Merge branch 'linux-next' of git://git.infradead.org/~dedekind/ubi-2.6
[linux-2.6] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/ftrace.h>
37
38 #include <linux/acpi.h>
39 #include <acpi/processor.h>
40
41 #include <asm/io.h>
42 #include <asm/msr.h>
43 #include <asm/processor.h>
44 #include <asm/cpufeature.h>
45 #include <asm/delay.h>
46 #include <asm/uaccess.h>
47
48 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
49
50 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52 MODULE_LICENSE("GPL");
53
54 enum {
55         UNDEFINED_CAPABLE = 0,
56         SYSTEM_INTEL_MSR_CAPABLE,
57         SYSTEM_IO_CAPABLE,
58 };
59
60 #define INTEL_MSR_RANGE         (0xffff)
61 #define CPUID_6_ECX_APERFMPERF_CAPABILITY       (0x1)
62
63 struct acpi_cpufreq_data {
64         struct acpi_processor_performance *acpi_data;
65         struct cpufreq_frequency_table *freq_table;
66         unsigned int max_freq;
67         unsigned int resume;
68         unsigned int cpu_feature;
69 };
70
71 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
72
73 /* acpi_perf_data is a pointer to percpu data. */
74 static struct acpi_processor_performance *acpi_perf_data;
75
76 static struct cpufreq_driver acpi_cpufreq_driver;
77
78 static unsigned int acpi_pstate_strict;
79
80 static int check_est_cpu(unsigned int cpuid)
81 {
82         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
83
84         if (cpu->x86_vendor != X86_VENDOR_INTEL ||
85             !cpu_has(cpu, X86_FEATURE_EST))
86                 return 0;
87
88         return 1;
89 }
90
91 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
92 {
93         struct acpi_processor_performance *perf;
94         int i;
95
96         perf = data->acpi_data;
97
98         for (i=0; i<perf->state_count; i++) {
99                 if (value == perf->states[i].status)
100                         return data->freq_table[i].frequency;
101         }
102         return 0;
103 }
104
105 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
106 {
107         int i;
108         struct acpi_processor_performance *perf;
109
110         msr &= INTEL_MSR_RANGE;
111         perf = data->acpi_data;
112
113         for (i=0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
114                 if (msr == perf->states[data->freq_table[i].index].status)
115                         return data->freq_table[i].frequency;
116         }
117         return data->freq_table[0].frequency;
118 }
119
120 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
121 {
122         switch (data->cpu_feature) {
123         case SYSTEM_INTEL_MSR_CAPABLE:
124                 return extract_msr(val, data);
125         case SYSTEM_IO_CAPABLE:
126                 return extract_io(val, data);
127         default:
128                 return 0;
129         }
130 }
131
132 struct msr_addr {
133         u32 reg;
134 };
135
136 struct io_addr {
137         u16 port;
138         u8 bit_width;
139 };
140
141 typedef union {
142         struct msr_addr msr;
143         struct io_addr io;
144 } drv_addr_union;
145
146 struct drv_cmd {
147         unsigned int type;
148         cpumask_t mask;
149         drv_addr_union addr;
150         u32 val;
151 };
152
153 static void do_drv_read(struct drv_cmd *cmd)
154 {
155         u32 h;
156
157         switch (cmd->type) {
158         case SYSTEM_INTEL_MSR_CAPABLE:
159                 rdmsr(cmd->addr.msr.reg, cmd->val, h);
160                 break;
161         case SYSTEM_IO_CAPABLE:
162                 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
163                                 &cmd->val,
164                                 (u32)cmd->addr.io.bit_width);
165                 break;
166         default:
167                 break;
168         }
169 }
170
171 static void do_drv_write(struct drv_cmd *cmd)
172 {
173         u32 lo, hi;
174
175         switch (cmd->type) {
176         case SYSTEM_INTEL_MSR_CAPABLE:
177                 rdmsr(cmd->addr.msr.reg, lo, hi);
178                 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
179                 wrmsr(cmd->addr.msr.reg, lo, hi);
180                 break;
181         case SYSTEM_IO_CAPABLE:
182                 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
183                                 cmd->val,
184                                 (u32)cmd->addr.io.bit_width);
185                 break;
186         default:
187                 break;
188         }
189 }
190
191 static void drv_read(struct drv_cmd *cmd)
192 {
193         cpumask_t saved_mask = current->cpus_allowed;
194         cmd->val = 0;
195
196         set_cpus_allowed_ptr(current, &cmd->mask);
197         do_drv_read(cmd);
198         set_cpus_allowed_ptr(current, &saved_mask);
199 }
200
201 static void drv_write(struct drv_cmd *cmd)
202 {
203         cpumask_t saved_mask = current->cpus_allowed;
204         unsigned int i;
205
206         for_each_cpu_mask_nr(i, cmd->mask) {
207                 set_cpus_allowed_ptr(current, &cpumask_of_cpu(i));
208                 do_drv_write(cmd);
209         }
210
211         set_cpus_allowed_ptr(current, &saved_mask);
212         return;
213 }
214
215 static u32 get_cur_val(const cpumask_t *mask)
216 {
217         struct acpi_processor_performance *perf;
218         struct drv_cmd cmd;
219
220         if (unlikely(cpus_empty(*mask)))
221                 return 0;
222
223         switch (per_cpu(drv_data, first_cpu(*mask))->cpu_feature) {
224         case SYSTEM_INTEL_MSR_CAPABLE:
225                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
226                 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
227                 break;
228         case SYSTEM_IO_CAPABLE:
229                 cmd.type = SYSTEM_IO_CAPABLE;
230                 perf = per_cpu(drv_data, first_cpu(*mask))->acpi_data;
231                 cmd.addr.io.port = perf->control_register.address;
232                 cmd.addr.io.bit_width = perf->control_register.bit_width;
233                 break;
234         default:
235                 return 0;
236         }
237
238         cmd.mask = *mask;
239
240         drv_read(&cmd);
241
242         dprintk("get_cur_val = %u\n", cmd.val);
243
244         return cmd.val;
245 }
246
247 /*
248  * Return the measured active (C0) frequency on this CPU since last call
249  * to this function.
250  * Input: cpu number
251  * Return: Average CPU frequency in terms of max frequency (zero on error)
252  *
253  * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
254  * over a period of time, while CPU is in C0 state.
255  * IA32_MPERF counts at the rate of max advertised frequency
256  * IA32_APERF counts at the rate of actual CPU frequency
257  * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
258  * no meaning should be associated with absolute values of these MSRs.
259  */
260 static unsigned int get_measured_perf(struct cpufreq_policy *policy,
261                                       unsigned int cpu)
262 {
263         union {
264                 struct {
265                         u32 lo;
266                         u32 hi;
267                 } split;
268                 u64 whole;
269         } aperf_cur, mperf_cur;
270
271         cpumask_t saved_mask;
272         unsigned int perf_percent;
273         unsigned int retval;
274
275         saved_mask = current->cpus_allowed;
276         set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
277         if (get_cpu() != cpu) {
278                 /* We were not able to run on requested processor */
279                 put_cpu();
280                 return 0;
281         }
282
283         rdmsr(MSR_IA32_APERF, aperf_cur.split.lo, aperf_cur.split.hi);
284         rdmsr(MSR_IA32_MPERF, mperf_cur.split.lo, mperf_cur.split.hi);
285
286         wrmsr(MSR_IA32_APERF, 0,0);
287         wrmsr(MSR_IA32_MPERF, 0,0);
288
289 #ifdef __i386__
290         /*
291          * We dont want to do 64 bit divide with 32 bit kernel
292          * Get an approximate value. Return failure in case we cannot get
293          * an approximate value.
294          */
295         if (unlikely(aperf_cur.split.hi || mperf_cur.split.hi)) {
296                 int shift_count;
297                 u32 h;
298
299                 h = max_t(u32, aperf_cur.split.hi, mperf_cur.split.hi);
300                 shift_count = fls(h);
301
302                 aperf_cur.whole >>= shift_count;
303                 mperf_cur.whole >>= shift_count;
304         }
305
306         if (((unsigned long)(-1) / 100) < aperf_cur.split.lo) {
307                 int shift_count = 7;
308                 aperf_cur.split.lo >>= shift_count;
309                 mperf_cur.split.lo >>= shift_count;
310         }
311
312         if (aperf_cur.split.lo && mperf_cur.split.lo)
313                 perf_percent = (aperf_cur.split.lo * 100) / mperf_cur.split.lo;
314         else
315                 perf_percent = 0;
316
317 #else
318         if (unlikely(((unsigned long)(-1) / 100) < aperf_cur.whole)) {
319                 int shift_count = 7;
320                 aperf_cur.whole >>= shift_count;
321                 mperf_cur.whole >>= shift_count;
322         }
323
324         if (aperf_cur.whole && mperf_cur.whole)
325                 perf_percent = (aperf_cur.whole * 100) / mperf_cur.whole;
326         else
327                 perf_percent = 0;
328
329 #endif
330
331         retval = per_cpu(drv_data, policy->cpu)->max_freq * perf_percent / 100;
332
333         put_cpu();
334         set_cpus_allowed_ptr(current, &saved_mask);
335
336         dprintk("cpu %d: performance percent %d\n", cpu, perf_percent);
337         return retval;
338 }
339
340 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
341 {
342         struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
343         unsigned int freq;
344         unsigned int cached_freq;
345
346         dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
347
348         if (unlikely(data == NULL ||
349                      data->acpi_data == NULL || data->freq_table == NULL)) {
350                 return 0;
351         }
352
353         cached_freq = data->freq_table[data->acpi_data->state].frequency;
354         freq = extract_freq(get_cur_val(&cpumask_of_cpu(cpu)), data);
355         if (freq != cached_freq) {
356                 /*
357                  * The dreaded BIOS frequency change behind our back.
358                  * Force set the frequency on next target call.
359                  */
360                 data->resume = 1;
361         }
362
363         dprintk("cur freq = %u\n", freq);
364
365         return freq;
366 }
367
368 static unsigned int check_freqs(const cpumask_t *mask, unsigned int freq,
369                                 struct acpi_cpufreq_data *data)
370 {
371         unsigned int cur_freq;
372         unsigned int i;
373
374         for (i=0; i<100; i++) {
375                 cur_freq = extract_freq(get_cur_val(mask), data);
376                 if (cur_freq == freq)
377                         return 1;
378                 udelay(10);
379         }
380         return 0;
381 }
382
383 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
384                                unsigned int target_freq, unsigned int relation)
385 {
386         struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
387         struct acpi_processor_performance *perf;
388         struct cpufreq_freqs freqs;
389         cpumask_t online_policy_cpus;
390         struct drv_cmd cmd;
391         unsigned int next_state = 0; /* Index into freq_table */
392         unsigned int next_perf_state = 0; /* Index into perf table */
393         unsigned int i;
394         int result = 0;
395         struct power_trace it;
396
397         dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
398
399         if (unlikely(data == NULL ||
400              data->acpi_data == NULL || data->freq_table == NULL)) {
401                 return -ENODEV;
402         }
403
404         perf = data->acpi_data;
405         result = cpufreq_frequency_table_target(policy,
406                                                 data->freq_table,
407                                                 target_freq,
408                                                 relation, &next_state);
409         if (unlikely(result))
410                 return -ENODEV;
411
412 #ifdef CONFIG_HOTPLUG_CPU
413         /* cpufreq holds the hotplug lock, so we are safe from here on */
414         cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
415 #else
416         online_policy_cpus = policy->cpus;
417 #endif
418
419         next_perf_state = data->freq_table[next_state].index;
420         if (perf->state == next_perf_state) {
421                 if (unlikely(data->resume)) {
422                         dprintk("Called after resume, resetting to P%d\n",
423                                 next_perf_state);
424                         data->resume = 0;
425                 } else {
426                         dprintk("Already at target state (P%d)\n",
427                                 next_perf_state);
428                         return 0;
429                 }
430         }
431
432         trace_power_mark(&it, POWER_PSTATE, next_perf_state);
433
434         switch (data->cpu_feature) {
435         case SYSTEM_INTEL_MSR_CAPABLE:
436                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
437                 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
438                 cmd.val = (u32) perf->states[next_perf_state].control;
439                 break;
440         case SYSTEM_IO_CAPABLE:
441                 cmd.type = SYSTEM_IO_CAPABLE;
442                 cmd.addr.io.port = perf->control_register.address;
443                 cmd.addr.io.bit_width = perf->control_register.bit_width;
444                 cmd.val = (u32) perf->states[next_perf_state].control;
445                 break;
446         default:
447                 return -ENODEV;
448         }
449
450         cpus_clear(cmd.mask);
451
452         if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
453                 cmd.mask = online_policy_cpus;
454         else
455                 cpu_set(policy->cpu, cmd.mask);
456
457         freqs.old = perf->states[perf->state].core_frequency * 1000;
458         freqs.new = data->freq_table[next_state].frequency;
459         for_each_cpu_mask_nr(i, cmd.mask) {
460                 freqs.cpu = i;
461                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
462         }
463
464         drv_write(&cmd);
465
466         if (acpi_pstate_strict) {
467                 if (!check_freqs(&cmd.mask, freqs.new, data)) {
468                         dprintk("acpi_cpufreq_target failed (%d)\n",
469                                 policy->cpu);
470                         return -EAGAIN;
471                 }
472         }
473
474         for_each_cpu_mask_nr(i, cmd.mask) {
475                 freqs.cpu = i;
476                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
477         }
478         perf->state = next_perf_state;
479
480         return result;
481 }
482
483 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
484 {
485         struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
486
487         dprintk("acpi_cpufreq_verify\n");
488
489         return cpufreq_frequency_table_verify(policy, data->freq_table);
490 }
491
492 static unsigned long
493 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
494 {
495         struct acpi_processor_performance *perf = data->acpi_data;
496
497         if (cpu_khz) {
498                 /* search the closest match to cpu_khz */
499                 unsigned int i;
500                 unsigned long freq;
501                 unsigned long freqn = perf->states[0].core_frequency * 1000;
502
503                 for (i=0; i<(perf->state_count-1); i++) {
504                         freq = freqn;
505                         freqn = perf->states[i+1].core_frequency * 1000;
506                         if ((2 * cpu_khz) > (freqn + freq)) {
507                                 perf->state = i;
508                                 return freq;
509                         }
510                 }
511                 perf->state = perf->state_count-1;
512                 return freqn;
513         } else {
514                 /* assume CPU is at P0... */
515                 perf->state = 0;
516                 return perf->states[0].core_frequency * 1000;
517         }
518 }
519
520 /*
521  * acpi_cpufreq_early_init - initialize ACPI P-States library
522  *
523  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
524  * in order to determine correct frequency and voltage pairings. We can
525  * do _PDC and _PSD and find out the processor dependency for the
526  * actual init that will happen later...
527  */
528 static int __init acpi_cpufreq_early_init(void)
529 {
530         dprintk("acpi_cpufreq_early_init\n");
531
532         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
533         if (!acpi_perf_data) {
534                 dprintk("Memory allocation error for acpi_perf_data.\n");
535                 return -ENOMEM;
536         }
537
538         /* Do initialization in ACPI core */
539         acpi_processor_preregister_performance(acpi_perf_data);
540         return 0;
541 }
542
543 #ifdef CONFIG_SMP
544 /*
545  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
546  * or do it in BIOS firmware and won't inform about it to OS. If not
547  * detected, this has a side effect of making CPU run at a different speed
548  * than OS intended it to run at. Detect it and handle it cleanly.
549  */
550 static int bios_with_sw_any_bug;
551
552 static int sw_any_bug_found(const struct dmi_system_id *d)
553 {
554         bios_with_sw_any_bug = 1;
555         return 0;
556 }
557
558 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
559         {
560                 .callback = sw_any_bug_found,
561                 .ident = "Supermicro Server X6DLP",
562                 .matches = {
563                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
564                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
565                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
566                 },
567         },
568         { }
569 };
570 #endif
571
572 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
573 {
574         unsigned int i;
575         unsigned int valid_states = 0;
576         unsigned int cpu = policy->cpu;
577         struct acpi_cpufreq_data *data;
578         unsigned int result = 0;
579         struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
580         struct acpi_processor_performance *perf;
581
582         dprintk("acpi_cpufreq_cpu_init\n");
583
584         data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
585         if (!data)
586                 return -ENOMEM;
587
588         data->acpi_data = percpu_ptr(acpi_perf_data, cpu);
589         per_cpu(drv_data, cpu) = data;
590
591         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
592                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
593
594         result = acpi_processor_register_performance(data->acpi_data, cpu);
595         if (result)
596                 goto err_free;
597
598         perf = data->acpi_data;
599         policy->shared_type = perf->shared_type;
600
601         /*
602          * Will let policy->cpus know about dependency only when software
603          * coordination is required.
604          */
605         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
606             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
607                 policy->cpus = perf->shared_cpu_map;
608         }
609         policy->related_cpus = perf->shared_cpu_map;
610
611 #ifdef CONFIG_SMP
612         dmi_check_system(sw_any_bug_dmi_table);
613         if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) {
614                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
615                 policy->cpus = per_cpu(cpu_core_map, cpu);
616         }
617 #endif
618
619         /* capability check */
620         if (perf->state_count <= 1) {
621                 dprintk("No P-States\n");
622                 result = -ENODEV;
623                 goto err_unreg;
624         }
625
626         if (perf->control_register.space_id != perf->status_register.space_id) {
627                 result = -ENODEV;
628                 goto err_unreg;
629         }
630
631         switch (perf->control_register.space_id) {
632         case ACPI_ADR_SPACE_SYSTEM_IO:
633                 dprintk("SYSTEM IO addr space\n");
634                 data->cpu_feature = SYSTEM_IO_CAPABLE;
635                 break;
636         case ACPI_ADR_SPACE_FIXED_HARDWARE:
637                 dprintk("HARDWARE addr space\n");
638                 if (!check_est_cpu(cpu)) {
639                         result = -ENODEV;
640                         goto err_unreg;
641                 }
642                 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
643                 break;
644         default:
645                 dprintk("Unknown addr space %d\n",
646                         (u32) (perf->control_register.space_id));
647                 result = -ENODEV;
648                 goto err_unreg;
649         }
650
651         data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
652                     (perf->state_count+1), GFP_KERNEL);
653         if (!data->freq_table) {
654                 result = -ENOMEM;
655                 goto err_unreg;
656         }
657
658         /* detect transition latency */
659         policy->cpuinfo.transition_latency = 0;
660         for (i=0; i<perf->state_count; i++) {
661                 if ((perf->states[i].transition_latency * 1000) >
662                     policy->cpuinfo.transition_latency)
663                         policy->cpuinfo.transition_latency =
664                             perf->states[i].transition_latency * 1000;
665         }
666
667         data->max_freq = perf->states[0].core_frequency * 1000;
668         /* table init */
669         for (i=0; i<perf->state_count; i++) {
670                 if (i>0 && perf->states[i].core_frequency >=
671                     data->freq_table[valid_states-1].frequency / 1000)
672                         continue;
673
674                 data->freq_table[valid_states].index = i;
675                 data->freq_table[valid_states].frequency =
676                     perf->states[i].core_frequency * 1000;
677                 valid_states++;
678         }
679         data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
680         perf->state = 0;
681
682         result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
683         if (result)
684                 goto err_freqfree;
685
686         switch (perf->control_register.space_id) {
687         case ACPI_ADR_SPACE_SYSTEM_IO:
688                 /* Current speed is unknown and not detectable by IO port */
689                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
690                 break;
691         case ACPI_ADR_SPACE_FIXED_HARDWARE:
692                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
693                 policy->cur = get_cur_freq_on_cpu(cpu);
694                 break;
695         default:
696                 break;
697         }
698
699         /* notify BIOS that we exist */
700         acpi_processor_notify_smm(THIS_MODULE);
701
702         /* Check for APERF/MPERF support in hardware */
703         if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
704                 unsigned int ecx;
705                 ecx = cpuid_ecx(6);
706                 if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
707                         acpi_cpufreq_driver.getavg = get_measured_perf;
708         }
709
710         dprintk("CPU%u - ACPI performance management activated.\n", cpu);
711         for (i = 0; i < perf->state_count; i++)
712                 dprintk("     %cP%d: %d MHz, %d mW, %d uS\n",
713                         (i == perf->state ? '*' : ' '), i,
714                         (u32) perf->states[i].core_frequency,
715                         (u32) perf->states[i].power,
716                         (u32) perf->states[i].transition_latency);
717
718         cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
719
720         /*
721          * the first call to ->target() should result in us actually
722          * writing something to the appropriate registers.
723          */
724         data->resume = 1;
725
726         return result;
727
728 err_freqfree:
729         kfree(data->freq_table);
730 err_unreg:
731         acpi_processor_unregister_performance(perf, cpu);
732 err_free:
733         kfree(data);
734         per_cpu(drv_data, cpu) = NULL;
735
736         return result;
737 }
738
739 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
740 {
741         struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
742
743         dprintk("acpi_cpufreq_cpu_exit\n");
744
745         if (data) {
746                 cpufreq_frequency_table_put_attr(policy->cpu);
747                 per_cpu(drv_data, policy->cpu) = NULL;
748                 acpi_processor_unregister_performance(data->acpi_data,
749                                                       policy->cpu);
750                 kfree(data);
751         }
752
753         return 0;
754 }
755
756 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
757 {
758         struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
759
760         dprintk("acpi_cpufreq_resume\n");
761
762         data->resume = 1;
763
764         return 0;
765 }
766
767 static struct freq_attr *acpi_cpufreq_attr[] = {
768         &cpufreq_freq_attr_scaling_available_freqs,
769         NULL,
770 };
771
772 static struct cpufreq_driver acpi_cpufreq_driver = {
773         .verify = acpi_cpufreq_verify,
774         .target = acpi_cpufreq_target,
775         .init = acpi_cpufreq_cpu_init,
776         .exit = acpi_cpufreq_cpu_exit,
777         .resume = acpi_cpufreq_resume,
778         .name = "acpi-cpufreq",
779         .owner = THIS_MODULE,
780         .attr = acpi_cpufreq_attr,
781 };
782
783 static int __init acpi_cpufreq_init(void)
784 {
785         int ret;
786
787         if (acpi_disabled)
788                 return 0;
789
790         dprintk("acpi_cpufreq_init\n");
791
792         ret = acpi_cpufreq_early_init();
793         if (ret)
794                 return ret;
795
796         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
797         if (ret)
798                 free_percpu(acpi_perf_data);
799
800         return ret;
801 }
802
803 static void __exit acpi_cpufreq_exit(void)
804 {
805         dprintk("acpi_cpufreq_exit\n");
806
807         cpufreq_unregister_driver(&acpi_cpufreq_driver);
808
809         free_percpu(acpi_perf_data);
810 }
811
812 module_param(acpi_pstate_strict, uint, 0644);
813 MODULE_PARM_DESC(acpi_pstate_strict,
814         "value 0 or non-zero. non-zero -> strict ACPI checks are "
815         "performed during frequency changes.");
816
817 late_initcall(acpi_cpufreq_init);
818 module_exit(acpi_cpufreq_exit);
819
820 MODULE_ALIAS("acpi");