2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 #define DRV_VERSION "2.20" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
75 static unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
78 struct workqueue_struct *ata_aux_wq;
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
93 module_param(ata_probe_timeout, int, 0444);
94 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
96 int libata_noacpi = 1;
97 module_param_named(noacpi, libata_noacpi, int, 0444);
98 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
100 MODULE_AUTHOR("Jeff Garzik");
101 MODULE_DESCRIPTION("Library module for ATA devices");
102 MODULE_LICENSE("GPL");
103 MODULE_VERSION(DRV_VERSION);
107 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
108 * @tf: Taskfile to convert
109 * @fis: Buffer into which data will output
110 * @pmp: Port multiplier port
112 * Converts a standard ATA taskfile to a Serial ATA
113 * FIS structure (Register - Host to Device).
116 * Inherited from caller.
119 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
121 fis[0] = 0x27; /* Register - Host to Device FIS */
122 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
123 bit 7 indicates Command FIS */
124 fis[2] = tf->command;
125 fis[3] = tf->feature;
132 fis[8] = tf->hob_lbal;
133 fis[9] = tf->hob_lbam;
134 fis[10] = tf->hob_lbah;
135 fis[11] = tf->hob_feature;
138 fis[13] = tf->hob_nsect;
149 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
150 * @fis: Buffer from which data will be input
151 * @tf: Taskfile to output
153 * Converts a serial ATA FIS structure to a standard ATA taskfile.
156 * Inherited from caller.
159 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
161 tf->command = fis[2]; /* status */
162 tf->feature = fis[3]; /* error */
169 tf->hob_lbal = fis[8];
170 tf->hob_lbam = fis[9];
171 tf->hob_lbah = fis[10];
174 tf->hob_nsect = fis[13];
177 static const u8 ata_rw_cmds[] = {
181 ATA_CMD_READ_MULTI_EXT,
182 ATA_CMD_WRITE_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_FUA_EXT,
190 ATA_CMD_PIO_READ_EXT,
191 ATA_CMD_PIO_WRITE_EXT,
204 ATA_CMD_WRITE_FUA_EXT
208 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
209 * @tf: command to examine and configure
210 * @dev: device tf belongs to
212 * Examine the device configuration and tf->flags to calculate
213 * the proper read/write commands and protocol to use.
218 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
222 int index, fua, lba48, write;
224 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
225 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
226 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
228 if (dev->flags & ATA_DFLAG_PIO) {
229 tf->protocol = ATA_PROT_PIO;
230 index = dev->multi_count ? 0 : 8;
231 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
232 /* Unable to use DMA due to host limitation */
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
236 tf->protocol = ATA_PROT_DMA;
240 cmd = ata_rw_cmds[index + fua + lba48 + write];
249 * ata_tf_read_block - Read block address from ATA taskfile
250 * @tf: ATA taskfile of interest
251 * @dev: ATA device @tf belongs to
256 * Read block address from @tf. This function can handle all
257 * three address formats - LBA, LBA48 and CHS. tf->protocol and
258 * flags select the address format to use.
261 * Block address read from @tf.
263 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
267 if (tf->flags & ATA_TFLAG_LBA) {
268 if (tf->flags & ATA_TFLAG_LBA48) {
269 block |= (u64)tf->hob_lbah << 40;
270 block |= (u64)tf->hob_lbam << 32;
271 block |= tf->hob_lbal << 24;
273 block |= (tf->device & 0xf) << 24;
275 block |= tf->lbah << 16;
276 block |= tf->lbam << 8;
281 cyl = tf->lbam | (tf->lbah << 8);
282 head = tf->device & 0xf;
285 block = (cyl * dev->heads + head) * dev->sectors + sect;
292 * ata_build_rw_tf - Build ATA taskfile for given read/write request
293 * @tf: Target ATA taskfile
294 * @dev: ATA device @tf belongs to
295 * @block: Block address
296 * @n_block: Number of blocks
297 * @tf_flags: RW/FUA etc...
303 * Build ATA taskfile @tf for read/write request described by
304 * @block, @n_block, @tf_flags and @tag on @dev.
308 * 0 on success, -ERANGE if the request is too large for @dev,
309 * -EINVAL if the request is invalid.
311 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
312 u64 block, u32 n_block, unsigned int tf_flags,
315 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
316 tf->flags |= tf_flags;
318 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
320 if (!lba_48_ok(block, n_block))
323 tf->protocol = ATA_PROT_NCQ;
324 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
326 if (tf->flags & ATA_TFLAG_WRITE)
327 tf->command = ATA_CMD_FPDMA_WRITE;
329 tf->command = ATA_CMD_FPDMA_READ;
331 tf->nsect = tag << 3;
332 tf->hob_feature = (n_block >> 8) & 0xff;
333 tf->feature = n_block & 0xff;
335 tf->hob_lbah = (block >> 40) & 0xff;
336 tf->hob_lbam = (block >> 32) & 0xff;
337 tf->hob_lbal = (block >> 24) & 0xff;
338 tf->lbah = (block >> 16) & 0xff;
339 tf->lbam = (block >> 8) & 0xff;
340 tf->lbal = block & 0xff;
343 if (tf->flags & ATA_TFLAG_FUA)
344 tf->device |= 1 << 7;
345 } else if (dev->flags & ATA_DFLAG_LBA) {
346 tf->flags |= ATA_TFLAG_LBA;
348 if (lba_28_ok(block, n_block)) {
350 tf->device |= (block >> 24) & 0xf;
351 } else if (lba_48_ok(block, n_block)) {
352 if (!(dev->flags & ATA_DFLAG_LBA48))
356 tf->flags |= ATA_TFLAG_LBA48;
358 tf->hob_nsect = (n_block >> 8) & 0xff;
360 tf->hob_lbah = (block >> 40) & 0xff;
361 tf->hob_lbam = (block >> 32) & 0xff;
362 tf->hob_lbal = (block >> 24) & 0xff;
364 /* request too large even for LBA48 */
367 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
370 tf->nsect = n_block & 0xff;
372 tf->lbah = (block >> 16) & 0xff;
373 tf->lbam = (block >> 8) & 0xff;
374 tf->lbal = block & 0xff;
376 tf->device |= ATA_LBA;
379 u32 sect, head, cyl, track;
381 /* The request -may- be too large for CHS addressing. */
382 if (!lba_28_ok(block, n_block))
385 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
388 /* Convert LBA to CHS */
389 track = (u32)block / dev->sectors;
390 cyl = track / dev->heads;
391 head = track % dev->heads;
392 sect = (u32)block % dev->sectors + 1;
394 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
395 (u32)block, track, cyl, head, sect);
397 /* Check whether the converted CHS can fit.
401 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
404 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
415 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
416 * @pio_mask: pio_mask
417 * @mwdma_mask: mwdma_mask
418 * @udma_mask: udma_mask
420 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
421 * unsigned int xfer_mask.
429 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
430 unsigned int mwdma_mask,
431 unsigned int udma_mask)
433 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
434 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
435 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
439 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
440 * @xfer_mask: xfer_mask to unpack
441 * @pio_mask: resulting pio_mask
442 * @mwdma_mask: resulting mwdma_mask
443 * @udma_mask: resulting udma_mask
445 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
446 * Any NULL distination masks will be ignored.
448 static void ata_unpack_xfermask(unsigned int xfer_mask,
449 unsigned int *pio_mask,
450 unsigned int *mwdma_mask,
451 unsigned int *udma_mask)
454 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
456 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
458 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
461 static const struct ata_xfer_ent {
465 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
466 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
467 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
473 * @xfer_mask: xfer_mask of interest
475 * Return matching XFER_* value for @xfer_mask. Only the highest
476 * bit of @xfer_mask is considered.
482 * Matching XFER_* value, 0 if no match found.
484 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
486 int highbit = fls(xfer_mask) - 1;
487 const struct ata_xfer_ent *ent;
489 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
490 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
491 return ent->base + highbit - ent->shift;
496 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
497 * @xfer_mode: XFER_* of interest
499 * Return matching xfer_mask for @xfer_mode.
505 * Matching xfer_mask, 0 if no match found.
507 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
509 const struct ata_xfer_ent *ent;
511 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
512 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
513 return 1 << (ent->shift + xfer_mode - ent->base);
518 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
519 * @xfer_mode: XFER_* of interest
521 * Return matching xfer_shift for @xfer_mode.
527 * Matching xfer_shift, -1 if no match found.
529 static int ata_xfer_mode2shift(unsigned int xfer_mode)
531 const struct ata_xfer_ent *ent;
533 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
534 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
540 * ata_mode_string - convert xfer_mask to string
541 * @xfer_mask: mask of bits supported; only highest bit counts.
543 * Determine string which represents the highest speed
544 * (highest bit in @modemask).
550 * Constant C string representing highest speed listed in
551 * @mode_mask, or the constant C string "<n/a>".
553 static const char *ata_mode_string(unsigned int xfer_mask)
555 static const char * const xfer_mode_str[] = {
579 highbit = fls(xfer_mask) - 1;
580 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
581 return xfer_mode_str[highbit];
585 static const char *sata_spd_string(unsigned int spd)
587 static const char * const spd_str[] = {
592 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
594 return spd_str[spd - 1];
597 void ata_dev_disable(struct ata_device *dev)
599 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
600 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
601 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
608 * ata_devchk - PATA device presence detection
609 * @ap: ATA channel to examine
610 * @device: Device to examine (starting at zero)
612 * This technique was originally described in
613 * Hale Landis's ATADRVR (www.ata-atapi.com), and
614 * later found its way into the ATA/ATAPI spec.
616 * Write a pattern to the ATA shadow registers,
617 * and if a device is present, it will respond by
618 * correctly storing and echoing back the
619 * ATA shadow register contents.
625 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
627 struct ata_ioports *ioaddr = &ap->ioaddr;
630 ap->ops->dev_select(ap, device);
632 iowrite8(0x55, ioaddr->nsect_addr);
633 iowrite8(0xaa, ioaddr->lbal_addr);
635 iowrite8(0xaa, ioaddr->nsect_addr);
636 iowrite8(0x55, ioaddr->lbal_addr);
638 iowrite8(0x55, ioaddr->nsect_addr);
639 iowrite8(0xaa, ioaddr->lbal_addr);
641 nsect = ioread8(ioaddr->nsect_addr);
642 lbal = ioread8(ioaddr->lbal_addr);
644 if ((nsect == 0x55) && (lbal == 0xaa))
645 return 1; /* we found a device */
647 return 0; /* nothing found */
651 * ata_dev_classify - determine device type based on ATA-spec signature
652 * @tf: ATA taskfile register set for device to be identified
654 * Determine from taskfile register contents whether a device is
655 * ATA or ATAPI, as per "Signature and persistence" section
656 * of ATA/PI spec (volume 1, sect 5.14).
662 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
663 * the event of failure.
666 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
668 /* Apple's open source Darwin code hints that some devices only
669 * put a proper signature into the LBA mid/high registers,
670 * So, we only check those. It's sufficient for uniqueness.
673 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
674 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
675 DPRINTK("found ATA device by sig\n");
679 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
680 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
681 DPRINTK("found ATAPI device by sig\n");
682 return ATA_DEV_ATAPI;
685 DPRINTK("unknown device\n");
686 return ATA_DEV_UNKNOWN;
690 * ata_dev_try_classify - Parse returned ATA device signature
691 * @ap: ATA channel to examine
692 * @device: Device to examine (starting at zero)
693 * @r_err: Value of error register on completion
695 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
696 * an ATA/ATAPI-defined set of values is placed in the ATA
697 * shadow registers, indicating the results of device detection
700 * Select the ATA device, and read the values from the ATA shadow
701 * registers. Then parse according to the Error register value,
702 * and the spec-defined values examined by ata_dev_classify().
708 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
712 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
714 struct ata_taskfile tf;
718 ap->ops->dev_select(ap, device);
720 memset(&tf, 0, sizeof(tf));
722 ap->ops->tf_read(ap, &tf);
727 /* see if device passed diags: if master then continue and warn later */
728 if (err == 0 && device == 0)
729 /* diagnostic fail : do nothing _YET_ */
730 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
733 else if ((device == 0) && (err == 0x81))
738 /* determine if device is ATA or ATAPI */
739 class = ata_dev_classify(&tf);
741 if (class == ATA_DEV_UNKNOWN)
743 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
749 * ata_id_string - Convert IDENTIFY DEVICE page into string
750 * @id: IDENTIFY DEVICE results we will examine
751 * @s: string into which data is output
752 * @ofs: offset into identify device page
753 * @len: length of string to return. must be an even number.
755 * The strings in the IDENTIFY DEVICE page are broken up into
756 * 16-bit chunks. Run through the string, and output each
757 * 8-bit chunk linearly, regardless of platform.
763 void ata_id_string(const u16 *id, unsigned char *s,
764 unsigned int ofs, unsigned int len)
783 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
784 * @id: IDENTIFY DEVICE results we will examine
785 * @s: string into which data is output
786 * @ofs: offset into identify device page
787 * @len: length of string to return. must be an odd number.
789 * This function is identical to ata_id_string except that it
790 * trims trailing spaces and terminates the resulting string with
791 * null. @len must be actual maximum length (even number) + 1.
796 void ata_id_c_string(const u16 *id, unsigned char *s,
797 unsigned int ofs, unsigned int len)
803 ata_id_string(id, s, ofs, len - 1);
805 p = s + strnlen(s, len - 1);
806 while (p > s && p[-1] == ' ')
811 static u64 ata_id_n_sectors(const u16 *id)
813 if (ata_id_has_lba(id)) {
814 if (ata_id_has_lba48(id))
815 return ata_id_u64(id, 100);
817 return ata_id_u32(id, 60);
819 if (ata_id_current_chs_valid(id))
820 return ata_id_u32(id, 57);
822 return id[1] * id[3] * id[6];
827 * ata_id_to_dma_mode - Identify DMA mode from id block
828 * @dev: device to identify
829 * @unknown: mode to assume if we cannot tell
831 * Set up the timing values for the device based upon the identify
832 * reported values for the DMA mode. This function is used by drivers
833 * which rely upon firmware configured modes, but wish to report the
834 * mode correctly when possible.
836 * In addition we emit similarly formatted messages to the default
837 * ata_dev_set_mode handler, in order to provide consistency of
841 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
846 /* Pack the DMA modes */
847 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
848 if (dev->id[53] & 0x04)
849 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
851 /* Select the mode in use */
852 mode = ata_xfer_mask2mode(mask);
855 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
856 ata_mode_string(mask));
858 /* SWDMA perhaps ? */
860 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
863 /* Configure the device reporting */
864 dev->xfer_mode = mode;
865 dev->xfer_shift = ata_xfer_mode2shift(mode);
869 * ata_noop_dev_select - Select device 0/1 on ATA bus
870 * @ap: ATA channel to manipulate
871 * @device: ATA device (numbered from zero) to select
873 * This function performs no actual function.
875 * May be used as the dev_select() entry in ata_port_operations.
880 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
886 * ata_std_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
890 * Use the method defined in the ATA specification to
891 * make either device 0, or device 1, active on the
892 * ATA channel. Works with both PIO and MMIO.
894 * May be used as the dev_select() entry in ata_port_operations.
900 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
905 tmp = ATA_DEVICE_OBS;
907 tmp = ATA_DEVICE_OBS | ATA_DEV1;
909 iowrite8(tmp, ap->ioaddr.device_addr);
910 ata_pause(ap); /* needed; also flushes, for mmio */
914 * ata_dev_select - Select device 0/1 on ATA bus
915 * @ap: ATA channel to manipulate
916 * @device: ATA device (numbered from zero) to select
917 * @wait: non-zero to wait for Status register BSY bit to clear
918 * @can_sleep: non-zero if context allows sleeping
920 * Use the method defined in the ATA specification to
921 * make either device 0, or device 1, active on the
924 * This is a high-level version of ata_std_dev_select(),
925 * which additionally provides the services of inserting
926 * the proper pauses and status polling, where needed.
932 void ata_dev_select(struct ata_port *ap, unsigned int device,
933 unsigned int wait, unsigned int can_sleep)
935 if (ata_msg_probe(ap))
936 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
937 "device %u, wait %u\n", device, wait);
942 ap->ops->dev_select(ap, device);
945 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
952 * ata_dump_id - IDENTIFY DEVICE info debugging output
953 * @id: IDENTIFY DEVICE page to dump
955 * Dump selected 16-bit words from the given IDENTIFY DEVICE
962 static inline void ata_dump_id(const u16 *id)
964 DPRINTK("49==0x%04x "
974 DPRINTK("80==0x%04x "
984 DPRINTK("88==0x%04x "
991 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
992 * @id: IDENTIFY data to compute xfer mask from
994 * Compute the xfermask for this device. This is not as trivial
995 * as it seems if we must consider early devices correctly.
997 * FIXME: pre IDE drive timing (do we care ?).
1005 static unsigned int ata_id_xfermask(const u16 *id)
1007 unsigned int pio_mask, mwdma_mask, udma_mask;
1009 /* Usual case. Word 53 indicates word 64 is valid */
1010 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1011 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1015 /* If word 64 isn't valid then Word 51 high byte holds
1016 * the PIO timing number for the maximum. Turn it into
1019 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1020 if (mode < 5) /* Valid PIO range */
1021 pio_mask = (2 << mode) - 1;
1025 /* But wait.. there's more. Design your standards by
1026 * committee and you too can get a free iordy field to
1027 * process. However its the speeds not the modes that
1028 * are supported... Note drivers using the timing API
1029 * will get this right anyway
1033 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1035 if (ata_id_is_cfa(id)) {
1037 * Process compact flash extended modes
1039 int pio = id[163] & 0x7;
1040 int dma = (id[163] >> 3) & 7;
1043 pio_mask |= (1 << 5);
1045 pio_mask |= (1 << 6);
1047 mwdma_mask |= (1 << 3);
1049 mwdma_mask |= (1 << 4);
1053 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1054 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1056 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1060 * ata_port_queue_task - Queue port_task
1061 * @ap: The ata_port to queue port_task for
1062 * @fn: workqueue function to be scheduled
1063 * @data: data for @fn to use
1064 * @delay: delay time for workqueue function
1066 * Schedule @fn(@data) for execution after @delay jiffies using
1067 * port_task. There is one port_task per port and it's the
1068 * user(low level driver)'s responsibility to make sure that only
1069 * one task is active at any given time.
1071 * libata core layer takes care of synchronization between
1072 * port_task and EH. ata_port_queue_task() may be ignored for EH
1076 * Inherited from caller.
1078 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1079 unsigned long delay)
1083 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1086 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1087 ap->port_task_data = data;
1089 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1091 /* rc == 0 means that another user is using port task */
1096 * ata_port_flush_task - Flush port_task
1097 * @ap: The ata_port to flush port_task for
1099 * After this function completes, port_task is guranteed not to
1100 * be running or scheduled.
1103 * Kernel thread context (may sleep)
1105 void ata_port_flush_task(struct ata_port *ap)
1107 unsigned long flags;
1111 spin_lock_irqsave(ap->lock, flags);
1112 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1113 spin_unlock_irqrestore(ap->lock, flags);
1115 DPRINTK("flush #1\n");
1116 flush_workqueue(ata_wq);
1119 * At this point, if a task is running, it's guaranteed to see
1120 * the FLUSH flag; thus, it will never queue pio tasks again.
1123 if (!cancel_delayed_work(&ap->port_task)) {
1124 if (ata_msg_ctl(ap))
1125 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1127 flush_workqueue(ata_wq);
1130 spin_lock_irqsave(ap->lock, flags);
1131 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1132 spin_unlock_irqrestore(ap->lock, flags);
1134 if (ata_msg_ctl(ap))
1135 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1138 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1140 struct completion *waiting = qc->private_data;
1146 * ata_exec_internal_sg - execute libata internal command
1147 * @dev: Device to which the command is sent
1148 * @tf: Taskfile registers for the command and the result
1149 * @cdb: CDB for packet command
1150 * @dma_dir: Data tranfer direction of the command
1151 * @sg: sg list for the data buffer of the command
1152 * @n_elem: Number of sg entries
1154 * Executes libata internal command with timeout. @tf contains
1155 * command on entry and result on return. Timeout and error
1156 * conditions are reported via return value. No recovery action
1157 * is taken after a command times out. It's caller's duty to
1158 * clean up after timeout.
1161 * None. Should be called with kernel context, might sleep.
1164 * Zero on success, AC_ERR_* mask on failure
1166 unsigned ata_exec_internal_sg(struct ata_device *dev,
1167 struct ata_taskfile *tf, const u8 *cdb,
1168 int dma_dir, struct scatterlist *sg,
1169 unsigned int n_elem)
1171 struct ata_port *ap = dev->ap;
1172 u8 command = tf->command;
1173 struct ata_queued_cmd *qc;
1174 unsigned int tag, preempted_tag;
1175 u32 preempted_sactive, preempted_qc_active;
1176 DECLARE_COMPLETION_ONSTACK(wait);
1177 unsigned long flags;
1178 unsigned int err_mask;
1181 spin_lock_irqsave(ap->lock, flags);
1183 /* no internal command while frozen */
1184 if (ap->pflags & ATA_PFLAG_FROZEN) {
1185 spin_unlock_irqrestore(ap->lock, flags);
1186 return AC_ERR_SYSTEM;
1189 /* initialize internal qc */
1191 /* XXX: Tag 0 is used for drivers with legacy EH as some
1192 * drivers choke if any other tag is given. This breaks
1193 * ata_tag_internal() test for those drivers. Don't use new
1194 * EH stuff without converting to it.
1196 if (ap->ops->error_handler)
1197 tag = ATA_TAG_INTERNAL;
1201 if (test_and_set_bit(tag, &ap->qc_allocated))
1203 qc = __ata_qc_from_tag(ap, tag);
1211 preempted_tag = ap->active_tag;
1212 preempted_sactive = ap->sactive;
1213 preempted_qc_active = ap->qc_active;
1214 ap->active_tag = ATA_TAG_POISON;
1218 /* prepare & issue qc */
1221 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1222 qc->flags |= ATA_QCFLAG_RESULT_TF;
1223 qc->dma_dir = dma_dir;
1224 if (dma_dir != DMA_NONE) {
1225 unsigned int i, buflen = 0;
1227 for (i = 0; i < n_elem; i++)
1228 buflen += sg[i].length;
1230 ata_sg_init(qc, sg, n_elem);
1231 qc->nbytes = buflen;
1234 qc->private_data = &wait;
1235 qc->complete_fn = ata_qc_complete_internal;
1239 spin_unlock_irqrestore(ap->lock, flags);
1241 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1243 ata_port_flush_task(ap);
1246 spin_lock_irqsave(ap->lock, flags);
1248 /* We're racing with irq here. If we lose, the
1249 * following test prevents us from completing the qc
1250 * twice. If we win, the port is frozen and will be
1251 * cleaned up by ->post_internal_cmd().
1253 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1254 qc->err_mask |= AC_ERR_TIMEOUT;
1256 if (ap->ops->error_handler)
1257 ata_port_freeze(ap);
1259 ata_qc_complete(qc);
1261 if (ata_msg_warn(ap))
1262 ata_dev_printk(dev, KERN_WARNING,
1263 "qc timeout (cmd 0x%x)\n", command);
1266 spin_unlock_irqrestore(ap->lock, flags);
1269 /* do post_internal_cmd */
1270 if (ap->ops->post_internal_cmd)
1271 ap->ops->post_internal_cmd(qc);
1273 if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) {
1274 if (ata_msg_warn(ap))
1275 ata_dev_printk(dev, KERN_WARNING,
1276 "zero err_mask for failed "
1277 "internal command, assuming AC_ERR_OTHER\n");
1278 qc->err_mask |= AC_ERR_OTHER;
1282 spin_lock_irqsave(ap->lock, flags);
1284 *tf = qc->result_tf;
1285 err_mask = qc->err_mask;
1288 ap->active_tag = preempted_tag;
1289 ap->sactive = preempted_sactive;
1290 ap->qc_active = preempted_qc_active;
1292 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1293 * Until those drivers are fixed, we detect the condition
1294 * here, fail the command with AC_ERR_SYSTEM and reenable the
1297 * Note that this doesn't change any behavior as internal
1298 * command failure results in disabling the device in the
1299 * higher layer for LLDDs without new reset/EH callbacks.
1301 * Kill the following code as soon as those drivers are fixed.
1303 if (ap->flags & ATA_FLAG_DISABLED) {
1304 err_mask |= AC_ERR_SYSTEM;
1308 spin_unlock_irqrestore(ap->lock, flags);
1314 * ata_exec_internal - execute libata internal command
1315 * @dev: Device to which the command is sent
1316 * @tf: Taskfile registers for the command and the result
1317 * @cdb: CDB for packet command
1318 * @dma_dir: Data tranfer direction of the command
1319 * @buf: Data buffer of the command
1320 * @buflen: Length of data buffer
1322 * Wrapper around ata_exec_internal_sg() which takes simple
1323 * buffer instead of sg list.
1326 * None. Should be called with kernel context, might sleep.
1329 * Zero on success, AC_ERR_* mask on failure
1331 unsigned ata_exec_internal(struct ata_device *dev,
1332 struct ata_taskfile *tf, const u8 *cdb,
1333 int dma_dir, void *buf, unsigned int buflen)
1335 struct scatterlist *psg = NULL, sg;
1336 unsigned int n_elem = 0;
1338 if (dma_dir != DMA_NONE) {
1340 sg_init_one(&sg, buf, buflen);
1345 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1349 * ata_do_simple_cmd - execute simple internal command
1350 * @dev: Device to which the command is sent
1351 * @cmd: Opcode to execute
1353 * Execute a 'simple' command, that only consists of the opcode
1354 * 'cmd' itself, without filling any other registers
1357 * Kernel thread context (may sleep).
1360 * Zero on success, AC_ERR_* mask on failure
1362 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1364 struct ata_taskfile tf;
1366 ata_tf_init(dev, &tf);
1369 tf.flags |= ATA_TFLAG_DEVICE;
1370 tf.protocol = ATA_PROT_NODATA;
1372 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1376 * ata_pio_need_iordy - check if iordy needed
1379 * Check if the current speed of the device requires IORDY. Used
1380 * by various controllers for chip configuration.
1383 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1386 int speed = adev->pio_mode - XFER_PIO_0;
1393 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1395 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1396 pio = adev->id[ATA_ID_EIDE_PIO];
1397 /* Is the speed faster than the drive allows non IORDY ? */
1399 /* This is cycle times not frequency - watch the logic! */
1400 if (pio > 240) /* PIO2 is 240nS per cycle */
1409 * ata_dev_read_id - Read ID data from the specified device
1410 * @dev: target device
1411 * @p_class: pointer to class of the target device (may be changed)
1412 * @flags: ATA_READID_* flags
1413 * @id: buffer to read IDENTIFY data into
1415 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1416 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1417 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1418 * for pre-ATA4 drives.
1421 * Kernel thread context (may sleep)
1424 * 0 on success, -errno otherwise.
1426 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1427 unsigned int flags, u16 *id)
1429 struct ata_port *ap = dev->ap;
1430 unsigned int class = *p_class;
1431 struct ata_taskfile tf;
1432 unsigned int err_mask = 0;
1436 if (ata_msg_ctl(ap))
1437 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1439 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1442 ata_tf_init(dev, &tf);
1446 tf.command = ATA_CMD_ID_ATA;
1449 tf.command = ATA_CMD_ID_ATAPI;
1453 reason = "unsupported class";
1457 tf.protocol = ATA_PROT_PIO;
1459 /* Some devices choke if TF registers contain garbage. Make
1460 * sure those are properly initialized.
1462 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1464 /* Device presence detection is unreliable on some
1465 * controllers. Always poll IDENTIFY if available.
1467 tf.flags |= ATA_TFLAG_POLLING;
1469 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1470 id, sizeof(id[0]) * ATA_ID_WORDS);
1472 if (err_mask & AC_ERR_NODEV_HINT) {
1473 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1474 ap->print_id, dev->devno);
1479 reason = "I/O error";
1483 swap_buf_le16(id, ATA_ID_WORDS);
1487 reason = "device reports illegal type";
1489 if (class == ATA_DEV_ATA) {
1490 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1493 if (ata_id_is_ata(id))
1497 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1499 * The exact sequence expected by certain pre-ATA4 drives is:
1502 * INITIALIZE DEVICE PARAMETERS
1504 * Some drives were very specific about that exact sequence.
1506 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1507 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1510 reason = "INIT_DEV_PARAMS failed";
1514 /* current CHS translation info (id[53-58]) might be
1515 * changed. reread the identify device info.
1517 flags &= ~ATA_READID_POSTRESET;
1527 if (ata_msg_warn(ap))
1528 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1529 "(%s, err_mask=0x%x)\n", reason, err_mask);
1533 static inline u8 ata_dev_knobble(struct ata_device *dev)
1535 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1538 static void ata_dev_config_ncq(struct ata_device *dev,
1539 char *desc, size_t desc_sz)
1541 struct ata_port *ap = dev->ap;
1542 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1544 if (!ata_id_has_ncq(dev->id)) {
1548 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1549 snprintf(desc, desc_sz, "NCQ (not used)");
1552 if (ap->flags & ATA_FLAG_NCQ) {
1553 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1554 dev->flags |= ATA_DFLAG_NCQ;
1557 if (hdepth >= ddepth)
1558 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1560 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1563 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1567 if (ap->scsi_host) {
1568 unsigned int len = 0;
1570 for (i = 0; i < ATA_MAX_DEVICES; i++)
1571 len = max(len, ap->device[i].cdb_len);
1573 ap->scsi_host->max_cmd_len = len;
1578 * ata_dev_configure - Configure the specified ATA/ATAPI device
1579 * @dev: Target device to configure
1581 * Configure @dev according to @dev->id. Generic and low-level
1582 * driver specific fixups are also applied.
1585 * Kernel thread context (may sleep)
1588 * 0 on success, -errno otherwise
1590 int ata_dev_configure(struct ata_device *dev)
1592 struct ata_port *ap = dev->ap;
1593 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1594 const u16 *id = dev->id;
1595 unsigned int xfer_mask;
1596 char revbuf[7]; /* XYZ-99\0 */
1597 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1598 char modelbuf[ATA_ID_PROD_LEN+1];
1601 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1602 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1607 if (ata_msg_probe(ap))
1608 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1611 rc = ata_acpi_push_id(ap, dev->devno);
1613 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1617 /* retrieve and execute the ATA task file of _GTF */
1618 ata_acpi_exec_tfs(ap);
1620 /* print device capabilities */
1621 if (ata_msg_probe(ap))
1622 ata_dev_printk(dev, KERN_DEBUG,
1623 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1624 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1626 id[49], id[82], id[83], id[84],
1627 id[85], id[86], id[87], id[88]);
1629 /* initialize to-be-configured parameters */
1630 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1631 dev->max_sectors = 0;
1639 * common ATA, ATAPI feature tests
1642 /* find max transfer mode; for printk only */
1643 xfer_mask = ata_id_xfermask(id);
1645 if (ata_msg_probe(ap))
1648 /* ATA-specific feature tests */
1649 if (dev->class == ATA_DEV_ATA) {
1650 if (ata_id_is_cfa(id)) {
1651 if (id[162] & 1) /* CPRM may make this media unusable */
1652 ata_dev_printk(dev, KERN_WARNING,
1653 "supports DRM functions and may "
1654 "not be fully accessable.\n");
1655 snprintf(revbuf, 7, "CFA");
1658 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1660 dev->n_sectors = ata_id_n_sectors(id);
1662 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1663 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1666 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1669 if (dev->id[59] & 0x100)
1670 dev->multi_count = dev->id[59] & 0xff;
1672 if (ata_id_has_lba(id)) {
1673 const char *lba_desc;
1677 dev->flags |= ATA_DFLAG_LBA;
1678 if (ata_id_has_lba48(id)) {
1679 dev->flags |= ATA_DFLAG_LBA48;
1682 if (dev->n_sectors >= (1UL << 28) &&
1683 ata_id_has_flush_ext(id))
1684 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1688 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1690 /* print device info to dmesg */
1691 if (ata_msg_drv(ap) && print_info) {
1692 ata_dev_printk(dev, KERN_INFO,
1693 "%s: %s, %s, max %s\n",
1694 revbuf, modelbuf, fwrevbuf,
1695 ata_mode_string(xfer_mask));
1696 ata_dev_printk(dev, KERN_INFO,
1697 "%Lu sectors, multi %u: %s %s\n",
1698 (unsigned long long)dev->n_sectors,
1699 dev->multi_count, lba_desc, ncq_desc);
1704 /* Default translation */
1705 dev->cylinders = id[1];
1707 dev->sectors = id[6];
1709 if (ata_id_current_chs_valid(id)) {
1710 /* Current CHS translation is valid. */
1711 dev->cylinders = id[54];
1712 dev->heads = id[55];
1713 dev->sectors = id[56];
1716 /* print device info to dmesg */
1717 if (ata_msg_drv(ap) && print_info) {
1718 ata_dev_printk(dev, KERN_INFO,
1719 "%s: %s, %s, max %s\n",
1720 revbuf, modelbuf, fwrevbuf,
1721 ata_mode_string(xfer_mask));
1722 ata_dev_printk(dev, KERN_INFO,
1723 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1724 (unsigned long long)dev->n_sectors,
1725 dev->multi_count, dev->cylinders,
1726 dev->heads, dev->sectors);
1733 /* ATAPI-specific feature tests */
1734 else if (dev->class == ATA_DEV_ATAPI) {
1735 char *cdb_intr_string = "";
1737 rc = atapi_cdb_len(id);
1738 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1739 if (ata_msg_warn(ap))
1740 ata_dev_printk(dev, KERN_WARNING,
1741 "unsupported CDB len\n");
1745 dev->cdb_len = (unsigned int) rc;
1747 if (ata_id_cdb_intr(dev->id)) {
1748 dev->flags |= ATA_DFLAG_CDB_INTR;
1749 cdb_intr_string = ", CDB intr";
1752 /* print device info to dmesg */
1753 if (ata_msg_drv(ap) && print_info)
1754 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1755 ata_mode_string(xfer_mask),
1759 /* determine max_sectors */
1760 dev->max_sectors = ATA_MAX_SECTORS;
1761 if (dev->flags & ATA_DFLAG_LBA48)
1762 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1764 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1765 /* Let the user know. We don't want to disallow opens for
1766 rescue purposes, or in case the vendor is just a blithering
1769 ata_dev_printk(dev, KERN_WARNING,
1770 "Drive reports diagnostics failure. This may indicate a drive\n");
1771 ata_dev_printk(dev, KERN_WARNING,
1772 "fault or invalid emulation. Contact drive vendor for information.\n");
1776 ata_set_port_max_cmd_len(ap);
1778 /* limit bridge transfers to udma5, 200 sectors */
1779 if (ata_dev_knobble(dev)) {
1780 if (ata_msg_drv(ap) && print_info)
1781 ata_dev_printk(dev, KERN_INFO,
1782 "applying bridge limits\n");
1783 dev->udma_mask &= ATA_UDMA5;
1784 dev->max_sectors = ATA_MAX_SECTORS;
1787 if (ap->ops->dev_config)
1788 ap->ops->dev_config(ap, dev);
1790 if (ata_msg_probe(ap))
1791 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1792 __FUNCTION__, ata_chk_status(ap));
1796 if (ata_msg_probe(ap))
1797 ata_dev_printk(dev, KERN_DEBUG,
1798 "%s: EXIT, err\n", __FUNCTION__);
1803 * ata_bus_probe - Reset and probe ATA bus
1806 * Master ATA bus probing function. Initiates a hardware-dependent
1807 * bus reset, then attempts to identify any devices found on
1811 * PCI/etc. bus probe sem.
1814 * Zero on success, negative errno otherwise.
1817 int ata_bus_probe(struct ata_port *ap)
1819 unsigned int classes[ATA_MAX_DEVICES];
1820 int tries[ATA_MAX_DEVICES];
1822 struct ata_device *dev;
1826 for (i = 0; i < ATA_MAX_DEVICES; i++)
1827 tries[i] = ATA_PROBE_MAX_TRIES;
1830 /* reset and determine device classes */
1831 ap->ops->phy_reset(ap);
1833 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1834 dev = &ap->device[i];
1836 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1837 dev->class != ATA_DEV_UNKNOWN)
1838 classes[dev->devno] = dev->class;
1840 classes[dev->devno] = ATA_DEV_NONE;
1842 dev->class = ATA_DEV_UNKNOWN;
1847 /* after the reset the device state is PIO 0 and the controller
1848 state is undefined. Record the mode */
1850 for (i = 0; i < ATA_MAX_DEVICES; i++)
1851 ap->device[i].pio_mode = XFER_PIO_0;
1853 /* read IDENTIFY page and configure devices. We have to do the identify
1854 specific sequence bass-ackwards so that PDIAG- is released by
1857 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
1858 dev = &ap->device[i];
1861 dev->class = classes[i];
1863 if (!ata_dev_enabled(dev))
1866 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1872 /* After the identify sequence we can now set up the devices. We do
1873 this in the normal order so that the user doesn't get confused */
1875 for(i = 0; i < ATA_MAX_DEVICES; i++) {
1876 dev = &ap->device[i];
1877 if (!ata_dev_enabled(dev))
1880 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1881 rc = ata_dev_configure(dev);
1882 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1887 /* configure transfer mode */
1888 rc = ata_set_mode(ap, &dev);
1892 for (i = 0; i < ATA_MAX_DEVICES; i++)
1893 if (ata_dev_enabled(&ap->device[i]))
1896 /* no device present, disable port */
1897 ata_port_disable(ap);
1898 ap->ops->port_disable(ap);
1902 tries[dev->devno]--;
1906 /* eeek, something went very wrong, give up */
1907 tries[dev->devno] = 0;
1911 /* give it just one more chance */
1912 tries[dev->devno] = min(tries[dev->devno], 1);
1914 if (tries[dev->devno] == 1) {
1915 /* This is the last chance, better to slow
1916 * down than lose it.
1918 sata_down_spd_limit(ap);
1919 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
1923 if (!tries[dev->devno])
1924 ata_dev_disable(dev);
1930 * ata_port_probe - Mark port as enabled
1931 * @ap: Port for which we indicate enablement
1933 * Modify @ap data structure such that the system
1934 * thinks that the entire port is enabled.
1936 * LOCKING: host lock, or some other form of
1940 void ata_port_probe(struct ata_port *ap)
1942 ap->flags &= ~ATA_FLAG_DISABLED;
1946 * sata_print_link_status - Print SATA link status
1947 * @ap: SATA port to printk link status about
1949 * This function prints link speed and status of a SATA link.
1954 static void sata_print_link_status(struct ata_port *ap)
1956 u32 sstatus, scontrol, tmp;
1958 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1960 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1962 if (ata_port_online(ap)) {
1963 tmp = (sstatus >> 4) & 0xf;
1964 ata_port_printk(ap, KERN_INFO,
1965 "SATA link up %s (SStatus %X SControl %X)\n",
1966 sata_spd_string(tmp), sstatus, scontrol);
1968 ata_port_printk(ap, KERN_INFO,
1969 "SATA link down (SStatus %X SControl %X)\n",
1975 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1976 * @ap: SATA port associated with target SATA PHY.
1978 * This function issues commands to standard SATA Sxxx
1979 * PHY registers, to wake up the phy (and device), and
1980 * clear any reset condition.
1983 * PCI/etc. bus probe sem.
1986 void __sata_phy_reset(struct ata_port *ap)
1989 unsigned long timeout = jiffies + (HZ * 5);
1991 if (ap->flags & ATA_FLAG_SATA_RESET) {
1992 /* issue phy wake/reset */
1993 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1994 /* Couldn't find anything in SATA I/II specs, but
1995 * AHCI-1.1 10.4.2 says at least 1 ms. */
1998 /* phy wake/clear reset */
1999 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2001 /* wait for phy to become ready, if necessary */
2004 sata_scr_read(ap, SCR_STATUS, &sstatus);
2005 if ((sstatus & 0xf) != 1)
2007 } while (time_before(jiffies, timeout));
2009 /* print link status */
2010 sata_print_link_status(ap);
2012 /* TODO: phy layer with polling, timeouts, etc. */
2013 if (!ata_port_offline(ap))
2016 ata_port_disable(ap);
2018 if (ap->flags & ATA_FLAG_DISABLED)
2021 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2022 ata_port_disable(ap);
2026 ap->cbl = ATA_CBL_SATA;
2030 * sata_phy_reset - Reset SATA bus.
2031 * @ap: SATA port associated with target SATA PHY.
2033 * This function resets the SATA bus, and then probes
2034 * the bus for devices.
2037 * PCI/etc. bus probe sem.
2040 void sata_phy_reset(struct ata_port *ap)
2042 __sata_phy_reset(ap);
2043 if (ap->flags & ATA_FLAG_DISABLED)
2049 * ata_dev_pair - return other device on cable
2052 * Obtain the other device on the same cable, or if none is
2053 * present NULL is returned
2056 struct ata_device *ata_dev_pair(struct ata_device *adev)
2058 struct ata_port *ap = adev->ap;
2059 struct ata_device *pair = &ap->device[1 - adev->devno];
2060 if (!ata_dev_enabled(pair))
2066 * ata_port_disable - Disable port.
2067 * @ap: Port to be disabled.
2069 * Modify @ap data structure such that the system
2070 * thinks that the entire port is disabled, and should
2071 * never attempt to probe or communicate with devices
2074 * LOCKING: host lock, or some other form of
2078 void ata_port_disable(struct ata_port *ap)
2080 ap->device[0].class = ATA_DEV_NONE;
2081 ap->device[1].class = ATA_DEV_NONE;
2082 ap->flags |= ATA_FLAG_DISABLED;
2086 * sata_down_spd_limit - adjust SATA spd limit downward
2087 * @ap: Port to adjust SATA spd limit for
2089 * Adjust SATA spd limit of @ap downward. Note that this
2090 * function only adjusts the limit. The change must be applied
2091 * using sata_set_spd().
2094 * Inherited from caller.
2097 * 0 on success, negative errno on failure
2099 int sata_down_spd_limit(struct ata_port *ap)
2101 u32 sstatus, spd, mask;
2104 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2108 mask = ap->sata_spd_limit;
2111 highbit = fls(mask) - 1;
2112 mask &= ~(1 << highbit);
2114 spd = (sstatus >> 4) & 0xf;
2118 mask &= (1 << spd) - 1;
2122 ap->sata_spd_limit = mask;
2124 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2125 sata_spd_string(fls(mask)));
2130 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2134 if (ap->sata_spd_limit == UINT_MAX)
2137 limit = fls(ap->sata_spd_limit);
2139 spd = (*scontrol >> 4) & 0xf;
2140 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2142 return spd != limit;
2146 * sata_set_spd_needed - is SATA spd configuration needed
2147 * @ap: Port in question
2149 * Test whether the spd limit in SControl matches
2150 * @ap->sata_spd_limit. This function is used to determine
2151 * whether hardreset is necessary to apply SATA spd
2155 * Inherited from caller.
2158 * 1 if SATA spd configuration is needed, 0 otherwise.
2160 int sata_set_spd_needed(struct ata_port *ap)
2164 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2167 return __sata_set_spd_needed(ap, &scontrol);
2171 * sata_set_spd - set SATA spd according to spd limit
2172 * @ap: Port to set SATA spd for
2174 * Set SATA spd of @ap according to sata_spd_limit.
2177 * Inherited from caller.
2180 * 0 if spd doesn't need to be changed, 1 if spd has been
2181 * changed. Negative errno if SCR registers are inaccessible.
2183 int sata_set_spd(struct ata_port *ap)
2188 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2191 if (!__sata_set_spd_needed(ap, &scontrol))
2194 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2201 * This mode timing computation functionality is ported over from
2202 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2205 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2206 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2207 * for UDMA6, which is currently supported only by Maxtor drives.
2209 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2212 static const struct ata_timing ata_timing[] = {
2214 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2215 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2216 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2217 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2219 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2220 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2221 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2222 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2223 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2225 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2227 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2228 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2229 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2231 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2232 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2233 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2235 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2236 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2237 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2238 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2240 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2241 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2242 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2244 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2249 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2250 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2252 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2254 q->setup = EZ(t->setup * 1000, T);
2255 q->act8b = EZ(t->act8b * 1000, T);
2256 q->rec8b = EZ(t->rec8b * 1000, T);
2257 q->cyc8b = EZ(t->cyc8b * 1000, T);
2258 q->active = EZ(t->active * 1000, T);
2259 q->recover = EZ(t->recover * 1000, T);
2260 q->cycle = EZ(t->cycle * 1000, T);
2261 q->udma = EZ(t->udma * 1000, UT);
2264 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2265 struct ata_timing *m, unsigned int what)
2267 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2268 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2269 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2270 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2271 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2272 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2273 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2274 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2277 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2279 const struct ata_timing *t;
2281 for (t = ata_timing; t->mode != speed; t++)
2282 if (t->mode == 0xFF)
2287 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2288 struct ata_timing *t, int T, int UT)
2290 const struct ata_timing *s;
2291 struct ata_timing p;
2297 if (!(s = ata_timing_find_mode(speed)))
2300 memcpy(t, s, sizeof(*s));
2303 * If the drive is an EIDE drive, it can tell us it needs extended
2304 * PIO/MW_DMA cycle timing.
2307 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2308 memset(&p, 0, sizeof(p));
2309 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2310 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2311 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2312 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2313 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2315 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2319 * Convert the timing to bus clock counts.
2322 ata_timing_quantize(t, t, T, UT);
2325 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2326 * S.M.A.R.T * and some other commands. We have to ensure that the
2327 * DMA cycle timing is slower/equal than the fastest PIO timing.
2330 if (speed > XFER_PIO_6) {
2331 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2332 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2336 * Lengthen active & recovery time so that cycle time is correct.
2339 if (t->act8b + t->rec8b < t->cyc8b) {
2340 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2341 t->rec8b = t->cyc8b - t->act8b;
2344 if (t->active + t->recover < t->cycle) {
2345 t->active += (t->cycle - (t->active + t->recover)) / 2;
2346 t->recover = t->cycle - t->active;
2353 * ata_down_xfermask_limit - adjust dev xfer masks downward
2354 * @dev: Device to adjust xfer masks
2355 * @sel: ATA_DNXFER_* selector
2357 * Adjust xfer masks of @dev downward. Note that this function
2358 * does not apply the change. Invoking ata_set_mode() afterwards
2359 * will apply the limit.
2362 * Inherited from caller.
2365 * 0 on success, negative errno on failure
2367 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2370 unsigned int orig_mask, xfer_mask;
2371 unsigned int pio_mask, mwdma_mask, udma_mask;
2374 quiet = !!(sel & ATA_DNXFER_QUIET);
2375 sel &= ~ATA_DNXFER_QUIET;
2377 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2380 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2383 case ATA_DNXFER_PIO:
2384 highbit = fls(pio_mask) - 1;
2385 pio_mask &= ~(1 << highbit);
2388 case ATA_DNXFER_DMA:
2390 highbit = fls(udma_mask) - 1;
2391 udma_mask &= ~(1 << highbit);
2394 } else if (mwdma_mask) {
2395 highbit = fls(mwdma_mask) - 1;
2396 mwdma_mask &= ~(1 << highbit);
2402 case ATA_DNXFER_40C:
2403 udma_mask &= ATA_UDMA_MASK_40C;
2406 case ATA_DNXFER_FORCE_PIO0:
2408 case ATA_DNXFER_FORCE_PIO:
2417 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2419 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2423 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2424 snprintf(buf, sizeof(buf), "%s:%s",
2425 ata_mode_string(xfer_mask),
2426 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2428 snprintf(buf, sizeof(buf), "%s",
2429 ata_mode_string(xfer_mask));
2431 ata_dev_printk(dev, KERN_WARNING,
2432 "limiting speed to %s\n", buf);
2435 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2441 static int ata_dev_set_mode(struct ata_device *dev)
2443 struct ata_eh_context *ehc = &dev->ap->eh_context;
2444 unsigned int err_mask;
2447 dev->flags &= ~ATA_DFLAG_PIO;
2448 if (dev->xfer_shift == ATA_SHIFT_PIO)
2449 dev->flags |= ATA_DFLAG_PIO;
2451 err_mask = ata_dev_set_xfermode(dev);
2452 /* Old CFA may refuse this command, which is just fine */
2453 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2454 err_mask &= ~AC_ERR_DEV;
2457 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2458 "(err_mask=0x%x)\n", err_mask);
2462 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2463 rc = ata_dev_revalidate(dev, 0);
2464 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2468 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2469 dev->xfer_shift, (int)dev->xfer_mode);
2471 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2472 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2477 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2478 * @ap: port on which timings will be programmed
2479 * @r_failed_dev: out paramter for failed device
2481 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2482 * ata_set_mode() fails, pointer to the failing device is
2483 * returned in @r_failed_dev.
2486 * PCI/etc. bus probe sem.
2489 * 0 on success, negative errno otherwise
2491 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2493 struct ata_device *dev;
2494 int i, rc = 0, used_dma = 0, found = 0;
2496 /* has private set_mode? */
2497 if (ap->ops->set_mode)
2498 return ap->ops->set_mode(ap, r_failed_dev);
2500 /* step 1: calculate xfer_mask */
2501 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2502 unsigned int pio_mask, dma_mask;
2504 dev = &ap->device[i];
2506 if (!ata_dev_enabled(dev))
2509 ata_dev_xfermask(dev);
2511 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2512 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2513 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2514 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2523 /* step 2: always set host PIO timings */
2524 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2525 dev = &ap->device[i];
2526 if (!ata_dev_enabled(dev))
2529 if (!dev->pio_mode) {
2530 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2535 dev->xfer_mode = dev->pio_mode;
2536 dev->xfer_shift = ATA_SHIFT_PIO;
2537 if (ap->ops->set_piomode)
2538 ap->ops->set_piomode(ap, dev);
2541 /* step 3: set host DMA timings */
2542 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2543 dev = &ap->device[i];
2545 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2548 dev->xfer_mode = dev->dma_mode;
2549 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2550 if (ap->ops->set_dmamode)
2551 ap->ops->set_dmamode(ap, dev);
2554 /* step 4: update devices' xfer mode */
2555 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2556 dev = &ap->device[i];
2558 /* don't update suspended devices' xfer mode */
2559 if (!ata_dev_ready(dev))
2562 rc = ata_dev_set_mode(dev);
2567 /* Record simplex status. If we selected DMA then the other
2568 * host channels are not permitted to do so.
2570 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2571 ap->host->simplex_claimed = ap;
2573 /* step5: chip specific finalisation */
2574 if (ap->ops->post_set_mode)
2575 ap->ops->post_set_mode(ap);
2578 *r_failed_dev = dev;
2583 * ata_tf_to_host - issue ATA taskfile to host controller
2584 * @ap: port to which command is being issued
2585 * @tf: ATA taskfile register set
2587 * Issues ATA taskfile register set to ATA host controller,
2588 * with proper synchronization with interrupt handler and
2592 * spin_lock_irqsave(host lock)
2595 static inline void ata_tf_to_host(struct ata_port *ap,
2596 const struct ata_taskfile *tf)
2598 ap->ops->tf_load(ap, tf);
2599 ap->ops->exec_command(ap, tf);
2603 * ata_busy_sleep - sleep until BSY clears, or timeout
2604 * @ap: port containing status register to be polled
2605 * @tmout_pat: impatience timeout
2606 * @tmout: overall timeout
2608 * Sleep until ATA Status register bit BSY clears,
2609 * or a timeout occurs.
2612 * Kernel thread context (may sleep).
2615 * 0 on success, -errno otherwise.
2617 int ata_busy_sleep(struct ata_port *ap,
2618 unsigned long tmout_pat, unsigned long tmout)
2620 unsigned long timer_start, timeout;
2623 status = ata_busy_wait(ap, ATA_BUSY, 300);
2624 timer_start = jiffies;
2625 timeout = timer_start + tmout_pat;
2626 while (status != 0xff && (status & ATA_BUSY) &&
2627 time_before(jiffies, timeout)) {
2629 status = ata_busy_wait(ap, ATA_BUSY, 3);
2632 if (status != 0xff && (status & ATA_BUSY))
2633 ata_port_printk(ap, KERN_WARNING,
2634 "port is slow to respond, please be patient "
2635 "(Status 0x%x)\n", status);
2637 timeout = timer_start + tmout;
2638 while (status != 0xff && (status & ATA_BUSY) &&
2639 time_before(jiffies, timeout)) {
2641 status = ata_chk_status(ap);
2647 if (status & ATA_BUSY) {
2648 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2649 "(%lu secs, Status 0x%x)\n",
2650 tmout / HZ, status);
2657 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2659 struct ata_ioports *ioaddr = &ap->ioaddr;
2660 unsigned int dev0 = devmask & (1 << 0);
2661 unsigned int dev1 = devmask & (1 << 1);
2662 unsigned long timeout;
2664 /* if device 0 was found in ata_devchk, wait for its
2668 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2670 /* if device 1 was found in ata_devchk, wait for
2671 * register access, then wait for BSY to clear
2673 timeout = jiffies + ATA_TMOUT_BOOT;
2677 ap->ops->dev_select(ap, 1);
2678 nsect = ioread8(ioaddr->nsect_addr);
2679 lbal = ioread8(ioaddr->lbal_addr);
2680 if ((nsect == 1) && (lbal == 1))
2682 if (time_after(jiffies, timeout)) {
2686 msleep(50); /* give drive a breather */
2689 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2691 /* is all this really necessary? */
2692 ap->ops->dev_select(ap, 0);
2694 ap->ops->dev_select(ap, 1);
2696 ap->ops->dev_select(ap, 0);
2699 static unsigned int ata_bus_softreset(struct ata_port *ap,
2700 unsigned int devmask)
2702 struct ata_ioports *ioaddr = &ap->ioaddr;
2704 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2706 /* software reset. causes dev0 to be selected */
2707 iowrite8(ap->ctl, ioaddr->ctl_addr);
2708 udelay(20); /* FIXME: flush */
2709 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2710 udelay(20); /* FIXME: flush */
2711 iowrite8(ap->ctl, ioaddr->ctl_addr);
2713 /* spec mandates ">= 2ms" before checking status.
2714 * We wait 150ms, because that was the magic delay used for
2715 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2716 * between when the ATA command register is written, and then
2717 * status is checked. Because waiting for "a while" before
2718 * checking status is fine, post SRST, we perform this magic
2719 * delay here as well.
2721 * Old drivers/ide uses the 2mS rule and then waits for ready
2725 /* Before we perform post reset processing we want to see if
2726 * the bus shows 0xFF because the odd clown forgets the D7
2727 * pulldown resistor.
2729 if (ata_check_status(ap) == 0xFF)
2732 ata_bus_post_reset(ap, devmask);
2738 * ata_bus_reset - reset host port and associated ATA channel
2739 * @ap: port to reset
2741 * This is typically the first time we actually start issuing
2742 * commands to the ATA channel. We wait for BSY to clear, then
2743 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2744 * result. Determine what devices, if any, are on the channel
2745 * by looking at the device 0/1 error register. Look at the signature
2746 * stored in each device's taskfile registers, to determine if
2747 * the device is ATA or ATAPI.
2750 * PCI/etc. bus probe sem.
2751 * Obtains host lock.
2754 * Sets ATA_FLAG_DISABLED if bus reset fails.
2757 void ata_bus_reset(struct ata_port *ap)
2759 struct ata_ioports *ioaddr = &ap->ioaddr;
2760 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2762 unsigned int dev0, dev1 = 0, devmask = 0;
2764 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2766 /* determine if device 0/1 are present */
2767 if (ap->flags & ATA_FLAG_SATA_RESET)
2770 dev0 = ata_devchk(ap, 0);
2772 dev1 = ata_devchk(ap, 1);
2776 devmask |= (1 << 0);
2778 devmask |= (1 << 1);
2780 /* select device 0 again */
2781 ap->ops->dev_select(ap, 0);
2783 /* issue bus reset */
2784 if (ap->flags & ATA_FLAG_SRST)
2785 if (ata_bus_softreset(ap, devmask))
2789 * determine by signature whether we have ATA or ATAPI devices
2791 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2792 if ((slave_possible) && (err != 0x81))
2793 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2795 /* re-enable interrupts */
2796 ap->ops->irq_on(ap);
2798 /* is double-select really necessary? */
2799 if (ap->device[1].class != ATA_DEV_NONE)
2800 ap->ops->dev_select(ap, 1);
2801 if (ap->device[0].class != ATA_DEV_NONE)
2802 ap->ops->dev_select(ap, 0);
2804 /* if no devices were detected, disable this port */
2805 if ((ap->device[0].class == ATA_DEV_NONE) &&
2806 (ap->device[1].class == ATA_DEV_NONE))
2809 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2810 /* set up device control for ATA_FLAG_SATA_RESET */
2811 iowrite8(ap->ctl, ioaddr->ctl_addr);
2818 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2819 ap->ops->port_disable(ap);
2825 * sata_phy_debounce - debounce SATA phy status
2826 * @ap: ATA port to debounce SATA phy status for
2827 * @params: timing parameters { interval, duratinon, timeout } in msec
2829 * Make sure SStatus of @ap reaches stable state, determined by
2830 * holding the same value where DET is not 1 for @duration polled
2831 * every @interval, before @timeout. Timeout constraints the
2832 * beginning of the stable state. Because, after hot unplugging,
2833 * DET gets stuck at 1 on some controllers, this functions waits
2834 * until timeout then returns 0 if DET is stable at 1.
2837 * Kernel thread context (may sleep)
2840 * 0 on success, -errno on failure.
2842 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2844 unsigned long interval_msec = params[0];
2845 unsigned long duration = params[1] * HZ / 1000;
2846 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2847 unsigned long last_jiffies;
2851 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2856 last_jiffies = jiffies;
2859 msleep(interval_msec);
2860 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2866 if (cur == 1 && time_before(jiffies, timeout))
2868 if (time_after(jiffies, last_jiffies + duration))
2873 /* unstable, start over */
2875 last_jiffies = jiffies;
2878 if (time_after(jiffies, timeout))
2884 * sata_phy_resume - resume SATA phy
2885 * @ap: ATA port to resume SATA phy for
2886 * @params: timing parameters { interval, duratinon, timeout } in msec
2888 * Resume SATA phy of @ap and debounce it.
2891 * Kernel thread context (may sleep)
2894 * 0 on success, -errno on failure.
2896 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2901 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2904 scontrol = (scontrol & 0x0f0) | 0x300;
2906 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2909 /* Some PHYs react badly if SStatus is pounded immediately
2910 * after resuming. Delay 200ms before debouncing.
2914 return sata_phy_debounce(ap, params);
2917 static void ata_wait_spinup(struct ata_port *ap)
2919 struct ata_eh_context *ehc = &ap->eh_context;
2920 unsigned long end, secs;
2923 /* first, debounce phy if SATA */
2924 if (ap->cbl == ATA_CBL_SATA) {
2925 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2927 /* if debounced successfully and offline, no need to wait */
2928 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2932 /* okay, let's give the drive time to spin up */
2933 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2934 secs = ((end - jiffies) + HZ - 1) / HZ;
2936 if (time_after(jiffies, end))
2940 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2941 "(%lu secs)\n", secs);
2943 schedule_timeout_uninterruptible(end - jiffies);
2947 * ata_std_prereset - prepare for reset
2948 * @ap: ATA port to be reset
2950 * @ap is about to be reset. Initialize it.
2953 * Kernel thread context (may sleep)
2956 * 0 on success, -errno otherwise.
2958 int ata_std_prereset(struct ata_port *ap)
2960 struct ata_eh_context *ehc = &ap->eh_context;
2961 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2964 /* handle link resume & hotplug spinup */
2965 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2966 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2967 ehc->i.action |= ATA_EH_HARDRESET;
2969 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2970 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2971 ata_wait_spinup(ap);
2973 /* if we're about to do hardreset, nothing more to do */
2974 if (ehc->i.action & ATA_EH_HARDRESET)
2977 /* if SATA, resume phy */
2978 if (ap->cbl == ATA_CBL_SATA) {
2979 rc = sata_phy_resume(ap, timing);
2980 if (rc && rc != -EOPNOTSUPP) {
2981 /* phy resume failed */
2982 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2983 "link for reset (errno=%d)\n", rc);
2988 /* Wait for !BSY if the controller can wait for the first D2H
2989 * Reg FIS and we don't know that no device is attached.
2991 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2992 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2998 * ata_std_softreset - reset host port via ATA SRST
2999 * @ap: port to reset
3000 * @classes: resulting classes of attached devices
3002 * Reset host port using ATA SRST.
3005 * Kernel thread context (may sleep)
3008 * 0 on success, -errno otherwise.
3010 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
3012 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3013 unsigned int devmask = 0, err_mask;
3018 if (ata_port_offline(ap)) {
3019 classes[0] = ATA_DEV_NONE;
3023 /* determine if device 0/1 are present */
3024 if (ata_devchk(ap, 0))
3025 devmask |= (1 << 0);
3026 if (slave_possible && ata_devchk(ap, 1))
3027 devmask |= (1 << 1);
3029 /* select device 0 again */
3030 ap->ops->dev_select(ap, 0);
3032 /* issue bus reset */
3033 DPRINTK("about to softreset, devmask=%x\n", devmask);
3034 err_mask = ata_bus_softreset(ap, devmask);
3036 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3041 /* determine by signature whether we have ATA or ATAPI devices */
3042 classes[0] = ata_dev_try_classify(ap, 0, &err);
3043 if (slave_possible && err != 0x81)
3044 classes[1] = ata_dev_try_classify(ap, 1, &err);
3047 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3052 * sata_port_hardreset - reset port via SATA phy reset
3053 * @ap: port to reset
3054 * @timing: timing parameters { interval, duratinon, timeout } in msec
3056 * SATA phy-reset host port using DET bits of SControl register.
3059 * Kernel thread context (may sleep)
3062 * 0 on success, -errno otherwise.
3064 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
3071 if (sata_set_spd_needed(ap)) {
3072 /* SATA spec says nothing about how to reconfigure
3073 * spd. To be on the safe side, turn off phy during
3074 * reconfiguration. This works for at least ICH7 AHCI
3077 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3080 scontrol = (scontrol & 0x0f0) | 0x304;
3082 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3088 /* issue phy wake/reset */
3089 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3092 scontrol = (scontrol & 0x0f0) | 0x301;
3094 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3097 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3098 * 10.4.2 says at least 1 ms.
3102 /* bring phy back */
3103 rc = sata_phy_resume(ap, timing);
3105 DPRINTK("EXIT, rc=%d\n", rc);
3110 * sata_std_hardreset - reset host port via SATA phy reset
3111 * @ap: port to reset
3112 * @class: resulting class of attached device
3114 * SATA phy-reset host port using DET bits of SControl register,
3115 * wait for !BSY and classify the attached device.
3118 * Kernel thread context (may sleep)
3121 * 0 on success, -errno otherwise.
3123 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3125 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3131 rc = sata_port_hardreset(ap, timing);
3133 ata_port_printk(ap, KERN_ERR,
3134 "COMRESET failed (errno=%d)\n", rc);
3138 /* TODO: phy layer with polling, timeouts, etc. */
3139 if (ata_port_offline(ap)) {
3140 *class = ATA_DEV_NONE;
3141 DPRINTK("EXIT, link offline\n");
3145 /* wait a while before checking status, see SRST for more info */
3148 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3149 ata_port_printk(ap, KERN_ERR,
3150 "COMRESET failed (device not ready)\n");
3154 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3156 *class = ata_dev_try_classify(ap, 0, NULL);
3158 DPRINTK("EXIT, class=%u\n", *class);
3163 * ata_std_postreset - standard postreset callback
3164 * @ap: the target ata_port
3165 * @classes: classes of attached devices
3167 * This function is invoked after a successful reset. Note that
3168 * the device might have been reset more than once using
3169 * different reset methods before postreset is invoked.
3172 * Kernel thread context (may sleep)
3174 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3180 /* print link status */
3181 sata_print_link_status(ap);
3184 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3185 sata_scr_write(ap, SCR_ERROR, serror);
3187 /* re-enable interrupts */
3188 if (!ap->ops->error_handler)
3189 ap->ops->irq_on(ap);
3191 /* is double-select really necessary? */
3192 if (classes[0] != ATA_DEV_NONE)
3193 ap->ops->dev_select(ap, 1);
3194 if (classes[1] != ATA_DEV_NONE)
3195 ap->ops->dev_select(ap, 0);
3197 /* bail out if no device is present */
3198 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3199 DPRINTK("EXIT, no device\n");
3203 /* set up device control */
3204 if (ap->ioaddr.ctl_addr)
3205 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3211 * ata_dev_same_device - Determine whether new ID matches configured device
3212 * @dev: device to compare against
3213 * @new_class: class of the new device
3214 * @new_id: IDENTIFY page of the new device
3216 * Compare @new_class and @new_id against @dev and determine
3217 * whether @dev is the device indicated by @new_class and
3224 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3226 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3229 const u16 *old_id = dev->id;
3230 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3231 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3234 if (dev->class != new_class) {
3235 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3236 dev->class, new_class);
3240 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3241 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3242 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3243 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3244 new_n_sectors = ata_id_n_sectors(new_id);
3246 if (strcmp(model[0], model[1])) {
3247 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3248 "'%s' != '%s'\n", model[0], model[1]);
3252 if (strcmp(serial[0], serial[1])) {
3253 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3254 "'%s' != '%s'\n", serial[0], serial[1]);
3258 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3259 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3261 (unsigned long long)dev->n_sectors,
3262 (unsigned long long)new_n_sectors);
3270 * ata_dev_revalidate - Revalidate ATA device
3271 * @dev: device to revalidate
3272 * @readid_flags: read ID flags
3274 * Re-read IDENTIFY page and make sure @dev is still attached to
3278 * Kernel thread context (may sleep)
3281 * 0 on success, negative errno otherwise
3283 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3285 unsigned int class = dev->class;
3286 u16 *id = (void *)dev->ap->sector_buf;
3289 if (!ata_dev_enabled(dev)) {
3295 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3299 /* is the device still there? */
3300 if (!ata_dev_same_device(dev, class, id)) {
3305 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3307 /* configure device according to the new ID */
3308 rc = ata_dev_configure(dev);
3313 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3317 struct ata_blacklist_entry {
3318 const char *model_num;
3319 const char *model_rev;
3320 unsigned long horkage;
3323 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3324 /* Devices with DMA related problems under Linux */
3325 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3326 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3327 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3328 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3329 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3330 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3331 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3332 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3333 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3334 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3335 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3336 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3337 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3338 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3339 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3340 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3341 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3342 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3343 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3344 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3345 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3346 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3347 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3348 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3349 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3350 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3351 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3352 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3353 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3355 /* Devices we expect to fail diagnostics */
3357 /* Devices where NCQ should be avoided */
3359 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3360 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3361 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3363 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3364 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3365 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3367 /* Devices with NCQ limits */
3373 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3375 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3376 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3377 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3379 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3380 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3382 while (ad->model_num) {
3383 if (!strcmp(ad->model_num, model_num)) {
3384 if (ad->model_rev == NULL)
3386 if (!strcmp(ad->model_rev, model_rev))
3394 static int ata_dma_blacklisted(const struct ata_device *dev)
3396 /* We don't support polling DMA.
3397 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3398 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3400 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3401 (dev->flags & ATA_DFLAG_CDB_INTR))
3403 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3407 * ata_dev_xfermask - Compute supported xfermask of the given device
3408 * @dev: Device to compute xfermask for
3410 * Compute supported xfermask of @dev and store it in
3411 * dev->*_mask. This function is responsible for applying all
3412 * known limits including host controller limits, device
3418 static void ata_dev_xfermask(struct ata_device *dev)
3420 struct ata_port *ap = dev->ap;
3421 struct ata_host *host = ap->host;
3422 unsigned long xfer_mask;
3424 /* controller modes available */
3425 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3426 ap->mwdma_mask, ap->udma_mask);
3428 /* Apply cable rule here. Don't apply it early because when
3429 * we handle hot plug the cable type can itself change.
3431 if (ap->cbl == ATA_CBL_PATA40)
3432 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3433 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3434 * host side are checked drive side as well. Cases where we know a
3435 * 40wire cable is used safely for 80 are not checked here.
3437 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3438 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3441 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3442 dev->mwdma_mask, dev->udma_mask);
3443 xfer_mask &= ata_id_xfermask(dev->id);
3446 * CFA Advanced TrueIDE timings are not allowed on a shared
3449 if (ata_dev_pair(dev)) {
3450 /* No PIO5 or PIO6 */
3451 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3452 /* No MWDMA3 or MWDMA 4 */
3453 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3456 if (ata_dma_blacklisted(dev)) {
3457 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3458 ata_dev_printk(dev, KERN_WARNING,
3459 "device is on DMA blacklist, disabling DMA\n");
3462 if ((host->flags & ATA_HOST_SIMPLEX) &&
3463 host->simplex_claimed && host->simplex_claimed != ap) {
3464 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3465 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3466 "other device, disabling DMA\n");
3469 if (ap->ops->mode_filter)
3470 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3472 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3473 &dev->mwdma_mask, &dev->udma_mask);
3477 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3478 * @dev: Device to which command will be sent
3480 * Issue SET FEATURES - XFER MODE command to device @dev
3484 * PCI/etc. bus probe sem.
3487 * 0 on success, AC_ERR_* mask otherwise.
3490 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3492 struct ata_taskfile tf;
3493 unsigned int err_mask;
3495 /* set up set-features taskfile */
3496 DPRINTK("set features - xfer mode\n");
3498 ata_tf_init(dev, &tf);
3499 tf.command = ATA_CMD_SET_FEATURES;
3500 tf.feature = SETFEATURES_XFER;
3501 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3502 tf.protocol = ATA_PROT_NODATA;
3503 tf.nsect = dev->xfer_mode;
3505 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3507 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3512 * ata_dev_init_params - Issue INIT DEV PARAMS command
3513 * @dev: Device to which command will be sent
3514 * @heads: Number of heads (taskfile parameter)
3515 * @sectors: Number of sectors (taskfile parameter)
3518 * Kernel thread context (may sleep)
3521 * 0 on success, AC_ERR_* mask otherwise.
3523 static unsigned int ata_dev_init_params(struct ata_device *dev,
3524 u16 heads, u16 sectors)
3526 struct ata_taskfile tf;
3527 unsigned int err_mask;
3529 /* Number of sectors per track 1-255. Number of heads 1-16 */
3530 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3531 return AC_ERR_INVALID;
3533 /* set up init dev params taskfile */
3534 DPRINTK("init dev params \n");
3536 ata_tf_init(dev, &tf);
3537 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3538 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3539 tf.protocol = ATA_PROT_NODATA;
3541 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3543 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3545 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3550 * ata_sg_clean - Unmap DMA memory associated with command
3551 * @qc: Command containing DMA memory to be released
3553 * Unmap all mapped DMA memory associated with this command.
3556 * spin_lock_irqsave(host lock)
3558 void ata_sg_clean(struct ata_queued_cmd *qc)
3560 struct ata_port *ap = qc->ap;
3561 struct scatterlist *sg = qc->__sg;
3562 int dir = qc->dma_dir;
3563 void *pad_buf = NULL;
3565 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3566 WARN_ON(sg == NULL);
3568 if (qc->flags & ATA_QCFLAG_SINGLE)
3569 WARN_ON(qc->n_elem > 1);
3571 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3573 /* if we padded the buffer out to 32-bit bound, and data
3574 * xfer direction is from-device, we must copy from the
3575 * pad buffer back into the supplied buffer
3577 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3578 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3580 if (qc->flags & ATA_QCFLAG_SG) {
3582 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3583 /* restore last sg */
3584 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3586 struct scatterlist *psg = &qc->pad_sgent;
3587 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3588 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3589 kunmap_atomic(addr, KM_IRQ0);
3593 dma_unmap_single(ap->dev,
3594 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3597 sg->length += qc->pad_len;
3599 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3600 pad_buf, qc->pad_len);
3603 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3608 * ata_fill_sg - Fill PCI IDE PRD table
3609 * @qc: Metadata associated with taskfile to be transferred
3611 * Fill PCI IDE PRD (scatter-gather) table with segments
3612 * associated with the current disk command.
3615 * spin_lock_irqsave(host lock)
3618 static void ata_fill_sg(struct ata_queued_cmd *qc)
3620 struct ata_port *ap = qc->ap;
3621 struct scatterlist *sg;
3624 WARN_ON(qc->__sg == NULL);
3625 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3628 ata_for_each_sg(sg, qc) {
3632 /* determine if physical DMA addr spans 64K boundary.
3633 * Note h/w doesn't support 64-bit, so we unconditionally
3634 * truncate dma_addr_t to u32.
3636 addr = (u32) sg_dma_address(sg);
3637 sg_len = sg_dma_len(sg);
3640 offset = addr & 0xffff;
3642 if ((offset + sg_len) > 0x10000)
3643 len = 0x10000 - offset;
3645 ap->prd[idx].addr = cpu_to_le32(addr);
3646 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3647 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3656 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3659 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3660 * @qc: Metadata associated with taskfile to check
3662 * Allow low-level driver to filter ATA PACKET commands, returning
3663 * a status indicating whether or not it is OK to use DMA for the
3664 * supplied PACKET command.
3667 * spin_lock_irqsave(host lock)
3669 * RETURNS: 0 when ATAPI DMA can be used
3672 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3674 struct ata_port *ap = qc->ap;
3675 int rc = 0; /* Assume ATAPI DMA is OK by default */
3677 if (ap->ops->check_atapi_dma)
3678 rc = ap->ops->check_atapi_dma(qc);
3683 * ata_qc_prep - Prepare taskfile for submission
3684 * @qc: Metadata associated with taskfile to be prepared
3686 * Prepare ATA taskfile for submission.
3689 * spin_lock_irqsave(host lock)
3691 void ata_qc_prep(struct ata_queued_cmd *qc)
3693 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3699 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3702 * ata_sg_init_one - Associate command with memory buffer
3703 * @qc: Command to be associated
3704 * @buf: Memory buffer
3705 * @buflen: Length of memory buffer, in bytes.
3707 * Initialize the data-related elements of queued_cmd @qc
3708 * to point to a single memory buffer, @buf of byte length @buflen.
3711 * spin_lock_irqsave(host lock)
3714 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3716 qc->flags |= ATA_QCFLAG_SINGLE;
3718 qc->__sg = &qc->sgent;
3720 qc->orig_n_elem = 1;
3722 qc->nbytes = buflen;
3724 sg_init_one(&qc->sgent, buf, buflen);
3728 * ata_sg_init - Associate command with scatter-gather table.
3729 * @qc: Command to be associated
3730 * @sg: Scatter-gather table.
3731 * @n_elem: Number of elements in s/g table.
3733 * Initialize the data-related elements of queued_cmd @qc
3734 * to point to a scatter-gather table @sg, containing @n_elem
3738 * spin_lock_irqsave(host lock)
3741 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3742 unsigned int n_elem)
3744 qc->flags |= ATA_QCFLAG_SG;
3746 qc->n_elem = n_elem;
3747 qc->orig_n_elem = n_elem;
3751 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3752 * @qc: Command with memory buffer to be mapped.
3754 * DMA-map the memory buffer associated with queued_cmd @qc.
3757 * spin_lock_irqsave(host lock)
3760 * Zero on success, negative on error.
3763 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3765 struct ata_port *ap = qc->ap;
3766 int dir = qc->dma_dir;
3767 struct scatterlist *sg = qc->__sg;
3768 dma_addr_t dma_address;
3771 /* we must lengthen transfers to end on a 32-bit boundary */
3772 qc->pad_len = sg->length & 3;
3774 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3775 struct scatterlist *psg = &qc->pad_sgent;
3777 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3779 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3781 if (qc->tf.flags & ATA_TFLAG_WRITE)
3782 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3785 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3786 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3788 sg->length -= qc->pad_len;
3789 if (sg->length == 0)
3792 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3793 sg->length, qc->pad_len);
3801 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3803 if (dma_mapping_error(dma_address)) {
3805 sg->length += qc->pad_len;
3809 sg_dma_address(sg) = dma_address;
3810 sg_dma_len(sg) = sg->length;
3813 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3814 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3820 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3821 * @qc: Command with scatter-gather table to be mapped.
3823 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3826 * spin_lock_irqsave(host lock)
3829 * Zero on success, negative on error.
3833 static int ata_sg_setup(struct ata_queued_cmd *qc)
3835 struct ata_port *ap = qc->ap;
3836 struct scatterlist *sg = qc->__sg;
3837 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3838 int n_elem, pre_n_elem, dir, trim_sg = 0;
3840 VPRINTK("ENTER, ata%u\n", ap->print_id);
3841 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3843 /* we must lengthen transfers to end on a 32-bit boundary */
3844 qc->pad_len = lsg->length & 3;
3846 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3847 struct scatterlist *psg = &qc->pad_sgent;
3848 unsigned int offset;
3850 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3852 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3855 * psg->page/offset are used to copy to-be-written
3856 * data in this function or read data in ata_sg_clean.
3858 offset = lsg->offset + lsg->length - qc->pad_len;
3859 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3860 psg->offset = offset_in_page(offset);
3862 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3863 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3864 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3865 kunmap_atomic(addr, KM_IRQ0);
3868 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3869 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3871 lsg->length -= qc->pad_len;
3872 if (lsg->length == 0)
3875 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3876 qc->n_elem - 1, lsg->length, qc->pad_len);
3879 pre_n_elem = qc->n_elem;
3880 if (trim_sg && pre_n_elem)
3889 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3891 /* restore last sg */
3892 lsg->length += qc->pad_len;
3896 DPRINTK("%d sg elements mapped\n", n_elem);
3899 qc->n_elem = n_elem;
3905 * swap_buf_le16 - swap halves of 16-bit words in place
3906 * @buf: Buffer to swap
3907 * @buf_words: Number of 16-bit words in buffer.
3909 * Swap halves of 16-bit words if needed to convert from
3910 * little-endian byte order to native cpu byte order, or
3914 * Inherited from caller.
3916 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3921 for (i = 0; i < buf_words; i++)
3922 buf[i] = le16_to_cpu(buf[i]);
3923 #endif /* __BIG_ENDIAN */
3927 * ata_data_xfer - Transfer data by PIO
3928 * @adev: device to target
3930 * @buflen: buffer length
3931 * @write_data: read/write
3933 * Transfer data from/to the device data register by PIO.
3936 * Inherited from caller.
3938 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
3939 unsigned int buflen, int write_data)
3941 struct ata_port *ap = adev->ap;
3942 unsigned int words = buflen >> 1;
3944 /* Transfer multiple of 2 bytes */
3946 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
3948 ioread16_rep(ap->ioaddr.data_addr, buf, words);
3950 /* Transfer trailing 1 byte, if any. */
3951 if (unlikely(buflen & 0x01)) {
3952 u16 align_buf[1] = { 0 };
3953 unsigned char *trailing_buf = buf + buflen - 1;
3956 memcpy(align_buf, trailing_buf, 1);
3957 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3959 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
3960 memcpy(trailing_buf, align_buf, 1);
3966 * ata_data_xfer_noirq - Transfer data by PIO
3967 * @adev: device to target
3969 * @buflen: buffer length
3970 * @write_data: read/write
3972 * Transfer data from/to the device data register by PIO. Do the
3973 * transfer with interrupts disabled.
3976 * Inherited from caller.
3978 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3979 unsigned int buflen, int write_data)
3981 unsigned long flags;
3982 local_irq_save(flags);
3983 ata_data_xfer(adev, buf, buflen, write_data);
3984 local_irq_restore(flags);
3989 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3990 * @qc: Command on going
3992 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3995 * Inherited from caller.
3998 static void ata_pio_sector(struct ata_queued_cmd *qc)
4000 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4001 struct scatterlist *sg = qc->__sg;
4002 struct ata_port *ap = qc->ap;
4004 unsigned int offset;
4007 if (qc->curbytes == qc->nbytes - ATA_SECT_SIZE)
4008 ap->hsm_task_state = HSM_ST_LAST;
4010 page = sg[qc->cursg].page;
4011 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4013 /* get the current page and offset */
4014 page = nth_page(page, (offset >> PAGE_SHIFT));
4015 offset %= PAGE_SIZE;
4017 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4019 if (PageHighMem(page)) {
4020 unsigned long flags;
4022 /* FIXME: use a bounce buffer */
4023 local_irq_save(flags);
4024 buf = kmap_atomic(page, KM_IRQ0);
4026 /* do the actual data transfer */
4027 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4029 kunmap_atomic(buf, KM_IRQ0);
4030 local_irq_restore(flags);
4032 buf = page_address(page);
4033 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4036 qc->curbytes += ATA_SECT_SIZE;
4037 qc->cursg_ofs += ATA_SECT_SIZE;
4039 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4046 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4047 * @qc: Command on going
4049 * Transfer one or many ATA_SECT_SIZE of data from/to the
4050 * ATA device for the DRQ request.
4053 * Inherited from caller.
4056 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4058 if (is_multi_taskfile(&qc->tf)) {
4059 /* READ/WRITE MULTIPLE */
4062 WARN_ON(qc->dev->multi_count == 0);
4064 nsect = min((qc->nbytes - qc->curbytes) / ATA_SECT_SIZE,
4065 qc->dev->multi_count);
4073 * atapi_send_cdb - Write CDB bytes to hardware
4074 * @ap: Port to which ATAPI device is attached.
4075 * @qc: Taskfile currently active
4077 * When device has indicated its readiness to accept
4078 * a CDB, this function is called. Send the CDB.
4084 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4087 DPRINTK("send cdb\n");
4088 WARN_ON(qc->dev->cdb_len < 12);
4090 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4091 ata_altstatus(ap); /* flush */
4093 switch (qc->tf.protocol) {
4094 case ATA_PROT_ATAPI:
4095 ap->hsm_task_state = HSM_ST;
4097 case ATA_PROT_ATAPI_NODATA:
4098 ap->hsm_task_state = HSM_ST_LAST;
4100 case ATA_PROT_ATAPI_DMA:
4101 ap->hsm_task_state = HSM_ST_LAST;
4102 /* initiate bmdma */
4103 ap->ops->bmdma_start(qc);
4109 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4110 * @qc: Command on going
4111 * @bytes: number of bytes
4113 * Transfer Transfer data from/to the ATAPI device.
4116 * Inherited from caller.
4120 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4122 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4123 struct scatterlist *sg = qc->__sg;
4124 struct ata_port *ap = qc->ap;
4127 unsigned int offset, count;
4129 if (qc->curbytes + bytes >= qc->nbytes)
4130 ap->hsm_task_state = HSM_ST_LAST;
4133 if (unlikely(qc->cursg >= qc->n_elem)) {
4135 * The end of qc->sg is reached and the device expects
4136 * more data to transfer. In order not to overrun qc->sg
4137 * and fulfill length specified in the byte count register,
4138 * - for read case, discard trailing data from the device
4139 * - for write case, padding zero data to the device
4141 u16 pad_buf[1] = { 0 };
4142 unsigned int words = bytes >> 1;
4145 if (words) /* warning if bytes > 1 */
4146 ata_dev_printk(qc->dev, KERN_WARNING,
4147 "%u bytes trailing data\n", bytes);
4149 for (i = 0; i < words; i++)
4150 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4152 ap->hsm_task_state = HSM_ST_LAST;
4156 sg = &qc->__sg[qc->cursg];
4159 offset = sg->offset + qc->cursg_ofs;
4161 /* get the current page and offset */
4162 page = nth_page(page, (offset >> PAGE_SHIFT));
4163 offset %= PAGE_SIZE;
4165 /* don't overrun current sg */
4166 count = min(sg->length - qc->cursg_ofs, bytes);
4168 /* don't cross page boundaries */
4169 count = min(count, (unsigned int)PAGE_SIZE - offset);
4171 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4173 if (PageHighMem(page)) {
4174 unsigned long flags;
4176 /* FIXME: use bounce buffer */
4177 local_irq_save(flags);
4178 buf = kmap_atomic(page, KM_IRQ0);
4180 /* do the actual data transfer */
4181 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4183 kunmap_atomic(buf, KM_IRQ0);
4184 local_irq_restore(flags);
4186 buf = page_address(page);
4187 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4191 qc->curbytes += count;
4192 qc->cursg_ofs += count;
4194 if (qc->cursg_ofs == sg->length) {
4204 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4205 * @qc: Command on going
4207 * Transfer Transfer data from/to the ATAPI device.
4210 * Inherited from caller.
4213 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4215 struct ata_port *ap = qc->ap;
4216 struct ata_device *dev = qc->dev;
4217 unsigned int ireason, bc_lo, bc_hi, bytes;
4218 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4220 /* Abuse qc->result_tf for temp storage of intermediate TF
4221 * here to save some kernel stack usage.
4222 * For normal completion, qc->result_tf is not relevant. For
4223 * error, qc->result_tf is later overwritten by ata_qc_complete().
4224 * So, the correctness of qc->result_tf is not affected.
4226 ap->ops->tf_read(ap, &qc->result_tf);
4227 ireason = qc->result_tf.nsect;
4228 bc_lo = qc->result_tf.lbam;
4229 bc_hi = qc->result_tf.lbah;
4230 bytes = (bc_hi << 8) | bc_lo;
4232 /* shall be cleared to zero, indicating xfer of data */
4233 if (ireason & (1 << 0))
4236 /* make sure transfer direction matches expected */
4237 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4238 if (do_write != i_write)
4241 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4243 __atapi_pio_bytes(qc, bytes);
4248 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4249 qc->err_mask |= AC_ERR_HSM;
4250 ap->hsm_task_state = HSM_ST_ERR;
4254 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4255 * @ap: the target ata_port
4259 * 1 if ok in workqueue, 0 otherwise.
4262 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4264 if (qc->tf.flags & ATA_TFLAG_POLLING)
4267 if (ap->hsm_task_state == HSM_ST_FIRST) {
4268 if (qc->tf.protocol == ATA_PROT_PIO &&
4269 (qc->tf.flags & ATA_TFLAG_WRITE))
4272 if (is_atapi_taskfile(&qc->tf) &&
4273 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4281 * ata_hsm_qc_complete - finish a qc running on standard HSM
4282 * @qc: Command to complete
4283 * @in_wq: 1 if called from workqueue, 0 otherwise
4285 * Finish @qc which is running on standard HSM.
4288 * If @in_wq is zero, spin_lock_irqsave(host lock).
4289 * Otherwise, none on entry and grabs host lock.
4291 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4293 struct ata_port *ap = qc->ap;
4294 unsigned long flags;
4296 if (ap->ops->error_handler) {
4298 spin_lock_irqsave(ap->lock, flags);
4300 /* EH might have kicked in while host lock is
4303 qc = ata_qc_from_tag(ap, qc->tag);
4305 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4306 ap->ops->irq_on(ap);
4307 ata_qc_complete(qc);
4309 ata_port_freeze(ap);
4312 spin_unlock_irqrestore(ap->lock, flags);
4314 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4315 ata_qc_complete(qc);
4317 ata_port_freeze(ap);
4321 spin_lock_irqsave(ap->lock, flags);
4322 ap->ops->irq_on(ap);
4323 ata_qc_complete(qc);
4324 spin_unlock_irqrestore(ap->lock, flags);
4326 ata_qc_complete(qc);
4329 ata_altstatus(ap); /* flush */
4333 * ata_hsm_move - move the HSM to the next state.
4334 * @ap: the target ata_port
4336 * @status: current device status
4337 * @in_wq: 1 if called from workqueue, 0 otherwise
4340 * 1 when poll next status needed, 0 otherwise.
4342 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4343 u8 status, int in_wq)
4345 unsigned long flags = 0;
4348 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4350 /* Make sure ata_qc_issue_prot() does not throw things
4351 * like DMA polling into the workqueue. Notice that
4352 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4354 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4357 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4358 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4360 switch (ap->hsm_task_state) {
4362 /* Send first data block or PACKET CDB */
4364 /* If polling, we will stay in the work queue after
4365 * sending the data. Otherwise, interrupt handler
4366 * takes over after sending the data.
4368 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4370 /* check device status */
4371 if (unlikely((status & ATA_DRQ) == 0)) {
4372 /* handle BSY=0, DRQ=0 as error */
4373 if (likely(status & (ATA_ERR | ATA_DF)))
4374 /* device stops HSM for abort/error */
4375 qc->err_mask |= AC_ERR_DEV;
4377 /* HSM violation. Let EH handle this */
4378 qc->err_mask |= AC_ERR_HSM;
4380 ap->hsm_task_state = HSM_ST_ERR;
4384 /* Device should not ask for data transfer (DRQ=1)
4385 * when it finds something wrong.
4386 * We ignore DRQ here and stop the HSM by
4387 * changing hsm_task_state to HSM_ST_ERR and
4388 * let the EH abort the command or reset the device.
4390 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4391 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4392 "error, dev_stat 0x%X\n", status);
4393 qc->err_mask |= AC_ERR_HSM;
4394 ap->hsm_task_state = HSM_ST_ERR;
4398 /* Send the CDB (atapi) or the first data block (ata pio out).
4399 * During the state transition, interrupt handler shouldn't
4400 * be invoked before the data transfer is complete and
4401 * hsm_task_state is changed. Hence, the following locking.
4404 spin_lock_irqsave(ap->lock, flags);
4406 if (qc->tf.protocol == ATA_PROT_PIO) {
4407 /* PIO data out protocol.
4408 * send first data block.
4411 /* ata_pio_sectors() might change the state
4412 * to HSM_ST_LAST. so, the state is changed here
4413 * before ata_pio_sectors().
4415 ap->hsm_task_state = HSM_ST;
4416 ata_pio_sectors(qc);
4417 ata_altstatus(ap); /* flush */
4420 atapi_send_cdb(ap, qc);
4423 spin_unlock_irqrestore(ap->lock, flags);
4425 /* if polling, ata_pio_task() handles the rest.
4426 * otherwise, interrupt handler takes over from here.
4431 /* complete command or read/write the data register */
4432 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4433 /* ATAPI PIO protocol */
4434 if ((status & ATA_DRQ) == 0) {
4435 /* No more data to transfer or device error.
4436 * Device error will be tagged in HSM_ST_LAST.
4438 ap->hsm_task_state = HSM_ST_LAST;
4442 /* Device should not ask for data transfer (DRQ=1)
4443 * when it finds something wrong.
4444 * We ignore DRQ here and stop the HSM by
4445 * changing hsm_task_state to HSM_ST_ERR and
4446 * let the EH abort the command or reset the device.
4448 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4449 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4450 "device error, dev_stat 0x%X\n",
4452 qc->err_mask |= AC_ERR_HSM;
4453 ap->hsm_task_state = HSM_ST_ERR;
4457 atapi_pio_bytes(qc);
4459 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4460 /* bad ireason reported by device */
4464 /* ATA PIO protocol */
4465 if (unlikely((status & ATA_DRQ) == 0)) {
4466 /* handle BSY=0, DRQ=0 as error */
4467 if (likely(status & (ATA_ERR | ATA_DF)))
4468 /* device stops HSM for abort/error */
4469 qc->err_mask |= AC_ERR_DEV;
4471 /* HSM violation. Let EH handle this.
4472 * Phantom devices also trigger this
4473 * condition. Mark hint.
4475 qc->err_mask |= AC_ERR_HSM |
4478 ap->hsm_task_state = HSM_ST_ERR;
4482 /* For PIO reads, some devices may ask for
4483 * data transfer (DRQ=1) alone with ERR=1.
4484 * We respect DRQ here and transfer one
4485 * block of junk data before changing the
4486 * hsm_task_state to HSM_ST_ERR.
4488 * For PIO writes, ERR=1 DRQ=1 doesn't make
4489 * sense since the data block has been
4490 * transferred to the device.
4492 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4493 /* data might be corrputed */
4494 qc->err_mask |= AC_ERR_DEV;
4496 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4497 ata_pio_sectors(qc);
4499 status = ata_wait_idle(ap);
4502 if (status & (ATA_BUSY | ATA_DRQ))
4503 qc->err_mask |= AC_ERR_HSM;
4505 /* ata_pio_sectors() might change the
4506 * state to HSM_ST_LAST. so, the state
4507 * is changed after ata_pio_sectors().
4509 ap->hsm_task_state = HSM_ST_ERR;
4513 ata_pio_sectors(qc);
4515 if (ap->hsm_task_state == HSM_ST_LAST &&
4516 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4519 status = ata_wait_idle(ap);
4524 ata_altstatus(ap); /* flush */
4529 if (unlikely(!ata_ok(status))) {
4530 qc->err_mask |= __ac_err_mask(status);
4531 ap->hsm_task_state = HSM_ST_ERR;
4535 /* no more data to transfer */
4536 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4537 ap->print_id, qc->dev->devno, status);
4539 WARN_ON(qc->err_mask);
4541 ap->hsm_task_state = HSM_ST_IDLE;
4543 /* complete taskfile transaction */
4544 ata_hsm_qc_complete(qc, in_wq);
4550 /* make sure qc->err_mask is available to
4551 * know what's wrong and recover
4553 WARN_ON(qc->err_mask == 0);
4555 ap->hsm_task_state = HSM_ST_IDLE;
4557 /* complete taskfile transaction */
4558 ata_hsm_qc_complete(qc, in_wq);
4570 static void ata_pio_task(struct work_struct *work)
4572 struct ata_port *ap =
4573 container_of(work, struct ata_port, port_task.work);
4574 struct ata_queued_cmd *qc = ap->port_task_data;
4579 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4582 * This is purely heuristic. This is a fast path.
4583 * Sometimes when we enter, BSY will be cleared in
4584 * a chk-status or two. If not, the drive is probably seeking
4585 * or something. Snooze for a couple msecs, then
4586 * chk-status again. If still busy, queue delayed work.
4588 status = ata_busy_wait(ap, ATA_BUSY, 5);
4589 if (status & ATA_BUSY) {
4591 status = ata_busy_wait(ap, ATA_BUSY, 10);
4592 if (status & ATA_BUSY) {
4593 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4599 poll_next = ata_hsm_move(ap, qc, status, 1);
4601 /* another command or interrupt handler
4602 * may be running at this point.
4609 * ata_qc_new - Request an available ATA command, for queueing
4610 * @ap: Port associated with device @dev
4611 * @dev: Device from whom we request an available command structure
4617 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4619 struct ata_queued_cmd *qc = NULL;
4622 /* no command while frozen */
4623 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4626 /* the last tag is reserved for internal command. */
4627 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4628 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4629 qc = __ata_qc_from_tag(ap, i);
4640 * ata_qc_new_init - Request an available ATA command, and initialize it
4641 * @dev: Device from whom we request an available command structure
4647 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4649 struct ata_port *ap = dev->ap;
4650 struct ata_queued_cmd *qc;
4652 qc = ata_qc_new(ap);
4665 * ata_qc_free - free unused ata_queued_cmd
4666 * @qc: Command to complete
4668 * Designed to free unused ata_queued_cmd object
4669 * in case something prevents using it.
4672 * spin_lock_irqsave(host lock)
4674 void ata_qc_free(struct ata_queued_cmd *qc)
4676 struct ata_port *ap = qc->ap;
4679 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4683 if (likely(ata_tag_valid(tag))) {
4684 qc->tag = ATA_TAG_POISON;
4685 clear_bit(tag, &ap->qc_allocated);
4689 void __ata_qc_complete(struct ata_queued_cmd *qc)
4691 struct ata_port *ap = qc->ap;
4693 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4694 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4696 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4699 /* command should be marked inactive atomically with qc completion */
4700 if (qc->tf.protocol == ATA_PROT_NCQ)
4701 ap->sactive &= ~(1 << qc->tag);
4703 ap->active_tag = ATA_TAG_POISON;
4705 /* atapi: mark qc as inactive to prevent the interrupt handler
4706 * from completing the command twice later, before the error handler
4707 * is called. (when rc != 0 and atapi request sense is needed)
4709 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4710 ap->qc_active &= ~(1 << qc->tag);
4712 /* call completion callback */
4713 qc->complete_fn(qc);
4716 static void fill_result_tf(struct ata_queued_cmd *qc)
4718 struct ata_port *ap = qc->ap;
4720 qc->result_tf.flags = qc->tf.flags;
4721 ap->ops->tf_read(ap, &qc->result_tf);
4725 * ata_qc_complete - Complete an active ATA command
4726 * @qc: Command to complete
4727 * @err_mask: ATA Status register contents
4729 * Indicate to the mid and upper layers that an ATA
4730 * command has completed, with either an ok or not-ok status.
4733 * spin_lock_irqsave(host lock)
4735 void ata_qc_complete(struct ata_queued_cmd *qc)
4737 struct ata_port *ap = qc->ap;
4739 /* XXX: New EH and old EH use different mechanisms to
4740 * synchronize EH with regular execution path.
4742 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4743 * Normal execution path is responsible for not accessing a
4744 * failed qc. libata core enforces the rule by returning NULL
4745 * from ata_qc_from_tag() for failed qcs.
4747 * Old EH depends on ata_qc_complete() nullifying completion
4748 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4749 * not synchronize with interrupt handler. Only PIO task is
4752 if (ap->ops->error_handler) {
4753 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4755 if (unlikely(qc->err_mask))
4756 qc->flags |= ATA_QCFLAG_FAILED;
4758 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4759 if (!ata_tag_internal(qc->tag)) {
4760 /* always fill result TF for failed qc */
4762 ata_qc_schedule_eh(qc);
4767 /* read result TF if requested */
4768 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4771 __ata_qc_complete(qc);
4773 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4776 /* read result TF if failed or requested */
4777 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4780 __ata_qc_complete(qc);
4785 * ata_qc_complete_multiple - Complete multiple qcs successfully
4786 * @ap: port in question
4787 * @qc_active: new qc_active mask
4788 * @finish_qc: LLDD callback invoked before completing a qc
4790 * Complete in-flight commands. This functions is meant to be
4791 * called from low-level driver's interrupt routine to complete
4792 * requests normally. ap->qc_active and @qc_active is compared
4793 * and commands are completed accordingly.
4796 * spin_lock_irqsave(host lock)
4799 * Number of completed commands on success, -errno otherwise.
4801 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4802 void (*finish_qc)(struct ata_queued_cmd *))
4808 done_mask = ap->qc_active ^ qc_active;
4810 if (unlikely(done_mask & qc_active)) {
4811 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4812 "(%08x->%08x)\n", ap->qc_active, qc_active);
4816 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4817 struct ata_queued_cmd *qc;
4819 if (!(done_mask & (1 << i)))
4822 if ((qc = ata_qc_from_tag(ap, i))) {
4825 ata_qc_complete(qc);
4833 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4835 struct ata_port *ap = qc->ap;
4837 switch (qc->tf.protocol) {
4840 case ATA_PROT_ATAPI_DMA:
4843 case ATA_PROT_ATAPI:
4845 if (ap->flags & ATA_FLAG_PIO_DMA)
4858 * ata_qc_issue - issue taskfile to device
4859 * @qc: command to issue to device
4861 * Prepare an ATA command to submission to device.
4862 * This includes mapping the data into a DMA-able
4863 * area, filling in the S/G table, and finally
4864 * writing the taskfile to hardware, starting the command.
4867 * spin_lock_irqsave(host lock)
4869 void ata_qc_issue(struct ata_queued_cmd *qc)
4871 struct ata_port *ap = qc->ap;
4873 /* Make sure only one non-NCQ command is outstanding. The
4874 * check is skipped for old EH because it reuses active qc to
4875 * request ATAPI sense.
4877 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4879 if (qc->tf.protocol == ATA_PROT_NCQ) {
4880 WARN_ON(ap->sactive & (1 << qc->tag));
4881 ap->sactive |= 1 << qc->tag;
4883 WARN_ON(ap->sactive);
4884 ap->active_tag = qc->tag;
4887 qc->flags |= ATA_QCFLAG_ACTIVE;
4888 ap->qc_active |= 1 << qc->tag;
4890 if (ata_should_dma_map(qc)) {
4891 if (qc->flags & ATA_QCFLAG_SG) {
4892 if (ata_sg_setup(qc))
4894 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4895 if (ata_sg_setup_one(qc))
4899 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4902 ap->ops->qc_prep(qc);
4904 qc->err_mask |= ap->ops->qc_issue(qc);
4905 if (unlikely(qc->err_mask))
4910 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4911 qc->err_mask |= AC_ERR_SYSTEM;
4913 ata_qc_complete(qc);
4917 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4918 * @qc: command to issue to device
4920 * Using various libata functions and hooks, this function
4921 * starts an ATA command. ATA commands are grouped into
4922 * classes called "protocols", and issuing each type of protocol
4923 * is slightly different.
4925 * May be used as the qc_issue() entry in ata_port_operations.
4928 * spin_lock_irqsave(host lock)
4931 * Zero on success, AC_ERR_* mask on failure
4934 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4936 struct ata_port *ap = qc->ap;
4938 /* Use polling pio if the LLD doesn't handle
4939 * interrupt driven pio and atapi CDB interrupt.
4941 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4942 switch (qc->tf.protocol) {
4944 case ATA_PROT_NODATA:
4945 case ATA_PROT_ATAPI:
4946 case ATA_PROT_ATAPI_NODATA:
4947 qc->tf.flags |= ATA_TFLAG_POLLING;
4949 case ATA_PROT_ATAPI_DMA:
4950 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4951 /* see ata_dma_blacklisted() */
4959 /* Some controllers show flaky interrupt behavior after
4960 * setting xfer mode. Use polling instead.
4962 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4963 qc->tf.feature == SETFEATURES_XFER) &&
4964 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4965 qc->tf.flags |= ATA_TFLAG_POLLING;
4967 /* select the device */
4968 ata_dev_select(ap, qc->dev->devno, 1, 0);
4970 /* start the command */
4971 switch (qc->tf.protocol) {
4972 case ATA_PROT_NODATA:
4973 if (qc->tf.flags & ATA_TFLAG_POLLING)
4974 ata_qc_set_polling(qc);
4976 ata_tf_to_host(ap, &qc->tf);
4977 ap->hsm_task_state = HSM_ST_LAST;
4979 if (qc->tf.flags & ATA_TFLAG_POLLING)
4980 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4985 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4987 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4988 ap->ops->bmdma_setup(qc); /* set up bmdma */
4989 ap->ops->bmdma_start(qc); /* initiate bmdma */
4990 ap->hsm_task_state = HSM_ST_LAST;
4994 if (qc->tf.flags & ATA_TFLAG_POLLING)
4995 ata_qc_set_polling(qc);
4997 ata_tf_to_host(ap, &qc->tf);
4999 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5000 /* PIO data out protocol */
5001 ap->hsm_task_state = HSM_ST_FIRST;
5002 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5004 /* always send first data block using
5005 * the ata_pio_task() codepath.
5008 /* PIO data in protocol */
5009 ap->hsm_task_state = HSM_ST;
5011 if (qc->tf.flags & ATA_TFLAG_POLLING)
5012 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5014 /* if polling, ata_pio_task() handles the rest.
5015 * otherwise, interrupt handler takes over from here.
5021 case ATA_PROT_ATAPI:
5022 case ATA_PROT_ATAPI_NODATA:
5023 if (qc->tf.flags & ATA_TFLAG_POLLING)
5024 ata_qc_set_polling(qc);
5026 ata_tf_to_host(ap, &qc->tf);
5028 ap->hsm_task_state = HSM_ST_FIRST;
5030 /* send cdb by polling if no cdb interrupt */
5031 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5032 (qc->tf.flags & ATA_TFLAG_POLLING))
5033 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5036 case ATA_PROT_ATAPI_DMA:
5037 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5039 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5040 ap->ops->bmdma_setup(qc); /* set up bmdma */
5041 ap->hsm_task_state = HSM_ST_FIRST;
5043 /* send cdb by polling if no cdb interrupt */
5044 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5045 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5050 return AC_ERR_SYSTEM;
5057 * ata_host_intr - Handle host interrupt for given (port, task)
5058 * @ap: Port on which interrupt arrived (possibly...)
5059 * @qc: Taskfile currently active in engine
5061 * Handle host interrupt for given queued command. Currently,
5062 * only DMA interrupts are handled. All other commands are
5063 * handled via polling with interrupts disabled (nIEN bit).
5066 * spin_lock_irqsave(host lock)
5069 * One if interrupt was handled, zero if not (shared irq).
5072 inline unsigned int ata_host_intr (struct ata_port *ap,
5073 struct ata_queued_cmd *qc)
5075 struct ata_eh_info *ehi = &ap->eh_info;
5076 u8 status, host_stat = 0;
5078 VPRINTK("ata%u: protocol %d task_state %d\n",
5079 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5081 /* Check whether we are expecting interrupt in this state */
5082 switch (ap->hsm_task_state) {
5084 /* Some pre-ATAPI-4 devices assert INTRQ
5085 * at this state when ready to receive CDB.
5088 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5089 * The flag was turned on only for atapi devices.
5090 * No need to check is_atapi_taskfile(&qc->tf) again.
5092 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5096 if (qc->tf.protocol == ATA_PROT_DMA ||
5097 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5098 /* check status of DMA engine */
5099 host_stat = ap->ops->bmdma_status(ap);
5100 VPRINTK("ata%u: host_stat 0x%X\n",
5101 ap->print_id, host_stat);
5103 /* if it's not our irq... */
5104 if (!(host_stat & ATA_DMA_INTR))
5107 /* before we do anything else, clear DMA-Start bit */
5108 ap->ops->bmdma_stop(qc);
5110 if (unlikely(host_stat & ATA_DMA_ERR)) {
5111 /* error when transfering data to/from memory */
5112 qc->err_mask |= AC_ERR_HOST_BUS;
5113 ap->hsm_task_state = HSM_ST_ERR;
5123 /* check altstatus */
5124 status = ata_altstatus(ap);
5125 if (status & ATA_BUSY)
5128 /* check main status, clearing INTRQ */
5129 status = ata_chk_status(ap);
5130 if (unlikely(status & ATA_BUSY))
5133 /* ack bmdma irq events */
5134 ap->ops->irq_clear(ap);
5136 ata_hsm_move(ap, qc, status, 0);
5138 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5139 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5140 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5142 return 1; /* irq handled */
5145 ap->stats.idle_irq++;
5148 if ((ap->stats.idle_irq % 1000) == 0) {
5149 ap->ops->irq_ack(ap, 0); /* debug trap */
5150 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5154 return 0; /* irq not handled */
5158 * ata_interrupt - Default ATA host interrupt handler
5159 * @irq: irq line (unused)
5160 * @dev_instance: pointer to our ata_host information structure
5162 * Default interrupt handler for PCI IDE devices. Calls
5163 * ata_host_intr() for each port that is not disabled.
5166 * Obtains host lock during operation.
5169 * IRQ_NONE or IRQ_HANDLED.
5172 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5174 struct ata_host *host = dev_instance;
5176 unsigned int handled = 0;
5177 unsigned long flags;
5179 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5180 spin_lock_irqsave(&host->lock, flags);
5182 for (i = 0; i < host->n_ports; i++) {
5183 struct ata_port *ap;
5185 ap = host->ports[i];
5187 !(ap->flags & ATA_FLAG_DISABLED)) {
5188 struct ata_queued_cmd *qc;
5190 qc = ata_qc_from_tag(ap, ap->active_tag);
5191 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5192 (qc->flags & ATA_QCFLAG_ACTIVE))
5193 handled |= ata_host_intr(ap, qc);
5197 spin_unlock_irqrestore(&host->lock, flags);
5199 return IRQ_RETVAL(handled);
5203 * sata_scr_valid - test whether SCRs are accessible
5204 * @ap: ATA port to test SCR accessibility for
5206 * Test whether SCRs are accessible for @ap.
5212 * 1 if SCRs are accessible, 0 otherwise.
5214 int sata_scr_valid(struct ata_port *ap)
5216 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5220 * sata_scr_read - read SCR register of the specified port
5221 * @ap: ATA port to read SCR for
5223 * @val: Place to store read value
5225 * Read SCR register @reg of @ap into *@val. This function is
5226 * guaranteed to succeed if the cable type of the port is SATA
5227 * and the port implements ->scr_read.
5233 * 0 on success, negative errno on failure.
5235 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5237 if (sata_scr_valid(ap)) {
5238 *val = ap->ops->scr_read(ap, reg);
5245 * sata_scr_write - write SCR register of the specified port
5246 * @ap: ATA port to write SCR for
5247 * @reg: SCR to write
5248 * @val: value to write
5250 * Write @val to SCR register @reg of @ap. This function is
5251 * guaranteed to succeed if the cable type of the port is SATA
5252 * and the port implements ->scr_read.
5258 * 0 on success, negative errno on failure.
5260 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5262 if (sata_scr_valid(ap)) {
5263 ap->ops->scr_write(ap, reg, val);
5270 * sata_scr_write_flush - write SCR register of the specified port and flush
5271 * @ap: ATA port to write SCR for
5272 * @reg: SCR to write
5273 * @val: value to write
5275 * This function is identical to sata_scr_write() except that this
5276 * function performs flush after writing to the register.
5282 * 0 on success, negative errno on failure.
5284 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5286 if (sata_scr_valid(ap)) {
5287 ap->ops->scr_write(ap, reg, val);
5288 ap->ops->scr_read(ap, reg);
5295 * ata_port_online - test whether the given port is online
5296 * @ap: ATA port to test
5298 * Test whether @ap is online. Note that this function returns 0
5299 * if online status of @ap cannot be obtained, so
5300 * ata_port_online(ap) != !ata_port_offline(ap).
5306 * 1 if the port online status is available and online.
5308 int ata_port_online(struct ata_port *ap)
5312 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5318 * ata_port_offline - test whether the given port is offline
5319 * @ap: ATA port to test
5321 * Test whether @ap is offline. Note that this function returns
5322 * 0 if offline status of @ap cannot be obtained, so
5323 * ata_port_online(ap) != !ata_port_offline(ap).
5329 * 1 if the port offline status is available and offline.
5331 int ata_port_offline(struct ata_port *ap)
5335 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5340 int ata_flush_cache(struct ata_device *dev)
5342 unsigned int err_mask;
5345 if (!ata_try_flush_cache(dev))
5348 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5349 cmd = ATA_CMD_FLUSH_EXT;
5351 cmd = ATA_CMD_FLUSH;
5353 err_mask = ata_do_simple_cmd(dev, cmd);
5355 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5363 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5364 unsigned int action, unsigned int ehi_flags,
5367 unsigned long flags;
5370 for (i = 0; i < host->n_ports; i++) {
5371 struct ata_port *ap = host->ports[i];
5373 /* Previous resume operation might still be in
5374 * progress. Wait for PM_PENDING to clear.
5376 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5377 ata_port_wait_eh(ap);
5378 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5381 /* request PM ops to EH */
5382 spin_lock_irqsave(ap->lock, flags);
5387 ap->pm_result = &rc;
5390 ap->pflags |= ATA_PFLAG_PM_PENDING;
5391 ap->eh_info.action |= action;
5392 ap->eh_info.flags |= ehi_flags;
5394 ata_port_schedule_eh(ap);
5396 spin_unlock_irqrestore(ap->lock, flags);
5398 /* wait and check result */
5400 ata_port_wait_eh(ap);
5401 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5411 * ata_host_suspend - suspend host
5412 * @host: host to suspend
5415 * Suspend @host. Actual operation is performed by EH. This
5416 * function requests EH to perform PM operations and waits for EH
5420 * Kernel thread context (may sleep).
5423 * 0 on success, -errno on failure.
5425 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5429 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5433 /* EH is quiescent now. Fail if we have any ready device.
5434 * This happens if hotplug occurs between completion of device
5435 * suspension and here.
5437 for (i = 0; i < host->n_ports; i++) {
5438 struct ata_port *ap = host->ports[i];
5440 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5441 struct ata_device *dev = &ap->device[j];
5443 if (ata_dev_ready(dev)) {
5444 ata_port_printk(ap, KERN_WARNING,
5445 "suspend failed, device %d "
5446 "still active\n", dev->devno);
5453 host->dev->power.power_state = mesg;
5457 ata_host_resume(host);
5462 * ata_host_resume - resume host
5463 * @host: host to resume
5465 * Resume @host. Actual operation is performed by EH. This
5466 * function requests EH to perform PM operations and returns.
5467 * Note that all resume operations are performed parallely.
5470 * Kernel thread context (may sleep).
5472 void ata_host_resume(struct ata_host *host)
5474 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5475 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5476 host->dev->power.power_state = PMSG_ON;
5481 * ata_port_start - Set port up for dma.
5482 * @ap: Port to initialize
5484 * Called just after data structures for each port are
5485 * initialized. Allocates space for PRD table.
5487 * May be used as the port_start() entry in ata_port_operations.
5490 * Inherited from caller.
5492 int ata_port_start(struct ata_port *ap)
5494 struct device *dev = ap->dev;
5497 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5502 rc = ata_pad_alloc(ap, dev);
5506 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5507 (unsigned long long)ap->prd_dma);
5512 * ata_dev_init - Initialize an ata_device structure
5513 * @dev: Device structure to initialize
5515 * Initialize @dev in preparation for probing.
5518 * Inherited from caller.
5520 void ata_dev_init(struct ata_device *dev)
5522 struct ata_port *ap = dev->ap;
5523 unsigned long flags;
5525 /* SATA spd limit is bound to the first device */
5526 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5528 /* High bits of dev->flags are used to record warm plug
5529 * requests which occur asynchronously. Synchronize using
5532 spin_lock_irqsave(ap->lock, flags);
5533 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5534 spin_unlock_irqrestore(ap->lock, flags);
5536 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5537 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5538 dev->pio_mask = UINT_MAX;
5539 dev->mwdma_mask = UINT_MAX;
5540 dev->udma_mask = UINT_MAX;
5544 * ata_port_init - Initialize an ata_port structure
5545 * @ap: Structure to initialize
5546 * @host: Collection of hosts to which @ap belongs
5547 * @ent: Probe information provided by low-level driver
5548 * @port_no: Port number associated with this ata_port
5550 * Initialize a new ata_port structure.
5553 * Inherited from caller.
5555 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5556 const struct ata_probe_ent *ent, unsigned int port_no)
5560 ap->lock = &host->lock;
5561 ap->flags = ATA_FLAG_DISABLED;
5562 ap->print_id = ata_print_id++;
5563 ap->ctl = ATA_DEVCTL_OBS;
5566 ap->port_no = port_no;
5567 if (port_no == 1 && ent->pinfo2) {
5568 ap->pio_mask = ent->pinfo2->pio_mask;
5569 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5570 ap->udma_mask = ent->pinfo2->udma_mask;
5571 ap->flags |= ent->pinfo2->flags;
5572 ap->ops = ent->pinfo2->port_ops;
5574 ap->pio_mask = ent->pio_mask;
5575 ap->mwdma_mask = ent->mwdma_mask;
5576 ap->udma_mask = ent->udma_mask;
5577 ap->flags |= ent->port_flags;
5578 ap->ops = ent->port_ops;
5580 ap->hw_sata_spd_limit = UINT_MAX;
5581 ap->active_tag = ATA_TAG_POISON;
5582 ap->last_ctl = 0xFF;
5584 #if defined(ATA_VERBOSE_DEBUG)
5585 /* turn on all debugging levels */
5586 ap->msg_enable = 0x00FF;
5587 #elif defined(ATA_DEBUG)
5588 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5590 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5593 INIT_DELAYED_WORK(&ap->port_task, NULL);
5594 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5595 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5596 INIT_LIST_HEAD(&ap->eh_done_q);
5597 init_waitqueue_head(&ap->eh_wait_q);
5599 /* set cable type */
5600 ap->cbl = ATA_CBL_NONE;
5601 if (ap->flags & ATA_FLAG_SATA)
5602 ap->cbl = ATA_CBL_SATA;
5604 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5605 struct ata_device *dev = &ap->device[i];
5612 ap->stats.unhandled_irq = 1;
5613 ap->stats.idle_irq = 1;
5616 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5620 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5621 * @ap: ATA port to initialize SCSI host for
5622 * @shost: SCSI host associated with @ap
5624 * Initialize SCSI host @shost associated with ATA port @ap.
5627 * Inherited from caller.
5629 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5631 ap->scsi_host = shost;
5633 shost->unique_id = ap->print_id;
5636 shost->max_channel = 1;
5637 shost->max_cmd_len = 12;
5641 * ata_port_add - Attach low-level ATA driver to system
5642 * @ent: Information provided by low-level driver
5643 * @host: Collections of ports to which we add
5644 * @port_no: Port number associated with this host
5646 * Attach low-level ATA driver to system.
5649 * PCI/etc. bus probe sem.
5652 * New ata_port on success, for NULL on error.
5654 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5655 struct ata_host *host,
5656 unsigned int port_no)
5658 struct Scsi_Host *shost;
5659 struct ata_port *ap;
5663 if (!ent->port_ops->error_handler &&
5664 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5665 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5670 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5674 shost->transportt = &ata_scsi_transport_template;
5676 ap = ata_shost_to_port(shost);
5678 ata_port_init(ap, host, ent, port_no);
5679 ata_port_init_shost(ap, shost);
5684 static void ata_host_release(struct device *gendev, void *res)
5686 struct ata_host *host = dev_get_drvdata(gendev);
5689 for (i = 0; i < host->n_ports; i++) {
5690 struct ata_port *ap = host->ports[i];
5692 if (ap && ap->ops->port_stop)
5693 ap->ops->port_stop(ap);
5696 if (host->ops->host_stop)
5697 host->ops->host_stop(host);
5699 for (i = 0; i < host->n_ports; i++) {
5700 struct ata_port *ap = host->ports[i];
5703 scsi_host_put(ap->scsi_host);
5705 host->ports[i] = NULL;
5708 dev_set_drvdata(gendev, NULL);
5712 * ata_sas_host_init - Initialize a host struct
5713 * @host: host to initialize
5714 * @dev: device host is attached to
5715 * @flags: host flags
5719 * PCI/etc. bus probe sem.
5723 void ata_host_init(struct ata_host *host, struct device *dev,
5724 unsigned long flags, const struct ata_port_operations *ops)
5726 spin_lock_init(&host->lock);
5728 host->flags = flags;
5733 * ata_device_add - Register hardware device with ATA and SCSI layers
5734 * @ent: Probe information describing hardware device to be registered
5736 * This function processes the information provided in the probe
5737 * information struct @ent, allocates the necessary ATA and SCSI
5738 * host information structures, initializes them, and registers
5739 * everything with requisite kernel subsystems.
5741 * This function requests irqs, probes the ATA bus, and probes
5745 * PCI/etc. bus probe sem.
5748 * Number of ports registered. Zero on error (no ports registered).
5750 int ata_device_add(const struct ata_probe_ent *ent)
5753 struct device *dev = ent->dev;
5754 struct ata_host *host;
5759 if (ent->irq == 0) {
5760 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5764 if (!devres_open_group(dev, ata_device_add, GFP_KERNEL))
5767 /* alloc a container for our list of ATA ports (buses) */
5768 host = devres_alloc(ata_host_release, sizeof(struct ata_host) +
5769 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5772 devres_add(dev, host);
5773 dev_set_drvdata(dev, host);
5775 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5776 host->n_ports = ent->n_ports;
5777 host->irq = ent->irq;
5778 host->irq2 = ent->irq2;
5779 host->iomap = ent->iomap;
5780 host->private_data = ent->private_data;
5782 /* register each port bound to this device */
5783 for (i = 0; i < host->n_ports; i++) {
5784 struct ata_port *ap;
5785 unsigned long xfer_mode_mask;
5786 int irq_line = ent->irq;
5788 ap = ata_port_add(ent, host, i);
5789 host->ports[i] = ap;
5794 if (ent->dummy_port_mask & (1 << i)) {
5795 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5796 ap->ops = &ata_dummy_port_ops;
5801 rc = ap->ops->port_start(ap);
5803 host->ports[i] = NULL;
5804 scsi_host_put(ap->scsi_host);
5808 /* Report the secondary IRQ for second channel legacy */
5809 if (i == 1 && ent->irq2)
5810 irq_line = ent->irq2;
5812 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5813 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5814 (ap->pio_mask << ATA_SHIFT_PIO);
5816 /* print per-port info to dmesg */
5817 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
5818 "ctl 0x%p bmdma 0x%p irq %d\n",
5819 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5820 ata_mode_string(xfer_mode_mask),
5821 ap->ioaddr.cmd_addr,
5822 ap->ioaddr.ctl_addr,
5823 ap->ioaddr.bmdma_addr,
5826 /* freeze port before requesting IRQ */
5827 ata_eh_freeze_port(ap);
5830 /* obtain irq, that may be shared between channels */
5831 rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler,
5832 ent->irq_flags, DRV_NAME, host);
5834 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5839 /* do we have a second IRQ for the other channel, eg legacy mode */
5841 /* We will get weird core code crashes later if this is true
5843 BUG_ON(ent->irq == ent->irq2);
5845 rc = devm_request_irq(dev, ent->irq2,
5846 ent->port_ops->irq_handler, ent->irq_flags,
5849 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5855 /* resource acquisition complete */
5856 devres_remove_group(dev, ata_device_add);
5858 /* perform each probe synchronously */
5859 DPRINTK("probe begin\n");
5860 for (i = 0; i < host->n_ports; i++) {
5861 struct ata_port *ap = host->ports[i];
5865 /* init sata_spd_limit to the current value */
5866 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5867 int spd = (scontrol >> 4) & 0xf;
5868 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5870 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5872 rc = scsi_add_host(ap->scsi_host, dev);
5874 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5875 /* FIXME: do something useful here */
5876 /* FIXME: handle unconditional calls to
5877 * scsi_scan_host and ata_host_remove, below,
5882 if (ap->ops->error_handler) {
5883 struct ata_eh_info *ehi = &ap->eh_info;
5884 unsigned long flags;
5888 /* kick EH for boot probing */
5889 spin_lock_irqsave(ap->lock, flags);
5891 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5892 ehi->action |= ATA_EH_SOFTRESET;
5893 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5895 ap->pflags |= ATA_PFLAG_LOADING;
5896 ata_port_schedule_eh(ap);
5898 spin_unlock_irqrestore(ap->lock, flags);
5900 /* wait for EH to finish */
5901 ata_port_wait_eh(ap);
5903 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5904 rc = ata_bus_probe(ap);
5905 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5908 /* FIXME: do something useful here?
5909 * Current libata behavior will
5910 * tear down everything when
5911 * the module is removed
5912 * or the h/w is unplugged.
5918 /* probes are done, now scan each port's disk(s) */
5919 DPRINTK("host probe begin\n");
5920 for (i = 0; i < host->n_ports; i++) {
5921 struct ata_port *ap = host->ports[i];
5923 ata_scsi_scan_host(ap);
5926 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5927 return ent->n_ports; /* success */
5930 devres_release_group(dev, ata_device_add);
5931 VPRINTK("EXIT, returning %d\n", rc);
5936 * ata_port_detach - Detach ATA port in prepration of device removal
5937 * @ap: ATA port to be detached
5939 * Detach all ATA devices and the associated SCSI devices of @ap;
5940 * then, remove the associated SCSI host. @ap is guaranteed to
5941 * be quiescent on return from this function.
5944 * Kernel thread context (may sleep).
5946 void ata_port_detach(struct ata_port *ap)
5948 unsigned long flags;
5951 if (!ap->ops->error_handler)
5954 /* tell EH we're leaving & flush EH */
5955 spin_lock_irqsave(ap->lock, flags);
5956 ap->pflags |= ATA_PFLAG_UNLOADING;
5957 spin_unlock_irqrestore(ap->lock, flags);
5959 ata_port_wait_eh(ap);
5961 /* EH is now guaranteed to see UNLOADING, so no new device
5962 * will be attached. Disable all existing devices.
5964 spin_lock_irqsave(ap->lock, flags);
5966 for (i = 0; i < ATA_MAX_DEVICES; i++)
5967 ata_dev_disable(&ap->device[i]);
5969 spin_unlock_irqrestore(ap->lock, flags);
5971 /* Final freeze & EH. All in-flight commands are aborted. EH
5972 * will be skipped and retrials will be terminated with bad
5975 spin_lock_irqsave(ap->lock, flags);
5976 ata_port_freeze(ap); /* won't be thawed */
5977 spin_unlock_irqrestore(ap->lock, flags);
5979 ata_port_wait_eh(ap);
5981 /* Flush hotplug task. The sequence is similar to
5982 * ata_port_flush_task().
5984 flush_workqueue(ata_aux_wq);
5985 cancel_delayed_work(&ap->hotplug_task);
5986 flush_workqueue(ata_aux_wq);
5989 /* remove the associated SCSI host */
5990 scsi_remove_host(ap->scsi_host);
5994 * ata_host_detach - Detach all ports of an ATA host
5995 * @host: Host to detach
5997 * Detach all ports of @host.
6000 * Kernel thread context (may sleep).
6002 void ata_host_detach(struct ata_host *host)
6006 for (i = 0; i < host->n_ports; i++)
6007 ata_port_detach(host->ports[i]);
6010 struct ata_probe_ent *
6011 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
6013 struct ata_probe_ent *probe_ent;
6015 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
6017 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
6018 kobject_name(&(dev->kobj)));
6022 INIT_LIST_HEAD(&probe_ent->node);
6023 probe_ent->dev = dev;
6025 probe_ent->sht = port->sht;
6026 probe_ent->port_flags = port->flags;
6027 probe_ent->pio_mask = port->pio_mask;
6028 probe_ent->mwdma_mask = port->mwdma_mask;
6029 probe_ent->udma_mask = port->udma_mask;
6030 probe_ent->port_ops = port->port_ops;
6031 probe_ent->private_data = port->private_data;
6037 * ata_std_ports - initialize ioaddr with standard port offsets.
6038 * @ioaddr: IO address structure to be initialized
6040 * Utility function which initializes data_addr, error_addr,
6041 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6042 * device_addr, status_addr, and command_addr to standard offsets
6043 * relative to cmd_addr.
6045 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6048 void ata_std_ports(struct ata_ioports *ioaddr)
6050 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6051 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6052 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6053 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6054 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6055 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6056 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6057 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6058 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6059 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6066 * ata_pci_remove_one - PCI layer callback for device removal
6067 * @pdev: PCI device that was removed
6069 * PCI layer indicates to libata via this hook that hot-unplug or
6070 * module unload event has occurred. Detach all ports. Resource
6071 * release is handled via devres.
6074 * Inherited from PCI layer (may sleep).
6076 void ata_pci_remove_one(struct pci_dev *pdev)
6078 struct device *dev = pci_dev_to_dev(pdev);
6079 struct ata_host *host = dev_get_drvdata(dev);
6081 ata_host_detach(host);
6084 /* move to PCI subsystem */
6085 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6087 unsigned long tmp = 0;
6089 switch (bits->width) {
6092 pci_read_config_byte(pdev, bits->reg, &tmp8);
6098 pci_read_config_word(pdev, bits->reg, &tmp16);
6104 pci_read_config_dword(pdev, bits->reg, &tmp32);
6115 return (tmp == bits->val) ? 1 : 0;
6119 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6121 pci_save_state(pdev);
6122 pci_disable_device(pdev);
6124 if (mesg.event == PM_EVENT_SUSPEND)
6125 pci_set_power_state(pdev, PCI_D3hot);
6128 int ata_pci_device_do_resume(struct pci_dev *pdev)
6132 pci_set_power_state(pdev, PCI_D0);
6133 pci_restore_state(pdev);
6135 rc = pcim_enable_device(pdev);
6137 dev_printk(KERN_ERR, &pdev->dev,
6138 "failed to enable device after resume (%d)\n", rc);
6142 pci_set_master(pdev);
6146 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6148 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6151 rc = ata_host_suspend(host, mesg);
6155 ata_pci_device_do_suspend(pdev, mesg);
6160 int ata_pci_device_resume(struct pci_dev *pdev)
6162 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6165 rc = ata_pci_device_do_resume(pdev);
6167 ata_host_resume(host);
6170 #endif /* CONFIG_PM */
6172 #endif /* CONFIG_PCI */
6175 static int __init ata_init(void)
6177 ata_probe_timeout *= HZ;
6178 ata_wq = create_workqueue("ata");
6182 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6184 destroy_workqueue(ata_wq);
6188 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6192 static void __exit ata_exit(void)
6194 destroy_workqueue(ata_wq);
6195 destroy_workqueue(ata_aux_wq);
6198 subsys_initcall(ata_init);
6199 module_exit(ata_exit);
6201 static unsigned long ratelimit_time;
6202 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6204 int ata_ratelimit(void)
6207 unsigned long flags;
6209 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6211 if (time_after(jiffies, ratelimit_time)) {
6213 ratelimit_time = jiffies + (HZ/5);
6217 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6223 * ata_wait_register - wait until register value changes
6224 * @reg: IO-mapped register
6225 * @mask: Mask to apply to read register value
6226 * @val: Wait condition
6227 * @interval_msec: polling interval in milliseconds
6228 * @timeout_msec: timeout in milliseconds
6230 * Waiting for some bits of register to change is a common
6231 * operation for ATA controllers. This function reads 32bit LE
6232 * IO-mapped register @reg and tests for the following condition.
6234 * (*@reg & mask) != val
6236 * If the condition is met, it returns; otherwise, the process is
6237 * repeated after @interval_msec until timeout.
6240 * Kernel thread context (may sleep)
6243 * The final register value.
6245 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6246 unsigned long interval_msec,
6247 unsigned long timeout_msec)
6249 unsigned long timeout;
6252 tmp = ioread32(reg);
6254 /* Calculate timeout _after_ the first read to make sure
6255 * preceding writes reach the controller before starting to
6256 * eat away the timeout.
6258 timeout = jiffies + (timeout_msec * HZ) / 1000;
6260 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6261 msleep(interval_msec);
6262 tmp = ioread32(reg);
6271 static void ata_dummy_noret(struct ata_port *ap) { }
6272 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6273 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6275 static u8 ata_dummy_check_status(struct ata_port *ap)
6280 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6282 return AC_ERR_SYSTEM;
6285 const struct ata_port_operations ata_dummy_port_ops = {
6286 .port_disable = ata_port_disable,
6287 .check_status = ata_dummy_check_status,
6288 .check_altstatus = ata_dummy_check_status,
6289 .dev_select = ata_noop_dev_select,
6290 .qc_prep = ata_noop_qc_prep,
6291 .qc_issue = ata_dummy_qc_issue,
6292 .freeze = ata_dummy_noret,
6293 .thaw = ata_dummy_noret,
6294 .error_handler = ata_dummy_noret,
6295 .post_internal_cmd = ata_dummy_qc_noret,
6296 .irq_clear = ata_dummy_noret,
6297 .port_start = ata_dummy_ret0,
6298 .port_stop = ata_dummy_noret,
6302 * libata is essentially a library of internal helper functions for
6303 * low-level ATA host controller drivers. As such, the API/ABI is
6304 * likely to change as new drivers are added and updated.
6305 * Do not depend on ABI/API stability.
6308 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6309 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6310 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6311 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6312 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6313 EXPORT_SYMBOL_GPL(ata_std_ports);
6314 EXPORT_SYMBOL_GPL(ata_host_init);
6315 EXPORT_SYMBOL_GPL(ata_device_add);
6316 EXPORT_SYMBOL_GPL(ata_host_detach);
6317 EXPORT_SYMBOL_GPL(ata_sg_init);
6318 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6319 EXPORT_SYMBOL_GPL(ata_hsm_move);
6320 EXPORT_SYMBOL_GPL(ata_qc_complete);
6321 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6322 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6323 EXPORT_SYMBOL_GPL(ata_tf_load);
6324 EXPORT_SYMBOL_GPL(ata_tf_read);
6325 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6326 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6327 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6328 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6329 EXPORT_SYMBOL_GPL(ata_check_status);
6330 EXPORT_SYMBOL_GPL(ata_altstatus);
6331 EXPORT_SYMBOL_GPL(ata_exec_command);
6332 EXPORT_SYMBOL_GPL(ata_port_start);
6333 EXPORT_SYMBOL_GPL(ata_interrupt);
6334 EXPORT_SYMBOL_GPL(ata_data_xfer);
6335 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6336 EXPORT_SYMBOL_GPL(ata_qc_prep);
6337 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6338 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6339 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6340 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6341 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6342 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6343 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6344 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6345 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6346 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6347 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6348 EXPORT_SYMBOL_GPL(ata_port_probe);
6349 EXPORT_SYMBOL_GPL(ata_dev_disable);
6350 EXPORT_SYMBOL_GPL(sata_set_spd);
6351 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6352 EXPORT_SYMBOL_GPL(sata_phy_resume);
6353 EXPORT_SYMBOL_GPL(sata_phy_reset);
6354 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6355 EXPORT_SYMBOL_GPL(ata_bus_reset);
6356 EXPORT_SYMBOL_GPL(ata_std_prereset);
6357 EXPORT_SYMBOL_GPL(ata_std_softreset);
6358 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6359 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6360 EXPORT_SYMBOL_GPL(ata_std_postreset);
6361 EXPORT_SYMBOL_GPL(ata_dev_classify);
6362 EXPORT_SYMBOL_GPL(ata_dev_pair);
6363 EXPORT_SYMBOL_GPL(ata_port_disable);
6364 EXPORT_SYMBOL_GPL(ata_ratelimit);
6365 EXPORT_SYMBOL_GPL(ata_wait_register);
6366 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6367 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6368 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6369 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6370 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6371 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6372 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6373 EXPORT_SYMBOL_GPL(ata_host_intr);
6374 EXPORT_SYMBOL_GPL(sata_scr_valid);
6375 EXPORT_SYMBOL_GPL(sata_scr_read);
6376 EXPORT_SYMBOL_GPL(sata_scr_write);
6377 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6378 EXPORT_SYMBOL_GPL(ata_port_online);
6379 EXPORT_SYMBOL_GPL(ata_port_offline);
6381 EXPORT_SYMBOL_GPL(ata_host_suspend);
6382 EXPORT_SYMBOL_GPL(ata_host_resume);
6383 #endif /* CONFIG_PM */
6384 EXPORT_SYMBOL_GPL(ata_id_string);
6385 EXPORT_SYMBOL_GPL(ata_id_c_string);
6386 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6387 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6388 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6390 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6391 EXPORT_SYMBOL_GPL(ata_timing_compute);
6392 EXPORT_SYMBOL_GPL(ata_timing_merge);
6395 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6396 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6397 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6398 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6400 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6401 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6402 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6403 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6404 #endif /* CONFIG_PM */
6405 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6406 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6407 #endif /* CONFIG_PCI */
6410 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6411 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6412 #endif /* CONFIG_PM */
6414 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6415 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6416 EXPORT_SYMBOL_GPL(ata_port_abort);
6417 EXPORT_SYMBOL_GPL(ata_port_freeze);
6418 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6419 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6420 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6421 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6422 EXPORT_SYMBOL_GPL(ata_do_eh);
6423 EXPORT_SYMBOL_GPL(ata_irq_on);
6424 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6425 EXPORT_SYMBOL_GPL(ata_irq_ack);
6426 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6427 EXPORT_SYMBOL_GPL(ata_dev_try_classify);