Merge git://git.kernel.org/pub/scm/linux/kernel/git/tglx/linux-2.6-x86
[linux-2.6] / drivers / s390 / block / xpram.c
1 /*
2  * Xpram.c -- the S/390 expanded memory RAM-disk
3  *           
4  * significant parts of this code are based on
5  * the sbull device driver presented in
6  * A. Rubini: Linux Device Drivers
7  *
8  * Author of XPRAM specific coding: Reinhard Buendgen
9  *                                  buendgen@de.ibm.com
10  * Rewrite for 2.5: Martin Schwidefsky <schwidefsky@de.ibm.com>
11  *
12  * External interfaces:
13  *   Interfaces to linux kernel
14  *        xpram_setup: read kernel parameters
15  *   Device specific file operations
16  *        xpram_iotcl
17  *        xpram_open
18  *
19  * "ad-hoc" partitioning:
20  *    the expanded memory can be partitioned among several devices 
21  *    (with different minors). The partitioning set up can be
22  *    set by kernel or module parameters (int devs & int sizes[])
23  *
24  * Potential future improvements:
25  *   generic hard disk support to replace ad-hoc partitioning
26  */
27
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/ctype.h>  /* isdigit, isxdigit */
31 #include <linux/errno.h>
32 #include <linux/init.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/blkpg.h>
36 #include <linux/hdreg.h>  /* HDIO_GETGEO */
37 #include <linux/sysdev.h>
38 #include <linux/bio.h>
39 #include <asm/uaccess.h>
40
41 #define XPRAM_NAME      "xpram"
42 #define XPRAM_DEVS      1       /* one partition */
43 #define XPRAM_MAX_DEVS  32      /* maximal number of devices (partitions) */
44
45 #define PRINT_DEBUG(x...)       printk(KERN_DEBUG XPRAM_NAME " debug:" x)
46 #define PRINT_INFO(x...)        printk(KERN_INFO XPRAM_NAME " info:" x)
47 #define PRINT_WARN(x...)        printk(KERN_WARNING XPRAM_NAME " warning:" x)
48 #define PRINT_ERR(x...)         printk(KERN_ERR XPRAM_NAME " error:" x)
49
50
51 typedef struct {
52         unsigned int    size;           /* size of xpram segment in pages */
53         unsigned int    offset;         /* start page of xpram segment */
54 } xpram_device_t;
55
56 static xpram_device_t xpram_devices[XPRAM_MAX_DEVS];
57 static unsigned int xpram_sizes[XPRAM_MAX_DEVS];
58 static struct gendisk *xpram_disks[XPRAM_MAX_DEVS];
59 static unsigned int xpram_pages;
60 static int xpram_devs;
61
62 /*
63  * Parameter parsing functions.
64  */
65 static int __initdata devs = XPRAM_DEVS;
66 static char __initdata *sizes[XPRAM_MAX_DEVS];
67
68 module_param(devs, int, 0);
69 module_param_array(sizes, charp, NULL, 0);
70
71 MODULE_PARM_DESC(devs, "number of devices (\"partitions\"), " \
72                  "the default is " __MODULE_STRING(XPRAM_DEVS) "\n");
73 MODULE_PARM_DESC(sizes, "list of device (partition) sizes " \
74                  "the defaults are 0s \n" \
75                  "All devices with size 0 equally partition the "
76                  "remaining space on the expanded strorage not "
77                  "claimed by explicit sizes\n");
78 MODULE_LICENSE("GPL");
79
80 /*
81  * Copy expanded memory page (4kB) into main memory                  
82  * Arguments                                                         
83  *           page_addr:    address of target page                    
84  *           xpage_index:  index of expandeded memory page           
85  * Return value                                                      
86  *           0:            if operation succeeds
87  *           -EIO:         if pgin failed
88  *           -ENXIO:       if xpram has vanished
89  */
90 static int xpram_page_in (unsigned long page_addr, unsigned int xpage_index)
91 {
92         int cc = 2;     /* return unused cc 2 if pgin traps */
93
94         asm volatile(
95                 "       .insn   rre,0xb22e0000,%1,%2\n"  /* pgin %1,%2 */
96                 "0:     ipm     %0\n"
97                 "       srl     %0,28\n"
98                 "1:\n"
99                 EX_TABLE(0b,1b)
100                 : "+d" (cc) : "a" (__pa(page_addr)), "d" (xpage_index) : "cc");
101         if (cc == 3)
102                 return -ENXIO;
103         if (cc == 2) {
104                 PRINT_ERR("expanded storage lost!\n");
105                 return -ENXIO;
106         }
107         if (cc == 1) {
108                 PRINT_ERR("page in failed for page index %u.\n",
109                           xpage_index);
110                 return -EIO;
111         }
112         return 0;
113 }
114
115 /*
116  * Copy a 4kB page of main memory to an expanded memory page          
117  * Arguments                                                          
118  *           page_addr:    address of source page                     
119  *           xpage_index:  index of expandeded memory page            
120  * Return value                                                       
121  *           0:            if operation succeeds
122  *           -EIO:         if pgout failed
123  *           -ENXIO:       if xpram has vanished
124  */
125 static long xpram_page_out (unsigned long page_addr, unsigned int xpage_index)
126 {
127         int cc = 2;     /* return unused cc 2 if pgin traps */
128
129         asm volatile(
130                 "       .insn   rre,0xb22f0000,%1,%2\n"  /* pgout %1,%2 */
131                 "0:     ipm     %0\n"
132                 "       srl     %0,28\n"
133                 "1:\n"
134                 EX_TABLE(0b,1b)
135                 : "+d" (cc) : "a" (__pa(page_addr)), "d" (xpage_index) : "cc");
136         if (cc == 3)
137                 return -ENXIO;
138         if (cc == 2) {
139                 PRINT_ERR("expanded storage lost!\n");
140                 return -ENXIO;
141         }
142         if (cc == 1) {
143                 PRINT_ERR("page out failed for page index %u.\n",
144                           xpage_index);
145                 return -EIO;
146         }
147         return 0;
148 }
149
150 /*
151  * Check if xpram is available.
152  */
153 static int __init xpram_present(void)
154 {
155         unsigned long mem_page;
156         int rc;
157
158         mem_page = (unsigned long) __get_free_page(GFP_KERNEL);
159         if (!mem_page)
160                 return -ENOMEM;
161         rc = xpram_page_in(mem_page, 0);
162         free_page(mem_page);
163         return rc ? -ENXIO : 0;
164 }
165
166 /*
167  * Return index of the last available xpram page.
168  */
169 static unsigned long __init xpram_highest_page_index(void)
170 {
171         unsigned int page_index, add_bit;
172         unsigned long mem_page;
173
174         mem_page = (unsigned long) __get_free_page(GFP_KERNEL);
175         if (!mem_page)
176                 return 0;
177
178         page_index = 0;
179         add_bit = 1ULL << (sizeof(unsigned int)*8 - 1);
180         while (add_bit > 0) {
181                 if (xpram_page_in(mem_page, page_index | add_bit) == 0)
182                         page_index |= add_bit;
183                 add_bit >>= 1;
184         }
185
186         free_page (mem_page);
187
188         return page_index;
189 }
190
191 /*
192  * Block device make request function.
193  */
194 static int xpram_make_request(struct request_queue *q, struct bio *bio)
195 {
196         xpram_device_t *xdev = bio->bi_bdev->bd_disk->private_data;
197         struct bio_vec *bvec;
198         unsigned int index;
199         unsigned long page_addr;
200         unsigned long bytes;
201         int i;
202
203         if ((bio->bi_sector & 7) != 0 || (bio->bi_size & 4095) != 0)
204                 /* Request is not page-aligned. */
205                 goto fail;
206         if ((bio->bi_size >> 12) > xdev->size)
207                 /* Request size is no page-aligned. */
208                 goto fail;
209         if ((bio->bi_sector >> 3) > 0xffffffffU - xdev->offset)
210                 goto fail;
211         index = (bio->bi_sector >> 3) + xdev->offset;
212         bio_for_each_segment(bvec, bio, i) {
213                 page_addr = (unsigned long)
214                         kmap(bvec->bv_page) + bvec->bv_offset;
215                 bytes = bvec->bv_len;
216                 if ((page_addr & 4095) != 0 || (bytes & 4095) != 0)
217                         /* More paranoia. */
218                         goto fail;
219                 while (bytes > 0) {
220                         if (bio_data_dir(bio) == READ) {
221                                 if (xpram_page_in(page_addr, index) != 0)
222                                         goto fail;
223                         } else {
224                                 if (xpram_page_out(page_addr, index) != 0)
225                                         goto fail;
226                         }
227                         page_addr += 4096;
228                         bytes -= 4096;
229                         index++;
230                 }
231         }
232         set_bit(BIO_UPTODATE, &bio->bi_flags);
233         bio_endio(bio, 0);
234         return 0;
235 fail:
236         bio_io_error(bio);
237         return 0;
238 }
239
240 static int xpram_getgeo(struct block_device *bdev, struct hd_geometry *geo)
241 {
242         unsigned long size;
243
244         /*
245          * get geometry: we have to fake one...  trim the size to a
246          * multiple of 64 (32k): tell we have 16 sectors, 4 heads,
247          * whatever cylinders. Tell also that data starts at sector. 4.
248          */
249         size = (xpram_pages * 8) & ~0x3f;
250         geo->cylinders = size >> 6;
251         geo->heads = 4;
252         geo->sectors = 16;
253         geo->start = 4;
254         return 0;
255 }
256
257 static struct block_device_operations xpram_devops =
258 {
259         .owner  = THIS_MODULE,
260         .getgeo = xpram_getgeo,
261 };
262
263 /*
264  * Setup xpram_sizes array.
265  */
266 static int __init xpram_setup_sizes(unsigned long pages)
267 {
268         unsigned long mem_needed;
269         unsigned long mem_auto;
270         unsigned long long size;
271         int mem_auto_no;
272         int i;
273
274         /* Check number of devices. */
275         if (devs <= 0 || devs > XPRAM_MAX_DEVS) {
276                 PRINT_ERR("invalid number %d of devices\n",devs);
277                 return -EINVAL;
278         }
279         xpram_devs = devs;
280
281         /*
282          * Copy sizes array to xpram_sizes and align partition
283          * sizes to page boundary.
284          */
285         mem_needed = 0;
286         mem_auto_no = 0;
287         for (i = 0; i < xpram_devs; i++) {
288                 if (sizes[i]) {
289                         size = simple_strtoull(sizes[i], &sizes[i], 0);
290                         switch (sizes[i][0]) {
291                         case 'g':
292                         case 'G':
293                                 size <<= 20;
294                                 break;
295                         case 'm':
296                         case 'M':
297                                 size <<= 10;
298                         }
299                         xpram_sizes[i] = (size + 3) & -4UL;
300                 }
301                 if (xpram_sizes[i])
302                         mem_needed += xpram_sizes[i];
303                 else
304                         mem_auto_no++;
305         }
306         
307         PRINT_INFO("  number of devices (partitions): %d \n", xpram_devs);
308         for (i = 0; i < xpram_devs; i++) {
309                 if (xpram_sizes[i])
310                         PRINT_INFO("  size of partition %d: %u kB\n",
311                                    i, xpram_sizes[i]);
312                 else
313                         PRINT_INFO("  size of partition %d to be set "
314                                    "automatically\n",i);
315         }
316         PRINT_DEBUG("  memory needed (for sized partitions): %lu kB\n",
317                     mem_needed);
318         PRINT_DEBUG("  partitions to be sized automatically: %d\n",
319                     mem_auto_no);
320
321         if (mem_needed > pages * 4) {
322                 PRINT_ERR("Not enough expanded memory available\n");
323                 return -EINVAL;
324         }
325
326         /*
327          * partitioning:
328          * xpram_sizes[i] != 0; partition i has size xpram_sizes[i] kB
329          * else:             ; all partitions with zero xpram_sizes[i]
330          *                     partition equally the remaining space
331          */
332         if (mem_auto_no) {
333                 mem_auto = ((pages - mem_needed / 4) / mem_auto_no) * 4;
334                 PRINT_INFO("  automatically determined "
335                            "partition size: %lu kB\n", mem_auto);
336                 for (i = 0; i < xpram_devs; i++)
337                         if (xpram_sizes[i] == 0)
338                                 xpram_sizes[i] = mem_auto;
339         }
340         return 0;
341 }
342
343 static struct request_queue *xpram_queue;
344
345 static int __init xpram_setup_blkdev(void)
346 {
347         unsigned long offset;
348         int i, rc = -ENOMEM;
349
350         for (i = 0; i < xpram_devs; i++) {
351                 struct gendisk *disk = alloc_disk(1);
352                 if (!disk)
353                         goto out;
354                 xpram_disks[i] = disk;
355         }
356
357         /*
358          * Register xpram major.
359          */
360         rc = register_blkdev(XPRAM_MAJOR, XPRAM_NAME);
361         if (rc < 0)
362                 goto out;
363
364         /*
365          * Assign the other needed values: make request function, sizes and
366          * hardsect size. All the minor devices feature the same value.
367          */
368         xpram_queue = blk_alloc_queue(GFP_KERNEL);
369         if (!xpram_queue) {
370                 rc = -ENOMEM;
371                 goto out_unreg;
372         }
373         blk_queue_make_request(xpram_queue, xpram_make_request);
374         blk_queue_hardsect_size(xpram_queue, 4096);
375
376         /*
377          * Setup device structures.
378          */
379         offset = 0;
380         for (i = 0; i < xpram_devs; i++) {
381                 struct gendisk *disk = xpram_disks[i];
382
383                 xpram_devices[i].size = xpram_sizes[i] / 4;
384                 xpram_devices[i].offset = offset;
385                 offset += xpram_devices[i].size;
386                 disk->major = XPRAM_MAJOR;
387                 disk->first_minor = i;
388                 disk->fops = &xpram_devops;
389                 disk->private_data = &xpram_devices[i];
390                 disk->queue = xpram_queue;
391                 sprintf(disk->disk_name, "slram%d", i);
392                 set_capacity(disk, xpram_sizes[i] << 1);
393                 add_disk(disk);
394         }
395
396         return 0;
397 out_unreg:
398         unregister_blkdev(XPRAM_MAJOR, XPRAM_NAME);
399 out:
400         while (i--)
401                 put_disk(xpram_disks[i]);
402         return rc;
403 }
404
405 /*
406  * Finally, the init/exit functions.
407  */
408 static void __exit xpram_exit(void)
409 {
410         int i;
411         for (i = 0; i < xpram_devs; i++) {
412                 del_gendisk(xpram_disks[i]);
413                 put_disk(xpram_disks[i]);
414         }
415         unregister_blkdev(XPRAM_MAJOR, XPRAM_NAME);
416         blk_cleanup_queue(xpram_queue);
417 }
418
419 static int __init xpram_init(void)
420 {
421         int rc;
422
423         /* Find out size of expanded memory. */
424         if (xpram_present() != 0) {
425                 PRINT_WARN("No expanded memory available\n");
426                 return -ENODEV;
427         }
428         xpram_pages = xpram_highest_page_index() + 1;
429         PRINT_INFO("  %u pages expanded memory found (%lu KB).\n",
430                    xpram_pages, (unsigned long) xpram_pages*4);
431         rc = xpram_setup_sizes(xpram_pages);
432         if (rc)
433                 return rc;
434         return xpram_setup_blkdev();
435 }
436
437 module_init(xpram_init);
438 module_exit(xpram_exit);