = pgd_offset_k(addr);
1810         pudp = pud_offset(pgdp, addr);
1811         pmdp = pmd_offset(pudp, addr);
1812         ptep = pte_offset_kernel(pmdp, addr);
1813
1814         return pte_val(*ptep) & mask;
1815 }
1816
1817 /* If not locked, zap it. */
1818 void __flush_tlb_all(void)
1819 {
1820         unsigned long pstate;
1821         int i;
1822
1823         __asm__ __volatile__("flushw\n\t"
1824                              "rdpr      %%pstate, %0\n\t"
1825                              "wrpr      %0, %1, %%pstate"
1826                              : "=r" (pstate)
1827                              : "i" (PSTATE_IE));
1828         if (tlb_type == spitfire) {
1829                 for (i = 0; i < 64; i++) {
1830                         /* Spitfire Errata #32 workaround */
1831                         /* NOTE: Always runs on spitfire, so no
1832                          *       cheetah+ page size encodings.
1833                          */
1834                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1835                                              "flush     %%g6"
1836                                              : /* No outputs */
1837                                              : "r" (0),
1838                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1839
1840                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
1841                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1842                                                      "membar #Sync"
1843                                                      : /* no outputs */
1844                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
1845                                 spitfire_put_dtlb_data(i, 0x0UL);
1846                         }
1847
1848                         /* Spitfire Errata #32 workaround */
1849                         /* NOTE: Always runs on spitfire, so no
1850                          *       cheetah+ page size encodings.
1851                          */
1852                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1853                                              "flush     %%g6"
1854                                              : /* No outputs */
1855                                              : "r" (0),
1856                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1857
1858                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
1859                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1860                                                      "membar #Sync"
1861                                                      : /* no outputs */
1862                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
1863                                 spitfire_put_itlb_data(i, 0x0UL);
1864                         }
1865                 }
1866         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1867                 cheetah_flush_dtlb_all();
1868                 cheetah_flush_itlb_all();
1869         }
1870         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
1871                              : : "r" (pstate));
1872 }
1873
1874 #ifdef CONFIG_MEMORY_HOTPLUG
1875
1876 void online_page(struct page *page)
1877 {
1878         ClearPageReserved(page);
1879         init_page_count(page);
1880         __free_page(page);
1881         totalram_pages++;
1882         num_physpages++;
1883 }
1884
1885 int remove_memory(u64 start, u64 size)
1886 {
1887         return -EINVAL;
1888 }
1889
1890 #endif /* CONFIG_MEMORY_HOTPLUG */