2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter <clameter@sgi.com>
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/pagevec.h>
23 #include <linux/rmap.h>
24 #include <linux/topology.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/writeback.h>
28 #include <linux/mempolicy.h>
29 #include <linux/vmalloc.h>
30 #include <linux/security.h>
34 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
37 * Isolate one page from the LRU lists. If successful put it onto
38 * the indicated list with elevated page count.
41 * -EBUSY: page not on LRU list
42 * 0: page removed from LRU list and added to the specified list.
44 int isolate_lru_page(struct page *page, struct list_head *pagelist)
49 struct zone *zone = page_zone(page);
51 spin_lock_irq(&zone->lru_lock);
57 del_page_from_active_list(zone, page);
59 del_page_from_inactive_list(zone, page);
60 list_add_tail(&page->lru, pagelist);
62 spin_unlock_irq(&zone->lru_lock);
68 * migrate_prep() needs to be called before we start compiling a list of pages
69 * to be migrated using isolate_lru_page().
71 int migrate_prep(void)
74 * Clear the LRU lists so pages can be isolated.
75 * Note that pages may be moved off the LRU after we have
76 * drained them. Those pages will fail to migrate like other
77 * pages that may be busy.
84 static inline void move_to_lru(struct page *page)
86 if (PageActive(page)) {
88 * lru_cache_add_active checks that
89 * the PG_active bit is off.
91 ClearPageActive(page);
92 lru_cache_add_active(page);
100 * Add isolated pages on the list back to the LRU.
102 * returns the number of pages put back.
104 int putback_lru_pages(struct list_head *l)
110 list_for_each_entry_safe(page, page2, l, lru) {
111 list_del(&page->lru);
118 static inline int is_swap_pte(pte_t pte)
120 return !pte_none(pte) && !pte_present(pte) && !pte_file(pte);
124 * Restore a potential migration pte to a working pte entry
126 static void remove_migration_pte(struct vm_area_struct *vma,
127 struct page *old, struct page *new)
129 struct mm_struct *mm = vma->vm_mm;
136 unsigned long addr = page_address_in_vma(new, vma);
141 pgd = pgd_offset(mm, addr);
142 if (!pgd_present(*pgd))
145 pud = pud_offset(pgd, addr);
146 if (!pud_present(*pud))
149 pmd = pmd_offset(pud, addr);
150 if (!pmd_present(*pmd))
153 ptep = pte_offset_map(pmd, addr);
155 if (!is_swap_pte(*ptep)) {
160 ptl = pte_lockptr(mm, pmd);
163 if (!is_swap_pte(pte))
166 entry = pte_to_swp_entry(pte);
168 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
172 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
173 if (is_write_migration_entry(entry))
174 pte = pte_mkwrite(pte);
175 set_pte_at(mm, addr, ptep, pte);
178 page_add_anon_rmap(new, vma, addr);
180 page_add_file_rmap(new);
182 /* No need to invalidate - it was non-present before */
183 update_mmu_cache(vma, addr, pte);
184 lazy_mmu_prot_update(pte);
187 pte_unmap_unlock(ptep, ptl);
191 * Note that remove_file_migration_ptes will only work on regular mappings,
192 * Nonlinear mappings do not use migration entries.
194 static void remove_file_migration_ptes(struct page *old, struct page *new)
196 struct vm_area_struct *vma;
197 struct address_space *mapping = page_mapping(new);
198 struct prio_tree_iter iter;
199 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
204 spin_lock(&mapping->i_mmap_lock);
206 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
207 remove_migration_pte(vma, old, new);
209 spin_unlock(&mapping->i_mmap_lock);
213 * Must hold mmap_sem lock on at least one of the vmas containing
214 * the page so that the anon_vma cannot vanish.
216 static void remove_anon_migration_ptes(struct page *old, struct page *new)
218 struct anon_vma *anon_vma;
219 struct vm_area_struct *vma;
220 unsigned long mapping;
222 mapping = (unsigned long)new->mapping;
224 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
228 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
230 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
231 spin_lock(&anon_vma->lock);
233 list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
234 remove_migration_pte(vma, old, new);
236 spin_unlock(&anon_vma->lock);
240 * Get rid of all migration entries and replace them by
241 * references to the indicated page.
243 static void remove_migration_ptes(struct page *old, struct page *new)
246 remove_anon_migration_ptes(old, new);
248 remove_file_migration_ptes(old, new);
252 * Something used the pte of a page under migration. We need to
253 * get to the page and wait until migration is finished.
254 * When we return from this function the fault will be retried.
256 * This function is called from do_swap_page().
258 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
259 unsigned long address)
266 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
268 if (!is_swap_pte(pte))
271 entry = pte_to_swp_entry(pte);
272 if (!is_migration_entry(entry))
275 page = migration_entry_to_page(entry);
278 pte_unmap_unlock(ptep, ptl);
279 wait_on_page_locked(page);
283 pte_unmap_unlock(ptep, ptl);
287 * Replace the page in the mapping.
289 * The number of remaining references must be:
290 * 1 for anonymous pages without a mapping
291 * 2 for pages with a mapping
292 * 3 for pages with a mapping and PagePrivate set.
294 static int migrate_page_move_mapping(struct address_space *mapping,
295 struct page *newpage, struct page *page)
297 struct page **radix_pointer;
301 if (page_count(page) != 1)
306 write_lock_irq(&mapping->tree_lock);
308 radix_pointer = (struct page **)radix_tree_lookup_slot(
312 if (page_count(page) != 2 + !!PagePrivate(page) ||
313 *radix_pointer != page) {
314 write_unlock_irq(&mapping->tree_lock);
319 * Now we know that no one else is looking at the page.
323 if (PageSwapCache(page)) {
324 SetPageSwapCache(newpage);
325 set_page_private(newpage, page_private(page));
329 *radix_pointer = newpage;
331 write_unlock_irq(&mapping->tree_lock);
337 * Copy the page to its new location
339 static void migrate_page_copy(struct page *newpage, struct page *page)
341 copy_highpage(newpage, page);
344 SetPageError(newpage);
345 if (PageReferenced(page))
346 SetPageReferenced(newpage);
347 if (PageUptodate(page))
348 SetPageUptodate(newpage);
349 if (PageActive(page))
350 SetPageActive(newpage);
351 if (PageChecked(page))
352 SetPageChecked(newpage);
353 if (PageMappedToDisk(page))
354 SetPageMappedToDisk(newpage);
356 if (PageDirty(page)) {
357 clear_page_dirty_for_io(page);
358 set_page_dirty(newpage);
362 ClearPageSwapCache(page);
364 ClearPageActive(page);
365 ClearPagePrivate(page);
366 set_page_private(page, 0);
367 page->mapping = NULL;
370 * If any waiters have accumulated on the new page then
373 if (PageWriteback(newpage))
374 end_page_writeback(newpage);
377 /************************************************************
378 * Migration functions
379 ***********************************************************/
381 /* Always fail migration. Used for mappings that are not movable */
382 int fail_migrate_page(struct address_space *mapping,
383 struct page *newpage, struct page *page)
387 EXPORT_SYMBOL(fail_migrate_page);
390 * Common logic to directly migrate a single page suitable for
391 * pages that do not use PagePrivate.
393 * Pages are locked upon entry and exit.
395 int migrate_page(struct address_space *mapping,
396 struct page *newpage, struct page *page)
400 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
402 rc = migrate_page_move_mapping(mapping, newpage, page);
407 migrate_page_copy(newpage, page);
410 EXPORT_SYMBOL(migrate_page);
413 * Migration function for pages with buffers. This function can only be used
414 * if the underlying filesystem guarantees that no other references to "page"
417 int buffer_migrate_page(struct address_space *mapping,
418 struct page *newpage, struct page *page)
420 struct buffer_head *bh, *head;
423 if (!page_has_buffers(page))
424 return migrate_page(mapping, newpage, page);
426 head = page_buffers(page);
428 rc = migrate_page_move_mapping(mapping, newpage, page);
437 bh = bh->b_this_page;
439 } while (bh != head);
441 ClearPagePrivate(page);
442 set_page_private(newpage, page_private(page));
443 set_page_private(page, 0);
449 set_bh_page(bh, newpage, bh_offset(bh));
450 bh = bh->b_this_page;
452 } while (bh != head);
454 SetPagePrivate(newpage);
456 migrate_page_copy(newpage, page);
462 bh = bh->b_this_page;
464 } while (bh != head);
468 EXPORT_SYMBOL(buffer_migrate_page);
471 * Writeback a page to clean the dirty state
473 static int writeout(struct address_space *mapping, struct page *page)
475 struct writeback_control wbc = {
476 .sync_mode = WB_SYNC_NONE,
479 .range_end = LLONG_MAX,
485 if (!mapping->a_ops->writepage)
486 /* No write method for the address space */
489 if (!clear_page_dirty_for_io(page))
490 /* Someone else already triggered a write */
494 * A dirty page may imply that the underlying filesystem has
495 * the page on some queue. So the page must be clean for
496 * migration. Writeout may mean we loose the lock and the
497 * page state is no longer what we checked for earlier.
498 * At this point we know that the migration attempt cannot
501 remove_migration_ptes(page, page);
503 rc = mapping->a_ops->writepage(page, &wbc);
505 /* I/O Error writing */
508 if (rc != AOP_WRITEPAGE_ACTIVATE)
509 /* unlocked. Relock */
516 * Default handling if a filesystem does not provide a migration function.
518 static int fallback_migrate_page(struct address_space *mapping,
519 struct page *newpage, struct page *page)
522 return writeout(mapping, page);
525 * Buffers may be managed in a filesystem specific way.
526 * We must have no buffers or drop them.
528 if (page_has_buffers(page) &&
529 !try_to_release_page(page, GFP_KERNEL))
532 return migrate_page(mapping, newpage, page);
536 * Move a page to a newly allocated page
537 * The page is locked and all ptes have been successfully removed.
539 * The new page will have replaced the old page if this function
542 static int move_to_new_page(struct page *newpage, struct page *page)
544 struct address_space *mapping;
548 * Block others from accessing the page when we get around to
549 * establishing additional references. We are the only one
550 * holding a reference to the new page at this point.
552 if (TestSetPageLocked(newpage))
555 /* Prepare mapping for the new page.*/
556 newpage->index = page->index;
557 newpage->mapping = page->mapping;
559 mapping = page_mapping(page);
561 rc = migrate_page(mapping, newpage, page);
562 else if (mapping->a_ops->migratepage)
564 * Most pages have a mapping and most filesystems
565 * should provide a migration function. Anonymous
566 * pages are part of swap space which also has its
567 * own migration function. This is the most common
568 * path for page migration.
570 rc = mapping->a_ops->migratepage(mapping,
573 rc = fallback_migrate_page(mapping, newpage, page);
576 remove_migration_ptes(page, newpage);
578 newpage->mapping = NULL;
580 unlock_page(newpage);
586 * Obtain the lock on page, remove all ptes and migrate the page
587 * to the newly allocated page in newpage.
589 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
590 struct page *page, int force)
594 struct page *newpage = get_new_page(page, private, &result);
599 if (page_count(page) == 1)
600 /* page was freed from under us. So we are done. */
604 if (TestSetPageLocked(page)) {
610 if (PageWriteback(page)) {
613 wait_on_page_writeback(page);
617 * Establish migration ptes or remove ptes
619 try_to_unmap(page, 1);
620 if (!page_mapped(page))
621 rc = move_to_new_page(newpage, page);
624 remove_migration_ptes(page, page);
631 * A page that has been migrated has all references
632 * removed and will be freed. A page that has not been
633 * migrated will have kepts its references and be
636 list_del(&page->lru);
642 * Move the new page to the LRU. If migration was not successful
643 * then this will free the page.
645 move_to_lru(newpage);
650 *result = page_to_nid(newpage);
658 * The function takes one list of pages to migrate and a function
659 * that determines from the page to be migrated and the private data
660 * the target of the move and allocates the page.
662 * The function returns after 10 attempts or if no pages
663 * are movable anymore because to has become empty
664 * or no retryable pages exist anymore. All pages will be
665 * retruned to the LRU or freed.
667 * Return: Number of pages not migrated or error code.
669 int migrate_pages(struct list_head *from,
670 new_page_t get_new_page, unsigned long private)
677 int swapwrite = current->flags & PF_SWAPWRITE;
681 current->flags |= PF_SWAPWRITE;
683 for(pass = 0; pass < 10 && retry; pass++) {
686 list_for_each_entry_safe(page, page2, from, lru) {
689 rc = unmap_and_move(get_new_page, private,
701 /* Permanent failure */
710 current->flags &= ~PF_SWAPWRITE;
712 putback_lru_pages(from);
717 return nr_failed + retry;
722 * Move a list of individual pages
724 struct page_to_node {
731 static struct page *new_page_node(struct page *p, unsigned long private,
734 struct page_to_node *pm = (struct page_to_node *)private;
736 while (pm->node != MAX_NUMNODES && pm->page != p)
739 if (pm->node == MAX_NUMNODES)
742 *result = &pm->status;
744 return alloc_pages_node(pm->node, GFP_HIGHUSER, 0);
748 * Move a set of pages as indicated in the pm array. The addr
749 * field must be set to the virtual address of the page to be moved
750 * and the node number must contain a valid target node.
752 static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
756 struct page_to_node *pp;
759 down_read(&mm->mmap_sem);
762 * Build a list of pages to migrate
765 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
766 struct vm_area_struct *vma;
770 * A valid page pointer that will not match any of the
771 * pages that will be moved.
773 pp->page = ZERO_PAGE(0);
776 vma = find_vma(mm, pp->addr);
780 page = follow_page(vma, pp->addr, FOLL_GET);
785 if (PageReserved(page)) /* Check for zero page */
789 err = page_to_nid(page);
793 * Node already in the right place
798 if (page_mapcount(page) > 1 &&
802 err = isolate_lru_page(page, &pagelist);
805 * Either remove the duplicate refcount from
806 * isolate_lru_page() or drop the page ref if it was
814 if (!list_empty(&pagelist))
815 err = migrate_pages(&pagelist, new_page_node,
820 up_read(&mm->mmap_sem);
825 * Determine the nodes of a list of pages. The addr in the pm array
826 * must have been set to the virtual address of which we want to determine
829 static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
831 down_read(&mm->mmap_sem);
833 for ( ; pm->node != MAX_NUMNODES; pm++) {
834 struct vm_area_struct *vma;
839 vma = find_vma(mm, pm->addr);
843 page = follow_page(vma, pm->addr, 0);
845 /* Use PageReserved to check for zero page */
846 if (!page || PageReserved(page))
849 err = page_to_nid(page);
854 up_read(&mm->mmap_sem);
859 * Move a list of pages in the address space of the currently executing
862 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
863 const void __user * __user *pages,
864 const int __user *nodes,
865 int __user *status, int flags)
869 struct task_struct *task;
870 nodemask_t task_nodes;
871 struct mm_struct *mm;
872 struct page_to_node *pm = NULL;
875 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
878 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
881 /* Find the mm_struct */
882 read_lock(&tasklist_lock);
883 task = pid ? find_task_by_pid(pid) : current;
885 read_unlock(&tasklist_lock);
888 mm = get_task_mm(task);
889 read_unlock(&tasklist_lock);
895 * Check if this process has the right to modify the specified
896 * process. The right exists if the process has administrative
897 * capabilities, superuser privileges or the same
898 * userid as the target process.
900 if ((current->euid != task->suid) && (current->euid != task->uid) &&
901 (current->uid != task->suid) && (current->uid != task->uid) &&
902 !capable(CAP_SYS_NICE)) {
907 err = security_task_movememory(task);
912 task_nodes = cpuset_mems_allowed(task);
914 /* Limit nr_pages so that the multiplication may not overflow */
915 if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
920 pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
927 * Get parameters from user space and initialize the pm
928 * array. Return various errors if the user did something wrong.
930 for (i = 0; i < nr_pages; i++) {
934 if (get_user(p, pages + i))
937 pm[i].addr = (unsigned long)p;
941 if (get_user(node, nodes + i))
945 if (!node_online(node))
949 if (!node_isset(node, task_nodes))
956 pm[nr_pages].node = MAX_NUMNODES;
959 err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
961 err = do_pages_stat(mm, pm);
964 /* Return status information */
965 for (i = 0; i < nr_pages; i++)
966 if (put_user(pm[i].status, status + i))
978 * Call migration functions in the vma_ops that may prepare
979 * memory in a vm for migration. migration functions may perform
980 * the migration for vmas that do not have an underlying page struct.
982 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
983 const nodemask_t *from, unsigned long flags)
985 struct vm_area_struct *vma;
988 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
989 if (vma->vm_ops && vma->vm_ops->migrate) {
990 err = vma->vm_ops->migrate(vma, to, from, flags);