Merge commit 'v2.6.28-rc6' into x86/urgent
[linux-2.6] / drivers / oprofile / cpu_buffer.c
1 /**
2  * @file cpu_buffer.c
3  *
4  * @remark Copyright 2002 OProfile authors
5  * @remark Read the file COPYING
6  *
7  * @author John Levon <levon@movementarian.org>
8  * @author Barry Kasindorf <barry.kasindorf@amd.com>
9  *
10  * Each CPU has a local buffer that stores PC value/event
11  * pairs. We also log context switches when we notice them.
12  * Eventually each CPU's buffer is processed into the global
13  * event buffer by sync_buffer().
14  *
15  * We use a local buffer for two reasons: an NMI or similar
16  * interrupt cannot synchronise, and high sampling rates
17  * would lead to catastrophic global synchronisation if
18  * a global buffer was used.
19  */
20
21 #include <linux/sched.h>
22 #include <linux/oprofile.h>
23 #include <linux/vmalloc.h>
24 #include <linux/errno.h>
25
26 #include "event_buffer.h"
27 #include "cpu_buffer.h"
28 #include "buffer_sync.h"
29 #include "oprof.h"
30
31 DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer);
32
33 static void wq_sync_buffer(struct work_struct *work);
34
35 #define DEFAULT_TIMER_EXPIRE (HZ / 10)
36 static int work_enabled;
37
38 void free_cpu_buffers(void)
39 {
40         int i;
41
42         for_each_possible_cpu(i) {
43                 vfree(per_cpu(cpu_buffer, i).buffer);
44                 per_cpu(cpu_buffer, i).buffer = NULL;
45         }
46 }
47
48 unsigned long oprofile_get_cpu_buffer_size(void)
49 {
50         return fs_cpu_buffer_size;
51 }
52
53 void oprofile_cpu_buffer_inc_smpl_lost(void)
54 {
55         struct oprofile_cpu_buffer *cpu_buf
56                 = &__get_cpu_var(cpu_buffer);
57
58         cpu_buf->sample_lost_overflow++;
59 }
60
61 int alloc_cpu_buffers(void)
62 {
63         int i;
64
65         unsigned long buffer_size = fs_cpu_buffer_size;
66
67         for_each_possible_cpu(i) {
68                 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
69
70                 b->buffer = vmalloc_node(sizeof(struct op_sample) * buffer_size,
71                         cpu_to_node(i));
72                 if (!b->buffer)
73                         goto fail;
74
75                 b->last_task = NULL;
76                 b->last_is_kernel = -1;
77                 b->tracing = 0;
78                 b->buffer_size = buffer_size;
79                 b->tail_pos = 0;
80                 b->head_pos = 0;
81                 b->sample_received = 0;
82                 b->sample_lost_overflow = 0;
83                 b->backtrace_aborted = 0;
84                 b->sample_invalid_eip = 0;
85                 b->cpu = i;
86                 INIT_DELAYED_WORK(&b->work, wq_sync_buffer);
87         }
88         return 0;
89
90 fail:
91         free_cpu_buffers();
92         return -ENOMEM;
93 }
94
95 void start_cpu_work(void)
96 {
97         int i;
98
99         work_enabled = 1;
100
101         for_each_online_cpu(i) {
102                 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
103
104                 /*
105                  * Spread the work by 1 jiffy per cpu so they dont all
106                  * fire at once.
107                  */
108                 schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
109         }
110 }
111
112 void end_cpu_work(void)
113 {
114         int i;
115
116         work_enabled = 0;
117
118         for_each_online_cpu(i) {
119                 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
120
121                 cancel_delayed_work(&b->work);
122         }
123
124         flush_scheduled_work();
125 }
126
127 /* Resets the cpu buffer to a sane state. */
128 void cpu_buffer_reset(struct oprofile_cpu_buffer *cpu_buf)
129 {
130         /* reset these to invalid values; the next sample
131          * collected will populate the buffer with proper
132          * values to initialize the buffer
133          */
134         cpu_buf->last_is_kernel = -1;
135         cpu_buf->last_task = NULL;
136 }
137
138 /* compute number of available slots in cpu_buffer queue */
139 static unsigned long nr_available_slots(struct oprofile_cpu_buffer const *b)
140 {
141         unsigned long head = b->head_pos;
142         unsigned long tail = b->tail_pos;
143
144         if (tail > head)
145                 return (tail - head) - 1;
146
147         return tail + (b->buffer_size - head) - 1;
148 }
149
150 static void increment_head(struct oprofile_cpu_buffer *b)
151 {
152         unsigned long new_head = b->head_pos + 1;
153
154         /* Ensure anything written to the slot before we
155          * increment is visible */
156         wmb();
157
158         if (new_head < b->buffer_size)
159                 b->head_pos = new_head;
160         else
161                 b->head_pos = 0;
162 }
163
164 static inline void
165 add_sample(struct oprofile_cpu_buffer *cpu_buf,
166            unsigned long pc, unsigned long event)
167 {
168         struct op_sample *entry = &cpu_buf->buffer[cpu_buf->head_pos];
169         entry->eip = pc;
170         entry->event = event;
171         increment_head(cpu_buf);
172 }
173
174 static inline void
175 add_code(struct oprofile_cpu_buffer *buffer, unsigned long value)
176 {
177         add_sample(buffer, ESCAPE_CODE, value);
178 }
179
180 /* This must be safe from any context. It's safe writing here
181  * because of the head/tail separation of the writer and reader
182  * of the CPU buffer.
183  *
184  * is_kernel is needed because on some architectures you cannot
185  * tell if you are in kernel or user space simply by looking at
186  * pc. We tag this in the buffer by generating kernel enter/exit
187  * events whenever is_kernel changes
188  */
189 static int log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc,
190                       int is_kernel, unsigned long event)
191 {
192         struct task_struct *task;
193
194         cpu_buf->sample_received++;
195
196         if (pc == ESCAPE_CODE) {
197                 cpu_buf->sample_invalid_eip++;
198                 return 0;
199         }
200
201         if (nr_available_slots(cpu_buf) < 3) {
202                 cpu_buf->sample_lost_overflow++;
203                 return 0;
204         }
205
206         is_kernel = !!is_kernel;
207
208         task = current;
209
210         /* notice a switch from user->kernel or vice versa */
211         if (cpu_buf->last_is_kernel != is_kernel) {
212                 cpu_buf->last_is_kernel = is_kernel;
213                 add_code(cpu_buf, is_kernel);
214         }
215
216         /* notice a task switch */
217         if (cpu_buf->last_task != task) {
218                 cpu_buf->last_task = task;
219                 add_code(cpu_buf, (unsigned long)task);
220         }
221
222         add_sample(cpu_buf, pc, event);
223         return 1;
224 }
225
226 static int oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf)
227 {
228         if (nr_available_slots(cpu_buf) < 4) {
229                 cpu_buf->sample_lost_overflow++;
230                 return 0;
231         }
232
233         add_code(cpu_buf, CPU_TRACE_BEGIN);
234         cpu_buf->tracing = 1;
235         return 1;
236 }
237
238 static void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf)
239 {
240         cpu_buf->tracing = 0;
241 }
242
243 void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
244                                 unsigned long event, int is_kernel)
245 {
246         struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
247
248         if (!backtrace_depth) {
249                 log_sample(cpu_buf, pc, is_kernel, event);
250                 return;
251         }
252
253         if (!oprofile_begin_trace(cpu_buf))
254                 return;
255
256         /* if log_sample() fail we can't backtrace since we lost the source
257          * of this event */
258         if (log_sample(cpu_buf, pc, is_kernel, event))
259                 oprofile_ops.backtrace(regs, backtrace_depth);
260         oprofile_end_trace(cpu_buf);
261 }
262
263 void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
264 {
265         int is_kernel = !user_mode(regs);
266         unsigned long pc = profile_pc(regs);
267
268         oprofile_add_ext_sample(pc, regs, event, is_kernel);
269 }
270
271 #ifdef CONFIG_OPROFILE_IBS
272
273 #define MAX_IBS_SAMPLE_SIZE 14
274
275 void oprofile_add_ibs_sample(struct pt_regs *const regs,
276                              unsigned int *const ibs_sample, int ibs_code)
277 {
278         int is_kernel = !user_mode(regs);
279         struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
280         struct task_struct *task;
281
282         cpu_buf->sample_received++;
283
284         if (nr_available_slots(cpu_buf) < MAX_IBS_SAMPLE_SIZE) {
285                 /* we can't backtrace since we lost the source of this event */
286                 cpu_buf->sample_lost_overflow++;
287                 return;
288         }
289
290         /* notice a switch from user->kernel or vice versa */
291         if (cpu_buf->last_is_kernel != is_kernel) {
292                 cpu_buf->last_is_kernel = is_kernel;
293                 add_code(cpu_buf, is_kernel);
294         }
295
296         /* notice a task switch */
297         if (!is_kernel) {
298                 task = current;
299                 if (cpu_buf->last_task != task) {
300                         cpu_buf->last_task = task;
301                         add_code(cpu_buf, (unsigned long)task);
302                 }
303         }
304
305         add_code(cpu_buf, ibs_code);
306         add_sample(cpu_buf, ibs_sample[0], ibs_sample[1]);
307         add_sample(cpu_buf, ibs_sample[2], ibs_sample[3]);
308         add_sample(cpu_buf, ibs_sample[4], ibs_sample[5]);
309
310         if (ibs_code == IBS_OP_BEGIN) {
311                 add_sample(cpu_buf, ibs_sample[6], ibs_sample[7]);
312                 add_sample(cpu_buf, ibs_sample[8], ibs_sample[9]);
313                 add_sample(cpu_buf, ibs_sample[10], ibs_sample[11]);
314         }
315
316         if (backtrace_depth)
317                 oprofile_ops.backtrace(regs, backtrace_depth);
318 }
319
320 #endif
321
322 void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
323 {
324         struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
325         log_sample(cpu_buf, pc, is_kernel, event);
326 }
327
328 void oprofile_add_trace(unsigned long pc)
329 {
330         struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
331
332         if (!cpu_buf->tracing)
333                 return;
334
335         if (nr_available_slots(cpu_buf) < 1) {
336                 cpu_buf->tracing = 0;
337                 cpu_buf->sample_lost_overflow++;
338                 return;
339         }
340
341         /* broken frame can give an eip with the same value as an escape code,
342          * abort the trace if we get it */
343         if (pc == ESCAPE_CODE) {
344                 cpu_buf->tracing = 0;
345                 cpu_buf->backtrace_aborted++;
346                 return;
347         }
348
349         add_sample(cpu_buf, pc, 0);
350 }
351
352 /*
353  * This serves to avoid cpu buffer overflow, and makes sure
354  * the task mortuary progresses
355  *
356  * By using schedule_delayed_work_on and then schedule_delayed_work
357  * we guarantee this will stay on the correct cpu
358  */
359 static void wq_sync_buffer(struct work_struct *work)
360 {
361         struct oprofile_cpu_buffer *b =
362                 container_of(work, struct oprofile_cpu_buffer, work.work);
363         if (b->cpu != smp_processor_id()) {
364                 printk(KERN_DEBUG "WQ on CPU%d, prefer CPU%d\n",
365                        smp_processor_id(), b->cpu);
366
367                 if (!cpu_online(b->cpu)) {
368                         cancel_delayed_work(&b->work);
369                         return;
370                 }
371         }
372         sync_buffer(b->cpu);
373
374         /* don't re-add the work if we're shutting down */
375         if (work_enabled)
376                 schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);
377 }