Merge branch 'master' of /home/trondmy/kernel/linux-2.6/
[linux-2.6] / drivers / firewire / fw-ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/delay.h>
27 #include <linux/poll.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/mm.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/semaphore.h>
33
34 #include "fw-transaction.h"
35 #include "fw-ohci.h"
36
37 #define DESCRIPTOR_OUTPUT_MORE          0
38 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
39 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
40 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
41 #define DESCRIPTOR_STATUS               (1 << 11)
42 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
43 #define DESCRIPTOR_PING                 (1 << 7)
44 #define DESCRIPTOR_YY                   (1 << 6)
45 #define DESCRIPTOR_NO_IRQ               (0 << 4)
46 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
47 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
48 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
49 #define DESCRIPTOR_WAIT                 (3 << 0)
50
51 struct descriptor {
52         __le16 req_count;
53         __le16 control;
54         __le32 data_address;
55         __le32 branch_address;
56         __le16 res_count;
57         __le16 transfer_status;
58 } __attribute__((aligned(16)));
59
60 struct db_descriptor {
61         __le16 first_size;
62         __le16 control;
63         __le16 second_req_count;
64         __le16 first_req_count;
65         __le32 branch_address;
66         __le16 second_res_count;
67         __le16 first_res_count;
68         __le32 reserved0;
69         __le32 first_buffer;
70         __le32 second_buffer;
71         __le32 reserved1;
72 } __attribute__((aligned(16)));
73
74 #define CONTROL_SET(regs)       (regs)
75 #define CONTROL_CLEAR(regs)     ((regs) + 4)
76 #define COMMAND_PTR(regs)       ((regs) + 12)
77 #define CONTEXT_MATCH(regs)     ((regs) + 16)
78
79 struct ar_buffer {
80         struct descriptor descriptor;
81         struct ar_buffer *next;
82         __le32 data[0];
83 };
84
85 struct ar_context {
86         struct fw_ohci *ohci;
87         struct ar_buffer *current_buffer;
88         struct ar_buffer *last_buffer;
89         void *pointer;
90         u32 regs;
91         struct tasklet_struct tasklet;
92 };
93
94 struct context;
95
96 typedef int (*descriptor_callback_t)(struct context *ctx,
97                                      struct descriptor *d,
98                                      struct descriptor *last);
99 struct context {
100         struct fw_ohci *ohci;
101         u32 regs;
102
103         struct descriptor *buffer;
104         dma_addr_t buffer_bus;
105         size_t buffer_size;
106         struct descriptor *head_descriptor;
107         struct descriptor *tail_descriptor;
108         struct descriptor *tail_descriptor_last;
109         struct descriptor *prev_descriptor;
110
111         descriptor_callback_t callback;
112
113         struct tasklet_struct tasklet;
114 };
115
116 #define IT_HEADER_SY(v)          ((v) <<  0)
117 #define IT_HEADER_TCODE(v)       ((v) <<  4)
118 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
119 #define IT_HEADER_TAG(v)         ((v) << 14)
120 #define IT_HEADER_SPEED(v)       ((v) << 16)
121 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
122
123 struct iso_context {
124         struct fw_iso_context base;
125         struct context context;
126         void *header;
127         size_t header_length;
128 };
129
130 #define CONFIG_ROM_SIZE 1024
131
132 struct fw_ohci {
133         struct fw_card card;
134
135         u32 version;
136         __iomem char *registers;
137         dma_addr_t self_id_bus;
138         __le32 *self_id_cpu;
139         struct tasklet_struct bus_reset_tasklet;
140         int node_id;
141         int generation;
142         int request_generation;
143         u32 bus_seconds;
144
145         /*
146          * Spinlock for accessing fw_ohci data.  Never call out of
147          * this driver with this lock held.
148          */
149         spinlock_t lock;
150         u32 self_id_buffer[512];
151
152         /* Config rom buffers */
153         __be32 *config_rom;
154         dma_addr_t config_rom_bus;
155         __be32 *next_config_rom;
156         dma_addr_t next_config_rom_bus;
157         u32 next_header;
158
159         struct ar_context ar_request_ctx;
160         struct ar_context ar_response_ctx;
161         struct context at_request_ctx;
162         struct context at_response_ctx;
163
164         u32 it_context_mask;
165         struct iso_context *it_context_list;
166         u32 ir_context_mask;
167         struct iso_context *ir_context_list;
168 };
169
170 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
171 {
172         return container_of(card, struct fw_ohci, card);
173 }
174
175 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
176 #define IR_CONTEXT_BUFFER_FILL          0x80000000
177 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
178 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
179 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
180 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
181
182 #define CONTEXT_RUN     0x8000
183 #define CONTEXT_WAKE    0x1000
184 #define CONTEXT_DEAD    0x0800
185 #define CONTEXT_ACTIVE  0x0400
186
187 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
188 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
189 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
190
191 #define FW_OHCI_MAJOR                   240
192 #define OHCI1394_REGISTER_SIZE          0x800
193 #define OHCI_LOOP_COUNT                 500
194 #define OHCI1394_PCI_HCI_Control        0x40
195 #define SELF_ID_BUF_SIZE                0x800
196 #define OHCI_TCODE_PHY_PACKET           0x0e
197 #define OHCI_VERSION_1_1                0x010010
198 #define ISO_BUFFER_SIZE                 (64 * 1024)
199 #define AT_BUFFER_SIZE                  4096
200
201 static char ohci_driver_name[] = KBUILD_MODNAME;
202
203 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
204 {
205         writel(data, ohci->registers + offset);
206 }
207
208 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
209 {
210         return readl(ohci->registers + offset);
211 }
212
213 static inline void flush_writes(const struct fw_ohci *ohci)
214 {
215         /* Do a dummy read to flush writes. */
216         reg_read(ohci, OHCI1394_Version);
217 }
218
219 static int
220 ohci_update_phy_reg(struct fw_card *card, int addr,
221                     int clear_bits, int set_bits)
222 {
223         struct fw_ohci *ohci = fw_ohci(card);
224         u32 val, old;
225
226         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
227         msleep(2);
228         val = reg_read(ohci, OHCI1394_PhyControl);
229         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
230                 fw_error("failed to set phy reg bits.\n");
231                 return -EBUSY;
232         }
233
234         old = OHCI1394_PhyControl_ReadData(val);
235         old = (old & ~clear_bits) | set_bits;
236         reg_write(ohci, OHCI1394_PhyControl,
237                   OHCI1394_PhyControl_Write(addr, old));
238
239         return 0;
240 }
241
242 static int ar_context_add_page(struct ar_context *ctx)
243 {
244         struct device *dev = ctx->ohci->card.device;
245         struct ar_buffer *ab;
246         dma_addr_t ab_bus;
247         size_t offset;
248
249         ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
250         if (ab == NULL)
251                 return -ENOMEM;
252
253         ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
254         if (dma_mapping_error(ab_bus)) {
255                 free_page((unsigned long) ab);
256                 return -ENOMEM;
257         }
258
259         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
260         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
261                                                     DESCRIPTOR_STATUS |
262                                                     DESCRIPTOR_BRANCH_ALWAYS);
263         offset = offsetof(struct ar_buffer, data);
264         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
265         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
266         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
267         ab->descriptor.branch_address = 0;
268
269         dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
270
271         ctx->last_buffer->descriptor.branch_address = ab_bus | 1;
272         ctx->last_buffer->next = ab;
273         ctx->last_buffer = ab;
274
275         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
276         flush_writes(ctx->ohci);
277
278         return 0;
279 }
280
281 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
282 {
283         struct fw_ohci *ohci = ctx->ohci;
284         struct fw_packet p;
285         u32 status, length, tcode;
286
287         p.header[0] = le32_to_cpu(buffer[0]);
288         p.header[1] = le32_to_cpu(buffer[1]);
289         p.header[2] = le32_to_cpu(buffer[2]);
290
291         tcode = (p.header[0] >> 4) & 0x0f;
292         switch (tcode) {
293         case TCODE_WRITE_QUADLET_REQUEST:
294         case TCODE_READ_QUADLET_RESPONSE:
295                 p.header[3] = (__force __u32) buffer[3];
296                 p.header_length = 16;
297                 p.payload_length = 0;
298                 break;
299
300         case TCODE_READ_BLOCK_REQUEST :
301                 p.header[3] = le32_to_cpu(buffer[3]);
302                 p.header_length = 16;
303                 p.payload_length = 0;
304                 break;
305
306         case TCODE_WRITE_BLOCK_REQUEST:
307         case TCODE_READ_BLOCK_RESPONSE:
308         case TCODE_LOCK_REQUEST:
309         case TCODE_LOCK_RESPONSE:
310                 p.header[3] = le32_to_cpu(buffer[3]);
311                 p.header_length = 16;
312                 p.payload_length = p.header[3] >> 16;
313                 break;
314
315         case TCODE_WRITE_RESPONSE:
316         case TCODE_READ_QUADLET_REQUEST:
317         case OHCI_TCODE_PHY_PACKET:
318                 p.header_length = 12;
319                 p.payload_length = 0;
320                 break;
321         }
322
323         p.payload = (void *) buffer + p.header_length;
324
325         /* FIXME: What to do about evt_* errors? */
326         length = (p.header_length + p.payload_length + 3) / 4;
327         status = le32_to_cpu(buffer[length]);
328
329         p.ack        = ((status >> 16) & 0x1f) - 16;
330         p.speed      = (status >> 21) & 0x7;
331         p.timestamp  = status & 0xffff;
332         p.generation = ohci->request_generation;
333
334         /*
335          * The OHCI bus reset handler synthesizes a phy packet with
336          * the new generation number when a bus reset happens (see
337          * section 8.4.2.3).  This helps us determine when a request
338          * was received and make sure we send the response in the same
339          * generation.  We only need this for requests; for responses
340          * we use the unique tlabel for finding the matching
341          * request.
342          */
343
344         if (p.ack + 16 == 0x09)
345                 ohci->request_generation = (buffer[2] >> 16) & 0xff;
346         else if (ctx == &ohci->ar_request_ctx)
347                 fw_core_handle_request(&ohci->card, &p);
348         else
349                 fw_core_handle_response(&ohci->card, &p);
350
351         return buffer + length + 1;
352 }
353
354 static void ar_context_tasklet(unsigned long data)
355 {
356         struct ar_context *ctx = (struct ar_context *)data;
357         struct fw_ohci *ohci = ctx->ohci;
358         struct ar_buffer *ab;
359         struct descriptor *d;
360         void *buffer, *end;
361
362         ab = ctx->current_buffer;
363         d = &ab->descriptor;
364
365         if (d->res_count == 0) {
366                 size_t size, rest, offset;
367
368                 /*
369                  * This descriptor is finished and we may have a
370                  * packet split across this and the next buffer. We
371                  * reuse the page for reassembling the split packet.
372                  */
373
374                 offset = offsetof(struct ar_buffer, data);
375                 dma_unmap_single(ohci->card.device,
376                                  ab->descriptor.data_address - offset,
377                                  PAGE_SIZE, DMA_BIDIRECTIONAL);
378
379                 buffer = ab;
380                 ab = ab->next;
381                 d = &ab->descriptor;
382                 size = buffer + PAGE_SIZE - ctx->pointer;
383                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
384                 memmove(buffer, ctx->pointer, size);
385                 memcpy(buffer + size, ab->data, rest);
386                 ctx->current_buffer = ab;
387                 ctx->pointer = (void *) ab->data + rest;
388                 end = buffer + size + rest;
389
390                 while (buffer < end)
391                         buffer = handle_ar_packet(ctx, buffer);
392
393                 free_page((unsigned long)buffer);
394                 ar_context_add_page(ctx);
395         } else {
396                 buffer = ctx->pointer;
397                 ctx->pointer = end =
398                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
399
400                 while (buffer < end)
401                         buffer = handle_ar_packet(ctx, buffer);
402         }
403 }
404
405 static int
406 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
407 {
408         struct ar_buffer ab;
409
410         ctx->regs        = regs;
411         ctx->ohci        = ohci;
412         ctx->last_buffer = &ab;
413         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
414
415         ar_context_add_page(ctx);
416         ar_context_add_page(ctx);
417         ctx->current_buffer = ab.next;
418         ctx->pointer = ctx->current_buffer->data;
419
420         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab.descriptor.branch_address);
421         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
422         flush_writes(ctx->ohci);
423
424         return 0;
425 }
426
427 static void context_tasklet(unsigned long data)
428 {
429         struct context *ctx = (struct context *) data;
430         struct fw_ohci *ohci = ctx->ohci;
431         struct descriptor *d, *last;
432         u32 address;
433         int z;
434
435         dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
436                                 ctx->buffer_size, DMA_TO_DEVICE);
437
438         d    = ctx->tail_descriptor;
439         last = ctx->tail_descriptor_last;
440
441         while (last->branch_address != 0) {
442                 address = le32_to_cpu(last->branch_address);
443                 z = address & 0xf;
444                 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d);
445                 last = (z == 2) ? d : d + z - 1;
446
447                 if (!ctx->callback(ctx, d, last))
448                         break;
449
450                 ctx->tail_descriptor      = d;
451                 ctx->tail_descriptor_last = last;
452         }
453 }
454
455 static int
456 context_init(struct context *ctx, struct fw_ohci *ohci,
457              size_t buffer_size, u32 regs,
458              descriptor_callback_t callback)
459 {
460         ctx->ohci = ohci;
461         ctx->regs = regs;
462         ctx->buffer_size = buffer_size;
463         ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
464         if (ctx->buffer == NULL)
465                 return -ENOMEM;
466
467         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
468         ctx->callback = callback;
469
470         ctx->buffer_bus =
471                 dma_map_single(ohci->card.device, ctx->buffer,
472                                buffer_size, DMA_TO_DEVICE);
473         if (dma_mapping_error(ctx->buffer_bus)) {
474                 kfree(ctx->buffer);
475                 return -ENOMEM;
476         }
477
478         ctx->head_descriptor      = ctx->buffer;
479         ctx->prev_descriptor      = ctx->buffer;
480         ctx->tail_descriptor      = ctx->buffer;
481         ctx->tail_descriptor_last = ctx->buffer;
482
483         /*
484          * We put a dummy descriptor in the buffer that has a NULL
485          * branch address and looks like it's been sent.  That way we
486          * have a descriptor to append DMA programs to.  Also, the
487          * ring buffer invariant is that it always has at least one
488          * element so that head == tail means buffer full.
489          */
490
491         memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor));
492         ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
493         ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
494         ctx->head_descriptor++;
495
496         return 0;
497 }
498
499 static void
500 context_release(struct context *ctx)
501 {
502         struct fw_card *card = &ctx->ohci->card;
503
504         dma_unmap_single(card->device, ctx->buffer_bus,
505                          ctx->buffer_size, DMA_TO_DEVICE);
506         kfree(ctx->buffer);
507 }
508
509 static struct descriptor *
510 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
511 {
512         struct descriptor *d, *tail, *end;
513
514         d = ctx->head_descriptor;
515         tail = ctx->tail_descriptor;
516         end = ctx->buffer + ctx->buffer_size / sizeof(*d);
517
518         if (d + z <= tail) {
519                 goto has_space;
520         } else if (d > tail && d + z <= end) {
521                 goto has_space;
522         } else if (d > tail && ctx->buffer + z <= tail) {
523                 d = ctx->buffer;
524                 goto has_space;
525         }
526
527         return NULL;
528
529  has_space:
530         memset(d, 0, z * sizeof(*d));
531         *d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
532
533         return d;
534 }
535
536 static void context_run(struct context *ctx, u32 extra)
537 {
538         struct fw_ohci *ohci = ctx->ohci;
539
540         reg_write(ohci, COMMAND_PTR(ctx->regs),
541                   le32_to_cpu(ctx->tail_descriptor_last->branch_address));
542         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
543         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
544         flush_writes(ohci);
545 }
546
547 static void context_append(struct context *ctx,
548                            struct descriptor *d, int z, int extra)
549 {
550         dma_addr_t d_bus;
551
552         d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
553
554         ctx->head_descriptor = d + z + extra;
555         ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
556         ctx->prev_descriptor = z == 2 ? d : d + z - 1;
557
558         dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
559                                    ctx->buffer_size, DMA_TO_DEVICE);
560
561         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
562         flush_writes(ctx->ohci);
563 }
564
565 static void context_stop(struct context *ctx)
566 {
567         u32 reg;
568         int i;
569
570         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
571         flush_writes(ctx->ohci);
572
573         for (i = 0; i < 10; i++) {
574                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
575                 if ((reg & CONTEXT_ACTIVE) == 0)
576                         break;
577
578                 fw_notify("context_stop: still active (0x%08x)\n", reg);
579                 msleep(1);
580         }
581 }
582
583 struct driver_data {
584         struct fw_packet *packet;
585 };
586
587 /*
588  * This function apppends a packet to the DMA queue for transmission.
589  * Must always be called with the ochi->lock held to ensure proper
590  * generation handling and locking around packet queue manipulation.
591  */
592 static int
593 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
594 {
595         struct fw_ohci *ohci = ctx->ohci;
596         dma_addr_t d_bus, payload_bus;
597         struct driver_data *driver_data;
598         struct descriptor *d, *last;
599         __le32 *header;
600         int z, tcode;
601         u32 reg;
602
603         d = context_get_descriptors(ctx, 4, &d_bus);
604         if (d == NULL) {
605                 packet->ack = RCODE_SEND_ERROR;
606                 return -1;
607         }
608
609         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
610         d[0].res_count = cpu_to_le16(packet->timestamp);
611
612         /*
613          * The DMA format for asyncronous link packets is different
614          * from the IEEE1394 layout, so shift the fields around
615          * accordingly.  If header_length is 8, it's a PHY packet, to
616          * which we need to prepend an extra quadlet.
617          */
618
619         header = (__le32 *) &d[1];
620         if (packet->header_length > 8) {
621                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
622                                         (packet->speed << 16));
623                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
624                                         (packet->header[0] & 0xffff0000));
625                 header[2] = cpu_to_le32(packet->header[2]);
626
627                 tcode = (packet->header[0] >> 4) & 0x0f;
628                 if (TCODE_IS_BLOCK_PACKET(tcode))
629                         header[3] = cpu_to_le32(packet->header[3]);
630                 else
631                         header[3] = (__force __le32) packet->header[3];
632
633                 d[0].req_count = cpu_to_le16(packet->header_length);
634         } else {
635                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
636                                         (packet->speed << 16));
637                 header[1] = cpu_to_le32(packet->header[0]);
638                 header[2] = cpu_to_le32(packet->header[1]);
639                 d[0].req_count = cpu_to_le16(12);
640         }
641
642         driver_data = (struct driver_data *) &d[3];
643         driver_data->packet = packet;
644         packet->driver_data = driver_data;
645         
646         if (packet->payload_length > 0) {
647                 payload_bus =
648                         dma_map_single(ohci->card.device, packet->payload,
649                                        packet->payload_length, DMA_TO_DEVICE);
650                 if (dma_mapping_error(payload_bus)) {
651                         packet->ack = RCODE_SEND_ERROR;
652                         return -1;
653                 }
654
655                 d[2].req_count    = cpu_to_le16(packet->payload_length);
656                 d[2].data_address = cpu_to_le32(payload_bus);
657                 last = &d[2];
658                 z = 3;
659         } else {
660                 last = &d[0];
661                 z = 2;
662         }
663
664         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
665                                      DESCRIPTOR_IRQ_ALWAYS |
666                                      DESCRIPTOR_BRANCH_ALWAYS);
667
668         /* FIXME: Document how the locking works. */
669         if (ohci->generation != packet->generation) {
670                 packet->ack = RCODE_GENERATION;
671                 return -1;
672         }
673
674         context_append(ctx, d, z, 4 - z);
675
676         /* If the context isn't already running, start it up. */
677         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
678         if ((reg & CONTEXT_RUN) == 0)
679                 context_run(ctx, 0);
680
681         return 0;
682 }
683
684 static int handle_at_packet(struct context *context,
685                             struct descriptor *d,
686                             struct descriptor *last)
687 {
688         struct driver_data *driver_data;
689         struct fw_packet *packet;
690         struct fw_ohci *ohci = context->ohci;
691         dma_addr_t payload_bus;
692         int evt;
693
694         if (last->transfer_status == 0)
695                 /* This descriptor isn't done yet, stop iteration. */
696                 return 0;
697
698         driver_data = (struct driver_data *) &d[3];
699         packet = driver_data->packet;
700         if (packet == NULL)
701                 /* This packet was cancelled, just continue. */
702                 return 1;
703
704         payload_bus = le32_to_cpu(last->data_address);
705         if (payload_bus != 0)
706                 dma_unmap_single(ohci->card.device, payload_bus,
707                                  packet->payload_length, DMA_TO_DEVICE);
708
709         evt = le16_to_cpu(last->transfer_status) & 0x1f;
710         packet->timestamp = le16_to_cpu(last->res_count);
711
712         switch (evt) {
713         case OHCI1394_evt_timeout:
714                 /* Async response transmit timed out. */
715                 packet->ack = RCODE_CANCELLED;
716                 break;
717
718         case OHCI1394_evt_flushed:
719                 /*
720                  * The packet was flushed should give same error as
721                  * when we try to use a stale generation count.
722                  */
723                 packet->ack = RCODE_GENERATION;
724                 break;
725
726         case OHCI1394_evt_missing_ack:
727                 /*
728                  * Using a valid (current) generation count, but the
729                  * node is not on the bus or not sending acks.
730                  */
731                 packet->ack = RCODE_NO_ACK;
732                 break;
733
734         case ACK_COMPLETE + 0x10:
735         case ACK_PENDING + 0x10:
736         case ACK_BUSY_X + 0x10:
737         case ACK_BUSY_A + 0x10:
738         case ACK_BUSY_B + 0x10:
739         case ACK_DATA_ERROR + 0x10:
740         case ACK_TYPE_ERROR + 0x10:
741                 packet->ack = evt - 0x10;
742                 break;
743
744         default:
745                 packet->ack = RCODE_SEND_ERROR;
746                 break;
747         }
748
749         packet->callback(packet, &ohci->card, packet->ack);
750
751         return 1;
752 }
753
754 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
755 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
756 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
757 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
758 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
759
760 static void
761 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
762 {
763         struct fw_packet response;
764         int tcode, length, i;
765
766         tcode = HEADER_GET_TCODE(packet->header[0]);
767         if (TCODE_IS_BLOCK_PACKET(tcode))
768                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
769         else
770                 length = 4;
771
772         i = csr - CSR_CONFIG_ROM;
773         if (i + length > CONFIG_ROM_SIZE) {
774                 fw_fill_response(&response, packet->header,
775                                  RCODE_ADDRESS_ERROR, NULL, 0);
776         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
777                 fw_fill_response(&response, packet->header,
778                                  RCODE_TYPE_ERROR, NULL, 0);
779         } else {
780                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
781                                  (void *) ohci->config_rom + i, length);
782         }
783
784         fw_core_handle_response(&ohci->card, &response);
785 }
786
787 static void
788 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
789 {
790         struct fw_packet response;
791         int tcode, length, ext_tcode, sel;
792         __be32 *payload, lock_old;
793         u32 lock_arg, lock_data;
794
795         tcode = HEADER_GET_TCODE(packet->header[0]);
796         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
797         payload = packet->payload;
798         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
799
800         if (tcode == TCODE_LOCK_REQUEST &&
801             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
802                 lock_arg = be32_to_cpu(payload[0]);
803                 lock_data = be32_to_cpu(payload[1]);
804         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
805                 lock_arg = 0;
806                 lock_data = 0;
807         } else {
808                 fw_fill_response(&response, packet->header,
809                                  RCODE_TYPE_ERROR, NULL, 0);
810                 goto out;
811         }
812
813         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
814         reg_write(ohci, OHCI1394_CSRData, lock_data);
815         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
816         reg_write(ohci, OHCI1394_CSRControl, sel);
817
818         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
819                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
820         else
821                 fw_notify("swap not done yet\n");
822
823         fw_fill_response(&response, packet->header,
824                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
825  out:
826         fw_core_handle_response(&ohci->card, &response);
827 }
828
829 static void
830 handle_local_request(struct context *ctx, struct fw_packet *packet)
831 {
832         u64 offset;
833         u32 csr;
834
835         if (ctx == &ctx->ohci->at_request_ctx) {
836                 packet->ack = ACK_PENDING;
837                 packet->callback(packet, &ctx->ohci->card, packet->ack);
838         }
839
840         offset =
841                 ((unsigned long long)
842                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
843                 packet->header[2];
844         csr = offset - CSR_REGISTER_BASE;
845
846         /* Handle config rom reads. */
847         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
848                 handle_local_rom(ctx->ohci, packet, csr);
849         else switch (csr) {
850         case CSR_BUS_MANAGER_ID:
851         case CSR_BANDWIDTH_AVAILABLE:
852         case CSR_CHANNELS_AVAILABLE_HI:
853         case CSR_CHANNELS_AVAILABLE_LO:
854                 handle_local_lock(ctx->ohci, packet, csr);
855                 break;
856         default:
857                 if (ctx == &ctx->ohci->at_request_ctx)
858                         fw_core_handle_request(&ctx->ohci->card, packet);
859                 else
860                         fw_core_handle_response(&ctx->ohci->card, packet);
861                 break;
862         }
863
864         if (ctx == &ctx->ohci->at_response_ctx) {
865                 packet->ack = ACK_COMPLETE;
866                 packet->callback(packet, &ctx->ohci->card, packet->ack);
867         }
868 }
869
870 static void
871 at_context_transmit(struct context *ctx, struct fw_packet *packet)
872 {
873         unsigned long flags;
874         int retval;
875
876         spin_lock_irqsave(&ctx->ohci->lock, flags);
877
878         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
879             ctx->ohci->generation == packet->generation) {
880                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
881                 handle_local_request(ctx, packet);
882                 return;
883         }
884
885         retval = at_context_queue_packet(ctx, packet);
886         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
887
888         if (retval < 0)
889                 packet->callback(packet, &ctx->ohci->card, packet->ack);
890         
891 }
892
893 static void bus_reset_tasklet(unsigned long data)
894 {
895         struct fw_ohci *ohci = (struct fw_ohci *)data;
896         int self_id_count, i, j, reg;
897         int generation, new_generation;
898         unsigned long flags;
899
900         reg = reg_read(ohci, OHCI1394_NodeID);
901         if (!(reg & OHCI1394_NodeID_idValid)) {
902                 fw_error("node ID not valid, new bus reset in progress\n");
903                 return;
904         }
905         ohci->node_id = reg & 0xffff;
906
907         /*
908          * The count in the SelfIDCount register is the number of
909          * bytes in the self ID receive buffer.  Since we also receive
910          * the inverted quadlets and a header quadlet, we shift one
911          * bit extra to get the actual number of self IDs.
912          */
913
914         self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
915         generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
916
917         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
918                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
919                         fw_error("inconsistent self IDs\n");
920                 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
921         }
922
923         /*
924          * Check the consistency of the self IDs we just read.  The
925          * problem we face is that a new bus reset can start while we
926          * read out the self IDs from the DMA buffer. If this happens,
927          * the DMA buffer will be overwritten with new self IDs and we
928          * will read out inconsistent data.  The OHCI specification
929          * (section 11.2) recommends a technique similar to
930          * linux/seqlock.h, where we remember the generation of the
931          * self IDs in the buffer before reading them out and compare
932          * it to the current generation after reading them out.  If
933          * the two generations match we know we have a consistent set
934          * of self IDs.
935          */
936
937         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
938         if (new_generation != generation) {
939                 fw_notify("recursive bus reset detected, "
940                           "discarding self ids\n");
941                 return;
942         }
943
944         /* FIXME: Document how the locking works. */
945         spin_lock_irqsave(&ohci->lock, flags);
946
947         ohci->generation = generation;
948         context_stop(&ohci->at_request_ctx);
949         context_stop(&ohci->at_response_ctx);
950         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
951
952         /*
953          * This next bit is unrelated to the AT context stuff but we
954          * have to do it under the spinlock also.  If a new config rom
955          * was set up before this reset, the old one is now no longer
956          * in use and we can free it. Update the config rom pointers
957          * to point to the current config rom and clear the
958          * next_config_rom pointer so a new udpate can take place.
959          */
960
961         if (ohci->next_config_rom != NULL) {
962                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
963                                   ohci->config_rom, ohci->config_rom_bus);
964                 ohci->config_rom      = ohci->next_config_rom;
965                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
966                 ohci->next_config_rom = NULL;
967
968                 /*
969                  * Restore config_rom image and manually update
970                  * config_rom registers.  Writing the header quadlet
971                  * will indicate that the config rom is ready, so we
972                  * do that last.
973                  */
974                 reg_write(ohci, OHCI1394_BusOptions,
975                           be32_to_cpu(ohci->config_rom[2]));
976                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
977                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
978         }
979
980         spin_unlock_irqrestore(&ohci->lock, flags);
981
982         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
983                                  self_id_count, ohci->self_id_buffer);
984 }
985
986 static irqreturn_t irq_handler(int irq, void *data)
987 {
988         struct fw_ohci *ohci = data;
989         u32 event, iso_event, cycle_time;
990         int i;
991
992         event = reg_read(ohci, OHCI1394_IntEventClear);
993
994         if (!event)
995                 return IRQ_NONE;
996
997         reg_write(ohci, OHCI1394_IntEventClear, event);
998
999         if (event & OHCI1394_selfIDComplete)
1000                 tasklet_schedule(&ohci->bus_reset_tasklet);
1001
1002         if (event & OHCI1394_RQPkt)
1003                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1004
1005         if (event & OHCI1394_RSPkt)
1006                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1007
1008         if (event & OHCI1394_reqTxComplete)
1009                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1010
1011         if (event & OHCI1394_respTxComplete)
1012                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1013
1014         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1015         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1016
1017         while (iso_event) {
1018                 i = ffs(iso_event) - 1;
1019                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1020                 iso_event &= ~(1 << i);
1021         }
1022
1023         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1024         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1025
1026         while (iso_event) {
1027                 i = ffs(iso_event) - 1;
1028                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1029                 iso_event &= ~(1 << i);
1030         }
1031
1032         if (event & OHCI1394_cycle64Seconds) {
1033                 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1034                 if ((cycle_time & 0x80000000) == 0)
1035                         ohci->bus_seconds++;
1036         }
1037
1038         return IRQ_HANDLED;
1039 }
1040
1041 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1042 {
1043         struct fw_ohci *ohci = fw_ohci(card);
1044         struct pci_dev *dev = to_pci_dev(card->device);
1045
1046         /*
1047          * When the link is not yet enabled, the atomic config rom
1048          * update mechanism described below in ohci_set_config_rom()
1049          * is not active.  We have to update ConfigRomHeader and
1050          * BusOptions manually, and the write to ConfigROMmap takes
1051          * effect immediately.  We tie this to the enabling of the
1052          * link, so we have a valid config rom before enabling - the
1053          * OHCI requires that ConfigROMhdr and BusOptions have valid
1054          * values before enabling.
1055          *
1056          * However, when the ConfigROMmap is written, some controllers
1057          * always read back quadlets 0 and 2 from the config rom to
1058          * the ConfigRomHeader and BusOptions registers on bus reset.
1059          * They shouldn't do that in this initial case where the link
1060          * isn't enabled.  This means we have to use the same
1061          * workaround here, setting the bus header to 0 and then write
1062          * the right values in the bus reset tasklet.
1063          */
1064
1065         ohci->next_config_rom =
1066                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1067                                    &ohci->next_config_rom_bus, GFP_KERNEL);
1068         if (ohci->next_config_rom == NULL)
1069                 return -ENOMEM;
1070
1071         memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1072         fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1073
1074         ohci->next_header = config_rom[0];
1075         ohci->next_config_rom[0] = 0;
1076         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1077         reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
1078         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1079
1080         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1081
1082         if (request_irq(dev->irq, irq_handler,
1083                         IRQF_SHARED, ohci_driver_name, ohci)) {
1084                 fw_error("Failed to allocate shared interrupt %d.\n",
1085                          dev->irq);
1086                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1087                                   ohci->config_rom, ohci->config_rom_bus);
1088                 return -EIO;
1089         }
1090
1091         reg_write(ohci, OHCI1394_HCControlSet,
1092                   OHCI1394_HCControl_linkEnable |
1093                   OHCI1394_HCControl_BIBimageValid);
1094         flush_writes(ohci);
1095
1096         /*
1097          * We are ready to go, initiate bus reset to finish the
1098          * initialization.
1099          */
1100
1101         fw_core_initiate_bus_reset(&ohci->card, 1);
1102
1103         return 0;
1104 }
1105
1106 static int
1107 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1108 {
1109         struct fw_ohci *ohci;
1110         unsigned long flags;
1111         int retval = 0;
1112         __be32 *next_config_rom;
1113         dma_addr_t next_config_rom_bus;
1114
1115         ohci = fw_ohci(card);
1116
1117         /*
1118          * When the OHCI controller is enabled, the config rom update
1119          * mechanism is a bit tricky, but easy enough to use.  See
1120          * section 5.5.6 in the OHCI specification.
1121          *
1122          * The OHCI controller caches the new config rom address in a
1123          * shadow register (ConfigROMmapNext) and needs a bus reset
1124          * for the changes to take place.  When the bus reset is
1125          * detected, the controller loads the new values for the
1126          * ConfigRomHeader and BusOptions registers from the specified
1127          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1128          * shadow register. All automatically and atomically.
1129          *
1130          * Now, there's a twist to this story.  The automatic load of
1131          * ConfigRomHeader and BusOptions doesn't honor the
1132          * noByteSwapData bit, so with a be32 config rom, the
1133          * controller will load be32 values in to these registers
1134          * during the atomic update, even on litte endian
1135          * architectures.  The workaround we use is to put a 0 in the
1136          * header quadlet; 0 is endian agnostic and means that the
1137          * config rom isn't ready yet.  In the bus reset tasklet we
1138          * then set up the real values for the two registers.
1139          *
1140          * We use ohci->lock to avoid racing with the code that sets
1141          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1142          */
1143
1144         next_config_rom =
1145                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1146                                    &next_config_rom_bus, GFP_KERNEL);
1147         if (next_config_rom == NULL)
1148                 return -ENOMEM;
1149
1150         spin_lock_irqsave(&ohci->lock, flags);
1151
1152         if (ohci->next_config_rom == NULL) {
1153                 ohci->next_config_rom = next_config_rom;
1154                 ohci->next_config_rom_bus = next_config_rom_bus;
1155
1156                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1157                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1158                                   length * 4);
1159
1160                 ohci->next_header = config_rom[0];
1161                 ohci->next_config_rom[0] = 0;
1162
1163                 reg_write(ohci, OHCI1394_ConfigROMmap,
1164                           ohci->next_config_rom_bus);
1165         } else {
1166                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1167                                   next_config_rom, next_config_rom_bus);
1168                 retval = -EBUSY;
1169         }
1170
1171         spin_unlock_irqrestore(&ohci->lock, flags);
1172
1173         /*
1174          * Now initiate a bus reset to have the changes take
1175          * effect. We clean up the old config rom memory and DMA
1176          * mappings in the bus reset tasklet, since the OHCI
1177          * controller could need to access it before the bus reset
1178          * takes effect.
1179          */
1180         if (retval == 0)
1181                 fw_core_initiate_bus_reset(&ohci->card, 1);
1182
1183         return retval;
1184 }
1185
1186 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1187 {
1188         struct fw_ohci *ohci = fw_ohci(card);
1189
1190         at_context_transmit(&ohci->at_request_ctx, packet);
1191 }
1192
1193 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1194 {
1195         struct fw_ohci *ohci = fw_ohci(card);
1196
1197         at_context_transmit(&ohci->at_response_ctx, packet);
1198 }
1199
1200 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1201 {
1202         struct fw_ohci *ohci = fw_ohci(card);
1203         struct context *ctx = &ohci->at_request_ctx;
1204         struct driver_data *driver_data = packet->driver_data;
1205         int retval = -ENOENT;
1206
1207         tasklet_disable(&ctx->tasklet);
1208
1209         if (packet->ack != 0)
1210                 goto out;
1211
1212         driver_data->packet = NULL;
1213         packet->ack = RCODE_CANCELLED;
1214         packet->callback(packet, &ohci->card, packet->ack);
1215         retval = 0;
1216
1217  out:
1218         tasklet_enable(&ctx->tasklet);
1219
1220         return retval;
1221 }
1222
1223 static int
1224 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1225 {
1226         struct fw_ohci *ohci = fw_ohci(card);
1227         unsigned long flags;
1228         int n, retval = 0;
1229
1230         /*
1231          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1232          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1233          */
1234
1235         spin_lock_irqsave(&ohci->lock, flags);
1236
1237         if (ohci->generation != generation) {
1238                 retval = -ESTALE;
1239                 goto out;
1240         }
1241
1242         /*
1243          * Note, if the node ID contains a non-local bus ID, physical DMA is
1244          * enabled for _all_ nodes on remote buses.
1245          */
1246
1247         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1248         if (n < 32)
1249                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1250         else
1251                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1252
1253         flush_writes(ohci);
1254  out:
1255         spin_unlock_irqrestore(&ohci->lock, flags);
1256         return retval;
1257 }
1258
1259 static u64
1260 ohci_get_bus_time(struct fw_card *card)
1261 {
1262         struct fw_ohci *ohci = fw_ohci(card);
1263         u32 cycle_time;
1264         u64 bus_time;
1265
1266         cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1267         bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1268
1269         return bus_time;
1270 }
1271
1272 static int handle_ir_dualbuffer_packet(struct context *context,
1273                                        struct descriptor *d,
1274                                        struct descriptor *last)
1275 {
1276         struct iso_context *ctx =
1277                 container_of(context, struct iso_context, context);
1278         struct db_descriptor *db = (struct db_descriptor *) d;
1279         __le32 *ir_header;
1280         size_t header_length;
1281         void *p, *end;
1282         int i;
1283
1284         if (db->first_res_count > 0 && db->second_res_count > 0)
1285                 /* This descriptor isn't done yet, stop iteration. */
1286                 return 0;
1287
1288         header_length = le16_to_cpu(db->first_req_count) -
1289                 le16_to_cpu(db->first_res_count);
1290
1291         i = ctx->header_length;
1292         p = db + 1;
1293         end = p + header_length;
1294         while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1295                 /*
1296                  * The iso header is byteswapped to little endian by
1297                  * the controller, but the remaining header quadlets
1298                  * are big endian.  We want to present all the headers
1299                  * as big endian, so we have to swap the first
1300                  * quadlet.
1301                  */
1302                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1303                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1304                 i += ctx->base.header_size;
1305                 p += ctx->base.header_size + 4;
1306         }
1307
1308         ctx->header_length = i;
1309
1310         if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1311                 ir_header = (__le32 *) (db + 1);
1312                 ctx->base.callback(&ctx->base,
1313                                    le32_to_cpu(ir_header[0]) & 0xffff,
1314                                    ctx->header_length, ctx->header,
1315                                    ctx->base.callback_data);
1316                 ctx->header_length = 0;
1317         }
1318
1319         return 1;
1320 }
1321
1322 static int handle_it_packet(struct context *context,
1323                             struct descriptor *d,
1324                             struct descriptor *last)
1325 {
1326         struct iso_context *ctx =
1327                 container_of(context, struct iso_context, context);
1328
1329         if (last->transfer_status == 0)
1330                 /* This descriptor isn't done yet, stop iteration. */
1331                 return 0;
1332
1333         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1334                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1335                                    0, NULL, ctx->base.callback_data);
1336
1337         return 1;
1338 }
1339
1340 static struct fw_iso_context *
1341 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1342 {
1343         struct fw_ohci *ohci = fw_ohci(card);
1344         struct iso_context *ctx, *list;
1345         descriptor_callback_t callback;
1346         u32 *mask, regs;
1347         unsigned long flags;
1348         int index, retval = -ENOMEM;
1349
1350         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1351                 mask = &ohci->it_context_mask;
1352                 list = ohci->it_context_list;
1353                 callback = handle_it_packet;
1354         } else {
1355                 mask = &ohci->ir_context_mask;
1356                 list = ohci->ir_context_list;
1357                 callback = handle_ir_dualbuffer_packet;
1358         }
1359
1360         /* FIXME: We need a fallback for pre 1.1 OHCI. */
1361         if (callback == handle_ir_dualbuffer_packet &&
1362             ohci->version < OHCI_VERSION_1_1)
1363                 return ERR_PTR(-EINVAL);
1364
1365         spin_lock_irqsave(&ohci->lock, flags);
1366         index = ffs(*mask) - 1;
1367         if (index >= 0)
1368                 *mask &= ~(1 << index);
1369         spin_unlock_irqrestore(&ohci->lock, flags);
1370
1371         if (index < 0)
1372                 return ERR_PTR(-EBUSY);
1373
1374         if (type == FW_ISO_CONTEXT_TRANSMIT)
1375                 regs = OHCI1394_IsoXmitContextBase(index);
1376         else
1377                 regs = OHCI1394_IsoRcvContextBase(index);
1378
1379         ctx = &list[index];
1380         memset(ctx, 0, sizeof(*ctx));
1381         ctx->header_length = 0;
1382         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1383         if (ctx->header == NULL)
1384                 goto out;
1385
1386         retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1387                               regs, callback);
1388         if (retval < 0)
1389                 goto out_with_header;
1390
1391         return &ctx->base;
1392
1393  out_with_header:
1394         free_page((unsigned long)ctx->header);
1395  out:
1396         spin_lock_irqsave(&ohci->lock, flags);
1397         *mask |= 1 << index;
1398         spin_unlock_irqrestore(&ohci->lock, flags);
1399
1400         return ERR_PTR(retval);
1401 }
1402
1403 static int ohci_start_iso(struct fw_iso_context *base,
1404                           s32 cycle, u32 sync, u32 tags)
1405 {
1406         struct iso_context *ctx = container_of(base, struct iso_context, base);
1407         struct fw_ohci *ohci = ctx->context.ohci;
1408         u32 control, match;
1409         int index;
1410
1411         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1412                 index = ctx - ohci->it_context_list;
1413                 match = 0;
1414                 if (cycle >= 0)
1415                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1416                                 (cycle & 0x7fff) << 16;
1417
1418                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1419                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1420                 context_run(&ctx->context, match);
1421         } else {
1422                 index = ctx - ohci->ir_context_list;
1423                 control = IR_CONTEXT_DUAL_BUFFER_MODE | IR_CONTEXT_ISOCH_HEADER;
1424                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1425                 if (cycle >= 0) {
1426                         match |= (cycle & 0x07fff) << 12;
1427                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1428                 }
1429
1430                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1431                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1432                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1433                 context_run(&ctx->context, control);
1434         }
1435
1436         return 0;
1437 }
1438
1439 static int ohci_stop_iso(struct fw_iso_context *base)
1440 {
1441         struct fw_ohci *ohci = fw_ohci(base->card);
1442         struct iso_context *ctx = container_of(base, struct iso_context, base);
1443         int index;
1444
1445         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1446                 index = ctx - ohci->it_context_list;
1447                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1448         } else {
1449                 index = ctx - ohci->ir_context_list;
1450                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1451         }
1452         flush_writes(ohci);
1453         context_stop(&ctx->context);
1454
1455         return 0;
1456 }
1457
1458 static void ohci_free_iso_context(struct fw_iso_context *base)
1459 {
1460         struct fw_ohci *ohci = fw_ohci(base->card);
1461         struct iso_context *ctx = container_of(base, struct iso_context, base);
1462         unsigned long flags;
1463         int index;
1464
1465         ohci_stop_iso(base);
1466         context_release(&ctx->context);
1467         free_page((unsigned long)ctx->header);
1468
1469         spin_lock_irqsave(&ohci->lock, flags);
1470
1471         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1472                 index = ctx - ohci->it_context_list;
1473                 ohci->it_context_mask |= 1 << index;
1474         } else {
1475                 index = ctx - ohci->ir_context_list;
1476                 ohci->ir_context_mask |= 1 << index;
1477         }
1478
1479         spin_unlock_irqrestore(&ohci->lock, flags);
1480 }
1481
1482 static int
1483 ohci_queue_iso_transmit(struct fw_iso_context *base,
1484                         struct fw_iso_packet *packet,
1485                         struct fw_iso_buffer *buffer,
1486                         unsigned long payload)
1487 {
1488         struct iso_context *ctx = container_of(base, struct iso_context, base);
1489         struct descriptor *d, *last, *pd;
1490         struct fw_iso_packet *p;
1491         __le32 *header;
1492         dma_addr_t d_bus, page_bus;
1493         u32 z, header_z, payload_z, irq;
1494         u32 payload_index, payload_end_index, next_page_index;
1495         int page, end_page, i, length, offset;
1496
1497         /*
1498          * FIXME: Cycle lost behavior should be configurable: lose
1499          * packet, retransmit or terminate..
1500          */
1501
1502         p = packet;
1503         payload_index = payload;
1504
1505         if (p->skip)
1506                 z = 1;
1507         else
1508                 z = 2;
1509         if (p->header_length > 0)
1510                 z++;
1511
1512         /* Determine the first page the payload isn't contained in. */
1513         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1514         if (p->payload_length > 0)
1515                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1516         else
1517                 payload_z = 0;
1518
1519         z += payload_z;
1520
1521         /* Get header size in number of descriptors. */
1522         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1523
1524         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1525         if (d == NULL)
1526                 return -ENOMEM;
1527
1528         if (!p->skip) {
1529                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1530                 d[0].req_count = cpu_to_le16(8);
1531
1532                 header = (__le32 *) &d[1];
1533                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
1534                                         IT_HEADER_TAG(p->tag) |
1535                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
1536                                         IT_HEADER_CHANNEL(ctx->base.channel) |
1537                                         IT_HEADER_SPEED(ctx->base.speed));
1538                 header[1] =
1539                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1540                                                           p->payload_length));
1541         }
1542
1543         if (p->header_length > 0) {
1544                 d[2].req_count    = cpu_to_le16(p->header_length);
1545                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1546                 memcpy(&d[z], p->header, p->header_length);
1547         }
1548
1549         pd = d + z - payload_z;
1550         payload_end_index = payload_index + p->payload_length;
1551         for (i = 0; i < payload_z; i++) {
1552                 page               = payload_index >> PAGE_SHIFT;
1553                 offset             = payload_index & ~PAGE_MASK;
1554                 next_page_index    = (page + 1) << PAGE_SHIFT;
1555                 length             =
1556                         min(next_page_index, payload_end_index) - payload_index;
1557                 pd[i].req_count    = cpu_to_le16(length);
1558
1559                 page_bus = page_private(buffer->pages[page]);
1560                 pd[i].data_address = cpu_to_le32(page_bus + offset);
1561
1562                 payload_index += length;
1563         }
1564
1565         if (p->interrupt)
1566                 irq = DESCRIPTOR_IRQ_ALWAYS;
1567         else
1568                 irq = DESCRIPTOR_NO_IRQ;
1569
1570         last = z == 2 ? d : d + z - 1;
1571         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1572                                      DESCRIPTOR_STATUS |
1573                                      DESCRIPTOR_BRANCH_ALWAYS |
1574                                      irq);
1575
1576         context_append(&ctx->context, d, z, header_z);
1577
1578         return 0;
1579 }
1580
1581 static int
1582 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1583                                   struct fw_iso_packet *packet,
1584                                   struct fw_iso_buffer *buffer,
1585                                   unsigned long payload)
1586 {
1587         struct iso_context *ctx = container_of(base, struct iso_context, base);
1588         struct db_descriptor *db = NULL;
1589         struct descriptor *d;
1590         struct fw_iso_packet *p;
1591         dma_addr_t d_bus, page_bus;
1592         u32 z, header_z, length, rest;
1593         int page, offset, packet_count, header_size;
1594
1595         /*
1596          * FIXME: Cycle lost behavior should be configurable: lose
1597          * packet, retransmit or terminate..
1598          */
1599
1600         if (packet->skip) {
1601                 d = context_get_descriptors(&ctx->context, 2, &d_bus);
1602                 if (d == NULL)
1603                         return -ENOMEM;
1604
1605                 db = (struct db_descriptor *) d;
1606                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1607                                           DESCRIPTOR_BRANCH_ALWAYS |
1608                                           DESCRIPTOR_WAIT);
1609                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1610                 context_append(&ctx->context, d, 2, 0);
1611         }
1612
1613         p = packet;
1614         z = 2;
1615
1616         /*
1617          * The OHCI controller puts the status word in the header
1618          * buffer too, so we need 4 extra bytes per packet.
1619          */
1620         packet_count = p->header_length / ctx->base.header_size;
1621         header_size = packet_count * (ctx->base.header_size + 4);
1622
1623         /* Get header size in number of descriptors. */
1624         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1625         page     = payload >> PAGE_SHIFT;
1626         offset   = payload & ~PAGE_MASK;
1627         rest     = p->payload_length;
1628
1629         /* FIXME: OHCI 1.0 doesn't support dual buffer receive */
1630         /* FIXME: make packet-per-buffer/dual-buffer a context option */
1631         while (rest > 0) {
1632                 d = context_get_descriptors(&ctx->context,
1633                                             z + header_z, &d_bus);
1634                 if (d == NULL)
1635                         return -ENOMEM;
1636
1637                 db = (struct db_descriptor *) d;
1638                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1639                                           DESCRIPTOR_BRANCH_ALWAYS);
1640                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1641                 db->first_req_count = cpu_to_le16(header_size);
1642                 db->first_res_count = db->first_req_count;
1643                 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
1644
1645                 if (offset + rest < PAGE_SIZE)
1646                         length = rest;
1647                 else
1648                         length = PAGE_SIZE - offset;
1649
1650                 db->second_req_count = cpu_to_le16(length);
1651                 db->second_res_count = db->second_req_count;
1652                 page_bus = page_private(buffer->pages[page]);
1653                 db->second_buffer = cpu_to_le32(page_bus + offset);
1654
1655                 if (p->interrupt && length == rest)
1656                         db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1657
1658                 context_append(&ctx->context, d, z, header_z);
1659                 offset = (offset + length) & ~PAGE_MASK;
1660                 rest -= length;
1661                 page++;
1662         }
1663
1664         return 0;
1665 }
1666
1667 static int
1668 ohci_queue_iso(struct fw_iso_context *base,
1669                struct fw_iso_packet *packet,
1670                struct fw_iso_buffer *buffer,
1671                unsigned long payload)
1672 {
1673         struct iso_context *ctx = container_of(base, struct iso_context, base);
1674
1675         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
1676                 return ohci_queue_iso_transmit(base, packet, buffer, payload);
1677         else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1678                 return ohci_queue_iso_receive_dualbuffer(base, packet,
1679                                                          buffer, payload);
1680         else
1681                 /* FIXME: Implement fallback for OHCI 1.0 controllers. */
1682                 return -EINVAL;
1683 }
1684
1685 static const struct fw_card_driver ohci_driver = {
1686         .name                   = ohci_driver_name,
1687         .enable                 = ohci_enable,
1688         .update_phy_reg         = ohci_update_phy_reg,
1689         .set_config_rom         = ohci_set_config_rom,
1690         .send_request           = ohci_send_request,
1691         .send_response          = ohci_send_response,
1692         .cancel_packet          = ohci_cancel_packet,
1693         .enable_phys_dma        = ohci_enable_phys_dma,
1694         .get_bus_time           = ohci_get_bus_time,
1695
1696         .allocate_iso_context   = ohci_allocate_iso_context,
1697         .free_iso_context       = ohci_free_iso_context,
1698         .queue_iso              = ohci_queue_iso,
1699         .start_iso              = ohci_start_iso,
1700         .stop_iso               = ohci_stop_iso,
1701 };
1702
1703 static int software_reset(struct fw_ohci *ohci)
1704 {
1705         int i;
1706
1707         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1708
1709         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1710                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1711                      OHCI1394_HCControl_softReset) == 0)
1712                         return 0;
1713                 msleep(1);
1714         }
1715
1716         return -EBUSY;
1717 }
1718
1719 static int __devinit
1720 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1721 {
1722         struct fw_ohci *ohci;
1723         u32 bus_options, max_receive, link_speed;
1724         u64 guid;
1725         int err;
1726         size_t size;
1727
1728         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
1729         if (ohci == NULL) {
1730                 fw_error("Could not malloc fw_ohci data.\n");
1731                 return -ENOMEM;
1732         }
1733
1734         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1735
1736         err = pci_enable_device(dev);
1737         if (err) {
1738                 fw_error("Failed to enable OHCI hardware.\n");
1739                 goto fail_put_card;
1740         }
1741
1742         pci_set_master(dev);
1743         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1744         pci_set_drvdata(dev, ohci);
1745
1746         spin_lock_init(&ohci->lock);
1747
1748         tasklet_init(&ohci->bus_reset_tasklet,
1749                      bus_reset_tasklet, (unsigned long)ohci);
1750
1751         err = pci_request_region(dev, 0, ohci_driver_name);
1752         if (err) {
1753                 fw_error("MMIO resource unavailable\n");
1754                 goto fail_disable;
1755         }
1756
1757         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1758         if (ohci->registers == NULL) {
1759                 fw_error("Failed to remap registers\n");
1760                 err = -ENXIO;
1761                 goto fail_iomem;
1762         }
1763
1764         if (software_reset(ohci)) {
1765                 fw_error("Failed to reset ohci card.\n");
1766                 err = -EBUSY;
1767                 goto fail_registers;
1768         }
1769
1770         /*
1771          * Now enable LPS, which we need in order to start accessing
1772          * most of the registers.  In fact, on some cards (ALI M5251),
1773          * accessing registers in the SClk domain without LPS enabled
1774          * will lock up the machine.  Wait 50msec to make sure we have
1775          * full link enabled.
1776          */
1777         reg_write(ohci, OHCI1394_HCControlSet,
1778                   OHCI1394_HCControl_LPS |
1779                   OHCI1394_HCControl_postedWriteEnable);
1780         flush_writes(ohci);
1781         msleep(50);
1782
1783         reg_write(ohci, OHCI1394_HCControlClear,
1784                   OHCI1394_HCControl_noByteSwapData);
1785
1786         reg_write(ohci, OHCI1394_LinkControlSet,
1787                   OHCI1394_LinkControl_rcvSelfID |
1788                   OHCI1394_LinkControl_cycleTimerEnable |
1789                   OHCI1394_LinkControl_cycleMaster);
1790
1791         ar_context_init(&ohci->ar_request_ctx, ohci,
1792                         OHCI1394_AsReqRcvContextControlSet);
1793
1794         ar_context_init(&ohci->ar_response_ctx, ohci,
1795                         OHCI1394_AsRspRcvContextControlSet);
1796
1797         context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
1798                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
1799
1800         context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
1801                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
1802
1803         reg_write(ohci, OHCI1394_ATRetries,
1804                   OHCI1394_MAX_AT_REQ_RETRIES |
1805                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1806                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1807
1808         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1809         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1810         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1811         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1812         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1813
1814         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1815         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1816         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1817         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1818         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1819
1820         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1821                 fw_error("Out of memory for it/ir contexts.\n");
1822                 err = -ENOMEM;
1823                 goto fail_registers;
1824         }
1825
1826         /* self-id dma buffer allocation */
1827         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1828                                                SELF_ID_BUF_SIZE,
1829                                                &ohci->self_id_bus,
1830                                                GFP_KERNEL);
1831         if (ohci->self_id_cpu == NULL) {
1832                 fw_error("Out of memory for self ID buffer.\n");
1833                 err = -ENOMEM;
1834                 goto fail_registers;
1835         }
1836
1837         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1838         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1839         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1840         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1841         reg_write(ohci, OHCI1394_IntMaskSet,
1842                   OHCI1394_selfIDComplete |
1843                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1844                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1845                   OHCI1394_isochRx | OHCI1394_isochTx |
1846                   OHCI1394_masterIntEnable |
1847                   OHCI1394_cycle64Seconds);
1848
1849         bus_options = reg_read(ohci, OHCI1394_BusOptions);
1850         max_receive = (bus_options >> 12) & 0xf;
1851         link_speed = bus_options & 0x7;
1852         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1853                 reg_read(ohci, OHCI1394_GUIDLo);
1854
1855         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1856         if (err < 0)
1857                 goto fail_self_id;
1858
1859         ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1860         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
1861                   dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
1862
1863         return 0;
1864
1865  fail_self_id:
1866         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1867                           ohci->self_id_cpu, ohci->self_id_bus);
1868  fail_registers:
1869         kfree(ohci->it_context_list);
1870         kfree(ohci->ir_context_list);
1871         pci_iounmap(dev, ohci->registers);
1872  fail_iomem:
1873         pci_release_region(dev, 0);
1874  fail_disable:
1875         pci_disable_device(dev);
1876  fail_put_card:
1877         fw_card_put(&ohci->card);
1878
1879         return err;
1880 }
1881
1882 static void pci_remove(struct pci_dev *dev)
1883 {
1884         struct fw_ohci *ohci;
1885
1886         ohci = pci_get_drvdata(dev);
1887         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1888         flush_writes(ohci);
1889         fw_core_remove_card(&ohci->card);
1890
1891         /*
1892          * FIXME: Fail all pending packets here, now that the upper
1893          * layers can't queue any more.
1894          */
1895
1896         software_reset(ohci);
1897         free_irq(dev->irq, ohci);
1898         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1899                           ohci->self_id_cpu, ohci->self_id_bus);
1900         kfree(ohci->it_context_list);
1901         kfree(ohci->ir_context_list);
1902         pci_iounmap(dev, ohci->registers);
1903         pci_release_region(dev, 0);
1904         pci_disable_device(dev);
1905         fw_card_put(&ohci->card);
1906
1907         fw_notify("Removed fw-ohci device.\n");
1908 }
1909
1910 static struct pci_device_id pci_table[] = {
1911         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1912         { }
1913 };
1914
1915 MODULE_DEVICE_TABLE(pci, pci_table);
1916
1917 static struct pci_driver fw_ohci_pci_driver = {
1918         .name           = ohci_driver_name,
1919         .id_table       = pci_table,
1920         .probe          = pci_probe,
1921         .remove         = pci_remove,
1922 };
1923
1924 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1925 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1926 MODULE_LICENSE("GPL");
1927
1928 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1929 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
1930 MODULE_ALIAS("ohci1394");
1931 #endif
1932
1933 static int __init fw_ohci_init(void)
1934 {
1935         return pci_register_driver(&fw_ohci_pci_driver);
1936 }
1937
1938 static void __exit fw_ohci_cleanup(void)
1939 {
1940         pci_unregister_driver(&fw_ohci_pci_driver);
1941 }
1942
1943 module_init(fw_ohci_init);
1944 module_exit(fw_ohci_cleanup);