2 * SPU file system -- file contents
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/marker.h>
35 #include <asm/semaphore.h>
37 #include <asm/spu_info.h>
38 #include <asm/uaccess.h>
42 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
44 /* Simple attribute files */
46 int (*get)(void *, u64 *);
47 int (*set)(void *, u64);
48 char get_buf[24]; /* enough to store a u64 and "\n\0" */
51 const char *fmt; /* format for read operation */
52 struct mutex mutex; /* protects access to these buffers */
55 static int spufs_attr_open(struct inode *inode, struct file *file,
56 int (*get)(void *, u64 *), int (*set)(void *, u64),
59 struct spufs_attr *attr;
61 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
67 attr->data = inode->i_private;
69 mutex_init(&attr->mutex);
70 file->private_data = attr;
72 return nonseekable_open(inode, file);
75 static int spufs_attr_release(struct inode *inode, struct file *file)
77 kfree(file->private_data);
81 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
82 size_t len, loff_t *ppos)
84 struct spufs_attr *attr;
88 attr = file->private_data;
92 ret = mutex_lock_interruptible(&attr->mutex);
96 if (*ppos) { /* continued read */
97 size = strlen(attr->get_buf);
98 } else { /* first read */
100 ret = attr->get(attr->data, &val);
104 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
105 attr->fmt, (unsigned long long)val);
108 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
110 mutex_unlock(&attr->mutex);
114 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
115 size_t len, loff_t *ppos)
117 struct spufs_attr *attr;
122 attr = file->private_data;
126 ret = mutex_lock_interruptible(&attr->mutex);
131 size = min(sizeof(attr->set_buf) - 1, len);
132 if (copy_from_user(attr->set_buf, buf, size))
135 ret = len; /* claim we got the whole input */
136 attr->set_buf[size] = '\0';
137 val = simple_strtol(attr->set_buf, NULL, 0);
138 attr->set(attr->data, val);
140 mutex_unlock(&attr->mutex);
144 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
145 static int __fops ## _open(struct inode *inode, struct file *file) \
147 __simple_attr_check_format(__fmt, 0ull); \
148 return spufs_attr_open(inode, file, __get, __set, __fmt); \
150 static struct file_operations __fops = { \
151 .owner = THIS_MODULE, \
152 .open = __fops ## _open, \
153 .release = spufs_attr_release, \
154 .read = spufs_attr_read, \
155 .write = spufs_attr_write, \
160 spufs_mem_open(struct inode *inode, struct file *file)
162 struct spufs_inode_info *i = SPUFS_I(inode);
163 struct spu_context *ctx = i->i_ctx;
165 mutex_lock(&ctx->mapping_lock);
166 file->private_data = ctx;
168 ctx->local_store = inode->i_mapping;
169 mutex_unlock(&ctx->mapping_lock);
174 spufs_mem_release(struct inode *inode, struct file *file)
176 struct spufs_inode_info *i = SPUFS_I(inode);
177 struct spu_context *ctx = i->i_ctx;
179 mutex_lock(&ctx->mapping_lock);
181 ctx->local_store = NULL;
182 mutex_unlock(&ctx->mapping_lock);
187 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
188 size_t size, loff_t *pos)
190 char *local_store = ctx->ops->get_ls(ctx);
191 return simple_read_from_buffer(buffer, size, pos, local_store,
196 spufs_mem_read(struct file *file, char __user *buffer,
197 size_t size, loff_t *pos)
199 struct spu_context *ctx = file->private_data;
202 ret = spu_acquire(ctx);
205 ret = __spufs_mem_read(ctx, buffer, size, pos);
212 spufs_mem_write(struct file *file, const char __user *buffer,
213 size_t size, loff_t *ppos)
215 struct spu_context *ctx = file->private_data;
224 if (size > LS_SIZE - pos)
225 size = LS_SIZE - pos;
227 ret = spu_acquire(ctx);
231 local_store = ctx->ops->get_ls(ctx);
232 ret = copy_from_user(local_store + pos, buffer, size);
241 static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
242 unsigned long address)
244 struct spu_context *ctx = vma->vm_file->private_data;
245 unsigned long pfn, offset, addr0 = address;
246 #ifdef CONFIG_SPU_FS_64K_LS
247 struct spu_state *csa = &ctx->csa;
250 /* Check what page size we are using */
251 psize = get_slice_psize(vma->vm_mm, address);
253 /* Some sanity checking */
254 BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
256 /* Wow, 64K, cool, we need to align the address though */
257 if (csa->use_big_pages) {
258 BUG_ON(vma->vm_start & 0xffff);
259 address &= ~0xfffful;
261 #endif /* CONFIG_SPU_FS_64K_LS */
263 offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
264 if (offset >= LS_SIZE)
267 pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n",
268 addr0, address, offset);
270 if (spu_acquire(ctx))
271 return NOPFN_REFAULT;
273 if (ctx->state == SPU_STATE_SAVED) {
274 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
276 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
278 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
280 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
282 vm_insert_pfn(vma, address, pfn);
286 return NOPFN_REFAULT;
290 static struct vm_operations_struct spufs_mem_mmap_vmops = {
291 .nopfn = spufs_mem_mmap_nopfn,
294 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
296 #ifdef CONFIG_SPU_FS_64K_LS
297 struct spu_context *ctx = file->private_data;
298 struct spu_state *csa = &ctx->csa;
300 /* Sanity check VMA alignment */
301 if (csa->use_big_pages) {
302 pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
303 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
305 if (vma->vm_start & 0xffff)
307 if (vma->vm_pgoff & 0xf)
310 #endif /* CONFIG_SPU_FS_64K_LS */
312 if (!(vma->vm_flags & VM_SHARED))
315 vma->vm_flags |= VM_IO | VM_PFNMAP;
316 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
319 vma->vm_ops = &spufs_mem_mmap_vmops;
323 #ifdef CONFIG_SPU_FS_64K_LS
324 static unsigned long spufs_get_unmapped_area(struct file *file,
325 unsigned long addr, unsigned long len, unsigned long pgoff,
328 struct spu_context *ctx = file->private_data;
329 struct spu_state *csa = &ctx->csa;
331 /* If not using big pages, fallback to normal MM g_u_a */
332 if (!csa->use_big_pages)
333 return current->mm->get_unmapped_area(file, addr, len,
336 /* Else, try to obtain a 64K pages slice */
337 return slice_get_unmapped_area(addr, len, flags,
340 #endif /* CONFIG_SPU_FS_64K_LS */
342 static const struct file_operations spufs_mem_fops = {
343 .open = spufs_mem_open,
344 .release = spufs_mem_release,
345 .read = spufs_mem_read,
346 .write = spufs_mem_write,
347 .llseek = generic_file_llseek,
348 .mmap = spufs_mem_mmap,
349 #ifdef CONFIG_SPU_FS_64K_LS
350 .get_unmapped_area = spufs_get_unmapped_area,
354 static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
355 unsigned long address,
356 unsigned long ps_offs,
357 unsigned long ps_size)
359 struct spu_context *ctx = vma->vm_file->private_data;
360 unsigned long area, offset = address - vma->vm_start;
363 spu_context_nospu_trace(spufs_ps_nopfn__enter, ctx);
365 offset += vma->vm_pgoff << PAGE_SHIFT;
366 if (offset >= ps_size)
370 * Because we release the mmap_sem, the context may be destroyed while
371 * we're in spu_wait. Grab an extra reference so it isn't destroyed
374 get_spu_context(ctx);
377 * We have to wait for context to be loaded before we have
378 * pages to hand out to the user, but we don't want to wait
379 * with the mmap_sem held.
380 * It is possible to drop the mmap_sem here, but then we need
381 * to return NOPFN_REFAULT because the mappings may have
384 if (spu_acquire(ctx))
387 if (ctx->state == SPU_STATE_SAVED) {
388 up_read(¤t->mm->mmap_sem);
389 spu_context_nospu_trace(spufs_ps_nopfn__sleep, ctx);
390 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
391 spu_context_trace(spufs_ps_nopfn__wake, ctx, ctx->spu);
392 down_read(¤t->mm->mmap_sem);
394 area = ctx->spu->problem_phys + ps_offs;
395 vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
396 spu_context_trace(spufs_ps_nopfn__insert, ctx, ctx->spu);
403 put_spu_context(ctx);
404 return NOPFN_REFAULT;
408 static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
409 unsigned long address)
411 return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
414 static struct vm_operations_struct spufs_cntl_mmap_vmops = {
415 .nopfn = spufs_cntl_mmap_nopfn,
419 * mmap support for problem state control area [0x4000 - 0x4fff].
421 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
423 if (!(vma->vm_flags & VM_SHARED))
426 vma->vm_flags |= VM_IO | VM_PFNMAP;
427 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
428 | _PAGE_NO_CACHE | _PAGE_GUARDED);
430 vma->vm_ops = &spufs_cntl_mmap_vmops;
433 #else /* SPUFS_MMAP_4K */
434 #define spufs_cntl_mmap NULL
435 #endif /* !SPUFS_MMAP_4K */
437 static int spufs_cntl_get(void *data, u64 *val)
439 struct spu_context *ctx = data;
442 ret = spu_acquire(ctx);
445 *val = ctx->ops->status_read(ctx);
451 static int spufs_cntl_set(void *data, u64 val)
453 struct spu_context *ctx = data;
456 ret = spu_acquire(ctx);
459 ctx->ops->runcntl_write(ctx, val);
465 static int spufs_cntl_open(struct inode *inode, struct file *file)
467 struct spufs_inode_info *i = SPUFS_I(inode);
468 struct spu_context *ctx = i->i_ctx;
470 mutex_lock(&ctx->mapping_lock);
471 file->private_data = ctx;
473 ctx->cntl = inode->i_mapping;
474 mutex_unlock(&ctx->mapping_lock);
475 return simple_attr_open(inode, file, spufs_cntl_get,
476 spufs_cntl_set, "0x%08lx");
480 spufs_cntl_release(struct inode *inode, struct file *file)
482 struct spufs_inode_info *i = SPUFS_I(inode);
483 struct spu_context *ctx = i->i_ctx;
485 simple_attr_release(inode, file);
487 mutex_lock(&ctx->mapping_lock);
490 mutex_unlock(&ctx->mapping_lock);
494 static const struct file_operations spufs_cntl_fops = {
495 .open = spufs_cntl_open,
496 .release = spufs_cntl_release,
497 .read = simple_attr_read,
498 .write = simple_attr_write,
499 .mmap = spufs_cntl_mmap,
503 spufs_regs_open(struct inode *inode, struct file *file)
505 struct spufs_inode_info *i = SPUFS_I(inode);
506 file->private_data = i->i_ctx;
511 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
512 size_t size, loff_t *pos)
514 struct spu_lscsa *lscsa = ctx->csa.lscsa;
515 return simple_read_from_buffer(buffer, size, pos,
516 lscsa->gprs, sizeof lscsa->gprs);
520 spufs_regs_read(struct file *file, char __user *buffer,
521 size_t size, loff_t *pos)
524 struct spu_context *ctx = file->private_data;
526 ret = spu_acquire_saved(ctx);
529 ret = __spufs_regs_read(ctx, buffer, size, pos);
530 spu_release_saved(ctx);
535 spufs_regs_write(struct file *file, const char __user *buffer,
536 size_t size, loff_t *pos)
538 struct spu_context *ctx = file->private_data;
539 struct spu_lscsa *lscsa = ctx->csa.lscsa;
542 size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
547 ret = spu_acquire_saved(ctx);
551 ret = copy_from_user(lscsa->gprs + *pos - size,
552 buffer, size) ? -EFAULT : size;
554 spu_release_saved(ctx);
558 static const struct file_operations spufs_regs_fops = {
559 .open = spufs_regs_open,
560 .read = spufs_regs_read,
561 .write = spufs_regs_write,
562 .llseek = generic_file_llseek,
566 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
567 size_t size, loff_t * pos)
569 struct spu_lscsa *lscsa = ctx->csa.lscsa;
570 return simple_read_from_buffer(buffer, size, pos,
571 &lscsa->fpcr, sizeof(lscsa->fpcr));
575 spufs_fpcr_read(struct file *file, char __user * buffer,
576 size_t size, loff_t * pos)
579 struct spu_context *ctx = file->private_data;
581 ret = spu_acquire_saved(ctx);
584 ret = __spufs_fpcr_read(ctx, buffer, size, pos);
585 spu_release_saved(ctx);
590 spufs_fpcr_write(struct file *file, const char __user * buffer,
591 size_t size, loff_t * pos)
593 struct spu_context *ctx = file->private_data;
594 struct spu_lscsa *lscsa = ctx->csa.lscsa;
597 size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
601 ret = spu_acquire_saved(ctx);
606 ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
607 buffer, size) ? -EFAULT : size;
609 spu_release_saved(ctx);
613 static const struct file_operations spufs_fpcr_fops = {
614 .open = spufs_regs_open,
615 .read = spufs_fpcr_read,
616 .write = spufs_fpcr_write,
617 .llseek = generic_file_llseek,
620 /* generic open function for all pipe-like files */
621 static int spufs_pipe_open(struct inode *inode, struct file *file)
623 struct spufs_inode_info *i = SPUFS_I(inode);
624 file->private_data = i->i_ctx;
626 return nonseekable_open(inode, file);
630 * Read as many bytes from the mailbox as possible, until
631 * one of the conditions becomes true:
633 * - no more data available in the mailbox
634 * - end of the user provided buffer
635 * - end of the mapped area
637 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
638 size_t len, loff_t *pos)
640 struct spu_context *ctx = file->private_data;
641 u32 mbox_data, __user *udata;
647 if (!access_ok(VERIFY_WRITE, buf, len))
650 udata = (void __user *)buf;
652 count = spu_acquire(ctx);
656 for (count = 0; (count + 4) <= len; count += 4, udata++) {
658 ret = ctx->ops->mbox_read(ctx, &mbox_data);
663 * at the end of the mapped area, we can fault
664 * but still need to return the data we have
665 * read successfully so far.
667 ret = __put_user(mbox_data, udata);
682 static const struct file_operations spufs_mbox_fops = {
683 .open = spufs_pipe_open,
684 .read = spufs_mbox_read,
687 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
688 size_t len, loff_t *pos)
690 struct spu_context *ctx = file->private_data;
697 ret = spu_acquire(ctx);
701 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
705 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
711 static const struct file_operations spufs_mbox_stat_fops = {
712 .open = spufs_pipe_open,
713 .read = spufs_mbox_stat_read,
716 /* low-level ibox access function */
717 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
719 return ctx->ops->ibox_read(ctx, data);
722 static int spufs_ibox_fasync(int fd, struct file *file, int on)
724 struct spu_context *ctx = file->private_data;
726 return fasync_helper(fd, file, on, &ctx->ibox_fasync);
729 /* interrupt-level ibox callback function. */
730 void spufs_ibox_callback(struct spu *spu)
732 struct spu_context *ctx = spu->ctx;
737 wake_up_all(&ctx->ibox_wq);
738 kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
742 * Read as many bytes from the interrupt mailbox as possible, until
743 * one of the conditions becomes true:
745 * - no more data available in the mailbox
746 * - end of the user provided buffer
747 * - end of the mapped area
749 * If the file is opened without O_NONBLOCK, we wait here until
750 * any data is available, but return when we have been able to
753 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
754 size_t len, loff_t *pos)
756 struct spu_context *ctx = file->private_data;
757 u32 ibox_data, __user *udata;
763 if (!access_ok(VERIFY_WRITE, buf, len))
766 udata = (void __user *)buf;
768 count = spu_acquire(ctx);
772 /* wait only for the first element */
774 if (file->f_flags & O_NONBLOCK) {
775 if (!spu_ibox_read(ctx, &ibox_data)) {
780 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
785 /* if we can't write at all, return -EFAULT */
786 count = __put_user(ibox_data, udata);
790 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
792 ret = ctx->ops->ibox_read(ctx, &ibox_data);
796 * at the end of the mapped area, we can fault
797 * but still need to return the data we have
798 * read successfully so far.
800 ret = __put_user(ibox_data, udata);
811 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
813 struct spu_context *ctx = file->private_data;
816 poll_wait(file, &ctx->ibox_wq, wait);
819 * For now keep this uninterruptible and also ignore the rule
820 * that poll should not sleep. Will be fixed later.
822 mutex_lock(&ctx->state_mutex);
823 mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
829 static const struct file_operations spufs_ibox_fops = {
830 .open = spufs_pipe_open,
831 .read = spufs_ibox_read,
832 .poll = spufs_ibox_poll,
833 .fasync = spufs_ibox_fasync,
836 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
837 size_t len, loff_t *pos)
839 struct spu_context *ctx = file->private_data;
846 ret = spu_acquire(ctx);
849 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
852 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
858 static const struct file_operations spufs_ibox_stat_fops = {
859 .open = spufs_pipe_open,
860 .read = spufs_ibox_stat_read,
863 /* low-level mailbox write */
864 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
866 return ctx->ops->wbox_write(ctx, data);
869 static int spufs_wbox_fasync(int fd, struct file *file, int on)
871 struct spu_context *ctx = file->private_data;
874 ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
879 /* interrupt-level wbox callback function. */
880 void spufs_wbox_callback(struct spu *spu)
882 struct spu_context *ctx = spu->ctx;
887 wake_up_all(&ctx->wbox_wq);
888 kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
892 * Write as many bytes to the interrupt mailbox as possible, until
893 * one of the conditions becomes true:
895 * - the mailbox is full
896 * - end of the user provided buffer
897 * - end of the mapped area
899 * If the file is opened without O_NONBLOCK, we wait here until
900 * space is availabyl, but return when we have been able to
903 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
904 size_t len, loff_t *pos)
906 struct spu_context *ctx = file->private_data;
907 u32 wbox_data, __user *udata;
913 udata = (void __user *)buf;
914 if (!access_ok(VERIFY_READ, buf, len))
917 if (__get_user(wbox_data, udata))
920 count = spu_acquire(ctx);
925 * make sure we can at least write one element, by waiting
926 * in case of !O_NONBLOCK
929 if (file->f_flags & O_NONBLOCK) {
930 if (!spu_wbox_write(ctx, wbox_data)) {
935 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
941 /* write as much as possible */
942 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
944 ret = __get_user(wbox_data, udata);
948 ret = spu_wbox_write(ctx, wbox_data);
959 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
961 struct spu_context *ctx = file->private_data;
964 poll_wait(file, &ctx->wbox_wq, wait);
967 * For now keep this uninterruptible and also ignore the rule
968 * that poll should not sleep. Will be fixed later.
970 mutex_lock(&ctx->state_mutex);
971 mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
977 static const struct file_operations spufs_wbox_fops = {
978 .open = spufs_pipe_open,
979 .write = spufs_wbox_write,
980 .poll = spufs_wbox_poll,
981 .fasync = spufs_wbox_fasync,
984 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
985 size_t len, loff_t *pos)
987 struct spu_context *ctx = file->private_data;
994 ret = spu_acquire(ctx);
997 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
1000 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
1006 static const struct file_operations spufs_wbox_stat_fops = {
1007 .open = spufs_pipe_open,
1008 .read = spufs_wbox_stat_read,
1011 static int spufs_signal1_open(struct inode *inode, struct file *file)
1013 struct spufs_inode_info *i = SPUFS_I(inode);
1014 struct spu_context *ctx = i->i_ctx;
1016 mutex_lock(&ctx->mapping_lock);
1017 file->private_data = ctx;
1018 if (!i->i_openers++)
1019 ctx->signal1 = inode->i_mapping;
1020 mutex_unlock(&ctx->mapping_lock);
1021 return nonseekable_open(inode, file);
1025 spufs_signal1_release(struct inode *inode, struct file *file)
1027 struct spufs_inode_info *i = SPUFS_I(inode);
1028 struct spu_context *ctx = i->i_ctx;
1030 mutex_lock(&ctx->mapping_lock);
1031 if (!--i->i_openers)
1032 ctx->signal1 = NULL;
1033 mutex_unlock(&ctx->mapping_lock);
1037 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1038 size_t len, loff_t *pos)
1046 if (ctx->csa.spu_chnlcnt_RW[3]) {
1047 data = ctx->csa.spu_chnldata_RW[3];
1054 if (copy_to_user(buf, &data, 4))
1061 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1062 size_t len, loff_t *pos)
1065 struct spu_context *ctx = file->private_data;
1067 ret = spu_acquire_saved(ctx);
1070 ret = __spufs_signal1_read(ctx, buf, len, pos);
1071 spu_release_saved(ctx);
1076 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1077 size_t len, loff_t *pos)
1079 struct spu_context *ctx;
1083 ctx = file->private_data;
1088 if (copy_from_user(&data, buf, 4))
1091 ret = spu_acquire(ctx);
1094 ctx->ops->signal1_write(ctx, data);
1100 static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
1101 unsigned long address)
1103 #if PAGE_SIZE == 0x1000
1104 return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
1105 #elif PAGE_SIZE == 0x10000
1106 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1107 * signal 1 and 2 area
1109 return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1111 #error unsupported page size
1115 static struct vm_operations_struct spufs_signal1_mmap_vmops = {
1116 .nopfn = spufs_signal1_mmap_nopfn,
1119 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1121 if (!(vma->vm_flags & VM_SHARED))
1124 vma->vm_flags |= VM_IO | VM_PFNMAP;
1125 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1126 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1128 vma->vm_ops = &spufs_signal1_mmap_vmops;
1132 static const struct file_operations spufs_signal1_fops = {
1133 .open = spufs_signal1_open,
1134 .release = spufs_signal1_release,
1135 .read = spufs_signal1_read,
1136 .write = spufs_signal1_write,
1137 .mmap = spufs_signal1_mmap,
1140 static const struct file_operations spufs_signal1_nosched_fops = {
1141 .open = spufs_signal1_open,
1142 .release = spufs_signal1_release,
1143 .write = spufs_signal1_write,
1144 .mmap = spufs_signal1_mmap,
1147 static int spufs_signal2_open(struct inode *inode, struct file *file)
1149 struct spufs_inode_info *i = SPUFS_I(inode);
1150 struct spu_context *ctx = i->i_ctx;
1152 mutex_lock(&ctx->mapping_lock);
1153 file->private_data = ctx;
1154 if (!i->i_openers++)
1155 ctx->signal2 = inode->i_mapping;
1156 mutex_unlock(&ctx->mapping_lock);
1157 return nonseekable_open(inode, file);
1161 spufs_signal2_release(struct inode *inode, struct file *file)
1163 struct spufs_inode_info *i = SPUFS_I(inode);
1164 struct spu_context *ctx = i->i_ctx;
1166 mutex_lock(&ctx->mapping_lock);
1167 if (!--i->i_openers)
1168 ctx->signal2 = NULL;
1169 mutex_unlock(&ctx->mapping_lock);
1173 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1174 size_t len, loff_t *pos)
1182 if (ctx->csa.spu_chnlcnt_RW[4]) {
1183 data = ctx->csa.spu_chnldata_RW[4];
1190 if (copy_to_user(buf, &data, 4))
1197 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1198 size_t len, loff_t *pos)
1200 struct spu_context *ctx = file->private_data;
1203 ret = spu_acquire_saved(ctx);
1206 ret = __spufs_signal2_read(ctx, buf, len, pos);
1207 spu_release_saved(ctx);
1212 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1213 size_t len, loff_t *pos)
1215 struct spu_context *ctx;
1219 ctx = file->private_data;
1224 if (copy_from_user(&data, buf, 4))
1227 ret = spu_acquire(ctx);
1230 ctx->ops->signal2_write(ctx, data);
1237 static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
1238 unsigned long address)
1240 #if PAGE_SIZE == 0x1000
1241 return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
1242 #elif PAGE_SIZE == 0x10000
1243 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1244 * signal 1 and 2 area
1246 return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1248 #error unsupported page size
1252 static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1253 .nopfn = spufs_signal2_mmap_nopfn,
1256 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1258 if (!(vma->vm_flags & VM_SHARED))
1261 vma->vm_flags |= VM_IO | VM_PFNMAP;
1262 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1263 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1265 vma->vm_ops = &spufs_signal2_mmap_vmops;
1268 #else /* SPUFS_MMAP_4K */
1269 #define spufs_signal2_mmap NULL
1270 #endif /* !SPUFS_MMAP_4K */
1272 static const struct file_operations spufs_signal2_fops = {
1273 .open = spufs_signal2_open,
1274 .release = spufs_signal2_release,
1275 .read = spufs_signal2_read,
1276 .write = spufs_signal2_write,
1277 .mmap = spufs_signal2_mmap,
1280 static const struct file_operations spufs_signal2_nosched_fops = {
1281 .open = spufs_signal2_open,
1282 .release = spufs_signal2_release,
1283 .write = spufs_signal2_write,
1284 .mmap = spufs_signal2_mmap,
1288 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1289 * work of acquiring (or not) the SPU context before calling through
1290 * to the actual get routine. The set routine is called directly.
1292 #define SPU_ATTR_NOACQUIRE 0
1293 #define SPU_ATTR_ACQUIRE 1
1294 #define SPU_ATTR_ACQUIRE_SAVED 2
1296 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \
1297 static int __##__get(void *data, u64 *val) \
1299 struct spu_context *ctx = data; \
1302 if (__acquire == SPU_ATTR_ACQUIRE) { \
1303 ret = spu_acquire(ctx); \
1306 *val = __get(ctx); \
1308 } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \
1309 ret = spu_acquire_saved(ctx); \
1312 *val = __get(ctx); \
1313 spu_release_saved(ctx); \
1315 *val = __get(ctx); \
1319 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1321 static int spufs_signal1_type_set(void *data, u64 val)
1323 struct spu_context *ctx = data;
1326 ret = spu_acquire(ctx);
1329 ctx->ops->signal1_type_set(ctx, val);
1335 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1337 return ctx->ops->signal1_type_get(ctx);
1339 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1340 spufs_signal1_type_set, "%llu", SPU_ATTR_ACQUIRE);
1343 static int spufs_signal2_type_set(void *data, u64 val)
1345 struct spu_context *ctx = data;
1348 ret = spu_acquire(ctx);
1351 ctx->ops->signal2_type_set(ctx, val);
1357 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1359 return ctx->ops->signal2_type_get(ctx);
1361 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1362 spufs_signal2_type_set, "%llu", SPU_ATTR_ACQUIRE);
1365 static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
1366 unsigned long address)
1368 return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
1371 static struct vm_operations_struct spufs_mss_mmap_vmops = {
1372 .nopfn = spufs_mss_mmap_nopfn,
1376 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1378 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1380 if (!(vma->vm_flags & VM_SHARED))
1383 vma->vm_flags |= VM_IO | VM_PFNMAP;
1384 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1385 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1387 vma->vm_ops = &spufs_mss_mmap_vmops;
1390 #else /* SPUFS_MMAP_4K */
1391 #define spufs_mss_mmap NULL
1392 #endif /* !SPUFS_MMAP_4K */
1394 static int spufs_mss_open(struct inode *inode, struct file *file)
1396 struct spufs_inode_info *i = SPUFS_I(inode);
1397 struct spu_context *ctx = i->i_ctx;
1399 file->private_data = i->i_ctx;
1401 mutex_lock(&ctx->mapping_lock);
1402 if (!i->i_openers++)
1403 ctx->mss = inode->i_mapping;
1404 mutex_unlock(&ctx->mapping_lock);
1405 return nonseekable_open(inode, file);
1409 spufs_mss_release(struct inode *inode, struct file *file)
1411 struct spufs_inode_info *i = SPUFS_I(inode);
1412 struct spu_context *ctx = i->i_ctx;
1414 mutex_lock(&ctx->mapping_lock);
1415 if (!--i->i_openers)
1417 mutex_unlock(&ctx->mapping_lock);
1421 static const struct file_operations spufs_mss_fops = {
1422 .open = spufs_mss_open,
1423 .release = spufs_mss_release,
1424 .mmap = spufs_mss_mmap,
1427 static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
1428 unsigned long address)
1430 return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1433 static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1434 .nopfn = spufs_psmap_mmap_nopfn,
1438 * mmap support for full problem state area [0x00000 - 0x1ffff].
1440 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1442 if (!(vma->vm_flags & VM_SHARED))
1445 vma->vm_flags |= VM_IO | VM_PFNMAP;
1446 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1447 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1449 vma->vm_ops = &spufs_psmap_mmap_vmops;
1453 static int spufs_psmap_open(struct inode *inode, struct file *file)
1455 struct spufs_inode_info *i = SPUFS_I(inode);
1456 struct spu_context *ctx = i->i_ctx;
1458 mutex_lock(&ctx->mapping_lock);
1459 file->private_data = i->i_ctx;
1460 if (!i->i_openers++)
1461 ctx->psmap = inode->i_mapping;
1462 mutex_unlock(&ctx->mapping_lock);
1463 return nonseekable_open(inode, file);
1467 spufs_psmap_release(struct inode *inode, struct file *file)
1469 struct spufs_inode_info *i = SPUFS_I(inode);
1470 struct spu_context *ctx = i->i_ctx;
1472 mutex_lock(&ctx->mapping_lock);
1473 if (!--i->i_openers)
1475 mutex_unlock(&ctx->mapping_lock);
1479 static const struct file_operations spufs_psmap_fops = {
1480 .open = spufs_psmap_open,
1481 .release = spufs_psmap_release,
1482 .mmap = spufs_psmap_mmap,
1487 static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
1488 unsigned long address)
1490 return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1493 static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1494 .nopfn = spufs_mfc_mmap_nopfn,
1498 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1500 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1502 if (!(vma->vm_flags & VM_SHARED))
1505 vma->vm_flags |= VM_IO | VM_PFNMAP;
1506 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1507 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1509 vma->vm_ops = &spufs_mfc_mmap_vmops;
1512 #else /* SPUFS_MMAP_4K */
1513 #define spufs_mfc_mmap NULL
1514 #endif /* !SPUFS_MMAP_4K */
1516 static int spufs_mfc_open(struct inode *inode, struct file *file)
1518 struct spufs_inode_info *i = SPUFS_I(inode);
1519 struct spu_context *ctx = i->i_ctx;
1521 /* we don't want to deal with DMA into other processes */
1522 if (ctx->owner != current->mm)
1525 if (atomic_read(&inode->i_count) != 1)
1528 mutex_lock(&ctx->mapping_lock);
1529 file->private_data = ctx;
1530 if (!i->i_openers++)
1531 ctx->mfc = inode->i_mapping;
1532 mutex_unlock(&ctx->mapping_lock);
1533 return nonseekable_open(inode, file);
1537 spufs_mfc_release(struct inode *inode, struct file *file)
1539 struct spufs_inode_info *i = SPUFS_I(inode);
1540 struct spu_context *ctx = i->i_ctx;
1542 mutex_lock(&ctx->mapping_lock);
1543 if (!--i->i_openers)
1545 mutex_unlock(&ctx->mapping_lock);
1549 /* interrupt-level mfc callback function. */
1550 void spufs_mfc_callback(struct spu *spu)
1552 struct spu_context *ctx = spu->ctx;
1557 wake_up_all(&ctx->mfc_wq);
1559 pr_debug("%s %s\n", __FUNCTION__, spu->name);
1560 if (ctx->mfc_fasync) {
1561 u32 free_elements, tagstatus;
1564 /* no need for spu_acquire in interrupt context */
1565 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1566 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1569 if (free_elements & 0xffff)
1571 if (tagstatus & ctx->tagwait)
1574 kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1578 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1580 /* See if there is one tag group is complete */
1581 /* FIXME we need locking around tagwait */
1582 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1583 ctx->tagwait &= ~*status;
1587 /* enable interrupt waiting for any tag group,
1588 may silently fail if interrupts are already enabled */
1589 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1593 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1594 size_t size, loff_t *pos)
1596 struct spu_context *ctx = file->private_data;
1603 ret = spu_acquire(ctx);
1608 if (file->f_flags & O_NONBLOCK) {
1609 status = ctx->ops->read_mfc_tagstatus(ctx);
1610 if (!(status & ctx->tagwait))
1613 /* XXX(hch): shouldn't we clear ret here? */
1614 ctx->tagwait &= ~status;
1616 ret = spufs_wait(ctx->mfc_wq,
1617 spufs_read_mfc_tagstatus(ctx, &status));
1624 if (copy_to_user(buffer, &status, 4))
1631 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1633 pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
1634 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1645 pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1649 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1650 pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
1655 switch (cmd->size & 0xf) {
1676 pr_debug("invalid DMA alignment %x for size %x\n",
1677 cmd->lsa & 0xf, cmd->size);
1681 if (cmd->size > 16 * 1024) {
1682 pr_debug("invalid DMA size %x\n", cmd->size);
1686 if (cmd->tag & 0xfff0) {
1687 /* we reserve the higher tag numbers for kernel use */
1688 pr_debug("invalid DMA tag\n");
1693 /* not supported in this version */
1694 pr_debug("invalid DMA class\n");
1701 static int spu_send_mfc_command(struct spu_context *ctx,
1702 struct mfc_dma_command cmd,
1705 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1706 if (*error == -EAGAIN) {
1707 /* wait for any tag group to complete
1708 so we have space for the new command */
1709 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1710 /* try again, because the queue might be
1712 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1713 if (*error == -EAGAIN)
1719 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1720 size_t size, loff_t *pos)
1722 struct spu_context *ctx = file->private_data;
1723 struct mfc_dma_command cmd;
1726 if (size != sizeof cmd)
1730 if (copy_from_user(&cmd, buffer, sizeof cmd))
1733 ret = spufs_check_valid_dma(&cmd);
1737 ret = spu_acquire(ctx);
1741 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1745 if (file->f_flags & O_NONBLOCK) {
1746 ret = ctx->ops->send_mfc_command(ctx, &cmd);
1749 ret = spufs_wait(ctx->mfc_wq,
1750 spu_send_mfc_command(ctx, cmd, &status));
1760 ctx->tagwait |= 1 << cmd.tag;
1769 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1771 struct spu_context *ctx = file->private_data;
1772 u32 free_elements, tagstatus;
1775 poll_wait(file, &ctx->mfc_wq, wait);
1778 * For now keep this uninterruptible and also ignore the rule
1779 * that poll should not sleep. Will be fixed later.
1781 mutex_lock(&ctx->state_mutex);
1782 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1783 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1784 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1788 if (free_elements & 0xffff)
1789 mask |= POLLOUT | POLLWRNORM;
1790 if (tagstatus & ctx->tagwait)
1791 mask |= POLLIN | POLLRDNORM;
1793 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
1794 free_elements, tagstatus, ctx->tagwait);
1799 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1801 struct spu_context *ctx = file->private_data;
1804 ret = spu_acquire(ctx);
1808 /* this currently hangs */
1809 ret = spufs_wait(ctx->mfc_wq,
1810 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1813 ret = spufs_wait(ctx->mfc_wq,
1814 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1825 static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
1828 return spufs_mfc_flush(file, NULL);
1831 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1833 struct spu_context *ctx = file->private_data;
1835 return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1838 static const struct file_operations spufs_mfc_fops = {
1839 .open = spufs_mfc_open,
1840 .release = spufs_mfc_release,
1841 .read = spufs_mfc_read,
1842 .write = spufs_mfc_write,
1843 .poll = spufs_mfc_poll,
1844 .flush = spufs_mfc_flush,
1845 .fsync = spufs_mfc_fsync,
1846 .fasync = spufs_mfc_fasync,
1847 .mmap = spufs_mfc_mmap,
1850 static int spufs_npc_set(void *data, u64 val)
1852 struct spu_context *ctx = data;
1855 ret = spu_acquire(ctx);
1858 ctx->ops->npc_write(ctx, val);
1864 static u64 spufs_npc_get(struct spu_context *ctx)
1866 return ctx->ops->npc_read(ctx);
1868 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1869 "0x%llx\n", SPU_ATTR_ACQUIRE);
1871 static int spufs_decr_set(void *data, u64 val)
1873 struct spu_context *ctx = data;
1874 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1877 ret = spu_acquire_saved(ctx);
1880 lscsa->decr.slot[0] = (u32) val;
1881 spu_release_saved(ctx);
1886 static u64 spufs_decr_get(struct spu_context *ctx)
1888 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1889 return lscsa->decr.slot[0];
1891 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1892 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1894 static int spufs_decr_status_set(void *data, u64 val)
1896 struct spu_context *ctx = data;
1899 ret = spu_acquire_saved(ctx);
1903 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1905 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1906 spu_release_saved(ctx);
1911 static u64 spufs_decr_status_get(struct spu_context *ctx)
1913 if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1914 return SPU_DECR_STATUS_RUNNING;
1918 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1919 spufs_decr_status_set, "0x%llx\n",
1920 SPU_ATTR_ACQUIRE_SAVED);
1922 static int spufs_event_mask_set(void *data, u64 val)
1924 struct spu_context *ctx = data;
1925 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1928 ret = spu_acquire_saved(ctx);
1931 lscsa->event_mask.slot[0] = (u32) val;
1932 spu_release_saved(ctx);
1937 static u64 spufs_event_mask_get(struct spu_context *ctx)
1939 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1940 return lscsa->event_mask.slot[0];
1943 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1944 spufs_event_mask_set, "0x%llx\n",
1945 SPU_ATTR_ACQUIRE_SAVED);
1947 static u64 spufs_event_status_get(struct spu_context *ctx)
1949 struct spu_state *state = &ctx->csa;
1951 stat = state->spu_chnlcnt_RW[0];
1953 return state->spu_chnldata_RW[0];
1956 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1957 NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1959 static int spufs_srr0_set(void *data, u64 val)
1961 struct spu_context *ctx = data;
1962 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1965 ret = spu_acquire_saved(ctx);
1968 lscsa->srr0.slot[0] = (u32) val;
1969 spu_release_saved(ctx);
1974 static u64 spufs_srr0_get(struct spu_context *ctx)
1976 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1977 return lscsa->srr0.slot[0];
1979 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1980 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1982 static u64 spufs_id_get(struct spu_context *ctx)
1986 if (ctx->state == SPU_STATE_RUNNABLE)
1987 num = ctx->spu->number;
1989 num = (unsigned int)-1;
1993 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
1996 static u64 spufs_object_id_get(struct spu_context *ctx)
1998 /* FIXME: Should there really be no locking here? */
1999 return ctx->object_id;
2002 static int spufs_object_id_set(void *data, u64 id)
2004 struct spu_context *ctx = data;
2005 ctx->object_id = id;
2010 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
2011 spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2013 static u64 spufs_lslr_get(struct spu_context *ctx)
2015 return ctx->csa.priv2.spu_lslr_RW;
2017 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
2018 SPU_ATTR_ACQUIRE_SAVED);
2020 static int spufs_info_open(struct inode *inode, struct file *file)
2022 struct spufs_inode_info *i = SPUFS_I(inode);
2023 struct spu_context *ctx = i->i_ctx;
2024 file->private_data = ctx;
2028 static int spufs_caps_show(struct seq_file *s, void *private)
2030 struct spu_context *ctx = s->private;
2032 if (!(ctx->flags & SPU_CREATE_NOSCHED))
2033 seq_puts(s, "sched\n");
2034 if (!(ctx->flags & SPU_CREATE_ISOLATE))
2035 seq_puts(s, "step\n");
2039 static int spufs_caps_open(struct inode *inode, struct file *file)
2041 return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2044 static const struct file_operations spufs_caps_fops = {
2045 .open = spufs_caps_open,
2047 .llseek = seq_lseek,
2048 .release = single_release,
2051 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2052 char __user *buf, size_t len, loff_t *pos)
2056 /* EOF if there's no entry in the mbox */
2057 if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2060 data = ctx->csa.prob.pu_mb_R;
2062 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2065 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2066 size_t len, loff_t *pos)
2069 struct spu_context *ctx = file->private_data;
2071 if (!access_ok(VERIFY_WRITE, buf, len))
2074 ret = spu_acquire_saved(ctx);
2077 spin_lock(&ctx->csa.register_lock);
2078 ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2079 spin_unlock(&ctx->csa.register_lock);
2080 spu_release_saved(ctx);
2085 static const struct file_operations spufs_mbox_info_fops = {
2086 .open = spufs_info_open,
2087 .read = spufs_mbox_info_read,
2088 .llseek = generic_file_llseek,
2091 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2092 char __user *buf, size_t len, loff_t *pos)
2096 /* EOF if there's no entry in the ibox */
2097 if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2100 data = ctx->csa.priv2.puint_mb_R;
2102 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2105 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2106 size_t len, loff_t *pos)
2108 struct spu_context *ctx = file->private_data;
2111 if (!access_ok(VERIFY_WRITE, buf, len))
2114 ret = spu_acquire_saved(ctx);
2117 spin_lock(&ctx->csa.register_lock);
2118 ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2119 spin_unlock(&ctx->csa.register_lock);
2120 spu_release_saved(ctx);
2125 static const struct file_operations spufs_ibox_info_fops = {
2126 .open = spufs_info_open,
2127 .read = spufs_ibox_info_read,
2128 .llseek = generic_file_llseek,
2131 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2132 char __user *buf, size_t len, loff_t *pos)
2138 wbox_stat = ctx->csa.prob.mb_stat_R;
2139 cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2140 for (i = 0; i < cnt; i++) {
2141 data[i] = ctx->csa.spu_mailbox_data[i];
2144 return simple_read_from_buffer(buf, len, pos, &data,
2148 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2149 size_t len, loff_t *pos)
2151 struct spu_context *ctx = file->private_data;
2154 if (!access_ok(VERIFY_WRITE, buf, len))
2157 ret = spu_acquire_saved(ctx);
2160 spin_lock(&ctx->csa.register_lock);
2161 ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2162 spin_unlock(&ctx->csa.register_lock);
2163 spu_release_saved(ctx);
2168 static const struct file_operations spufs_wbox_info_fops = {
2169 .open = spufs_info_open,
2170 .read = spufs_wbox_info_read,
2171 .llseek = generic_file_llseek,
2174 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2175 char __user *buf, size_t len, loff_t *pos)
2177 struct spu_dma_info info;
2178 struct mfc_cq_sr *qp, *spuqp;
2181 info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2182 info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2183 info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2184 info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2185 info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2186 for (i = 0; i < 16; i++) {
2187 qp = &info.dma_info_command_data[i];
2188 spuqp = &ctx->csa.priv2.spuq[i];
2190 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2191 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2192 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2193 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2196 return simple_read_from_buffer(buf, len, pos, &info,
2200 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2201 size_t len, loff_t *pos)
2203 struct spu_context *ctx = file->private_data;
2206 if (!access_ok(VERIFY_WRITE, buf, len))
2209 ret = spu_acquire_saved(ctx);
2212 spin_lock(&ctx->csa.register_lock);
2213 ret = __spufs_dma_info_read(ctx, buf, len, pos);
2214 spin_unlock(&ctx->csa.register_lock);
2215 spu_release_saved(ctx);
2220 static const struct file_operations spufs_dma_info_fops = {
2221 .open = spufs_info_open,
2222 .read = spufs_dma_info_read,
2225 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2226 char __user *buf, size_t len, loff_t *pos)
2228 struct spu_proxydma_info info;
2229 struct mfc_cq_sr *qp, *puqp;
2230 int ret = sizeof info;
2236 if (!access_ok(VERIFY_WRITE, buf, len))
2239 info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2240 info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2241 info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2242 for (i = 0; i < 8; i++) {
2243 qp = &info.proxydma_info_command_data[i];
2244 puqp = &ctx->csa.priv2.puq[i];
2246 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2247 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2248 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2249 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2252 return simple_read_from_buffer(buf, len, pos, &info,
2256 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2257 size_t len, loff_t *pos)
2259 struct spu_context *ctx = file->private_data;
2262 ret = spu_acquire_saved(ctx);
2265 spin_lock(&ctx->csa.register_lock);
2266 ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2267 spin_unlock(&ctx->csa.register_lock);
2268 spu_release_saved(ctx);
2273 static const struct file_operations spufs_proxydma_info_fops = {
2274 .open = spufs_info_open,
2275 .read = spufs_proxydma_info_read,
2278 static int spufs_show_tid(struct seq_file *s, void *private)
2280 struct spu_context *ctx = s->private;
2282 seq_printf(s, "%d\n", ctx->tid);
2286 static int spufs_tid_open(struct inode *inode, struct file *file)
2288 return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2291 static const struct file_operations spufs_tid_fops = {
2292 .open = spufs_tid_open,
2294 .llseek = seq_lseek,
2295 .release = single_release,
2298 static const char *ctx_state_names[] = {
2299 "user", "system", "iowait", "loaded"
2302 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2303 enum spu_utilization_state state)
2306 unsigned long long time = ctx->stats.times[state];
2309 * In general, utilization statistics are updated by the controlling
2310 * thread as the spu context moves through various well defined
2311 * state transitions, but if the context is lazily loaded its
2312 * utilization statistics are not updated as the controlling thread
2313 * is not tightly coupled with the execution of the spu context. We
2314 * calculate and apply the time delta from the last recorded state
2315 * of the spu context.
2317 if (ctx->spu && ctx->stats.util_state == state) {
2319 time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2322 return time / NSEC_PER_MSEC;
2325 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2327 unsigned long long slb_flts = ctx->stats.slb_flt;
2329 if (ctx->state == SPU_STATE_RUNNABLE) {
2330 slb_flts += (ctx->spu->stats.slb_flt -
2331 ctx->stats.slb_flt_base);
2337 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2339 unsigned long long class2_intrs = ctx->stats.class2_intr;
2341 if (ctx->state == SPU_STATE_RUNNABLE) {
2342 class2_intrs += (ctx->spu->stats.class2_intr -
2343 ctx->stats.class2_intr_base);
2346 return class2_intrs;
2350 static int spufs_show_stat(struct seq_file *s, void *private)
2352 struct spu_context *ctx = s->private;
2355 ret = spu_acquire(ctx);
2359 seq_printf(s, "%s %llu %llu %llu %llu "
2360 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2361 ctx_state_names[ctx->stats.util_state],
2362 spufs_acct_time(ctx, SPU_UTIL_USER),
2363 spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2364 spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2365 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2366 ctx->stats.vol_ctx_switch,
2367 ctx->stats.invol_ctx_switch,
2368 spufs_slb_flts(ctx),
2369 ctx->stats.hash_flt,
2372 spufs_class2_intrs(ctx),
2373 ctx->stats.libassist);
2378 static int spufs_stat_open(struct inode *inode, struct file *file)
2380 return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2383 static const struct file_operations spufs_stat_fops = {
2384 .open = spufs_stat_open,
2386 .llseek = seq_lseek,
2387 .release = single_release,
2391 struct tree_descr spufs_dir_contents[] = {
2392 { "capabilities", &spufs_caps_fops, 0444, },
2393 { "mem", &spufs_mem_fops, 0666, },
2394 { "regs", &spufs_regs_fops, 0666, },
2395 { "mbox", &spufs_mbox_fops, 0444, },
2396 { "ibox", &spufs_ibox_fops, 0444, },
2397 { "wbox", &spufs_wbox_fops, 0222, },
2398 { "mbox_stat", &spufs_mbox_stat_fops, 0444, },
2399 { "ibox_stat", &spufs_ibox_stat_fops, 0444, },
2400 { "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2401 { "signal1", &spufs_signal1_fops, 0666, },
2402 { "signal2", &spufs_signal2_fops, 0666, },
2403 { "signal1_type", &spufs_signal1_type, 0666, },
2404 { "signal2_type", &spufs_signal2_type, 0666, },
2405 { "cntl", &spufs_cntl_fops, 0666, },
2406 { "fpcr", &spufs_fpcr_fops, 0666, },
2407 { "lslr", &spufs_lslr_ops, 0444, },
2408 { "mfc", &spufs_mfc_fops, 0666, },
2409 { "mss", &spufs_mss_fops, 0666, },
2410 { "npc", &spufs_npc_ops, 0666, },
2411 { "srr0", &spufs_srr0_ops, 0666, },
2412 { "decr", &spufs_decr_ops, 0666, },
2413 { "decr_status", &spufs_decr_status_ops, 0666, },
2414 { "event_mask", &spufs_event_mask_ops, 0666, },
2415 { "event_status", &spufs_event_status_ops, 0444, },
2416 { "psmap", &spufs_psmap_fops, 0666, },
2417 { "phys-id", &spufs_id_ops, 0666, },
2418 { "object-id", &spufs_object_id_ops, 0666, },
2419 { "mbox_info", &spufs_mbox_info_fops, 0444, },
2420 { "ibox_info", &spufs_ibox_info_fops, 0444, },
2421 { "wbox_info", &spufs_wbox_info_fops, 0444, },
2422 { "dma_info", &spufs_dma_info_fops, 0444, },
2423 { "proxydma_info", &spufs_proxydma_info_fops, 0444, },
2424 { "tid", &spufs_tid_fops, 0444, },
2425 { "stat", &spufs_stat_fops, 0444, },
2429 struct tree_descr spufs_dir_nosched_contents[] = {
2430 { "capabilities", &spufs_caps_fops, 0444, },
2431 { "mem", &spufs_mem_fops, 0666, },
2432 { "mbox", &spufs_mbox_fops, 0444, },
2433 { "ibox", &spufs_ibox_fops, 0444, },
2434 { "wbox", &spufs_wbox_fops, 0222, },
2435 { "mbox_stat", &spufs_mbox_stat_fops, 0444, },
2436 { "ibox_stat", &spufs_ibox_stat_fops, 0444, },
2437 { "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2438 { "signal1", &spufs_signal1_nosched_fops, 0222, },
2439 { "signal2", &spufs_signal2_nosched_fops, 0222, },
2440 { "signal1_type", &spufs_signal1_type, 0666, },
2441 { "signal2_type", &spufs_signal2_type, 0666, },
2442 { "mss", &spufs_mss_fops, 0666, },
2443 { "mfc", &spufs_mfc_fops, 0666, },
2444 { "cntl", &spufs_cntl_fops, 0666, },
2445 { "npc", &spufs_npc_ops, 0666, },
2446 { "psmap", &spufs_psmap_fops, 0666, },
2447 { "phys-id", &spufs_id_ops, 0666, },
2448 { "object-id", &spufs_object_id_ops, 0666, },
2449 { "tid", &spufs_tid_fops, 0444, },
2450 { "stat", &spufs_stat_fops, 0444, },
2454 struct spufs_coredump_reader spufs_coredump_read[] = {
2455 { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2456 { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2457 { "lslr", NULL, spufs_lslr_get, 19 },
2458 { "decr", NULL, spufs_decr_get, 19 },
2459 { "decr_status", NULL, spufs_decr_status_get, 19 },
2460 { "mem", __spufs_mem_read, NULL, LS_SIZE, },
2461 { "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2462 { "signal1_type", NULL, spufs_signal1_type_get, 19 },
2463 { "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2464 { "signal2_type", NULL, spufs_signal2_type_get, 19 },
2465 { "event_mask", NULL, spufs_event_mask_get, 19 },
2466 { "event_status", NULL, spufs_event_status_get, 19 },
2467 { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2468 { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2469 { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2470 { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2471 { "proxydma_info", __spufs_proxydma_info_read,
2472 NULL, sizeof(struct spu_proxydma_info)},
2473 { "object-id", NULL, spufs_object_id_get, 19 },
2474 { "npc", NULL, spufs_npc_get, 19 },