4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
8 * The routines in this file are used to kill a process when
9 * we're seriously out of memory. This gets called from __alloc_pages()
10 * in mm/page_alloc.c when we really run out of memory.
12 * Since we won't call these routines often (on a well-configured
13 * machine) this file will double as a 'coding guide' and a signpost
14 * for newbie kernel hackers. It features several pointers to major
15 * kernel subsystems and hints as to where to find out what things do.
18 #include <linux/oom.h>
20 #include <linux/err.h>
21 #include <linux/sched.h>
22 #include <linux/swap.h>
23 #include <linux/timex.h>
24 #include <linux/jiffies.h>
25 #include <linux/cpuset.h>
26 #include <linux/module.h>
27 #include <linux/notifier.h>
28 #include <linux/memcontrol.h>
29 #include <linux/security.h>
31 int sysctl_panic_on_oom;
32 int sysctl_oom_kill_allocating_task;
33 int sysctl_oom_dump_tasks;
34 static DEFINE_SPINLOCK(zone_scan_lock);
38 * badness - calculate a numeric value for how bad this task has been
39 * @p: task struct of which task we should calculate
40 * @uptime: current uptime in seconds
42 * The formula used is relatively simple and documented inline in the
43 * function. The main rationale is that we want to select a good task
44 * to kill when we run out of memory.
46 * Good in this context means that:
47 * 1) we lose the minimum amount of work done
48 * 2) we recover a large amount of memory
49 * 3) we don't kill anything innocent of eating tons of memory
50 * 4) we want to kill the minimum amount of processes (one)
51 * 5) we try to kill the process the user expects us to kill, this
52 * algorithm has been meticulously tuned to meet the principle
53 * of least surprise ... (be careful when you change it)
56 unsigned long badness(struct task_struct *p, unsigned long uptime)
58 unsigned long points, cpu_time, run_time, s;
60 struct task_struct *child;
70 * The memory size of the process is the basis for the badness.
72 points = mm->total_vm;
75 * After this unlock we can no longer dereference local variable `mm'
80 * swapoff can easily use up all memory, so kill those first.
82 if (p->flags & PF_SWAPOFF)
86 * Processes which fork a lot of child processes are likely
87 * a good choice. We add half the vmsize of the children if they
88 * have an own mm. This prevents forking servers to flood the
89 * machine with an endless amount of children. In case a single
90 * child is eating the vast majority of memory, adding only half
91 * to the parents will make the child our kill candidate of choice.
93 list_for_each_entry(child, &p->children, sibling) {
95 if (child->mm != mm && child->mm)
96 points += child->mm->total_vm/2 + 1;
101 * CPU time is in tens of seconds and run time is in thousands
102 * of seconds. There is no particular reason for this other than
103 * that it turned out to work very well in practice.
105 cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
108 if (uptime >= p->start_time.tv_sec)
109 run_time = (uptime - p->start_time.tv_sec) >> 10;
113 s = int_sqrt(cpu_time);
116 s = int_sqrt(int_sqrt(run_time));
121 * Niced processes are most likely less important, so double
122 * their badness points.
124 if (task_nice(p) > 0)
128 * Superuser processes are usually more important, so we make it
129 * less likely that we kill those.
131 if (has_capability_noaudit(p, CAP_SYS_ADMIN) ||
132 has_capability_noaudit(p, CAP_SYS_RESOURCE))
136 * We don't want to kill a process with direct hardware access.
137 * Not only could that mess up the hardware, but usually users
138 * tend to only have this flag set on applications they think
141 if (has_capability_noaudit(p, CAP_SYS_RAWIO))
145 * If p's nodes don't overlap ours, it may still help to kill p
146 * because p may have allocated or otherwise mapped memory on
147 * this node before. However it will be less likely.
149 if (!cpuset_mems_allowed_intersects(current, p))
153 * Adjust the score by oomkilladj.
156 if (p->oomkilladj > 0) {
159 points <<= p->oomkilladj;
161 points >>= -(p->oomkilladj);
165 printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
166 p->pid, p->comm, points);
172 * Determine the type of allocation constraint.
174 static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
180 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
181 nodemask_t nodes = node_states[N_HIGH_MEMORY];
183 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
184 if (cpuset_zone_allowed_softwall(zone, gfp_mask))
185 node_clear(zone_to_nid(zone), nodes);
187 return CONSTRAINT_CPUSET;
189 if (!nodes_empty(nodes))
190 return CONSTRAINT_MEMORY_POLICY;
193 return CONSTRAINT_NONE;
197 * Simple selection loop. We chose the process with the highest
198 * number of 'points'. We expect the caller will lock the tasklist.
200 * (not docbooked, we don't want this one cluttering up the manual)
202 static struct task_struct *select_bad_process(unsigned long *ppoints,
203 struct mem_cgroup *mem)
205 struct task_struct *g, *p;
206 struct task_struct *chosen = NULL;
207 struct timespec uptime;
210 do_posix_clock_monotonic_gettime(&uptime);
211 do_each_thread(g, p) {
212 unsigned long points;
215 * skip kernel threads and tasks which have already released
220 /* skip the init task */
221 if (is_global_init(p))
223 if (mem && !task_in_mem_cgroup(p, mem))
227 * This task already has access to memory reserves and is
228 * being killed. Don't allow any other task access to the
231 * Note: this may have a chance of deadlock if it gets
232 * blocked waiting for another task which itself is waiting
233 * for memory. Is there a better alternative?
235 if (test_tsk_thread_flag(p, TIF_MEMDIE))
236 return ERR_PTR(-1UL);
239 * This is in the process of releasing memory so wait for it
240 * to finish before killing some other task by mistake.
242 * However, if p is the current task, we allow the 'kill' to
243 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
244 * which will allow it to gain access to memory reserves in
245 * the process of exiting and releasing its resources.
246 * Otherwise we could get an easy OOM deadlock.
248 if (p->flags & PF_EXITING) {
250 return ERR_PTR(-1UL);
253 *ppoints = ULONG_MAX;
256 if (p->oomkilladj == OOM_DISABLE)
259 points = badness(p, uptime.tv_sec);
260 if (points > *ppoints || !chosen) {
264 } while_each_thread(g, p);
270 * dump_tasks - dump current memory state of all system tasks
271 * @mem: target memory controller
273 * Dumps the current memory state of all system tasks, excluding kernel threads.
274 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
277 * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
280 * Call with tasklist_lock read-locked.
282 static void dump_tasks(const struct mem_cgroup *mem)
284 struct task_struct *g, *p;
286 printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj "
288 do_each_thread(g, p) {
290 * total_vm and rss sizes do not exist for tasks with a
291 * detached mm so there's no need to report them.
295 if (mem && !task_in_mem_cgroup(p, mem))
297 if (!thread_group_leader(p))
301 printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n",
302 p->pid, __task_cred(p)->uid, p->tgid,
303 p->mm->total_vm, get_mm_rss(p->mm), (int)task_cpu(p),
304 p->oomkilladj, p->comm);
306 } while_each_thread(g, p);
310 * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO
311 * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO
314 static void __oom_kill_task(struct task_struct *p, int verbose)
316 if (is_global_init(p)) {
318 printk(KERN_WARNING "tried to kill init!\n");
324 printk(KERN_WARNING "tried to kill an mm-less task!\n");
329 printk(KERN_ERR "Killed process %d (%s)\n",
330 task_pid_nr(p), p->comm);
333 * We give our sacrificial lamb high priority and access to
334 * all the memory it needs. That way it should be able to
335 * exit() and clear out its resources quickly...
337 p->rt.time_slice = HZ;
338 set_tsk_thread_flag(p, TIF_MEMDIE);
340 force_sig(SIGKILL, p);
343 static int oom_kill_task(struct task_struct *p)
345 struct mm_struct *mm;
346 struct task_struct *g, *q;
350 /* WARNING: mm may not be dereferenced since we did not obtain its
351 * value from get_task_mm(p). This is OK since all we need to do is
352 * compare mm to q->mm below.
354 * Furthermore, even if mm contains a non-NULL value, p->mm may
355 * change to NULL at any time since we do not hold task_lock(p).
356 * However, this is of no concern to us.
363 * Don't kill the process if any threads are set to OOM_DISABLE
365 do_each_thread(g, q) {
366 if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
368 } while_each_thread(g, q);
370 __oom_kill_task(p, 1);
373 * kill all processes that share the ->mm (i.e. all threads),
374 * but are in a different thread group. Don't let them have access
375 * to memory reserves though, otherwise we might deplete all memory.
377 do_each_thread(g, q) {
378 if (q->mm == mm && !same_thread_group(q, p))
379 force_sig(SIGKILL, q);
380 } while_each_thread(g, q);
385 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
386 unsigned long points, struct mem_cgroup *mem,
389 struct task_struct *c;
391 if (printk_ratelimit()) {
392 printk(KERN_WARNING "%s invoked oom-killer: "
393 "gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
394 current->comm, gfp_mask, order, current->oomkilladj);
396 cpuset_print_task_mems_allowed(current);
397 task_unlock(current);
400 if (sysctl_oom_dump_tasks)
405 * If the task is already exiting, don't alarm the sysadmin or kill
406 * its children or threads, just set TIF_MEMDIE so it can die quickly
408 if (p->flags & PF_EXITING) {
409 __oom_kill_task(p, 0);
413 printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
414 message, task_pid_nr(p), p->comm, points);
416 /* Try to kill a child first */
417 list_for_each_entry(c, &p->children, sibling) {
420 if (!oom_kill_task(c))
423 return oom_kill_task(p);
426 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
427 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
429 unsigned long points = 0;
430 struct task_struct *p;
433 read_lock(&tasklist_lock);
435 p = select_bad_process(&points, mem);
436 if (PTR_ERR(p) == -1UL)
442 if (oom_kill_process(p, gfp_mask, 0, points, mem,
443 "Memory cgroup out of memory"))
446 read_unlock(&tasklist_lock);
451 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
453 int register_oom_notifier(struct notifier_block *nb)
455 return blocking_notifier_chain_register(&oom_notify_list, nb);
457 EXPORT_SYMBOL_GPL(register_oom_notifier);
459 int unregister_oom_notifier(struct notifier_block *nb)
461 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
463 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
466 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
467 * if a parallel OOM killing is already taking place that includes a zone in
468 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
470 int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask)
476 spin_lock(&zone_scan_lock);
477 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
478 if (zone_is_oom_locked(zone)) {
484 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
486 * Lock each zone in the zonelist under zone_scan_lock so a
487 * parallel invocation of try_set_zone_oom() doesn't succeed
490 zone_set_flag(zone, ZONE_OOM_LOCKED);
494 spin_unlock(&zone_scan_lock);
499 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
500 * allocation attempts with zonelists containing them may now recall the OOM
501 * killer, if necessary.
503 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
508 spin_lock(&zone_scan_lock);
509 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
510 zone_clear_flag(zone, ZONE_OOM_LOCKED);
512 spin_unlock(&zone_scan_lock);
516 * Must be called with tasklist_lock held for read.
518 static void __out_of_memory(gfp_t gfp_mask, int order)
520 if (sysctl_oom_kill_allocating_task) {
521 oom_kill_process(current, gfp_mask, order, 0, NULL,
522 "Out of memory (oom_kill_allocating_task)");
525 unsigned long points;
526 struct task_struct *p;
530 * Rambo mode: Shoot down a process and hope it solves whatever
531 * issues we may have.
533 p = select_bad_process(&points, NULL);
535 if (PTR_ERR(p) == -1UL)
538 /* Found nothing?!?! Either we hang forever, or we panic. */
540 read_unlock(&tasklist_lock);
541 panic("Out of memory and no killable processes...\n");
544 if (oom_kill_process(p, gfp_mask, order, points, NULL,
551 * pagefault handler calls into here because it is out of memory but
552 * doesn't know exactly how or why.
554 void pagefault_out_of_memory(void)
556 unsigned long freed = 0;
558 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
560 /* Got some memory back in the last second. */
563 if (sysctl_panic_on_oom)
564 panic("out of memory from page fault. panic_on_oom is selected.\n");
566 read_lock(&tasklist_lock);
567 __out_of_memory(0, 0); /* unknown gfp_mask and order */
568 read_unlock(&tasklist_lock);
571 * Give "p" a good chance of killing itself before we
572 * retry to allocate memory.
574 if (!test_thread_flag(TIF_MEMDIE))
575 schedule_timeout_uninterruptible(1);
579 * out_of_memory - kill the "best" process when we run out of memory
580 * @zonelist: zonelist pointer
581 * @gfp_mask: memory allocation flags
582 * @order: amount of memory being requested as a power of 2
584 * If we run out of memory, we have the choice between either
585 * killing a random task (bad), letting the system crash (worse)
586 * OR try to be smart about which process to kill. Note that we
587 * don't have to be perfect here, we just have to be good.
589 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
591 unsigned long freed = 0;
592 enum oom_constraint constraint;
594 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
596 /* Got some memory back in the last second. */
599 if (sysctl_panic_on_oom == 2)
600 panic("out of memory. Compulsory panic_on_oom is selected.\n");
603 * Check if there were limitations on the allocation (only relevant for
604 * NUMA) that may require different handling.
606 constraint = constrained_alloc(zonelist, gfp_mask);
607 read_lock(&tasklist_lock);
609 switch (constraint) {
610 case CONSTRAINT_MEMORY_POLICY:
611 oom_kill_process(current, gfp_mask, order, 0, NULL,
612 "No available memory (MPOL_BIND)");
615 case CONSTRAINT_NONE:
616 if (sysctl_panic_on_oom)
617 panic("out of memory. panic_on_oom is selected\n");
619 case CONSTRAINT_CPUSET:
620 __out_of_memory(gfp_mask, order);
624 read_unlock(&tasklist_lock);
627 * Give "p" a good chance of killing itself before we
628 * retry to allocate memory unless "p" is current
630 if (!test_thread_flag(TIF_MEMDIE))
631 schedule_timeout_uninterruptible(1);