2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * Abstract: Contain all routines that are required for FSA host/adapter
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <asm/semaphore.h>
46 * fib_map_alloc - allocate the fib objects
47 * @dev: Adapter to allocate for
49 * Allocate and map the shared PCI space for the FIB blocks used to
50 * talk to the Adaptec firmware.
53 static int fib_map_alloc(struct aac_dev *dev)
55 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, sizeof(struct hw_fib) * AAC_NUM_FIB, &dev->hw_fib_pa))==NULL)
61 * fib_map_free - free the fib objects
62 * @dev: Adapter to free
64 * Free the PCI mappings and the memory allocated for FIB blocks
68 void fib_map_free(struct aac_dev *dev)
70 pci_free_consistent(dev->pdev, sizeof(struct hw_fib) * AAC_NUM_FIB, dev->hw_fib_va, dev->hw_fib_pa);
74 * fib_setup - setup the fibs
75 * @dev: Adapter to set up
77 * Allocate the PCI space for the fibs, map it and then intialise the
78 * fib area, the unmapped fib data and also the free list
81 int fib_setup(struct aac_dev * dev)
84 struct hw_fib *hw_fib_va;
88 if(fib_map_alloc(dev)<0)
91 hw_fib_va = dev->hw_fib_va;
92 hw_fib_pa = dev->hw_fib_pa;
93 memset(hw_fib_va, 0, sizeof(struct hw_fib) * AAC_NUM_FIB);
97 for (i = 0, fibptr = &dev->fibs[i]; i < AAC_NUM_FIB; i++, fibptr++)
100 fibptr->hw_fib = hw_fib_va;
101 fibptr->data = (void *) fibptr->hw_fib->data;
102 fibptr->next = fibptr+1; /* Forward chain the fibs */
103 init_MUTEX_LOCKED(&fibptr->event_wait);
104 spin_lock_init(&fibptr->event_lock);
105 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
106 hw_fib_va->header.SenderSize = cpu_to_le16(sizeof(struct hw_fib));
107 fibptr->hw_fib_pa = hw_fib_pa;
108 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + sizeof(struct hw_fib));
109 hw_fib_pa = hw_fib_pa + sizeof(struct hw_fib);
112 * Add the fib chain to the free list
114 dev->fibs[AAC_NUM_FIB-1].next = NULL;
116 * Enable this to debug out of queue space
118 dev->free_fib = &dev->fibs[0];
123 * fib_alloc - allocate a fib
124 * @dev: Adapter to allocate the fib for
126 * Allocate a fib from the adapter fib pool. If the pool is empty we
127 * wait for fibs to become free.
130 struct fib * fib_alloc(struct aac_dev *dev)
134 spin_lock_irqsave(&dev->fib_lock, flags);
135 fibptr = dev->free_fib;
136 /* Cannot sleep here or you get hangs. Instead we did the
137 maths at compile time. */
140 dev->free_fib = fibptr->next;
141 spin_unlock_irqrestore(&dev->fib_lock, flags);
143 * Set the proper node type code and node byte size
145 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
146 fibptr->size = sizeof(struct fib);
148 * Null out fields that depend on being zero at the start of
151 fibptr->hw_fib->header.XferState = 0;
152 fibptr->callback = NULL;
153 fibptr->callback_data = NULL;
159 * fib_free - free a fib
160 * @fibptr: fib to free up
162 * Frees up a fib and places it on the appropriate queue
163 * (either free or timed out)
166 void fib_free(struct fib * fibptr)
170 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
171 if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
172 aac_config.fib_timeouts++;
173 fibptr->next = fibptr->dev->timeout_fib;
174 fibptr->dev->timeout_fib = fibptr;
176 if (fibptr->hw_fib->header.XferState != 0) {
177 printk(KERN_WARNING "fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
179 le32_to_cpu(fibptr->hw_fib->header.XferState));
181 fibptr->next = fibptr->dev->free_fib;
182 fibptr->dev->free_fib = fibptr;
184 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
188 * fib_init - initialise a fib
189 * @fibptr: The fib to initialize
191 * Set up the generic fib fields ready for use
194 void fib_init(struct fib *fibptr)
196 struct hw_fib *hw_fib = fibptr->hw_fib;
198 hw_fib->header.StructType = FIB_MAGIC;
199 hw_fib->header.Size = cpu_to_le16(sizeof(struct hw_fib));
200 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
201 hw_fib->header.SenderFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
202 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
203 hw_fib->header.SenderSize = cpu_to_le16(sizeof(struct hw_fib));
207 * fib_deallocate - deallocate a fib
208 * @fibptr: fib to deallocate
210 * Will deallocate and return to the free pool the FIB pointed to by the
214 static void fib_dealloc(struct fib * fibptr)
216 struct hw_fib *hw_fib = fibptr->hw_fib;
217 if(hw_fib->header.StructType != FIB_MAGIC)
219 hw_fib->header.XferState = 0;
223 * Commuication primitives define and support the queuing method we use to
224 * support host to adapter commuication. All queue accesses happen through
225 * these routines and are the only routines which have a knowledge of the
226 * how these queues are implemented.
230 * aac_get_entry - get a queue entry
233 * @entry: Entry return
234 * @index: Index return
235 * @nonotify: notification control
237 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
238 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
242 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
244 struct aac_queue * q;
247 * All of the queues wrap when they reach the end, so we check
248 * to see if they have reached the end and if they have we just
249 * set the index back to zero. This is a wrap. You could or off
250 * the high bits in all updates but this is a bit faster I think.
253 q = &dev->queues->queue[qid];
255 *index = le32_to_cpu(*(q->headers.producer));
256 if ((*index - 2) == le32_to_cpu(*(q->headers.consumer)))
259 if (qid == AdapHighCmdQueue) {
260 if (*index >= ADAP_HIGH_CMD_ENTRIES)
262 } else if (qid == AdapNormCmdQueue) {
263 if (*index >= ADAP_NORM_CMD_ENTRIES)
264 *index = 0; /* Wrap to front of the Producer Queue. */
266 else if (qid == AdapHighRespQueue)
268 if (*index >= ADAP_HIGH_RESP_ENTRIES)
271 else if (qid == AdapNormRespQueue)
273 if (*index >= ADAP_NORM_RESP_ENTRIES)
274 *index = 0; /* Wrap to front of the Producer Queue. */
277 printk("aacraid: invalid qid\n");
281 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
282 printk(KERN_WARNING "Queue %d full, %d outstanding.\n",
286 *entry = q->base + *index;
292 * aac_queue_get - get the next free QE
294 * @index: Returned index
295 * @priority: Priority of fib
296 * @fib: Fib to associate with the queue entry
297 * @wait: Wait if queue full
298 * @fibptr: Driver fib object to go with fib
299 * @nonotify: Don't notify the adapter
301 * Gets the next free QE off the requested priorty adapter command
302 * queue and associates the Fib with the QE. The QE represented by
303 * index is ready to insert on the queue when this routine returns
307 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
309 struct aac_entry * entry = NULL;
311 struct aac_queue * q = &dev->queues->queue[qid];
313 spin_lock_irqsave(q->lock, q->SavedIrql);
315 if (qid == AdapHighCmdQueue || qid == AdapNormCmdQueue)
317 /* if no entries wait for some if caller wants to */
318 while (!aac_get_entry(dev, qid, &entry, index, nonotify))
320 printk(KERN_ERR "GetEntries failed\n");
323 * Setup queue entry with a command, status and fib mapped
325 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
328 else if (qid == AdapHighRespQueue || qid == AdapNormRespQueue)
330 while(!aac_get_entry(dev, qid, &entry, index, nonotify))
332 /* if no entries wait for some if caller wants to */
335 * Setup queue entry with command, status and fib mapped
337 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
338 entry->addr = hw_fib->header.SenderFibAddress;
339 /* Restore adapters pointer to the FIB */
340 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
344 * If MapFib is true than we need to map the Fib and put pointers
345 * in the queue entry.
348 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
354 * aac_insert_entry - insert a queue entry
356 * @index: Index of entry to insert
358 * @nonotify: Suppress adapter notification
360 * Gets the next free QE off the requested priorty adapter command
361 * queue and associates the Fib with the QE. The QE represented by
362 * index is ready to insert on the queue when this routine returns
366 static int aac_insert_entry(struct aac_dev * dev, u32 index, u32 qid, unsigned long nonotify)
368 struct aac_queue * q = &dev->queues->queue[qid];
372 *(q->headers.producer) = cpu_to_le32(index + 1);
373 spin_unlock_irqrestore(q->lock, q->SavedIrql);
375 if (qid == AdapHighCmdQueue ||
376 qid == AdapNormCmdQueue ||
377 qid == AdapHighRespQueue ||
378 qid == AdapNormRespQueue)
381 aac_adapter_notify(dev, qid);
384 printk("Suprise insert!\n");
389 * Define the highest level of host to adapter communication routines.
390 * These routines will support host to adapter FS commuication. These
391 * routines have no knowledge of the commuication method used. This level
392 * sends and receives FIBs. This level has no knowledge of how these FIBs
393 * get passed back and forth.
397 * fib_send - send a fib to the adapter
398 * @command: Command to send
400 * @size: Size of fib data area
401 * @priority: Priority of Fib
402 * @wait: Async/sync select
403 * @reply: True if a reply is wanted
404 * @callback: Called with reply
405 * @callback_data: Passed to callback
407 * Sends the requested FIB to the adapter and optionally will wait for a
408 * response FIB. If the caller does not wish to wait for a response than
409 * an event to wait on must be supplied. This event will be set when a
410 * response FIB is received from the adapter.
413 int fib_send(u16 command, struct fib * fibptr, unsigned long size, int priority, int wait, int reply, fib_callback callback, void * callback_data)
417 struct aac_dev * dev = fibptr->dev;
418 unsigned long nointr = 0;
419 struct hw_fib * hw_fib = fibptr->hw_fib;
420 struct aac_queue * q;
421 unsigned long flags = 0;
422 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
425 * There are 5 cases with the wait and reponse requested flags.
426 * The only invalid cases are if the caller requests to wait and
427 * does not request a response and if the caller does not want a
428 * response and the Fib is not allocated from pool. If a response
429 * is not requesed the Fib will just be deallocaed by the DPC
430 * routine when the response comes back from the adapter. No
431 * further processing will be done besides deleting the Fib. We
432 * will have a debug mode where the adapter can notify the host
433 * it had a problem and the host can log that fact.
435 if (wait && !reply) {
437 } else if (!wait && reply) {
438 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
439 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
440 } else if (!wait && !reply) {
441 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
442 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
443 } else if (wait && reply) {
444 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
445 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
448 * Map the fib into 32bits by using the fib number
451 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr-dev->fibs)) << 1);
452 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
454 * Set FIB state to indicate where it came from and if we want a
455 * response from the adapter. Also load the command from the
458 * Map the hw fib pointer as a 32bit value
460 hw_fib->header.Command = cpu_to_le16(command);
461 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
462 fibptr->hw_fib->header.Flags = 0; /* 0 the flags field - internal only*/
464 * Set the size of the Fib we want to send to the adapter
466 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
467 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
471 * Get a queue entry connect the FIB to it and send an notify
472 * the adapter a command is ready.
474 if (priority == FsaHigh) {
475 hw_fib->header.XferState |= cpu_to_le32(HighPriority);
476 qid = AdapHighCmdQueue;
478 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
479 qid = AdapNormCmdQueue;
481 q = &dev->queues->queue[qid];
484 spin_lock_irqsave(&fibptr->event_lock, flags);
485 if(aac_queue_get( dev, &index, qid, hw_fib, 1, fibptr, &nointr)<0)
487 dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index));
488 dprintk((KERN_DEBUG "Fib contents:.\n"));
489 dprintk((KERN_DEBUG " Command = %d.\n", hw_fib->header.Command));
490 dprintk((KERN_DEBUG " XferState = %x.\n", hw_fib->header.XferState));
491 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib));
492 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
493 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
495 * Fill in the Callback and CallbackContext if we are not
499 fibptr->callback = callback;
500 fibptr->callback_data = callback_data;
502 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
503 list_add_tail(&fibptr->queue, &q->pendingq);
509 if(aac_insert_entry(dev, index, qid, (nointr & aac_config.irq_mod)) < 0)
512 * If the caller wanted us to wait for response wait now.
516 spin_unlock_irqrestore(&fibptr->event_lock, flags);
517 down(&fibptr->event_wait);
518 if(fibptr->done == 0)
521 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
528 * If the user does not want a response than return success otherwise
538 * aac_consumer_get - get the top of the queue
541 * @entry: Return entry
543 * Will return a pointer to the entry on the top of the queue requested that
544 * we are a consumer of, and return the address of the queue entry. It does
545 * not change the state of the queue.
548 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
552 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
556 * The consumer index must be wrapped if we have reached
557 * the end of the queue, else we just use the entry
558 * pointed to by the header index
560 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
563 index = le32_to_cpu(*q->headers.consumer);
564 *entry = q->base + index;
571 * aac_consumer_free - free consumer entry
576 * Frees up the current top of the queue we are a consumer of. If the
577 * queue was full notify the producer that the queue is no longer full.
580 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
585 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
588 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
589 *q->headers.consumer = cpu_to_le32(1);
591 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
596 case HostNormCmdQueue:
597 notify = HostNormCmdNotFull;
599 case HostHighCmdQueue:
600 notify = HostHighCmdNotFull;
602 case HostNormRespQueue:
603 notify = HostNormRespNotFull;
605 case HostHighRespQueue:
606 notify = HostHighRespNotFull;
612 aac_adapter_notify(dev, notify);
617 * fib_adapter_complete - complete adapter issued fib
618 * @fibptr: fib to complete
621 * Will do all necessary work to complete a FIB that was sent from
625 int fib_adapter_complete(struct fib * fibptr, unsigned short size)
627 struct hw_fib * hw_fib = fibptr->hw_fib;
628 struct aac_dev * dev = fibptr->dev;
629 unsigned long nointr = 0;
630 if (hw_fib->header.XferState == 0)
633 * If we plan to do anything check the structure type first.
635 if ( hw_fib->header.StructType != FIB_MAGIC ) {
639 * This block handles the case where the adapter had sent us a
640 * command and we have finished processing the command. We
641 * call completeFib when we are done processing the command
642 * and want to send a response back to the adapter. This will
643 * send the completed cdb to the adapter.
645 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
646 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
647 if (hw_fib->header.XferState & cpu_to_le32(HighPriority)) {
651 size += sizeof(struct aac_fibhdr);
652 if (size > le16_to_cpu(hw_fib->header.SenderSize))
654 hw_fib->header.Size = cpu_to_le16(size);
656 if(aac_queue_get(dev, &index, AdapHighRespQueue, hw_fib, 1, NULL, &nointr) < 0) {
659 if (aac_insert_entry(dev, index, AdapHighRespQueue, (nointr & (int)aac_config.irq_mod)) != 0) {
661 } else if (hw_fib->header.XferState &
662 cpu_to_le32(NormalPriority)) {
666 size += sizeof(struct aac_fibhdr);
667 if (size > le16_to_cpu(hw_fib->header.SenderSize))
669 hw_fib->header.Size = cpu_to_le16(size);
671 if (aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr) < 0)
673 if (aac_insert_entry(dev, index, AdapNormRespQueue, (nointr & (int)aac_config.irq_mod)) != 0)
680 printk(KERN_WARNING "fib_adapter_complete: Unknown xferstate detected.\n");
687 * fib_complete - fib completion handler
688 * @fib: FIB to complete
690 * Will do all necessary work to complete a FIB.
693 int fib_complete(struct fib * fibptr)
695 struct hw_fib * hw_fib = fibptr->hw_fib;
698 * Check for a fib which has already been completed
701 if (hw_fib->header.XferState == 0)
704 * If we plan to do anything check the structure type first.
707 if (hw_fib->header.StructType != FIB_MAGIC)
710 * This block completes a cdb which orginated on the host and we
711 * just need to deallocate the cdb or reinit it. At this point the
712 * command is complete that we had sent to the adapter and this
713 * cdb could be reused.
715 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
716 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
720 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
723 * This handles the case when the host has aborted the I/O
724 * to the adapter because the adapter is not responding
727 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
736 * aac_printf - handle printf from firmware
740 * Print a message passed to us by the controller firmware on the
744 void aac_printf(struct aac_dev *dev, u32 val)
746 int length = val & 0xffff;
747 int level = (val >> 16) & 0xffff;
748 char *cp = dev->printfbuf;
751 * The size of the printfbuf is set in port.c
752 * There is no variable or define for it
758 if (level == LOG_AAC_HIGH_ERROR)
759 printk(KERN_WARNING "aacraid:%s", cp);
761 printk(KERN_INFO "aacraid:%s", cp);
766 * aac_command_thread - command processing thread
767 * @dev: Adapter to monitor
769 * Waits on the commandready event in it's queue. When the event gets set
770 * it will pull FIBs off it's queue. It will continue to pull FIBs off
771 * until the queue is empty. When the queue is empty it will wait for
775 int aac_command_thread(struct aac_dev * dev)
777 struct hw_fib *hw_fib, *hw_newfib;
778 struct fib *fib, *newfib;
779 struct aac_queue_block *queues = dev->queues;
780 struct aac_fib_context *fibctx;
782 DECLARE_WAITQUEUE(wait, current);
785 * We can only have one thread per adapter for AIF's.
790 * Set up the name that will appear in 'ps'
791 * stored in task_struct.comm[16].
793 daemonize("aacraid");
794 allow_signal(SIGKILL);
796 * Let the DPC know it has a place to send the AIF's to.
799 add_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait);
800 set_current_state(TASK_INTERRUPTIBLE);
803 spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags);
804 while(!list_empty(&(queues->queue[HostNormCmdQueue].cmdq))) {
805 struct list_head *entry;
806 struct aac_aifcmd * aifcmd;
808 set_current_state(TASK_RUNNING);
810 entry = queues->queue[HostNormCmdQueue].cmdq.next;
813 spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags);
814 fib = list_entry(entry, struct fib, fiblink);
816 * We will process the FIB here or pass it to a
817 * worker thread that is TBD. We Really can't
818 * do anything at this point since we don't have
819 * anything defined for this thread to do.
821 hw_fib = fib->hw_fib;
822 memset(fib, 0, sizeof(struct fib));
823 fib->type = FSAFS_NTC_FIB_CONTEXT;
824 fib->size = sizeof( struct fib );
825 fib->hw_fib = hw_fib;
826 fib->data = hw_fib->data;
829 * We only handle AifRequest fibs from the adapter.
831 aifcmd = (struct aac_aifcmd *) hw_fib->data;
832 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
833 /* Handle Driver Notify Events */
834 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
835 fib_adapter_complete(fib, (u16)sizeof(u32));
837 struct list_head *entry;
838 /* The u32 here is important and intended. We are using
839 32bit wrapping time to fit the adapter field */
841 u32 time_now, time_last;
844 time_now = jiffies/HZ;
846 spin_lock_irqsave(&dev->fib_lock, flagv);
847 entry = dev->fib_list.next;
849 * For each Context that is on the
850 * fibctxList, make a copy of the
851 * fib, and then set the event to wake up the
852 * thread that is waiting for it.
854 while (entry != &dev->fib_list) {
858 fibctx = list_entry(entry, struct aac_fib_context, next);
860 * Check if the queue is getting
863 if (fibctx->count > 20)
866 * It's *not* jiffies folks,
867 * but jiffies / HZ so do not
870 time_last = fibctx->jiffies;
872 * Has it been > 2 minutes
873 * since the last read off
876 if ((time_now - time_last) > 120) {
878 aac_close_fib_context(dev, fibctx);
883 * Warning: no sleep allowed while
886 hw_newfib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC);
887 newfib = kmalloc(sizeof(struct fib), GFP_ATOMIC);
888 if (newfib && hw_newfib) {
890 * Make the copy of the FIB
892 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
893 memcpy(newfib, fib, sizeof(struct fib));
894 newfib->hw_fib = hw_newfib;
896 * Put the FIB onto the
899 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
902 * Set the event to wake up the
903 * thread that will waiting.
905 up(&fibctx->wait_sem);
907 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
916 * Set the status of this FIB
918 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
919 fib_adapter_complete(fib, sizeof(u32));
920 spin_unlock_irqrestore(&dev->fib_lock, flagv);
922 spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags);
926 * There are no more AIF's
928 spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags);
931 if(signal_pending(current))
933 set_current_state(TASK_INTERRUPTIBLE);
935 remove_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait);
937 complete_and_exit(&dev->aif_completion, 0);