cxgb3: minor aq100x phy fixes
[linux-2.6] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <linux/semaphore.h>
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_host.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_cmnd.h>
49
50 #include "aacraid.h"
51
52 /**
53  *      fib_map_alloc           -       allocate the fib objects
54  *      @dev: Adapter to allocate for
55  *
56  *      Allocate and map the shared PCI space for the FIB blocks used to
57  *      talk to the Adaptec firmware.
58  */
59
60 static int fib_map_alloc(struct aac_dev *dev)
61 {
62         dprintk((KERN_INFO
63           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66         if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67           * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68           &dev->hw_fib_pa))==NULL)
69                 return -ENOMEM;
70         return 0;
71 }
72
73 /**
74  *      aac_fib_map_free                -       free the fib objects
75  *      @dev: Adapter to free
76  *
77  *      Free the PCI mappings and the memory allocated for FIB blocks
78  *      on this adapter.
79  */
80
81 void aac_fib_map_free(struct aac_dev *dev)
82 {
83         pci_free_consistent(dev->pdev,
84           dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
85           dev->hw_fib_va, dev->hw_fib_pa);
86         dev->hw_fib_va = NULL;
87         dev->hw_fib_pa = 0;
88 }
89
90 /**
91  *      aac_fib_setup   -       setup the fibs
92  *      @dev: Adapter to set up
93  *
94  *      Allocate the PCI space for the fibs, map it and then intialise the
95  *      fib area, the unmapped fib data and also the free list
96  */
97
98 int aac_fib_setup(struct aac_dev * dev)
99 {
100         struct fib *fibptr;
101         struct hw_fib *hw_fib;
102         dma_addr_t hw_fib_pa;
103         int i;
104
105         while (((i = fib_map_alloc(dev)) == -ENOMEM)
106          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
107                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
108                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
109         }
110         if (i<0)
111                 return -ENOMEM;
112
113         hw_fib = dev->hw_fib_va;
114         hw_fib_pa = dev->hw_fib_pa;
115         memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
116         /*
117          *      Initialise the fibs
118          */
119         for (i = 0, fibptr = &dev->fibs[i];
120                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
121                 i++, fibptr++)
122         {
123                 fibptr->dev = dev;
124                 fibptr->hw_fib_va = hw_fib;
125                 fibptr->data = (void *) fibptr->hw_fib_va->data;
126                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
127                 init_MUTEX_LOCKED(&fibptr->event_wait);
128                 spin_lock_init(&fibptr->event_lock);
129                 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
130                 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
131                 fibptr->hw_fib_pa = hw_fib_pa;
132                 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size);
133                 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
134         }
135         /*
136          *      Add the fib chain to the free list
137          */
138         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
139         /*
140          *      Enable this to debug out of queue space
141          */
142         dev->free_fib = &dev->fibs[0];
143         return 0;
144 }
145
146 /**
147  *      aac_fib_alloc   -       allocate a fib
148  *      @dev: Adapter to allocate the fib for
149  *
150  *      Allocate a fib from the adapter fib pool. If the pool is empty we
151  *      return NULL.
152  */
153
154 struct fib *aac_fib_alloc(struct aac_dev *dev)
155 {
156         struct fib * fibptr;
157         unsigned long flags;
158         spin_lock_irqsave(&dev->fib_lock, flags);
159         fibptr = dev->free_fib;
160         if(!fibptr){
161                 spin_unlock_irqrestore(&dev->fib_lock, flags);
162                 return fibptr;
163         }
164         dev->free_fib = fibptr->next;
165         spin_unlock_irqrestore(&dev->fib_lock, flags);
166         /*
167          *      Set the proper node type code and node byte size
168          */
169         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
170         fibptr->size = sizeof(struct fib);
171         /*
172          *      Null out fields that depend on being zero at the start of
173          *      each I/O
174          */
175         fibptr->hw_fib_va->header.XferState = 0;
176         fibptr->flags = 0;
177         fibptr->callback = NULL;
178         fibptr->callback_data = NULL;
179
180         return fibptr;
181 }
182
183 /**
184  *      aac_fib_free    -       free a fib
185  *      @fibptr: fib to free up
186  *
187  *      Frees up a fib and places it on the appropriate queue
188  */
189
190 void aac_fib_free(struct fib *fibptr)
191 {
192         unsigned long flags;
193
194         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
195         if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
196                 aac_config.fib_timeouts++;
197         if (fibptr->hw_fib_va->header.XferState != 0) {
198                 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
199                          (void*)fibptr,
200                          le32_to_cpu(fibptr->hw_fib_va->header.XferState));
201         }
202         fibptr->next = fibptr->dev->free_fib;
203         fibptr->dev->free_fib = fibptr;
204         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
205 }
206
207 /**
208  *      aac_fib_init    -       initialise a fib
209  *      @fibptr: The fib to initialize
210  *
211  *      Set up the generic fib fields ready for use
212  */
213
214 void aac_fib_init(struct fib *fibptr)
215 {
216         struct hw_fib *hw_fib = fibptr->hw_fib_va;
217
218         hw_fib->header.StructType = FIB_MAGIC;
219         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
220         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
221         hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
222         hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
223         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
224 }
225
226 /**
227  *      fib_deallocate          -       deallocate a fib
228  *      @fibptr: fib to deallocate
229  *
230  *      Will deallocate and return to the free pool the FIB pointed to by the
231  *      caller.
232  */
233
234 static void fib_dealloc(struct fib * fibptr)
235 {
236         struct hw_fib *hw_fib = fibptr->hw_fib_va;
237         BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
238         hw_fib->header.XferState = 0;
239 }
240
241 /*
242  *      Commuication primitives define and support the queuing method we use to
243  *      support host to adapter commuication. All queue accesses happen through
244  *      these routines and are the only routines which have a knowledge of the
245  *       how these queues are implemented.
246  */
247
248 /**
249  *      aac_get_entry           -       get a queue entry
250  *      @dev: Adapter
251  *      @qid: Queue Number
252  *      @entry: Entry return
253  *      @index: Index return
254  *      @nonotify: notification control
255  *
256  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
257  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
258  *      returned.
259  */
260
261 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
262 {
263         struct aac_queue * q;
264         unsigned long idx;
265
266         /*
267          *      All of the queues wrap when they reach the end, so we check
268          *      to see if they have reached the end and if they have we just
269          *      set the index back to zero. This is a wrap. You could or off
270          *      the high bits in all updates but this is a bit faster I think.
271          */
272
273         q = &dev->queues->queue[qid];
274
275         idx = *index = le32_to_cpu(*(q->headers.producer));
276         /* Interrupt Moderation, only interrupt for first two entries */
277         if (idx != le32_to_cpu(*(q->headers.consumer))) {
278                 if (--idx == 0) {
279                         if (qid == AdapNormCmdQueue)
280                                 idx = ADAP_NORM_CMD_ENTRIES;
281                         else
282                                 idx = ADAP_NORM_RESP_ENTRIES;
283                 }
284                 if (idx != le32_to_cpu(*(q->headers.consumer)))
285                         *nonotify = 1;
286         }
287
288         if (qid == AdapNormCmdQueue) {
289                 if (*index >= ADAP_NORM_CMD_ENTRIES)
290                         *index = 0; /* Wrap to front of the Producer Queue. */
291         } else {
292                 if (*index >= ADAP_NORM_RESP_ENTRIES)
293                         *index = 0; /* Wrap to front of the Producer Queue. */
294         }
295
296         /* Queue is full */
297         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
298                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
299                                 qid, q->numpending);
300                 return 0;
301         } else {
302                 *entry = q->base + *index;
303                 return 1;
304         }
305 }
306
307 /**
308  *      aac_queue_get           -       get the next free QE
309  *      @dev: Adapter
310  *      @index: Returned index
311  *      @priority: Priority of fib
312  *      @fib: Fib to associate with the queue entry
313  *      @wait: Wait if queue full
314  *      @fibptr: Driver fib object to go with fib
315  *      @nonotify: Don't notify the adapter
316  *
317  *      Gets the next free QE off the requested priorty adapter command
318  *      queue and associates the Fib with the QE. The QE represented by
319  *      index is ready to insert on the queue when this routine returns
320  *      success.
321  */
322
323 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
324 {
325         struct aac_entry * entry = NULL;
326         int map = 0;
327
328         if (qid == AdapNormCmdQueue) {
329                 /*  if no entries wait for some if caller wants to */
330                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
331                         printk(KERN_ERR "GetEntries failed\n");
332                 }
333                 /*
334                  *      Setup queue entry with a command, status and fib mapped
335                  */
336                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
337                 map = 1;
338         } else {
339                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
340                         /* if no entries wait for some if caller wants to */
341                 }
342                 /*
343                  *      Setup queue entry with command, status and fib mapped
344                  */
345                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
346                 entry->addr = hw_fib->header.SenderFibAddress;
347                         /* Restore adapters pointer to the FIB */
348                 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;    /* Let the adapter now where to find its data */
349                 map = 0;
350         }
351         /*
352          *      If MapFib is true than we need to map the Fib and put pointers
353          *      in the queue entry.
354          */
355         if (map)
356                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
357         return 0;
358 }
359
360 /*
361  *      Define the highest level of host to adapter communication routines.
362  *      These routines will support host to adapter FS commuication. These
363  *      routines have no knowledge of the commuication method used. This level
364  *      sends and receives FIBs. This level has no knowledge of how these FIBs
365  *      get passed back and forth.
366  */
367
368 /**
369  *      aac_fib_send    -       send a fib to the adapter
370  *      @command: Command to send
371  *      @fibptr: The fib
372  *      @size: Size of fib data area
373  *      @priority: Priority of Fib
374  *      @wait: Async/sync select
375  *      @reply: True if a reply is wanted
376  *      @callback: Called with reply
377  *      @callback_data: Passed to callback
378  *
379  *      Sends the requested FIB to the adapter and optionally will wait for a
380  *      response FIB. If the caller does not wish to wait for a response than
381  *      an event to wait on must be supplied. This event will be set when a
382  *      response FIB is received from the adapter.
383  */
384
385 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
386                 int priority, int wait, int reply, fib_callback callback,
387                 void *callback_data)
388 {
389         struct aac_dev * dev = fibptr->dev;
390         struct hw_fib * hw_fib = fibptr->hw_fib_va;
391         unsigned long flags = 0;
392         unsigned long qflags;
393
394         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
395                 return -EBUSY;
396         /*
397          *      There are 5 cases with the wait and reponse requested flags.
398          *      The only invalid cases are if the caller requests to wait and
399          *      does not request a response and if the caller does not want a
400          *      response and the Fib is not allocated from pool. If a response
401          *      is not requesed the Fib will just be deallocaed by the DPC
402          *      routine when the response comes back from the adapter. No
403          *      further processing will be done besides deleting the Fib. We
404          *      will have a debug mode where the adapter can notify the host
405          *      it had a problem and the host can log that fact.
406          */
407         fibptr->flags = 0;
408         if (wait && !reply) {
409                 return -EINVAL;
410         } else if (!wait && reply) {
411                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
412                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
413         } else if (!wait && !reply) {
414                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
415                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
416         } else if (wait && reply) {
417                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
418                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
419         }
420         /*
421          *      Map the fib into 32bits by using the fib number
422          */
423
424         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
425         hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
426         /*
427          *      Set FIB state to indicate where it came from and if we want a
428          *      response from the adapter. Also load the command from the
429          *      caller.
430          *
431          *      Map the hw fib pointer as a 32bit value
432          */
433         hw_fib->header.Command = cpu_to_le16(command);
434         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
435         fibptr->hw_fib_va->header.Flags = 0;    /* 0 the flags field - internal only*/
436         /*
437          *      Set the size of the Fib we want to send to the adapter
438          */
439         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
440         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
441                 return -EMSGSIZE;
442         }
443         /*
444          *      Get a queue entry connect the FIB to it and send an notify
445          *      the adapter a command is ready.
446          */
447         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
448
449         /*
450          *      Fill in the Callback and CallbackContext if we are not
451          *      going to wait.
452          */
453         if (!wait) {
454                 fibptr->callback = callback;
455                 fibptr->callback_data = callback_data;
456                 fibptr->flags = FIB_CONTEXT_FLAG;
457         }
458
459         fibptr->done = 0;
460
461         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
462
463         dprintk((KERN_DEBUG "Fib contents:.\n"));
464         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
465         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
466         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
467         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
468         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
469         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
470
471         if (!dev->queues)
472                 return -EBUSY;
473
474         if(wait)
475                 spin_lock_irqsave(&fibptr->event_lock, flags);
476         aac_adapter_deliver(fibptr);
477
478         /*
479          *      If the caller wanted us to wait for response wait now.
480          */
481
482         if (wait) {
483                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
484                 /* Only set for first known interruptable command */
485                 if (wait < 0) {
486                         /*
487                          * *VERY* Dangerous to time out a command, the
488                          * assumption is made that we have no hope of
489                          * functioning because an interrupt routing or other
490                          * hardware failure has occurred.
491                          */
492                         unsigned long count = 36000000L; /* 3 minutes */
493                         while (down_trylock(&fibptr->event_wait)) {
494                                 int blink;
495                                 if (--count == 0) {
496                                         struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
497                                         spin_lock_irqsave(q->lock, qflags);
498                                         q->numpending--;
499                                         spin_unlock_irqrestore(q->lock, qflags);
500                                         if (wait == -1) {
501                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
502                                                   "Usually a result of a PCI interrupt routing problem;\n"
503                                                   "update mother board BIOS or consider utilizing one of\n"
504                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
505                                         }
506                                         return -ETIMEDOUT;
507                                 }
508                                 if ((blink = aac_adapter_check_health(dev)) > 0) {
509                                         if (wait == -1) {
510                                                 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
511                                                   "Usually a result of a serious unrecoverable hardware problem\n",
512                                                   blink);
513                                         }
514                                         return -EFAULT;
515                                 }
516                                 udelay(5);
517                         }
518                 } else if (down_interruptible(&fibptr->event_wait)) {
519                         fibptr->done = 2;
520                         up(&fibptr->event_wait);
521                 }
522                 spin_lock_irqsave(&fibptr->event_lock, flags);
523                 if ((fibptr->done == 0) || (fibptr->done == 2)) {
524                         fibptr->done = 2; /* Tell interrupt we aborted */
525                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
526                         return -EINTR;
527                 }
528                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
529                 BUG_ON(fibptr->done == 0);
530
531                 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
532                         return -ETIMEDOUT;
533                 return 0;
534         }
535         /*
536          *      If the user does not want a response than return success otherwise
537          *      return pending
538          */
539         if (reply)
540                 return -EINPROGRESS;
541         else
542                 return 0;
543 }
544
545 /**
546  *      aac_consumer_get        -       get the top of the queue
547  *      @dev: Adapter
548  *      @q: Queue
549  *      @entry: Return entry
550  *
551  *      Will return a pointer to the entry on the top of the queue requested that
552  *      we are a consumer of, and return the address of the queue entry. It does
553  *      not change the state of the queue.
554  */
555
556 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
557 {
558         u32 index;
559         int status;
560         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
561                 status = 0;
562         } else {
563                 /*
564                  *      The consumer index must be wrapped if we have reached
565                  *      the end of the queue, else we just use the entry
566                  *      pointed to by the header index
567                  */
568                 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
569                         index = 0;
570                 else
571                         index = le32_to_cpu(*q->headers.consumer);
572                 *entry = q->base + index;
573                 status = 1;
574         }
575         return(status);
576 }
577
578 /**
579  *      aac_consumer_free       -       free consumer entry
580  *      @dev: Adapter
581  *      @q: Queue
582  *      @qid: Queue ident
583  *
584  *      Frees up the current top of the queue we are a consumer of. If the
585  *      queue was full notify the producer that the queue is no longer full.
586  */
587
588 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
589 {
590         int wasfull = 0;
591         u32 notify;
592
593         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
594                 wasfull = 1;
595
596         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
597                 *q->headers.consumer = cpu_to_le32(1);
598         else
599                 le32_add_cpu(q->headers.consumer, 1);
600
601         if (wasfull) {
602                 switch (qid) {
603
604                 case HostNormCmdQueue:
605                         notify = HostNormCmdNotFull;
606                         break;
607                 case HostNormRespQueue:
608                         notify = HostNormRespNotFull;
609                         break;
610                 default:
611                         BUG();
612                         return;
613                 }
614                 aac_adapter_notify(dev, notify);
615         }
616 }
617
618 /**
619  *      aac_fib_adapter_complete        -       complete adapter issued fib
620  *      @fibptr: fib to complete
621  *      @size: size of fib
622  *
623  *      Will do all necessary work to complete a FIB that was sent from
624  *      the adapter.
625  */
626
627 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
628 {
629         struct hw_fib * hw_fib = fibptr->hw_fib_va;
630         struct aac_dev * dev = fibptr->dev;
631         struct aac_queue * q;
632         unsigned long nointr = 0;
633         unsigned long qflags;
634
635         if (hw_fib->header.XferState == 0) {
636                 if (dev->comm_interface == AAC_COMM_MESSAGE)
637                         kfree (hw_fib);
638                 return 0;
639         }
640         /*
641          *      If we plan to do anything check the structure type first.
642          */
643         if (hw_fib->header.StructType != FIB_MAGIC) {
644                 if (dev->comm_interface == AAC_COMM_MESSAGE)
645                         kfree (hw_fib);
646                 return -EINVAL;
647         }
648         /*
649          *      This block handles the case where the adapter had sent us a
650          *      command and we have finished processing the command. We
651          *      call completeFib when we are done processing the command
652          *      and want to send a response back to the adapter. This will
653          *      send the completed cdb to the adapter.
654          */
655         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
656                 if (dev->comm_interface == AAC_COMM_MESSAGE) {
657                         kfree (hw_fib);
658                 } else {
659                         u32 index;
660                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
661                         if (size) {
662                                 size += sizeof(struct aac_fibhdr);
663                                 if (size > le16_to_cpu(hw_fib->header.SenderSize))
664                                         return -EMSGSIZE;
665                                 hw_fib->header.Size = cpu_to_le16(size);
666                         }
667                         q = &dev->queues->queue[AdapNormRespQueue];
668                         spin_lock_irqsave(q->lock, qflags);
669                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
670                         *(q->headers.producer) = cpu_to_le32(index + 1);
671                         spin_unlock_irqrestore(q->lock, qflags);
672                         if (!(nointr & (int)aac_config.irq_mod))
673                                 aac_adapter_notify(dev, AdapNormRespQueue);
674                 }
675         } else {
676                 printk(KERN_WARNING "aac_fib_adapter_complete: "
677                         "Unknown xferstate detected.\n");
678                 BUG();
679         }
680         return 0;
681 }
682
683 /**
684  *      aac_fib_complete        -       fib completion handler
685  *      @fib: FIB to complete
686  *
687  *      Will do all necessary work to complete a FIB.
688  */
689
690 int aac_fib_complete(struct fib *fibptr)
691 {
692         struct hw_fib * hw_fib = fibptr->hw_fib_va;
693
694         /*
695          *      Check for a fib which has already been completed
696          */
697
698         if (hw_fib->header.XferState == 0)
699                 return 0;
700         /*
701          *      If we plan to do anything check the structure type first.
702          */
703
704         if (hw_fib->header.StructType != FIB_MAGIC)
705                 return -EINVAL;
706         /*
707          *      This block completes a cdb which orginated on the host and we
708          *      just need to deallocate the cdb or reinit it. At this point the
709          *      command is complete that we had sent to the adapter and this
710          *      cdb could be reused.
711          */
712         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
713                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
714         {
715                 fib_dealloc(fibptr);
716         }
717         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
718         {
719                 /*
720                  *      This handles the case when the host has aborted the I/O
721                  *      to the adapter because the adapter is not responding
722                  */
723                 fib_dealloc(fibptr);
724         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
725                 fib_dealloc(fibptr);
726         } else {
727                 BUG();
728         }
729         return 0;
730 }
731
732 /**
733  *      aac_printf      -       handle printf from firmware
734  *      @dev: Adapter
735  *      @val: Message info
736  *
737  *      Print a message passed to us by the controller firmware on the
738  *      Adaptec board
739  */
740
741 void aac_printf(struct aac_dev *dev, u32 val)
742 {
743         char *cp = dev->printfbuf;
744         if (dev->printf_enabled)
745         {
746                 int length = val & 0xffff;
747                 int level = (val >> 16) & 0xffff;
748
749                 /*
750                  *      The size of the printfbuf is set in port.c
751                  *      There is no variable or define for it
752                  */
753                 if (length > 255)
754                         length = 255;
755                 if (cp[length] != 0)
756                         cp[length] = 0;
757                 if (level == LOG_AAC_HIGH_ERROR)
758                         printk(KERN_WARNING "%s:%s", dev->name, cp);
759                 else
760                         printk(KERN_INFO "%s:%s", dev->name, cp);
761         }
762         memset(cp, 0, 256);
763 }
764
765
766 /**
767  *      aac_handle_aif          -       Handle a message from the firmware
768  *      @dev: Which adapter this fib is from
769  *      @fibptr: Pointer to fibptr from adapter
770  *
771  *      This routine handles a driver notify fib from the adapter and
772  *      dispatches it to the appropriate routine for handling.
773  */
774
775 #define AIF_SNIFF_TIMEOUT       (30*HZ)
776 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
777 {
778         struct hw_fib * hw_fib = fibptr->hw_fib_va;
779         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
780         u32 channel, id, lun, container;
781         struct scsi_device *device;
782         enum {
783                 NOTHING,
784                 DELETE,
785                 ADD,
786                 CHANGE
787         } device_config_needed = NOTHING;
788
789         /* Sniff for container changes */
790
791         if (!dev || !dev->fsa_dev)
792                 return;
793         container = channel = id = lun = (u32)-1;
794
795         /*
796          *      We have set this up to try and minimize the number of
797          * re-configures that take place. As a result of this when
798          * certain AIF's come in we will set a flag waiting for another
799          * type of AIF before setting the re-config flag.
800          */
801         switch (le32_to_cpu(aifcmd->command)) {
802         case AifCmdDriverNotify:
803                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
804                 /*
805                  *      Morph or Expand complete
806                  */
807                 case AifDenMorphComplete:
808                 case AifDenVolumeExtendComplete:
809                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
810                         if (container >= dev->maximum_num_containers)
811                                 break;
812
813                         /*
814                          *      Find the scsi_device associated with the SCSI
815                          * address. Make sure we have the right array, and if
816                          * so set the flag to initiate a new re-config once we
817                          * see an AifEnConfigChange AIF come through.
818                          */
819
820                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
821                                 device = scsi_device_lookup(dev->scsi_host_ptr,
822                                         CONTAINER_TO_CHANNEL(container),
823                                         CONTAINER_TO_ID(container),
824                                         CONTAINER_TO_LUN(container));
825                                 if (device) {
826                                         dev->fsa_dev[container].config_needed = CHANGE;
827                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
828                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
829                                         scsi_device_put(device);
830                                 }
831                         }
832                 }
833
834                 /*
835                  *      If we are waiting on something and this happens to be
836                  * that thing then set the re-configure flag.
837                  */
838                 if (container != (u32)-1) {
839                         if (container >= dev->maximum_num_containers)
840                                 break;
841                         if ((dev->fsa_dev[container].config_waiting_on ==
842                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
843                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
844                                 dev->fsa_dev[container].config_waiting_on = 0;
845                 } else for (container = 0;
846                     container < dev->maximum_num_containers; ++container) {
847                         if ((dev->fsa_dev[container].config_waiting_on ==
848                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
849                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
850                                 dev->fsa_dev[container].config_waiting_on = 0;
851                 }
852                 break;
853
854         case AifCmdEventNotify:
855                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
856                 case AifEnBatteryEvent:
857                         dev->cache_protected =
858                                 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
859                         break;
860                 /*
861                  *      Add an Array.
862                  */
863                 case AifEnAddContainer:
864                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
865                         if (container >= dev->maximum_num_containers)
866                                 break;
867                         dev->fsa_dev[container].config_needed = ADD;
868                         dev->fsa_dev[container].config_waiting_on =
869                                 AifEnConfigChange;
870                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
871                         break;
872
873                 /*
874                  *      Delete an Array.
875                  */
876                 case AifEnDeleteContainer:
877                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
878                         if (container >= dev->maximum_num_containers)
879                                 break;
880                         dev->fsa_dev[container].config_needed = DELETE;
881                         dev->fsa_dev[container].config_waiting_on =
882                                 AifEnConfigChange;
883                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
884                         break;
885
886                 /*
887                  *      Container change detected. If we currently are not
888                  * waiting on something else, setup to wait on a Config Change.
889                  */
890                 case AifEnContainerChange:
891                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
892                         if (container >= dev->maximum_num_containers)
893                                 break;
894                         if (dev->fsa_dev[container].config_waiting_on &&
895                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
896                                 break;
897                         dev->fsa_dev[container].config_needed = CHANGE;
898                         dev->fsa_dev[container].config_waiting_on =
899                                 AifEnConfigChange;
900                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
901                         break;
902
903                 case AifEnConfigChange:
904                         break;
905
906                 case AifEnAddJBOD:
907                 case AifEnDeleteJBOD:
908                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
909                         if ((container >> 28)) {
910                                 container = (u32)-1;
911                                 break;
912                         }
913                         channel = (container >> 24) & 0xF;
914                         if (channel >= dev->maximum_num_channels) {
915                                 container = (u32)-1;
916                                 break;
917                         }
918                         id = container & 0xFFFF;
919                         if (id >= dev->maximum_num_physicals) {
920                                 container = (u32)-1;
921                                 break;
922                         }
923                         lun = (container >> 16) & 0xFF;
924                         container = (u32)-1;
925                         channel = aac_phys_to_logical(channel);
926                         device_config_needed =
927                           (((__le32 *)aifcmd->data)[0] ==
928                             cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
929                         break;
930
931                 case AifEnEnclosureManagement:
932                         /*
933                          * If in JBOD mode, automatic exposure of new
934                          * physical target to be suppressed until configured.
935                          */
936                         if (dev->jbod)
937                                 break;
938                         switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
939                         case EM_DRIVE_INSERTION:
940                         case EM_DRIVE_REMOVAL:
941                                 container = le32_to_cpu(
942                                         ((__le32 *)aifcmd->data)[2]);
943                                 if ((container >> 28)) {
944                                         container = (u32)-1;
945                                         break;
946                                 }
947                                 channel = (container >> 24) & 0xF;
948                                 if (channel >= dev->maximum_num_channels) {
949                                         container = (u32)-1;
950                                         break;
951                                 }
952                                 id = container & 0xFFFF;
953                                 lun = (container >> 16) & 0xFF;
954                                 container = (u32)-1;
955                                 if (id >= dev->maximum_num_physicals) {
956                                         /* legacy dev_t ? */
957                                         if ((0x2000 <= id) || lun || channel ||
958                                           ((channel = (id >> 7) & 0x3F) >=
959                                           dev->maximum_num_channels))
960                                                 break;
961                                         lun = (id >> 4) & 7;
962                                         id &= 0xF;
963                                 }
964                                 channel = aac_phys_to_logical(channel);
965                                 device_config_needed =
966                                   (((__le32 *)aifcmd->data)[3]
967                                     == cpu_to_le32(EM_DRIVE_INSERTION)) ?
968                                   ADD : DELETE;
969                                 break;
970                         }
971                         break;
972                 }
973
974                 /*
975                  *      If we are waiting on something and this happens to be
976                  * that thing then set the re-configure flag.
977                  */
978                 if (container != (u32)-1) {
979                         if (container >= dev->maximum_num_containers)
980                                 break;
981                         if ((dev->fsa_dev[container].config_waiting_on ==
982                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
983                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
984                                 dev->fsa_dev[container].config_waiting_on = 0;
985                 } else for (container = 0;
986                     container < dev->maximum_num_containers; ++container) {
987                         if ((dev->fsa_dev[container].config_waiting_on ==
988                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
989                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
990                                 dev->fsa_dev[container].config_waiting_on = 0;
991                 }
992                 break;
993
994         case AifCmdJobProgress:
995                 /*
996                  *      These are job progress AIF's. When a Clear is being
997                  * done on a container it is initially created then hidden from
998                  * the OS. When the clear completes we don't get a config
999                  * change so we monitor the job status complete on a clear then
1000                  * wait for a container change.
1001                  */
1002
1003                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1004                     (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1005                      ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1006                         for (container = 0;
1007                             container < dev->maximum_num_containers;
1008                             ++container) {
1009                                 /*
1010                                  * Stomp on all config sequencing for all
1011                                  * containers?
1012                                  */
1013                                 dev->fsa_dev[container].config_waiting_on =
1014                                         AifEnContainerChange;
1015                                 dev->fsa_dev[container].config_needed = ADD;
1016                                 dev->fsa_dev[container].config_waiting_stamp =
1017                                         jiffies;
1018                         }
1019                 }
1020                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1021                     ((__le32 *)aifcmd->data)[6] == 0 &&
1022                     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1023                         for (container = 0;
1024                             container < dev->maximum_num_containers;
1025                             ++container) {
1026                                 /*
1027                                  * Stomp on all config sequencing for all
1028                                  * containers?
1029                                  */
1030                                 dev->fsa_dev[container].config_waiting_on =
1031                                         AifEnContainerChange;
1032                                 dev->fsa_dev[container].config_needed = DELETE;
1033                                 dev->fsa_dev[container].config_waiting_stamp =
1034                                         jiffies;
1035                         }
1036                 }
1037                 break;
1038         }
1039
1040         container = 0;
1041 retry_next:
1042         if (device_config_needed == NOTHING)
1043         for (; container < dev->maximum_num_containers; ++container) {
1044                 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1045                         (dev->fsa_dev[container].config_needed != NOTHING) &&
1046                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1047                         device_config_needed =
1048                                 dev->fsa_dev[container].config_needed;
1049                         dev->fsa_dev[container].config_needed = NOTHING;
1050                         channel = CONTAINER_TO_CHANNEL(container);
1051                         id = CONTAINER_TO_ID(container);
1052                         lun = CONTAINER_TO_LUN(container);
1053                         break;
1054                 }
1055         }
1056         if (device_config_needed == NOTHING)
1057                 return;
1058
1059         /*
1060          *      If we decided that a re-configuration needs to be done,
1061          * schedule it here on the way out the door, please close the door
1062          * behind you.
1063          */
1064
1065         /*
1066          *      Find the scsi_device associated with the SCSI address,
1067          * and mark it as changed, invalidating the cache. This deals
1068          * with changes to existing device IDs.
1069          */
1070
1071         if (!dev || !dev->scsi_host_ptr)
1072                 return;
1073         /*
1074          * force reload of disk info via aac_probe_container
1075          */
1076         if ((channel == CONTAINER_CHANNEL) &&
1077           (device_config_needed != NOTHING)) {
1078                 if (dev->fsa_dev[container].valid == 1)
1079                         dev->fsa_dev[container].valid = 2;
1080                 aac_probe_container(dev, container);
1081         }
1082         device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1083         if (device) {
1084                 switch (device_config_needed) {
1085                 case DELETE:
1086                         if (scsi_device_online(device)) {
1087                                 scsi_device_set_state(device, SDEV_OFFLINE);
1088                                 sdev_printk(KERN_INFO, device,
1089                                         "Device offlined - %s\n",
1090                                         (channel == CONTAINER_CHANNEL) ?
1091                                                 "array deleted" :
1092                                                 "enclosure services event");
1093                         }
1094                         break;
1095                 case ADD:
1096                         if (!scsi_device_online(device)) {
1097                                 sdev_printk(KERN_INFO, device,
1098                                         "Device online - %s\n",
1099                                         (channel == CONTAINER_CHANNEL) ?
1100                                                 "array created" :
1101                                                 "enclosure services event");
1102                                 scsi_device_set_state(device, SDEV_RUNNING);
1103                         }
1104                         /* FALLTHRU */
1105                 case CHANGE:
1106                         if ((channel == CONTAINER_CHANNEL)
1107                          && (!dev->fsa_dev[container].valid)) {
1108                                 if (!scsi_device_online(device))
1109                                         break;
1110                                 scsi_device_set_state(device, SDEV_OFFLINE);
1111                                 sdev_printk(KERN_INFO, device,
1112                                         "Device offlined - %s\n",
1113                                         "array failed");
1114                                 break;
1115                         }
1116                         scsi_rescan_device(&device->sdev_gendev);
1117
1118                 default:
1119                         break;
1120                 }
1121                 scsi_device_put(device);
1122                 device_config_needed = NOTHING;
1123         }
1124         if (device_config_needed == ADD)
1125                 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1126         if (channel == CONTAINER_CHANNEL) {
1127                 container++;
1128                 device_config_needed = NOTHING;
1129                 goto retry_next;
1130         }
1131 }
1132
1133 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1134 {
1135         int index, quirks;
1136         int retval;
1137         struct Scsi_Host *host;
1138         struct scsi_device *dev;
1139         struct scsi_cmnd *command;
1140         struct scsi_cmnd *command_list;
1141         int jafo = 0;
1142
1143         /*
1144          * Assumptions:
1145          *      - host is locked, unless called by the aacraid thread.
1146          *        (a matter of convenience, due to legacy issues surrounding
1147          *        eh_host_adapter_reset).
1148          *      - in_reset is asserted, so no new i/o is getting to the
1149          *        card.
1150          *      - The card is dead, or will be very shortly ;-/ so no new
1151          *        commands are completing in the interrupt service.
1152          */
1153         host = aac->scsi_host_ptr;
1154         scsi_block_requests(host);
1155         aac_adapter_disable_int(aac);
1156         if (aac->thread->pid != current->pid) {
1157                 spin_unlock_irq(host->host_lock);
1158                 kthread_stop(aac->thread);
1159                 jafo = 1;
1160         }
1161
1162         /*
1163          *      If a positive health, means in a known DEAD PANIC
1164          * state and the adapter could be reset to `try again'.
1165          */
1166         retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1167
1168         if (retval)
1169                 goto out;
1170
1171         /*
1172          *      Loop through the fibs, close the synchronous FIBS
1173          */
1174         for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1175                 struct fib *fib = &aac->fibs[index];
1176                 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1177                   (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1178                         unsigned long flagv;
1179                         spin_lock_irqsave(&fib->event_lock, flagv);
1180                         up(&fib->event_wait);
1181                         spin_unlock_irqrestore(&fib->event_lock, flagv);
1182                         schedule();
1183                         retval = 0;
1184                 }
1185         }
1186         /* Give some extra time for ioctls to complete. */
1187         if (retval == 0)
1188                 ssleep(2);
1189         index = aac->cardtype;
1190
1191         /*
1192          * Re-initialize the adapter, first free resources, then carefully
1193          * apply the initialization sequence to come back again. Only risk
1194          * is a change in Firmware dropping cache, it is assumed the caller
1195          * will ensure that i/o is queisced and the card is flushed in that
1196          * case.
1197          */
1198         aac_fib_map_free(aac);
1199         pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1200         aac->comm_addr = NULL;
1201         aac->comm_phys = 0;
1202         kfree(aac->queues);
1203         aac->queues = NULL;
1204         free_irq(aac->pdev->irq, aac);
1205         kfree(aac->fsa_dev);
1206         aac->fsa_dev = NULL;
1207         quirks = aac_get_driver_ident(index)->quirks;
1208         if (quirks & AAC_QUIRK_31BIT) {
1209                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1210                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1211                         goto out;
1212         } else {
1213                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1214                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1215                         goto out;
1216         }
1217         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1218                 goto out;
1219         if (quirks & AAC_QUIRK_31BIT)
1220                 if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1221                         goto out;
1222         if (jafo) {
1223                 aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1224                 if (IS_ERR(aac->thread)) {
1225                         retval = PTR_ERR(aac->thread);
1226                         goto out;
1227                 }
1228         }
1229         (void)aac_get_adapter_info(aac);
1230         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1231                 host->sg_tablesize = 34;
1232                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1233         }
1234         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1235                 host->sg_tablesize = 17;
1236                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1237         }
1238         aac_get_config_status(aac, 1);
1239         aac_get_containers(aac);
1240         /*
1241          * This is where the assumption that the Adapter is quiesced
1242          * is important.
1243          */
1244         command_list = NULL;
1245         __shost_for_each_device(dev, host) {
1246                 unsigned long flags;
1247                 spin_lock_irqsave(&dev->list_lock, flags);
1248                 list_for_each_entry(command, &dev->cmd_list, list)
1249                         if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1250                                 command->SCp.buffer = (struct scatterlist *)command_list;
1251                                 command_list = command;
1252                         }
1253                 spin_unlock_irqrestore(&dev->list_lock, flags);
1254         }
1255         while ((command = command_list)) {
1256                 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1257                 command->SCp.buffer = NULL;
1258                 command->result = DID_OK << 16
1259                   | COMMAND_COMPLETE << 8
1260                   | SAM_STAT_TASK_SET_FULL;
1261                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1262                 command->scsi_done(command);
1263         }
1264         retval = 0;
1265
1266 out:
1267         aac->in_reset = 0;
1268         scsi_unblock_requests(host);
1269         if (jafo) {
1270                 spin_lock_irq(host->host_lock);
1271         }
1272         return retval;
1273 }
1274
1275 int aac_reset_adapter(struct aac_dev * aac, int forced)
1276 {
1277         unsigned long flagv = 0;
1278         int retval;
1279         struct Scsi_Host * host;
1280
1281         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1282                 return -EBUSY;
1283
1284         if (aac->in_reset) {
1285                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1286                 return -EBUSY;
1287         }
1288         aac->in_reset = 1;
1289         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1290
1291         /*
1292          * Wait for all commands to complete to this specific
1293          * target (block maximum 60 seconds). Although not necessary,
1294          * it does make us a good storage citizen.
1295          */
1296         host = aac->scsi_host_ptr;
1297         scsi_block_requests(host);
1298         if (forced < 2) for (retval = 60; retval; --retval) {
1299                 struct scsi_device * dev;
1300                 struct scsi_cmnd * command;
1301                 int active = 0;
1302
1303                 __shost_for_each_device(dev, host) {
1304                         spin_lock_irqsave(&dev->list_lock, flagv);
1305                         list_for_each_entry(command, &dev->cmd_list, list) {
1306                                 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1307                                         active++;
1308                                         break;
1309                                 }
1310                         }
1311                         spin_unlock_irqrestore(&dev->list_lock, flagv);
1312                         if (active)
1313                                 break;
1314
1315                 }
1316                 /*
1317                  * We can exit If all the commands are complete
1318                  */
1319                 if (active == 0)
1320                         break;
1321                 ssleep(1);
1322         }
1323
1324         /* Quiesce build, flush cache, write through mode */
1325         if (forced < 2)
1326                 aac_send_shutdown(aac);
1327         spin_lock_irqsave(host->host_lock, flagv);
1328         retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1329         spin_unlock_irqrestore(host->host_lock, flagv);
1330
1331         if ((forced < 2) && (retval == -ENODEV)) {
1332                 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1333                 struct fib * fibctx = aac_fib_alloc(aac);
1334                 if (fibctx) {
1335                         struct aac_pause *cmd;
1336                         int status;
1337
1338                         aac_fib_init(fibctx);
1339
1340                         cmd = (struct aac_pause *) fib_data(fibctx);
1341
1342                         cmd->command = cpu_to_le32(VM_ContainerConfig);
1343                         cmd->type = cpu_to_le32(CT_PAUSE_IO);
1344                         cmd->timeout = cpu_to_le32(1);
1345                         cmd->min = cpu_to_le32(1);
1346                         cmd->noRescan = cpu_to_le32(1);
1347                         cmd->count = cpu_to_le32(0);
1348
1349                         status = aac_fib_send(ContainerCommand,
1350                           fibctx,
1351                           sizeof(struct aac_pause),
1352                           FsaNormal,
1353                           -2 /* Timeout silently */, 1,
1354                           NULL, NULL);
1355
1356                         if (status >= 0)
1357                                 aac_fib_complete(fibctx);
1358                         aac_fib_free(fibctx);
1359                 }
1360         }
1361
1362         return retval;
1363 }
1364
1365 int aac_check_health(struct aac_dev * aac)
1366 {
1367         int BlinkLED;
1368         unsigned long time_now, flagv = 0;
1369         struct list_head * entry;
1370         struct Scsi_Host * host;
1371
1372         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1373         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1374                 return 0;
1375
1376         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1377                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1378                 return 0; /* OK */
1379         }
1380
1381         aac->in_reset = 1;
1382
1383         /* Fake up an AIF:
1384          *      aac_aifcmd.command = AifCmdEventNotify = 1
1385          *      aac_aifcmd.seqnum = 0xFFFFFFFF
1386          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1387          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1388          *      aac.aifcmd.data[2] = AifHighPriority = 3
1389          *      aac.aifcmd.data[3] = BlinkLED
1390          */
1391
1392         time_now = jiffies/HZ;
1393         entry = aac->fib_list.next;
1394
1395         /*
1396          * For each Context that is on the
1397          * fibctxList, make a copy of the
1398          * fib, and then set the event to wake up the
1399          * thread that is waiting for it.
1400          */
1401         while (entry != &aac->fib_list) {
1402                 /*
1403                  * Extract the fibctx
1404                  */
1405                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1406                 struct hw_fib * hw_fib;
1407                 struct fib * fib;
1408                 /*
1409                  * Check if the queue is getting
1410                  * backlogged
1411                  */
1412                 if (fibctx->count > 20) {
1413                         /*
1414                          * It's *not* jiffies folks,
1415                          * but jiffies / HZ, so do not
1416                          * panic ...
1417                          */
1418                         u32 time_last = fibctx->jiffies;
1419                         /*
1420                          * Has it been > 2 minutes
1421                          * since the last read off
1422                          * the queue?
1423                          */
1424                         if ((time_now - time_last) > aif_timeout) {
1425                                 entry = entry->next;
1426                                 aac_close_fib_context(aac, fibctx);
1427                                 continue;
1428                         }
1429                 }
1430                 /*
1431                  * Warning: no sleep allowed while
1432                  * holding spinlock
1433                  */
1434                 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1435                 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1436                 if (fib && hw_fib) {
1437                         struct aac_aifcmd * aif;
1438
1439                         fib->hw_fib_va = hw_fib;
1440                         fib->dev = aac;
1441                         aac_fib_init(fib);
1442                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1443                         fib->size = sizeof (struct fib);
1444                         fib->data = hw_fib->data;
1445                         aif = (struct aac_aifcmd *)hw_fib->data;
1446                         aif->command = cpu_to_le32(AifCmdEventNotify);
1447                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1448                         ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1449                         ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1450                         ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1451                         ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1452
1453                         /*
1454                          * Put the FIB onto the
1455                          * fibctx's fibs
1456                          */
1457                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
1458                         fibctx->count++;
1459                         /*
1460                          * Set the event to wake up the
1461                          * thread that will waiting.
1462                          */
1463                         up(&fibctx->wait_sem);
1464                 } else {
1465                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1466                         kfree(fib);
1467                         kfree(hw_fib);
1468                 }
1469                 entry = entry->next;
1470         }
1471
1472         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1473
1474         if (BlinkLED < 0) {
1475                 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1476                 goto out;
1477         }
1478
1479         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1480
1481         if (!aac_check_reset || ((aac_check_reset == 1) &&
1482                 (aac->supplement_adapter_info.SupportedOptions2 &
1483                         AAC_OPTION_IGNORE_RESET)))
1484                 goto out;
1485         host = aac->scsi_host_ptr;
1486         if (aac->thread->pid != current->pid)
1487                 spin_lock_irqsave(host->host_lock, flagv);
1488         BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1489         if (aac->thread->pid != current->pid)
1490                 spin_unlock_irqrestore(host->host_lock, flagv);
1491         return BlinkLED;
1492
1493 out:
1494         aac->in_reset = 0;
1495         return BlinkLED;
1496 }
1497
1498
1499 /**
1500  *      aac_command_thread      -       command processing thread
1501  *      @dev: Adapter to monitor
1502  *
1503  *      Waits on the commandready event in it's queue. When the event gets set
1504  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
1505  *      until the queue is empty. When the queue is empty it will wait for
1506  *      more FIBs.
1507  */
1508
1509 int aac_command_thread(void *data)
1510 {
1511         struct aac_dev *dev = data;
1512         struct hw_fib *hw_fib, *hw_newfib;
1513         struct fib *fib, *newfib;
1514         struct aac_fib_context *fibctx;
1515         unsigned long flags;
1516         DECLARE_WAITQUEUE(wait, current);
1517         unsigned long next_jiffies = jiffies + HZ;
1518         unsigned long next_check_jiffies = next_jiffies;
1519         long difference = HZ;
1520
1521         /*
1522          *      We can only have one thread per adapter for AIF's.
1523          */
1524         if (dev->aif_thread)
1525                 return -EINVAL;
1526
1527         /*
1528          *      Let the DPC know it has a place to send the AIF's to.
1529          */
1530         dev->aif_thread = 1;
1531         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1532         set_current_state(TASK_INTERRUPTIBLE);
1533         dprintk ((KERN_INFO "aac_command_thread start\n"));
1534         while (1) {
1535                 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1536                 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1537                         struct list_head *entry;
1538                         struct aac_aifcmd * aifcmd;
1539
1540                         set_current_state(TASK_RUNNING);
1541
1542                         entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1543                         list_del(entry);
1544
1545                         spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1546                         fib = list_entry(entry, struct fib, fiblink);
1547                         /*
1548                          *      We will process the FIB here or pass it to a
1549                          *      worker thread that is TBD. We Really can't
1550                          *      do anything at this point since we don't have
1551                          *      anything defined for this thread to do.
1552                          */
1553                         hw_fib = fib->hw_fib_va;
1554                         memset(fib, 0, sizeof(struct fib));
1555                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1556                         fib->size = sizeof(struct fib);
1557                         fib->hw_fib_va = hw_fib;
1558                         fib->data = hw_fib->data;
1559                         fib->dev = dev;
1560                         /*
1561                          *      We only handle AifRequest fibs from the adapter.
1562                          */
1563                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
1564                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1565                                 /* Handle Driver Notify Events */
1566                                 aac_handle_aif(dev, fib);
1567                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1568                                 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1569                         } else {
1570                                 /* The u32 here is important and intended. We are using
1571                                    32bit wrapping time to fit the adapter field */
1572
1573                                 u32 time_now, time_last;
1574                                 unsigned long flagv;
1575                                 unsigned num;
1576                                 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1577                                 struct fib ** fib_pool, ** fib_p;
1578
1579                                 /* Sniff events */
1580                                 if ((aifcmd->command ==
1581                                      cpu_to_le32(AifCmdEventNotify)) ||
1582                                     (aifcmd->command ==
1583                                      cpu_to_le32(AifCmdJobProgress))) {
1584                                         aac_handle_aif(dev, fib);
1585                                 }
1586
1587                                 time_now = jiffies/HZ;
1588
1589                                 /*
1590                                  * Warning: no sleep allowed while
1591                                  * holding spinlock. We take the estimate
1592                                  * and pre-allocate a set of fibs outside the
1593                                  * lock.
1594                                  */
1595                                 num = le32_to_cpu(dev->init->AdapterFibsSize)
1596                                     / sizeof(struct hw_fib); /* some extra */
1597                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1598                                 entry = dev->fib_list.next;
1599                                 while (entry != &dev->fib_list) {
1600                                         entry = entry->next;
1601                                         ++num;
1602                                 }
1603                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1604                                 hw_fib_pool = NULL;
1605                                 fib_pool = NULL;
1606                                 if (num
1607                                  && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1608                                  && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1609                                         hw_fib_p = hw_fib_pool;
1610                                         fib_p = fib_pool;
1611                                         while (hw_fib_p < &hw_fib_pool[num]) {
1612                                                 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1613                                                         --hw_fib_p;
1614                                                         break;
1615                                                 }
1616                                                 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1617                                                         kfree(*(--hw_fib_p));
1618                                                         break;
1619                                                 }
1620                                         }
1621                                         if ((num = hw_fib_p - hw_fib_pool) == 0) {
1622                                                 kfree(fib_pool);
1623                                                 fib_pool = NULL;
1624                                                 kfree(hw_fib_pool);
1625                                                 hw_fib_pool = NULL;
1626                                         }
1627                                 } else {
1628                                         kfree(hw_fib_pool);
1629                                         hw_fib_pool = NULL;
1630                                 }
1631                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1632                                 entry = dev->fib_list.next;
1633                                 /*
1634                                  * For each Context that is on the
1635                                  * fibctxList, make a copy of the
1636                                  * fib, and then set the event to wake up the
1637                                  * thread that is waiting for it.
1638                                  */
1639                                 hw_fib_p = hw_fib_pool;
1640                                 fib_p = fib_pool;
1641                                 while (entry != &dev->fib_list) {
1642                                         /*
1643                                          * Extract the fibctx
1644                                          */
1645                                         fibctx = list_entry(entry, struct aac_fib_context, next);
1646                                         /*
1647                                          * Check if the queue is getting
1648                                          * backlogged
1649                                          */
1650                                         if (fibctx->count > 20)
1651                                         {
1652                                                 /*
1653                                                  * It's *not* jiffies folks,
1654                                                  * but jiffies / HZ so do not
1655                                                  * panic ...
1656                                                  */
1657                                                 time_last = fibctx->jiffies;
1658                                                 /*
1659                                                  * Has it been > 2 minutes
1660                                                  * since the last read off
1661                                                  * the queue?
1662                                                  */
1663                                                 if ((time_now - time_last) > aif_timeout) {
1664                                                         entry = entry->next;
1665                                                         aac_close_fib_context(dev, fibctx);
1666                                                         continue;
1667                                                 }
1668                                         }
1669                                         /*
1670                                          * Warning: no sleep allowed while
1671                                          * holding spinlock
1672                                          */
1673                                         if (hw_fib_p < &hw_fib_pool[num]) {
1674                                                 hw_newfib = *hw_fib_p;
1675                                                 *(hw_fib_p++) = NULL;
1676                                                 newfib = *fib_p;
1677                                                 *(fib_p++) = NULL;
1678                                                 /*
1679                                                  * Make the copy of the FIB
1680                                                  */
1681                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1682                                                 memcpy(newfib, fib, sizeof(struct fib));
1683                                                 newfib->hw_fib_va = hw_newfib;
1684                                                 /*
1685                                                  * Put the FIB onto the
1686                                                  * fibctx's fibs
1687                                                  */
1688                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1689                                                 fibctx->count++;
1690                                                 /*
1691                                                  * Set the event to wake up the
1692                                                  * thread that is waiting.
1693                                                  */
1694                                                 up(&fibctx->wait_sem);
1695                                         } else {
1696                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1697                                         }
1698                                         entry = entry->next;
1699                                 }
1700                                 /*
1701                                  *      Set the status of this FIB
1702                                  */
1703                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1704                                 aac_fib_adapter_complete(fib, sizeof(u32));
1705                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1706                                 /* Free up the remaining resources */
1707                                 hw_fib_p = hw_fib_pool;
1708                                 fib_p = fib_pool;
1709                                 while (hw_fib_p < &hw_fib_pool[num]) {
1710                                         kfree(*hw_fib_p);
1711                                         kfree(*fib_p);
1712                                         ++fib_p;
1713                                         ++hw_fib_p;
1714                                 }
1715                                 kfree(hw_fib_pool);
1716                                 kfree(fib_pool);
1717                         }
1718                         kfree(fib);
1719                         spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1720                 }
1721                 /*
1722                  *      There are no more AIF's
1723                  */
1724                 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1725
1726                 /*
1727                  *      Background activity
1728                  */
1729                 if ((time_before(next_check_jiffies,next_jiffies))
1730                  && ((difference = next_check_jiffies - jiffies) <= 0)) {
1731                         next_check_jiffies = next_jiffies;
1732                         if (aac_check_health(dev) == 0) {
1733                                 difference = ((long)(unsigned)check_interval)
1734                                            * HZ;
1735                                 next_check_jiffies = jiffies + difference;
1736                         } else if (!dev->queues)
1737                                 break;
1738                 }
1739                 if (!time_before(next_check_jiffies,next_jiffies)
1740                  && ((difference = next_jiffies - jiffies) <= 0)) {
1741                         struct timeval now;
1742                         int ret;
1743
1744                         /* Don't even try to talk to adapter if its sick */
1745                         ret = aac_check_health(dev);
1746                         if (!ret && !dev->queues)
1747                                 break;
1748                         next_check_jiffies = jiffies
1749                                            + ((long)(unsigned)check_interval)
1750                                            * HZ;
1751                         do_gettimeofday(&now);
1752
1753                         /* Synchronize our watches */
1754                         if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1755                          && (now.tv_usec > (1000000 / HZ)))
1756                                 difference = (((1000000 - now.tv_usec) * HZ)
1757                                   + 500000) / 1000000;
1758                         else if (ret == 0) {
1759                                 struct fib *fibptr;
1760
1761                                 if ((fibptr = aac_fib_alloc(dev))) {
1762                                         __le32 *info;
1763
1764                                         aac_fib_init(fibptr);
1765
1766                                         info = (__le32 *) fib_data(fibptr);
1767                                         if (now.tv_usec > 500000)
1768                                                 ++now.tv_sec;
1769
1770                                         *info = cpu_to_le32(now.tv_sec);
1771
1772                                         (void)aac_fib_send(SendHostTime,
1773                                                 fibptr,
1774                                                 sizeof(*info),
1775                                                 FsaNormal,
1776                                                 1, 1,
1777                                                 NULL,
1778                                                 NULL);
1779                                         aac_fib_complete(fibptr);
1780                                         aac_fib_free(fibptr);
1781                                 }
1782                                 difference = (long)(unsigned)update_interval*HZ;
1783                         } else {
1784                                 /* retry shortly */
1785                                 difference = 10 * HZ;
1786                         }
1787                         next_jiffies = jiffies + difference;
1788                         if (time_before(next_check_jiffies,next_jiffies))
1789                                 difference = next_check_jiffies - jiffies;
1790                 }
1791                 if (difference <= 0)
1792                         difference = 1;
1793                 set_current_state(TASK_INTERRUPTIBLE);
1794                 schedule_timeout(difference);
1795
1796                 if (kthread_should_stop())
1797                         break;
1798         }
1799         if (dev->queues)
1800                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1801         dev->aif_thread = 0;
1802         return 0;
1803 }