NFS: Make directIO aware of compound pages...
[linux-2.6] / fs / relayfs / inode.c
1 /*
2  * VFS-related code for RelayFS, a high-speed data relay filesystem.
3  *
4  * Copyright (C) 2003-2005 - Tom Zanussi <zanussi@us.ibm.com>, IBM Corp
5  * Copyright (C) 2003-2005 - Karim Yaghmour <karim@opersys.com>
6  *
7  * Based on ramfs, Copyright (C) 2002 - Linus Torvalds
8  *
9  * This file is released under the GPL.
10  */
11
12 #include <linux/module.h>
13 #include <linux/fs.h>
14 #include <linux/mount.h>
15 #include <linux/pagemap.h>
16 #include <linux/init.h>
17 #include <linux/string.h>
18 #include <linux/backing-dev.h>
19 #include <linux/namei.h>
20 #include <linux/poll.h>
21 #include <linux/relayfs_fs.h>
22 #include "relay.h"
23 #include "buffers.h"
24
25 #define RELAYFS_MAGIC                   0xF0B4A981
26
27 static struct vfsmount *                relayfs_mount;
28 static int                              relayfs_mount_count;
29 static kmem_cache_t *                   relayfs_inode_cachep;
30
31 static struct backing_dev_info          relayfs_backing_dev_info = {
32         .ra_pages       = 0,    /* No readahead */
33         .capabilities   = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
34 };
35
36 static struct inode *relayfs_get_inode(struct super_block *sb, int mode,
37                                        struct rchan *chan)
38 {
39         struct rchan_buf *buf = NULL;
40         struct inode *inode;
41
42         if (S_ISREG(mode)) {
43                 BUG_ON(!chan);
44                 buf = relay_create_buf(chan);
45                 if (!buf)
46                         return NULL;
47         }
48
49         inode = new_inode(sb);
50         if (!inode) {
51                 relay_destroy_buf(buf);
52                 return NULL;
53         }
54
55         inode->i_mode = mode;
56         inode->i_uid = 0;
57         inode->i_gid = 0;
58         inode->i_blksize = PAGE_CACHE_SIZE;
59         inode->i_blocks = 0;
60         inode->i_mapping->backing_dev_info = &relayfs_backing_dev_info;
61         inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
62         switch (mode & S_IFMT) {
63         case S_IFREG:
64                 inode->i_fop = &relayfs_file_operations;
65                 RELAYFS_I(inode)->buf = buf;
66                 break;
67         case S_IFDIR:
68                 inode->i_op = &simple_dir_inode_operations;
69                 inode->i_fop = &simple_dir_operations;
70
71                 /* directory inodes start off with i_nlink == 2 (for "." entry) */
72                 inode->i_nlink++;
73                 break;
74         default:
75                 break;
76         }
77
78         return inode;
79 }
80
81 /**
82  *      relayfs_create_entry - create a relayfs directory or file
83  *      @name: the name of the file to create
84  *      @parent: parent directory
85  *      @mode: mode
86  *      @chan: relay channel associated with the file
87  *
88  *      Returns the new dentry, NULL on failure
89  *
90  *      Creates a file or directory with the specifed permissions.
91  */
92 static struct dentry *relayfs_create_entry(const char *name,
93                                            struct dentry *parent,
94                                            int mode,
95                                            struct rchan *chan)
96 {
97         struct dentry *d;
98         struct inode *inode;
99         int error = 0;
100
101         BUG_ON(!name || !(S_ISREG(mode) || S_ISDIR(mode)));
102
103         error = simple_pin_fs("relayfs", &relayfs_mount, &relayfs_mount_count);
104         if (error) {
105                 printk(KERN_ERR "Couldn't mount relayfs: errcode %d\n", error);
106                 return NULL;
107         }
108
109         if (!parent && relayfs_mount && relayfs_mount->mnt_sb)
110                 parent = relayfs_mount->mnt_sb->s_root;
111
112         if (!parent) {
113                 simple_release_fs(&relayfs_mount, &relayfs_mount_count);
114                 return NULL;
115         }
116
117         parent = dget(parent);
118         down(&parent->d_inode->i_sem);
119         d = lookup_one_len(name, parent, strlen(name));
120         if (IS_ERR(d)) {
121                 d = NULL;
122                 goto release_mount;
123         }
124
125         if (d->d_inode) {
126                 d = NULL;
127                 goto release_mount;
128         }
129
130         inode = relayfs_get_inode(parent->d_inode->i_sb, mode, chan);
131         if (!inode) {
132                 d = NULL;
133                 goto release_mount;
134         }
135
136         d_instantiate(d, inode);
137         dget(d);        /* Extra count - pin the dentry in core */
138
139         if (S_ISDIR(mode))
140                 parent->d_inode->i_nlink++;
141
142         goto exit;
143
144 release_mount:
145         simple_release_fs(&relayfs_mount, &relayfs_mount_count);
146
147 exit:
148         up(&parent->d_inode->i_sem);
149         dput(parent);
150         return d;
151 }
152
153 /**
154  *      relayfs_create_file - create a file in the relay filesystem
155  *      @name: the name of the file to create
156  *      @parent: parent directory
157  *      @mode: mode, if not specied the default perms are used
158  *      @chan: channel associated with the file
159  *
160  *      Returns file dentry if successful, NULL otherwise.
161  *
162  *      The file will be created user r on behalf of current user.
163  */
164 struct dentry *relayfs_create_file(const char *name, struct dentry *parent,
165                                    int mode, struct rchan *chan)
166 {
167         if (!mode)
168                 mode = S_IRUSR;
169         mode = (mode & S_IALLUGO) | S_IFREG;
170
171         return relayfs_create_entry(name, parent, mode, chan);
172 }
173
174 /**
175  *      relayfs_create_dir - create a directory in the relay filesystem
176  *      @name: the name of the directory to create
177  *      @parent: parent directory, NULL if parent should be fs root
178  *
179  *      Returns directory dentry if successful, NULL otherwise.
180  *
181  *      The directory will be created world rwx on behalf of current user.
182  */
183 struct dentry *relayfs_create_dir(const char *name, struct dentry *parent)
184 {
185         int mode = S_IFDIR | S_IRWXU | S_IRUGO | S_IXUGO;
186         return relayfs_create_entry(name, parent, mode, NULL);
187 }
188
189 /**
190  *      relayfs_remove - remove a file or directory in the relay filesystem
191  *      @dentry: file or directory dentry
192  *
193  *      Returns 0 if successful, negative otherwise.
194  */
195 int relayfs_remove(struct dentry *dentry)
196 {
197         struct dentry *parent;
198         int error = 0;
199
200         if (!dentry)
201                 return -EINVAL;
202         parent = dentry->d_parent;
203         if (!parent)
204                 return -EINVAL;
205
206         parent = dget(parent);
207         down(&parent->d_inode->i_sem);
208         if (dentry->d_inode) {
209                 if (S_ISDIR(dentry->d_inode->i_mode))
210                         error = simple_rmdir(parent->d_inode, dentry);
211                 else
212                         error = simple_unlink(parent->d_inode, dentry);
213                 if (!error)
214                         d_delete(dentry);
215         }
216         if (!error)
217                 dput(dentry);
218         up(&parent->d_inode->i_sem);
219         dput(parent);
220
221         if (!error)
222                 simple_release_fs(&relayfs_mount, &relayfs_mount_count);
223
224         return error;
225 }
226
227 /**
228  *      relayfs_remove_dir - remove a directory in the relay filesystem
229  *      @dentry: directory dentry
230  *
231  *      Returns 0 if successful, negative otherwise.
232  */
233 int relayfs_remove_dir(struct dentry *dentry)
234 {
235         return relayfs_remove(dentry);
236 }
237
238 /**
239  *      relayfs_open - open file op for relayfs files
240  *      @inode: the inode
241  *      @filp: the file
242  *
243  *      Increments the channel buffer refcount.
244  */
245 static int relayfs_open(struct inode *inode, struct file *filp)
246 {
247         struct rchan_buf *buf = RELAYFS_I(inode)->buf;
248         kref_get(&buf->kref);
249
250         return 0;
251 }
252
253 /**
254  *      relayfs_mmap - mmap file op for relayfs files
255  *      @filp: the file
256  *      @vma: the vma describing what to map
257  *
258  *      Calls upon relay_mmap_buf to map the file into user space.
259  */
260 static int relayfs_mmap(struct file *filp, struct vm_area_struct *vma)
261 {
262         struct inode *inode = filp->f_dentry->d_inode;
263         return relay_mmap_buf(RELAYFS_I(inode)->buf, vma);
264 }
265
266 /**
267  *      relayfs_poll - poll file op for relayfs files
268  *      @filp: the file
269  *      @wait: poll table
270  *
271  *      Poll implemention.
272  */
273 static unsigned int relayfs_poll(struct file *filp, poll_table *wait)
274 {
275         unsigned int mask = 0;
276         struct inode *inode = filp->f_dentry->d_inode;
277         struct rchan_buf *buf = RELAYFS_I(inode)->buf;
278
279         if (buf->finalized)
280                 return POLLERR;
281
282         if (filp->f_mode & FMODE_READ) {
283                 poll_wait(filp, &buf->read_wait, wait);
284                 if (!relay_buf_empty(buf))
285                         mask |= POLLIN | POLLRDNORM;
286         }
287
288         return mask;
289 }
290
291 /**
292  *      relayfs_release - release file op for relayfs files
293  *      @inode: the inode
294  *      @filp: the file
295  *
296  *      Decrements the channel refcount, as the filesystem is
297  *      no longer using it.
298  */
299 static int relayfs_release(struct inode *inode, struct file *filp)
300 {
301         struct rchan_buf *buf = RELAYFS_I(inode)->buf;
302         kref_put(&buf->kref, relay_remove_buf);
303
304         return 0;
305 }
306
307 /**
308  *      relayfs_read_consume - update the consumed count for the buffer
309  */
310 static void relayfs_read_consume(struct rchan_buf *buf,
311                                  size_t read_pos,
312                                  size_t bytes_consumed)
313 {
314         size_t subbuf_size = buf->chan->subbuf_size;
315         size_t n_subbufs = buf->chan->n_subbufs;
316         size_t read_subbuf;
317
318         if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
319                 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
320                 buf->bytes_consumed = 0;
321         }
322
323         buf->bytes_consumed += bytes_consumed;
324         read_subbuf = read_pos / buf->chan->subbuf_size;
325         if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
326                 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
327                     (buf->offset == subbuf_size))
328                         return;
329                 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
330                 buf->bytes_consumed = 0;
331         }
332 }
333
334 /**
335  *      relayfs_read_avail - boolean, are there unconsumed bytes available?
336  */
337 static int relayfs_read_avail(struct rchan_buf *buf, size_t read_pos)
338 {
339         size_t bytes_produced, bytes_consumed, write_offset;
340         size_t subbuf_size = buf->chan->subbuf_size;
341         size_t n_subbufs = buf->chan->n_subbufs;
342         size_t produced = buf->subbufs_produced % n_subbufs;
343         size_t consumed = buf->subbufs_consumed % n_subbufs;
344
345         write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
346
347         if (consumed > produced) {
348                 if ((produced > n_subbufs) &&
349                     (produced + n_subbufs - consumed <= n_subbufs))
350                         produced += n_subbufs;
351         } else if (consumed == produced) {
352                 if (buf->offset > subbuf_size) {
353                         produced += n_subbufs;
354                         if (buf->subbufs_produced == buf->subbufs_consumed)
355                                 consumed += n_subbufs;
356                 }
357         }
358
359         if (buf->offset > subbuf_size)
360                 bytes_produced = (produced - 1) * subbuf_size + write_offset;
361         else
362                 bytes_produced = produced * subbuf_size + write_offset;
363         bytes_consumed = consumed * subbuf_size + buf->bytes_consumed;
364
365         if (bytes_produced == bytes_consumed)
366                 return 0;
367
368         relayfs_read_consume(buf, read_pos, 0);
369
370         return 1;
371 }
372
373 /**
374  *      relayfs_read_subbuf_avail - return bytes available in sub-buffer
375  */
376 static size_t relayfs_read_subbuf_avail(size_t read_pos,
377                                         struct rchan_buf *buf)
378 {
379         size_t padding, avail = 0;
380         size_t read_subbuf, read_offset, write_subbuf, write_offset;
381         size_t subbuf_size = buf->chan->subbuf_size;
382
383         write_subbuf = (buf->data - buf->start) / subbuf_size;
384         write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
385         read_subbuf = read_pos / subbuf_size;
386         read_offset = read_pos % subbuf_size;
387         padding = buf->padding[read_subbuf];
388
389         if (read_subbuf == write_subbuf) {
390                 if (read_offset + padding < write_offset)
391                         avail = write_offset - (read_offset + padding);
392         } else
393                 avail = (subbuf_size - padding) - read_offset;
394
395         return avail;
396 }
397
398 /**
399  *      relayfs_read_start_pos - find the first available byte to read
400  *
401  *      If the read_pos is in the middle of padding, return the
402  *      position of the first actually available byte, otherwise
403  *      return the original value.
404  */
405 static size_t relayfs_read_start_pos(size_t read_pos,
406                                      struct rchan_buf *buf)
407 {
408         size_t read_subbuf, padding, padding_start, padding_end;
409         size_t subbuf_size = buf->chan->subbuf_size;
410         size_t n_subbufs = buf->chan->n_subbufs;
411
412         read_subbuf = read_pos / subbuf_size;
413         padding = buf->padding[read_subbuf];
414         padding_start = (read_subbuf + 1) * subbuf_size - padding;
415         padding_end = (read_subbuf + 1) * subbuf_size;
416         if (read_pos >= padding_start && read_pos < padding_end) {
417                 read_subbuf = (read_subbuf + 1) % n_subbufs;
418                 read_pos = read_subbuf * subbuf_size;
419         }
420
421         return read_pos;
422 }
423
424 /**
425  *      relayfs_read_end_pos - return the new read position
426  */
427 static size_t relayfs_read_end_pos(struct rchan_buf *buf,
428                                    size_t read_pos,
429                                    size_t count)
430 {
431         size_t read_subbuf, padding, end_pos;
432         size_t subbuf_size = buf->chan->subbuf_size;
433         size_t n_subbufs = buf->chan->n_subbufs;
434
435         read_subbuf = read_pos / subbuf_size;
436         padding = buf->padding[read_subbuf];
437         if (read_pos % subbuf_size + count + padding == subbuf_size)
438                 end_pos = (read_subbuf + 1) * subbuf_size;
439         else
440                 end_pos = read_pos + count;
441         if (end_pos >= subbuf_size * n_subbufs)
442                 end_pos = 0;
443
444         return end_pos;
445 }
446
447 /**
448  *      relayfs_read - read file op for relayfs files
449  *      @filp: the file
450  *      @buffer: the userspace buffer
451  *      @count: number of bytes to read
452  *      @ppos: position to read from
453  *
454  *      Reads count bytes or the number of bytes available in the
455  *      current sub-buffer being read, whichever is smaller.
456  */
457 static ssize_t relayfs_read(struct file *filp,
458                             char __user *buffer,
459                             size_t count,
460                             loff_t *ppos)
461 {
462         struct inode *inode = filp->f_dentry->d_inode;
463         struct rchan_buf *buf = RELAYFS_I(inode)->buf;
464         size_t read_start, avail;
465         ssize_t ret = 0;
466         void *from;
467
468         down(&inode->i_sem);
469         if(!relayfs_read_avail(buf, *ppos))
470                 goto out;
471
472         read_start = relayfs_read_start_pos(*ppos, buf);
473         avail = relayfs_read_subbuf_avail(read_start, buf);
474         if (!avail)
475                 goto out;
476
477         from = buf->start + read_start;
478         ret = count = min(count, avail);
479         if (copy_to_user(buffer, from, count)) {
480                 ret = -EFAULT;
481                 goto out;
482         }
483         relayfs_read_consume(buf, read_start, count);
484         *ppos = relayfs_read_end_pos(buf, read_start, count);
485 out:
486         up(&inode->i_sem);
487         return ret;
488 }
489
490 /**
491  *      relayfs alloc_inode() implementation
492  */
493 static struct inode *relayfs_alloc_inode(struct super_block *sb)
494 {
495         struct relayfs_inode_info *p = kmem_cache_alloc(relayfs_inode_cachep, SLAB_KERNEL);
496         if (!p)
497                 return NULL;
498         p->buf = NULL;
499
500         return &p->vfs_inode;
501 }
502
503 /**
504  *      relayfs destroy_inode() implementation
505  */
506 static void relayfs_destroy_inode(struct inode *inode)
507 {
508         if (RELAYFS_I(inode)->buf)
509                 relay_destroy_buf(RELAYFS_I(inode)->buf);
510
511         kmem_cache_free(relayfs_inode_cachep, RELAYFS_I(inode));
512 }
513
514 static void init_once(void *p, kmem_cache_t *cachep, unsigned long flags)
515 {
516         struct relayfs_inode_info *i = p;
517         if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) == SLAB_CTOR_CONSTRUCTOR)
518                 inode_init_once(&i->vfs_inode);
519 }
520
521 struct file_operations relayfs_file_operations = {
522         .open           = relayfs_open,
523         .poll           = relayfs_poll,
524         .mmap           = relayfs_mmap,
525         .read           = relayfs_read,
526         .llseek         = no_llseek,
527         .release        = relayfs_release,
528 };
529
530 static struct super_operations relayfs_ops = {
531         .statfs         = simple_statfs,
532         .drop_inode     = generic_delete_inode,
533         .alloc_inode    = relayfs_alloc_inode,
534         .destroy_inode  = relayfs_destroy_inode,
535 };
536
537 static int relayfs_fill_super(struct super_block * sb, void * data, int silent)
538 {
539         struct inode *inode;
540         struct dentry *root;
541         int mode = S_IFDIR | S_IRWXU | S_IRUGO | S_IXUGO;
542
543         sb->s_blocksize = PAGE_CACHE_SIZE;
544         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
545         sb->s_magic = RELAYFS_MAGIC;
546         sb->s_op = &relayfs_ops;
547         inode = relayfs_get_inode(sb, mode, NULL);
548
549         if (!inode)
550                 return -ENOMEM;
551
552         root = d_alloc_root(inode);
553         if (!root) {
554                 iput(inode);
555                 return -ENOMEM;
556         }
557         sb->s_root = root;
558
559         return 0;
560 }
561
562 static struct super_block * relayfs_get_sb(struct file_system_type *fs_type,
563                                            int flags, const char *dev_name,
564                                            void *data)
565 {
566         return get_sb_single(fs_type, flags, data, relayfs_fill_super);
567 }
568
569 static struct file_system_type relayfs_fs_type = {
570         .owner          = THIS_MODULE,
571         .name           = "relayfs",
572         .get_sb         = relayfs_get_sb,
573         .kill_sb        = kill_litter_super,
574 };
575
576 static int __init init_relayfs_fs(void)
577 {
578         int err;
579
580         relayfs_inode_cachep = kmem_cache_create("relayfs_inode_cache",
581                                 sizeof(struct relayfs_inode_info), 0,
582                                 0, init_once, NULL);
583         if (!relayfs_inode_cachep)
584                 return -ENOMEM;
585
586         err = register_filesystem(&relayfs_fs_type);
587         if (err)
588                 kmem_cache_destroy(relayfs_inode_cachep);
589
590         return err;
591 }
592
593 static void __exit exit_relayfs_fs(void)
594 {
595         unregister_filesystem(&relayfs_fs_type);
596         kmem_cache_destroy(relayfs_inode_cachep);
597 }
598
599 module_init(init_relayfs_fs)
600 module_exit(exit_relayfs_fs)
601
602 EXPORT_SYMBOL_GPL(relayfs_file_operations);
603 EXPORT_SYMBOL_GPL(relayfs_create_dir);
604 EXPORT_SYMBOL_GPL(relayfs_remove_dir);
605
606 MODULE_AUTHOR("Tom Zanussi <zanussi@us.ibm.com> and Karim Yaghmour <karim@opersys.com>");
607 MODULE_DESCRIPTION("Relay Filesystem");
608 MODULE_LICENSE("GPL");
609