4 * (C) 1997 Linus Torvalds
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/mount.h>
27 * This is needed for the following functions:
29 * - invalidate_inode_buffers
32 * FIXME: remove all knowledge of the buffer layer from this file
34 #include <linux/buffer_head.h>
37 * New inode.c implementation.
39 * This implementation has the basic premise of trying
40 * to be extremely low-overhead and SMP-safe, yet be
41 * simple enough to be "obviously correct".
46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
48 /* #define INODE_PARANOIA 1 */
49 /* #define INODE_DEBUG 1 */
52 * Inode lookup is no longer as critical as it used to be:
53 * most of the lookups are going to be through the dcache.
55 #define I_HASHBITS i_hash_shift
56 #define I_HASHMASK i_hash_mask
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
62 * Each inode can be on two separate lists. One is
63 * the hash list of the inode, used for lookups. The
64 * other linked list is the "type" list:
65 * "in_use" - valid inode, i_count > 0, i_nlink > 0
66 * "dirty" - as "in_use" but also dirty
67 * "unused" - valid inode, i_count = 0
69 * A "dirty" list is maintained for each super block,
70 * allowing for low-overhead inode sync() operations.
73 LIST_HEAD(inode_in_use);
74 LIST_HEAD(inode_unused);
75 static struct hlist_head *inode_hashtable __read_mostly;
78 * A simple spinlock to protect the list manipulations.
80 * NOTE! You also have to own the lock if you change
81 * the i_state of an inode while it is in use..
83 DEFINE_SPINLOCK(inode_lock);
86 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
87 * icache shrinking path, and the umount path. Without this exclusion,
88 * by the time prune_icache calls iput for the inode whose pages it has
89 * been invalidating, or by the time it calls clear_inode & destroy_inode
90 * from its final dispose_list, the struct super_block they refer to
91 * (for inode->i_sb->s_op) may already have been freed and reused.
93 static DEFINE_MUTEX(iprune_mutex);
96 * Statistics gathering..
98 struct inodes_stat_t inodes_stat;
100 static struct kmem_cache * inode_cachep __read_mostly;
102 static void wake_up_inode(struct inode *inode)
105 * Prevent speculative execution through spin_unlock(&inode_lock);
108 wake_up_bit(&inode->i_state, __I_LOCK);
112 * inode_init_always - perform inode structure intialisation
113 * @sb - superblock inode belongs to.
114 * @inode - inode to initialise
116 * These are initializations that need to be done on every inode
117 * allocation as the fields are not initialised by slab allocation.
119 struct inode *inode_init_always(struct super_block *sb, struct inode *inode)
121 static const struct address_space_operations empty_aops;
122 static struct inode_operations empty_iops;
123 static const struct file_operations empty_fops;
125 struct address_space * const mapping = &inode->i_data;
128 inode->i_blkbits = sb->s_blocksize_bits;
130 atomic_set(&inode->i_count, 1);
131 inode->i_op = &empty_iops;
132 inode->i_fop = &empty_fops;
134 atomic_set(&inode->i_writecount, 0);
138 inode->i_generation = 0;
140 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
142 inode->i_pipe = NULL;
143 inode->i_bdev = NULL;
144 inode->i_cdev = NULL;
146 inode->dirtied_when = 0;
147 if (security_inode_alloc(inode)) {
148 if (inode->i_sb->s_op->destroy_inode)
149 inode->i_sb->s_op->destroy_inode(inode);
151 kmem_cache_free(inode_cachep, (inode));
155 spin_lock_init(&inode->i_lock);
156 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
158 mutex_init(&inode->i_mutex);
159 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
161 init_rwsem(&inode->i_alloc_sem);
162 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
164 mapping->a_ops = &empty_aops;
165 mapping->host = inode;
167 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_PAGECACHE);
168 mapping->assoc_mapping = NULL;
169 mapping->backing_dev_info = &default_backing_dev_info;
170 mapping->writeback_index = 0;
173 * If the block_device provides a backing_dev_info for client
174 * inodes then use that. Otherwise the inode share the bdev's
178 struct backing_dev_info *bdi;
180 bdi = sb->s_bdev->bd_inode_backing_dev_info;
182 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
183 mapping->backing_dev_info = bdi;
185 inode->i_private = NULL;
186 inode->i_mapping = mapping;
190 EXPORT_SYMBOL(inode_init_always);
192 static struct inode *alloc_inode(struct super_block *sb)
196 if (sb->s_op->alloc_inode)
197 inode = sb->s_op->alloc_inode(sb);
199 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
202 return inode_init_always(sb, inode);
206 void destroy_inode(struct inode *inode)
208 BUG_ON(inode_has_buffers(inode));
209 security_inode_free(inode);
210 if (inode->i_sb->s_op->destroy_inode)
211 inode->i_sb->s_op->destroy_inode(inode);
213 kmem_cache_free(inode_cachep, (inode));
215 EXPORT_SYMBOL(destroy_inode);
219 * These are initializations that only need to be done
220 * once, because the fields are idempotent across use
221 * of the inode, so let the slab aware of that.
223 void inode_init_once(struct inode *inode)
225 memset(inode, 0, sizeof(*inode));
226 INIT_HLIST_NODE(&inode->i_hash);
227 INIT_LIST_HEAD(&inode->i_dentry);
228 INIT_LIST_HEAD(&inode->i_devices);
229 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
230 spin_lock_init(&inode->i_data.tree_lock);
231 spin_lock_init(&inode->i_data.i_mmap_lock);
232 INIT_LIST_HEAD(&inode->i_data.private_list);
233 spin_lock_init(&inode->i_data.private_lock);
234 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
235 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
236 i_size_ordered_init(inode);
237 #ifdef CONFIG_INOTIFY
238 INIT_LIST_HEAD(&inode->inotify_watches);
239 mutex_init(&inode->inotify_mutex);
243 EXPORT_SYMBOL(inode_init_once);
245 static void init_once(void *foo)
247 struct inode * inode = (struct inode *) foo;
249 inode_init_once(inode);
253 * inode_lock must be held
255 void __iget(struct inode * inode)
257 if (atomic_read(&inode->i_count)) {
258 atomic_inc(&inode->i_count);
261 atomic_inc(&inode->i_count);
262 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
263 list_move(&inode->i_list, &inode_in_use);
264 inodes_stat.nr_unused--;
268 * clear_inode - clear an inode
269 * @inode: inode to clear
271 * This is called by the filesystem to tell us
272 * that the inode is no longer useful. We just
273 * terminate it with extreme prejudice.
275 void clear_inode(struct inode *inode)
278 invalidate_inode_buffers(inode);
280 BUG_ON(inode->i_data.nrpages);
281 BUG_ON(!(inode->i_state & I_FREEING));
282 BUG_ON(inode->i_state & I_CLEAR);
283 inode_sync_wait(inode);
285 if (inode->i_sb->s_op->clear_inode)
286 inode->i_sb->s_op->clear_inode(inode);
287 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
289 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
291 inode->i_state = I_CLEAR;
294 EXPORT_SYMBOL(clear_inode);
297 * dispose_list - dispose of the contents of a local list
298 * @head: the head of the list to free
300 * Dispose-list gets a local list with local inodes in it, so it doesn't
301 * need to worry about list corruption and SMP locks.
303 static void dispose_list(struct list_head *head)
307 while (!list_empty(head)) {
310 inode = list_first_entry(head, struct inode, i_list);
311 list_del(&inode->i_list);
313 if (inode->i_data.nrpages)
314 truncate_inode_pages(&inode->i_data, 0);
317 spin_lock(&inode_lock);
318 hlist_del_init(&inode->i_hash);
319 list_del_init(&inode->i_sb_list);
320 spin_unlock(&inode_lock);
322 wake_up_inode(inode);
323 destroy_inode(inode);
326 spin_lock(&inode_lock);
327 inodes_stat.nr_inodes -= nr_disposed;
328 spin_unlock(&inode_lock);
332 * Invalidate all inodes for a device.
334 static int invalidate_list(struct list_head *head, struct list_head *dispose)
336 struct list_head *next;
337 int busy = 0, count = 0;
341 struct list_head * tmp = next;
342 struct inode * inode;
345 * We can reschedule here without worrying about the list's
346 * consistency because the per-sb list of inodes must not
347 * change during umount anymore, and because iprune_mutex keeps
348 * shrink_icache_memory() away.
350 cond_resched_lock(&inode_lock);
355 inode = list_entry(tmp, struct inode, i_sb_list);
356 invalidate_inode_buffers(inode);
357 if (!atomic_read(&inode->i_count)) {
358 list_move(&inode->i_list, dispose);
359 inode->i_state |= I_FREEING;
365 /* only unused inodes may be cached with i_count zero */
366 inodes_stat.nr_unused -= count;
371 * invalidate_inodes - discard the inodes on a device
374 * Discard all of the inodes for a given superblock. If the discard
375 * fails because there are busy inodes then a non zero value is returned.
376 * If the discard is successful all the inodes have been discarded.
378 int invalidate_inodes(struct super_block * sb)
381 LIST_HEAD(throw_away);
383 mutex_lock(&iprune_mutex);
384 spin_lock(&inode_lock);
385 inotify_unmount_inodes(&sb->s_inodes);
386 busy = invalidate_list(&sb->s_inodes, &throw_away);
387 spin_unlock(&inode_lock);
389 dispose_list(&throw_away);
390 mutex_unlock(&iprune_mutex);
395 EXPORT_SYMBOL(invalidate_inodes);
397 static int can_unuse(struct inode *inode)
401 if (inode_has_buffers(inode))
403 if (atomic_read(&inode->i_count))
405 if (inode->i_data.nrpages)
411 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
412 * a temporary list and then are freed outside inode_lock by dispose_list().
414 * Any inodes which are pinned purely because of attached pagecache have their
415 * pagecache removed. We expect the final iput() on that inode to add it to
416 * the front of the inode_unused list. So look for it there and if the
417 * inode is still freeable, proceed. The right inode is found 99.9% of the
418 * time in testing on a 4-way.
420 * If the inode has metadata buffers attached to mapping->private_list then
421 * try to remove them.
423 static void prune_icache(int nr_to_scan)
428 unsigned long reap = 0;
430 mutex_lock(&iprune_mutex);
431 spin_lock(&inode_lock);
432 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
435 if (list_empty(&inode_unused))
438 inode = list_entry(inode_unused.prev, struct inode, i_list);
440 if (inode->i_state || atomic_read(&inode->i_count)) {
441 list_move(&inode->i_list, &inode_unused);
444 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
446 spin_unlock(&inode_lock);
447 if (remove_inode_buffers(inode))
448 reap += invalidate_mapping_pages(&inode->i_data,
451 spin_lock(&inode_lock);
453 if (inode != list_entry(inode_unused.next,
454 struct inode, i_list))
455 continue; /* wrong inode or list_empty */
456 if (!can_unuse(inode))
459 list_move(&inode->i_list, &freeable);
460 inode->i_state |= I_FREEING;
463 inodes_stat.nr_unused -= nr_pruned;
464 if (current_is_kswapd())
465 __count_vm_events(KSWAPD_INODESTEAL, reap);
467 __count_vm_events(PGINODESTEAL, reap);
468 spin_unlock(&inode_lock);
470 dispose_list(&freeable);
471 mutex_unlock(&iprune_mutex);
475 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
476 * "unused" means that no dentries are referring to the inodes: the files are
477 * not open and the dcache references to those inodes have already been
480 * This function is passed the number of inodes to scan, and it returns the
481 * total number of remaining possibly-reclaimable inodes.
483 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
487 * Nasty deadlock avoidance. We may hold various FS locks,
488 * and we don't want to recurse into the FS that called us
489 * in clear_inode() and friends..
491 if (!(gfp_mask & __GFP_FS))
495 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
498 static struct shrinker icache_shrinker = {
499 .shrink = shrink_icache_memory,
500 .seeks = DEFAULT_SEEKS,
503 static void __wait_on_freeing_inode(struct inode *inode);
505 * Called with the inode lock held.
506 * NOTE: we are not increasing the inode-refcount, you must call __iget()
507 * by hand after calling find_inode now! This simplifies iunique and won't
508 * add any additional branch in the common code.
510 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
512 struct hlist_node *node;
513 struct inode * inode = NULL;
516 hlist_for_each_entry(inode, node, head, i_hash) {
517 if (inode->i_sb != sb)
519 if (!test(inode, data))
521 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
522 __wait_on_freeing_inode(inode);
527 return node ? inode : NULL;
531 * find_inode_fast is the fast path version of find_inode, see the comment at
532 * iget_locked for details.
534 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
536 struct hlist_node *node;
537 struct inode * inode = NULL;
540 hlist_for_each_entry(inode, node, head, i_hash) {
541 if (inode->i_ino != ino)
543 if (inode->i_sb != sb)
545 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
546 __wait_on_freeing_inode(inode);
551 return node ? inode : NULL;
554 static unsigned long hash(struct super_block *sb, unsigned long hashval)
558 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
560 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
561 return tmp & I_HASHMASK;
565 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
568 inodes_stat.nr_inodes++;
569 list_add(&inode->i_list, &inode_in_use);
570 list_add(&inode->i_sb_list, &sb->s_inodes);
572 hlist_add_head(&inode->i_hash, head);
576 * inode_add_to_lists - add a new inode to relevant lists
577 * @sb - superblock inode belongs to.
578 * @inode - inode to mark in use
580 * When an inode is allocated it needs to be accounted for, added to the in use
581 * list, the owning superblock and the inode hash. This needs to be done under
582 * the inode_lock, so export a function to do this rather than the inode lock
583 * itself. We calculate the hash list to add to here so it is all internal
584 * which requires the caller to have already set up the inode number in the
587 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
589 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
591 spin_lock(&inode_lock);
592 __inode_add_to_lists(sb, head, inode);
593 spin_unlock(&inode_lock);
595 EXPORT_SYMBOL_GPL(inode_add_to_lists);
598 * new_inode - obtain an inode
601 * Allocates a new inode for given superblock. The default gfp_mask
602 * for allocations related to inode->i_mapping is GFP_HIGHUSER_PAGECACHE.
603 * If HIGHMEM pages are unsuitable or it is known that pages allocated
604 * for the page cache are not reclaimable or migratable,
605 * mapping_set_gfp_mask() must be called with suitable flags on the
606 * newly created inode's mapping
609 struct inode *new_inode(struct super_block *sb)
612 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
613 * error if st_ino won't fit in target struct field. Use 32bit counter
614 * here to attempt to avoid that.
616 static unsigned int last_ino;
617 struct inode * inode;
619 spin_lock_prefetch(&inode_lock);
621 inode = alloc_inode(sb);
623 spin_lock(&inode_lock);
624 __inode_add_to_lists(sb, NULL, inode);
625 inode->i_ino = ++last_ino;
627 spin_unlock(&inode_lock);
632 EXPORT_SYMBOL(new_inode);
634 void unlock_new_inode(struct inode *inode)
636 #ifdef CONFIG_DEBUG_LOCK_ALLOC
637 if (inode->i_mode & S_IFDIR) {
638 struct file_system_type *type = inode->i_sb->s_type;
641 * ensure nobody is actually holding i_mutex
643 mutex_destroy(&inode->i_mutex);
644 mutex_init(&inode->i_mutex);
645 lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key);
649 * This is special! We do not need the spinlock
650 * when clearing I_LOCK, because we're guaranteed
651 * that nobody else tries to do anything about the
652 * state of the inode when it is locked, as we
653 * just created it (so there can be no old holders
654 * that haven't tested I_LOCK).
656 inode->i_state &= ~(I_LOCK|I_NEW);
657 wake_up_inode(inode);
660 EXPORT_SYMBOL(unlock_new_inode);
663 * This is called without the inode lock held.. Be careful.
665 * We no longer cache the sb_flags in i_flags - see fs.h
666 * -- rmk@arm.uk.linux.org
668 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
670 struct inode * inode;
672 inode = alloc_inode(sb);
676 spin_lock(&inode_lock);
677 /* We released the lock, so.. */
678 old = find_inode(sb, head, test, data);
680 if (set(inode, data))
683 __inode_add_to_lists(sb, head, inode);
684 inode->i_state = I_LOCK|I_NEW;
685 spin_unlock(&inode_lock);
687 /* Return the locked inode with I_NEW set, the
688 * caller is responsible for filling in the contents
694 * Uhhuh, somebody else created the same inode under
695 * us. Use the old inode instead of the one we just
699 spin_unlock(&inode_lock);
700 destroy_inode(inode);
702 wait_on_inode(inode);
707 spin_unlock(&inode_lock);
708 destroy_inode(inode);
713 * get_new_inode_fast is the fast path version of get_new_inode, see the
714 * comment at iget_locked for details.
716 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
718 struct inode * inode;
720 inode = alloc_inode(sb);
724 spin_lock(&inode_lock);
725 /* We released the lock, so.. */
726 old = find_inode_fast(sb, head, ino);
729 __inode_add_to_lists(sb, head, inode);
730 inode->i_state = I_LOCK|I_NEW;
731 spin_unlock(&inode_lock);
733 /* Return the locked inode with I_NEW set, the
734 * caller is responsible for filling in the contents
740 * Uhhuh, somebody else created the same inode under
741 * us. Use the old inode instead of the one we just
745 spin_unlock(&inode_lock);
746 destroy_inode(inode);
748 wait_on_inode(inode);
754 * iunique - get a unique inode number
756 * @max_reserved: highest reserved inode number
758 * Obtain an inode number that is unique on the system for a given
759 * superblock. This is used by file systems that have no natural
760 * permanent inode numbering system. An inode number is returned that
761 * is higher than the reserved limit but unique.
764 * With a large number of inodes live on the file system this function
765 * currently becomes quite slow.
767 ino_t iunique(struct super_block *sb, ino_t max_reserved)
770 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
771 * error if st_ino won't fit in target struct field. Use 32bit counter
772 * here to attempt to avoid that.
774 static unsigned int counter;
776 struct hlist_head *head;
779 spin_lock(&inode_lock);
781 if (counter <= max_reserved)
782 counter = max_reserved + 1;
784 head = inode_hashtable + hash(sb, res);
785 inode = find_inode_fast(sb, head, res);
786 } while (inode != NULL);
787 spin_unlock(&inode_lock);
791 EXPORT_SYMBOL(iunique);
793 struct inode *igrab(struct inode *inode)
795 spin_lock(&inode_lock);
796 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
800 * Handle the case where s_op->clear_inode is not been
801 * called yet, and somebody is calling igrab
802 * while the inode is getting freed.
805 spin_unlock(&inode_lock);
809 EXPORT_SYMBOL(igrab);
812 * ifind - internal function, you want ilookup5() or iget5().
813 * @sb: super block of file system to search
814 * @head: the head of the list to search
815 * @test: callback used for comparisons between inodes
816 * @data: opaque data pointer to pass to @test
817 * @wait: if true wait for the inode to be unlocked, if false do not
819 * ifind() searches for the inode specified by @data in the inode
820 * cache. This is a generalized version of ifind_fast() for file systems where
821 * the inode number is not sufficient for unique identification of an inode.
823 * If the inode is in the cache, the inode is returned with an incremented
826 * Otherwise NULL is returned.
828 * Note, @test is called with the inode_lock held, so can't sleep.
830 static struct inode *ifind(struct super_block *sb,
831 struct hlist_head *head, int (*test)(struct inode *, void *),
832 void *data, const int wait)
836 spin_lock(&inode_lock);
837 inode = find_inode(sb, head, test, data);
840 spin_unlock(&inode_lock);
842 wait_on_inode(inode);
845 spin_unlock(&inode_lock);
850 * ifind_fast - internal function, you want ilookup() or iget().
851 * @sb: super block of file system to search
852 * @head: head of the list to search
853 * @ino: inode number to search for
855 * ifind_fast() searches for the inode @ino in the inode cache. This is for
856 * file systems where the inode number is sufficient for unique identification
859 * If the inode is in the cache, the inode is returned with an incremented
862 * Otherwise NULL is returned.
864 static struct inode *ifind_fast(struct super_block *sb,
865 struct hlist_head *head, unsigned long ino)
869 spin_lock(&inode_lock);
870 inode = find_inode_fast(sb, head, ino);
873 spin_unlock(&inode_lock);
874 wait_on_inode(inode);
877 spin_unlock(&inode_lock);
882 * ilookup5_nowait - search for an inode in the inode cache
883 * @sb: super block of file system to search
884 * @hashval: hash value (usually inode number) to search for
885 * @test: callback used for comparisons between inodes
886 * @data: opaque data pointer to pass to @test
888 * ilookup5() uses ifind() to search for the inode specified by @hashval and
889 * @data in the inode cache. This is a generalized version of ilookup() for
890 * file systems where the inode number is not sufficient for unique
891 * identification of an inode.
893 * If the inode is in the cache, the inode is returned with an incremented
894 * reference count. Note, the inode lock is not waited upon so you have to be
895 * very careful what you do with the returned inode. You probably should be
896 * using ilookup5() instead.
898 * Otherwise NULL is returned.
900 * Note, @test is called with the inode_lock held, so can't sleep.
902 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
903 int (*test)(struct inode *, void *), void *data)
905 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
907 return ifind(sb, head, test, data, 0);
910 EXPORT_SYMBOL(ilookup5_nowait);
913 * ilookup5 - search for an inode in the inode cache
914 * @sb: super block of file system to search
915 * @hashval: hash value (usually inode number) to search for
916 * @test: callback used for comparisons between inodes
917 * @data: opaque data pointer to pass to @test
919 * ilookup5() uses ifind() to search for the inode specified by @hashval and
920 * @data in the inode cache. This is a generalized version of ilookup() for
921 * file systems where the inode number is not sufficient for unique
922 * identification of an inode.
924 * If the inode is in the cache, the inode lock is waited upon and the inode is
925 * returned with an incremented reference count.
927 * Otherwise NULL is returned.
929 * Note, @test is called with the inode_lock held, so can't sleep.
931 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
932 int (*test)(struct inode *, void *), void *data)
934 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
936 return ifind(sb, head, test, data, 1);
939 EXPORT_SYMBOL(ilookup5);
942 * ilookup - search for an inode in the inode cache
943 * @sb: super block of file system to search
944 * @ino: inode number to search for
946 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
947 * This is for file systems where the inode number is sufficient for unique
948 * identification of an inode.
950 * If the inode is in the cache, the inode is returned with an incremented
953 * Otherwise NULL is returned.
955 struct inode *ilookup(struct super_block *sb, unsigned long ino)
957 struct hlist_head *head = inode_hashtable + hash(sb, ino);
959 return ifind_fast(sb, head, ino);
962 EXPORT_SYMBOL(ilookup);
965 * iget5_locked - obtain an inode from a mounted file system
966 * @sb: super block of file system
967 * @hashval: hash value (usually inode number) to get
968 * @test: callback used for comparisons between inodes
969 * @set: callback used to initialize a new struct inode
970 * @data: opaque data pointer to pass to @test and @set
972 * iget5_locked() uses ifind() to search for the inode specified by @hashval
973 * and @data in the inode cache and if present it is returned with an increased
974 * reference count. This is a generalized version of iget_locked() for file
975 * systems where the inode number is not sufficient for unique identification
978 * If the inode is not in cache, get_new_inode() is called to allocate a new
979 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
980 * file system gets to fill it in before unlocking it via unlock_new_inode().
982 * Note both @test and @set are called with the inode_lock held, so can't sleep.
984 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
985 int (*test)(struct inode *, void *),
986 int (*set)(struct inode *, void *), void *data)
988 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
991 inode = ifind(sb, head, test, data, 1);
995 * get_new_inode() will do the right thing, re-trying the search
996 * in case it had to block at any point.
998 return get_new_inode(sb, head, test, set, data);
1001 EXPORT_SYMBOL(iget5_locked);
1004 * iget_locked - obtain an inode from a mounted file system
1005 * @sb: super block of file system
1006 * @ino: inode number to get
1008 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1009 * the inode cache and if present it is returned with an increased reference
1010 * count. This is for file systems where the inode number is sufficient for
1011 * unique identification of an inode.
1013 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1014 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1015 * The file system gets to fill it in before unlocking it via
1016 * unlock_new_inode().
1018 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1020 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1021 struct inode *inode;
1023 inode = ifind_fast(sb, head, ino);
1027 * get_new_inode_fast() will do the right thing, re-trying the search
1028 * in case it had to block at any point.
1030 return get_new_inode_fast(sb, head, ino);
1033 EXPORT_SYMBOL(iget_locked);
1035 int insert_inode_locked(struct inode *inode)
1037 struct super_block *sb = inode->i_sb;
1038 ino_t ino = inode->i_ino;
1039 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1042 inode->i_state |= I_LOCK|I_NEW;
1044 spin_lock(&inode_lock);
1045 old = find_inode_fast(sb, head, ino);
1047 hlist_add_head(&inode->i_hash, head);
1048 spin_unlock(&inode_lock);
1052 spin_unlock(&inode_lock);
1054 if (unlikely(!hlist_unhashed(&old->i_hash))) {
1062 EXPORT_SYMBOL(insert_inode_locked);
1064 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1065 int (*test)(struct inode *, void *), void *data)
1067 struct super_block *sb = inode->i_sb;
1068 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1071 inode->i_state |= I_LOCK|I_NEW;
1074 spin_lock(&inode_lock);
1075 old = find_inode(sb, head, test, data);
1077 hlist_add_head(&inode->i_hash, head);
1078 spin_unlock(&inode_lock);
1082 spin_unlock(&inode_lock);
1084 if (unlikely(!hlist_unhashed(&old->i_hash))) {
1092 EXPORT_SYMBOL(insert_inode_locked4);
1095 * __insert_inode_hash - hash an inode
1096 * @inode: unhashed inode
1097 * @hashval: unsigned long value used to locate this object in the
1100 * Add an inode to the inode hash for this superblock.
1102 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1104 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1105 spin_lock(&inode_lock);
1106 hlist_add_head(&inode->i_hash, head);
1107 spin_unlock(&inode_lock);
1110 EXPORT_SYMBOL(__insert_inode_hash);
1113 * remove_inode_hash - remove an inode from the hash
1114 * @inode: inode to unhash
1116 * Remove an inode from the superblock.
1118 void remove_inode_hash(struct inode *inode)
1120 spin_lock(&inode_lock);
1121 hlist_del_init(&inode->i_hash);
1122 spin_unlock(&inode_lock);
1125 EXPORT_SYMBOL(remove_inode_hash);
1128 * Tell the filesystem that this inode is no longer of any interest and should
1129 * be completely destroyed.
1131 * We leave the inode in the inode hash table until *after* the filesystem's
1132 * ->delete_inode completes. This ensures that an iget (such as nfsd might
1133 * instigate) will always find up-to-date information either in the hash or on
1136 * I_FREEING is set so that no-one will take a new reference to the inode while
1137 * it is being deleted.
1139 void generic_delete_inode(struct inode *inode)
1141 const struct super_operations *op = inode->i_sb->s_op;
1143 list_del_init(&inode->i_list);
1144 list_del_init(&inode->i_sb_list);
1145 inode->i_state |= I_FREEING;
1146 inodes_stat.nr_inodes--;
1147 spin_unlock(&inode_lock);
1149 security_inode_delete(inode);
1151 if (op->delete_inode) {
1152 void (*delete)(struct inode *) = op->delete_inode;
1153 if (!is_bad_inode(inode))
1155 /* Filesystems implementing their own
1156 * s_op->delete_inode are required to call
1157 * truncate_inode_pages and clear_inode()
1161 truncate_inode_pages(&inode->i_data, 0);
1164 spin_lock(&inode_lock);
1165 hlist_del_init(&inode->i_hash);
1166 spin_unlock(&inode_lock);
1167 wake_up_inode(inode);
1168 BUG_ON(inode->i_state != I_CLEAR);
1169 destroy_inode(inode);
1172 EXPORT_SYMBOL(generic_delete_inode);
1174 static void generic_forget_inode(struct inode *inode)
1176 struct super_block *sb = inode->i_sb;
1178 if (!hlist_unhashed(&inode->i_hash)) {
1179 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1180 list_move(&inode->i_list, &inode_unused);
1181 inodes_stat.nr_unused++;
1182 if (sb->s_flags & MS_ACTIVE) {
1183 spin_unlock(&inode_lock);
1186 inode->i_state |= I_WILL_FREE;
1187 spin_unlock(&inode_lock);
1188 write_inode_now(inode, 1);
1189 spin_lock(&inode_lock);
1190 inode->i_state &= ~I_WILL_FREE;
1191 inodes_stat.nr_unused--;
1192 hlist_del_init(&inode->i_hash);
1194 list_del_init(&inode->i_list);
1195 list_del_init(&inode->i_sb_list);
1196 inode->i_state |= I_FREEING;
1197 inodes_stat.nr_inodes--;
1198 spin_unlock(&inode_lock);
1199 if (inode->i_data.nrpages)
1200 truncate_inode_pages(&inode->i_data, 0);
1202 wake_up_inode(inode);
1203 destroy_inode(inode);
1207 * Normal UNIX filesystem behaviour: delete the
1208 * inode when the usage count drops to zero, and
1211 void generic_drop_inode(struct inode *inode)
1213 if (!inode->i_nlink)
1214 generic_delete_inode(inode);
1216 generic_forget_inode(inode);
1219 EXPORT_SYMBOL_GPL(generic_drop_inode);
1222 * Called when we're dropping the last reference
1225 * Call the FS "drop()" function, defaulting to
1226 * the legacy UNIX filesystem behaviour..
1228 * NOTE! NOTE! NOTE! We're called with the inode lock
1229 * held, and the drop function is supposed to release
1232 static inline void iput_final(struct inode *inode)
1234 const struct super_operations *op = inode->i_sb->s_op;
1235 void (*drop)(struct inode *) = generic_drop_inode;
1237 if (op && op->drop_inode)
1238 drop = op->drop_inode;
1243 * iput - put an inode
1244 * @inode: inode to put
1246 * Puts an inode, dropping its usage count. If the inode use count hits
1247 * zero, the inode is then freed and may also be destroyed.
1249 * Consequently, iput() can sleep.
1251 void iput(struct inode *inode)
1254 BUG_ON(inode->i_state == I_CLEAR);
1256 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1261 EXPORT_SYMBOL(iput);
1264 * bmap - find a block number in a file
1265 * @inode: inode of file
1266 * @block: block to find
1268 * Returns the block number on the device holding the inode that
1269 * is the disk block number for the block of the file requested.
1270 * That is, asked for block 4 of inode 1 the function will return the
1271 * disk block relative to the disk start that holds that block of the
1274 sector_t bmap(struct inode * inode, sector_t block)
1277 if (inode->i_mapping->a_ops->bmap)
1278 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1281 EXPORT_SYMBOL(bmap);
1284 * touch_atime - update the access time
1285 * @mnt: mount the inode is accessed on
1286 * @dentry: dentry accessed
1288 * Update the accessed time on an inode and mark it for writeback.
1289 * This function automatically handles read only file systems and media,
1290 * as well as the "noatime" flag and inode specific "noatime" markers.
1292 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1294 struct inode *inode = dentry->d_inode;
1295 struct timespec now;
1297 if (mnt_want_write(mnt))
1299 if (inode->i_flags & S_NOATIME)
1301 if (IS_NOATIME(inode))
1303 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1306 if (mnt->mnt_flags & MNT_NOATIME)
1308 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1310 if (mnt->mnt_flags & MNT_RELATIME) {
1312 * With relative atime, only update atime if the previous
1313 * atime is earlier than either the ctime or mtime.
1315 if (timespec_compare(&inode->i_mtime, &inode->i_atime) < 0 &&
1316 timespec_compare(&inode->i_ctime, &inode->i_atime) < 0)
1320 now = current_fs_time(inode->i_sb);
1321 if (timespec_equal(&inode->i_atime, &now))
1324 inode->i_atime = now;
1325 mark_inode_dirty_sync(inode);
1327 mnt_drop_write(mnt);
1329 EXPORT_SYMBOL(touch_atime);
1332 * file_update_time - update mtime and ctime time
1333 * @file: file accessed
1335 * Update the mtime and ctime members of an inode and mark the inode
1336 * for writeback. Note that this function is meant exclusively for
1337 * usage in the file write path of filesystems, and filesystems may
1338 * choose to explicitly ignore update via this function with the
1339 * S_NOCTIME inode flag, e.g. for network filesystem where these
1340 * timestamps are handled by the server.
1343 void file_update_time(struct file *file)
1345 struct inode *inode = file->f_path.dentry->d_inode;
1346 struct timespec now;
1350 if (IS_NOCMTIME(inode))
1353 err = mnt_want_write(file->f_path.mnt);
1357 now = current_fs_time(inode->i_sb);
1358 if (!timespec_equal(&inode->i_mtime, &now)) {
1359 inode->i_mtime = now;
1363 if (!timespec_equal(&inode->i_ctime, &now)) {
1364 inode->i_ctime = now;
1368 if (IS_I_VERSION(inode)) {
1369 inode_inc_iversion(inode);
1374 mark_inode_dirty_sync(inode);
1375 mnt_drop_write(file->f_path.mnt);
1378 EXPORT_SYMBOL(file_update_time);
1380 int inode_needs_sync(struct inode *inode)
1384 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1389 EXPORT_SYMBOL(inode_needs_sync);
1391 int inode_wait(void *word)
1396 EXPORT_SYMBOL(inode_wait);
1399 * If we try to find an inode in the inode hash while it is being
1400 * deleted, we have to wait until the filesystem completes its
1401 * deletion before reporting that it isn't found. This function waits
1402 * until the deletion _might_ have completed. Callers are responsible
1403 * to recheck inode state.
1405 * It doesn't matter if I_LOCK is not set initially, a call to
1406 * wake_up_inode() after removing from the hash list will DTRT.
1408 * This is called with inode_lock held.
1410 static void __wait_on_freeing_inode(struct inode *inode)
1412 wait_queue_head_t *wq;
1413 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1414 wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1415 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1416 spin_unlock(&inode_lock);
1418 finish_wait(wq, &wait.wait);
1419 spin_lock(&inode_lock);
1423 * We rarely want to lock two inodes that do not have a parent/child
1424 * relationship (such as directory, child inode) simultaneously. The
1425 * vast majority of file systems should be able to get along fine
1426 * without this. Do not use these functions except as a last resort.
1428 void inode_double_lock(struct inode *inode1, struct inode *inode2)
1430 if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
1432 mutex_lock(&inode1->i_mutex);
1434 mutex_lock(&inode2->i_mutex);
1438 if (inode1 < inode2) {
1439 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1440 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1442 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1443 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1446 EXPORT_SYMBOL(inode_double_lock);
1448 void inode_double_unlock(struct inode *inode1, struct inode *inode2)
1451 mutex_unlock(&inode1->i_mutex);
1453 if (inode2 && inode2 != inode1)
1454 mutex_unlock(&inode2->i_mutex);
1456 EXPORT_SYMBOL(inode_double_unlock);
1458 static __initdata unsigned long ihash_entries;
1459 static int __init set_ihash_entries(char *str)
1463 ihash_entries = simple_strtoul(str, &str, 0);
1466 __setup("ihash_entries=", set_ihash_entries);
1469 * Initialize the waitqueues and inode hash table.
1471 void __init inode_init_early(void)
1475 /* If hashes are distributed across NUMA nodes, defer
1476 * hash allocation until vmalloc space is available.
1482 alloc_large_system_hash("Inode-cache",
1483 sizeof(struct hlist_head),
1491 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1492 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1495 void __init inode_init(void)
1499 /* inode slab cache */
1500 inode_cachep = kmem_cache_create("inode_cache",
1501 sizeof(struct inode),
1503 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1506 register_shrinker(&icache_shrinker);
1508 /* Hash may have been set up in inode_init_early */
1513 alloc_large_system_hash("Inode-cache",
1514 sizeof(struct hlist_head),
1522 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1523 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1526 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1528 inode->i_mode = mode;
1529 if (S_ISCHR(mode)) {
1530 inode->i_fop = &def_chr_fops;
1531 inode->i_rdev = rdev;
1532 } else if (S_ISBLK(mode)) {
1533 inode->i_fop = &def_blk_fops;
1534 inode->i_rdev = rdev;
1535 } else if (S_ISFIFO(mode))
1536 inode->i_fop = &def_fifo_fops;
1537 else if (S_ISSOCK(mode))
1538 inode->i_fop = &bad_sock_fops;
1540 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1543 EXPORT_SYMBOL(init_special_inode);