ide: remove 'handler' field from ide_task_t (take 2)
[linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61
62         /*
63          * if failfast is set on a request, override number of sectors and
64          * complete the whole request right now
65          */
66         if (blk_noretry_request(rq) && end_io_error(uptodate))
67                 nr_bytes = rq->hard_nr_sectors << 9;
68
69         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70                 rq->errors = -EIO;
71
72         /*
73          * decide whether to reenable DMA -- 3 is a random magic for now,
74          * if we DMA timeout more than 3 times, just stay in PIO
75          */
76         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77                 drive->state = 0;
78                 HWGROUP(drive)->hwif->ide_dma_on(drive);
79         }
80
81         if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82                 add_disk_randomness(rq->rq_disk);
83                 if (dequeue) {
84                         if (!list_empty(&rq->queuelist))
85                                 blkdev_dequeue_request(rq);
86                         HWGROUP(drive)->rq = NULL;
87                 }
88                 end_that_request_last(rq, uptodate);
89                 ret = 0;
90         }
91
92         return ret;
93 }
94
95 /**
96  *      ide_end_request         -       complete an IDE I/O
97  *      @drive: IDE device for the I/O
98  *      @uptodate:
99  *      @nr_sectors: number of sectors completed
100  *
101  *      This is our end_request wrapper function. We complete the I/O
102  *      update random number input and dequeue the request, which if
103  *      it was tagged may be out of order.
104  */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108         unsigned int nr_bytes = nr_sectors << 9;
109         struct request *rq;
110         unsigned long flags;
111         int ret = 1;
112
113         /*
114          * room for locking improvements here, the calls below don't
115          * need the queue lock held at all
116          */
117         spin_lock_irqsave(&ide_lock, flags);
118         rq = HWGROUP(drive)->rq;
119
120         if (!nr_bytes) {
121                 if (blk_pc_request(rq))
122                         nr_bytes = rq->data_len;
123                 else
124                         nr_bytes = rq->hard_cur_sectors << 9;
125         }
126
127         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129         spin_unlock_irqrestore(&ide_lock, flags);
130         return ret;
131 }
132 EXPORT_SYMBOL(ide_end_request);
133
134 /*
135  * Power Management state machine. This one is rather trivial for now,
136  * we should probably add more, like switching back to PIO on suspend
137  * to help some BIOSes, re-do the door locking on resume, etc...
138  */
139
140 enum {
141         ide_pm_flush_cache      = ide_pm_state_start_suspend,
142         idedisk_pm_standby,
143
144         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
145         idedisk_pm_idle,
146         ide_pm_restore_dma,
147 };
148
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 {
151         struct request_pm_state *pm = rq->data;
152
153         if (drive->media != ide_disk)
154                 return;
155
156         switch (pm->pm_step) {
157         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
158                 if (pm->pm_state == PM_EVENT_FREEZE)
159                         pm->pm_step = ide_pm_state_completed;
160                 else
161                         pm->pm_step = idedisk_pm_standby;
162                 break;
163         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
164                 pm->pm_step = ide_pm_state_completed;
165                 break;
166         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
167                 pm->pm_step = idedisk_pm_idle;
168                 break;
169         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
170                 pm->pm_step = ide_pm_restore_dma;
171                 break;
172         }
173 }
174
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 {
177         struct request_pm_state *pm = rq->data;
178         ide_task_t *args = rq->special;
179
180         memset(args, 0, sizeof(*args));
181
182         switch (pm->pm_step) {
183         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
184                 if (drive->media != ide_disk)
185                         break;
186                 /* Not supported? Switch to next step now. */
187                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188                         ide_complete_power_step(drive, rq, 0, 0);
189                         return ide_stopped;
190                 }
191                 if (ide_id_has_flush_cache_ext(drive->id))
192                         args->tf.command = WIN_FLUSH_CACHE_EXT;
193                 else
194                         args->tf.command = WIN_FLUSH_CACHE;
195                 goto out_do_tf;
196
197         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
198                 args->tf.command = WIN_STANDBYNOW1;
199                 goto out_do_tf;
200
201         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
202                 ide_set_max_pio(drive);
203                 /*
204                  * skip idedisk_pm_idle for ATAPI devices
205                  */
206                 if (drive->media != ide_disk)
207                         pm->pm_step = ide_pm_restore_dma;
208                 else
209                         ide_complete_power_step(drive, rq, 0, 0);
210                 return ide_stopped;
211
212         case idedisk_pm_idle:           /* Resume step 2 (idle) */
213                 args->tf.command = WIN_IDLEIMMEDIATE;
214                 goto out_do_tf;
215
216         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
217                 /*
218                  * Right now, all we do is call ide_set_dma(drive),
219                  * we could be smarter and check for current xfer_speed
220                  * in struct drive etc...
221                  */
222                 if (drive->hwif->ide_dma_on == NULL)
223                         break;
224                 drive->hwif->dma_off_quietly(drive);
225                 /*
226                  * TODO: respect ->using_dma setting
227                  */
228                 ide_set_dma(drive);
229                 break;
230         }
231         pm->pm_step = ide_pm_state_completed;
232         return ide_stopped;
233
234 out_do_tf:
235         args->tf_flags   = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
236         args->data_phase = TASKFILE_NO_DATA;
237         return do_rw_taskfile(drive, args);
238 }
239
240 /**
241  *      ide_end_dequeued_request        -       complete an IDE I/O
242  *      @drive: IDE device for the I/O
243  *      @uptodate:
244  *      @nr_sectors: number of sectors completed
245  *
246  *      Complete an I/O that is no longer on the request queue. This
247  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
248  *      We must still finish the old request but we must not tamper with the
249  *      queue in the meantime.
250  *
251  *      NOTE: This path does not handle barrier, but barrier is not supported
252  *      on ide-cd anyway.
253  */
254
255 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
256                              int uptodate, int nr_sectors)
257 {
258         unsigned long flags;
259         int ret;
260
261         spin_lock_irqsave(&ide_lock, flags);
262         BUG_ON(!blk_rq_started(rq));
263         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
264         spin_unlock_irqrestore(&ide_lock, flags);
265
266         return ret;
267 }
268 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
269
270
271 /**
272  *      ide_complete_pm_request - end the current Power Management request
273  *      @drive: target drive
274  *      @rq: request
275  *
276  *      This function cleans up the current PM request and stops the queue
277  *      if necessary.
278  */
279 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
280 {
281         unsigned long flags;
282
283 #ifdef DEBUG_PM
284         printk("%s: completing PM request, %s\n", drive->name,
285                blk_pm_suspend_request(rq) ? "suspend" : "resume");
286 #endif
287         spin_lock_irqsave(&ide_lock, flags);
288         if (blk_pm_suspend_request(rq)) {
289                 blk_stop_queue(drive->queue);
290         } else {
291                 drive->blocked = 0;
292                 blk_start_queue(drive->queue);
293         }
294         blkdev_dequeue_request(rq);
295         HWGROUP(drive)->rq = NULL;
296         end_that_request_last(rq, 1);
297         spin_unlock_irqrestore(&ide_lock, flags);
298 }
299
300 /**
301  *      ide_end_drive_cmd       -       end an explicit drive command
302  *      @drive: command 
303  *      @stat: status bits
304  *      @err: error bits
305  *
306  *      Clean up after success/failure of an explicit drive command.
307  *      These get thrown onto the queue so they are synchronized with
308  *      real I/O operations on the drive.
309  *
310  *      In LBA48 mode we have to read the register set twice to get
311  *      all the extra information out.
312  */
313  
314 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
315 {
316         ide_hwif_t *hwif = HWIF(drive);
317         unsigned long flags;
318         struct request *rq;
319
320         spin_lock_irqsave(&ide_lock, flags);
321         rq = HWGROUP(drive)->rq;
322         spin_unlock_irqrestore(&ide_lock, flags);
323
324         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
325                 u8 *args = (u8 *) rq->buffer;
326                 if (rq->errors == 0)
327                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
328
329                 if (args) {
330                         args[0] = stat;
331                         args[1] = err;
332                         args[2] = hwif->INB(IDE_NSECTOR_REG);
333                 }
334         } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
335                 ide_task_t *args = (ide_task_t *) rq->special;
336                 if (rq->errors == 0)
337                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
338                         
339                 if (args) {
340                         struct ide_taskfile *tf = &args->tf;
341
342                         if (args->tf_flags & IDE_TFLAG_IN_DATA) {
343                                 u16 data = hwif->INW(IDE_DATA_REG);
344
345                                 tf->data = data & 0xff;
346                                 tf->hob_data = (data >> 8) & 0xff;
347                         }
348                         tf->error = err;
349                         /* be sure we're looking at the low order bits */
350                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
351                         tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
352                         tf->lbal   = hwif->INB(IDE_SECTOR_REG);
353                         tf->lbam   = hwif->INB(IDE_LCYL_REG);
354                         tf->lbah   = hwif->INB(IDE_HCYL_REG);
355                         tf->device = hwif->INB(IDE_SELECT_REG);
356                         tf->status = stat;
357
358                         if (args->tf_flags & IDE_TFLAG_LBA48) {
359                                 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
360                                 tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
361                                 tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
362                                 tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
363                                 tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
364                                 tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
365                         }
366                 }
367         } else if (blk_pm_request(rq)) {
368                 struct request_pm_state *pm = rq->data;
369 #ifdef DEBUG_PM
370                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
371                         drive->name, rq->pm->pm_step, stat, err);
372 #endif
373                 ide_complete_power_step(drive, rq, stat, err);
374                 if (pm->pm_step == ide_pm_state_completed)
375                         ide_complete_pm_request(drive, rq);
376                 return;
377         }
378
379         spin_lock_irqsave(&ide_lock, flags);
380         blkdev_dequeue_request(rq);
381         HWGROUP(drive)->rq = NULL;
382         rq->errors = err;
383         end_that_request_last(rq, !rq->errors);
384         spin_unlock_irqrestore(&ide_lock, flags);
385 }
386
387 EXPORT_SYMBOL(ide_end_drive_cmd);
388
389 /**
390  *      try_to_flush_leftover_data      -       flush junk
391  *      @drive: drive to flush
392  *
393  *      try_to_flush_leftover_data() is invoked in response to a drive
394  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
395  *      resetting the drive, this routine tries to clear the condition
396  *      by read a sector's worth of data from the drive.  Of course,
397  *      this may not help if the drive is *waiting* for data from *us*.
398  */
399 static void try_to_flush_leftover_data (ide_drive_t *drive)
400 {
401         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
402
403         if (drive->media != ide_disk)
404                 return;
405         while (i > 0) {
406                 u32 buffer[16];
407                 u32 wcount = (i > 16) ? 16 : i;
408
409                 i -= wcount;
410                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
411         }
412 }
413
414 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
415 {
416         if (rq->rq_disk) {
417                 ide_driver_t *drv;
418
419                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
420                 drv->end_request(drive, 0, 0);
421         } else
422                 ide_end_request(drive, 0, 0);
423 }
424
425 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
426 {
427         ide_hwif_t *hwif = drive->hwif;
428
429         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
430                 /* other bits are useless when BUSY */
431                 rq->errors |= ERROR_RESET;
432         } else if (stat & ERR_STAT) {
433                 /* err has different meaning on cdrom and tape */
434                 if (err == ABRT_ERR) {
435                         if (drive->select.b.lba &&
436                             /* some newer drives don't support WIN_SPECIFY */
437                             hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
438                                 return ide_stopped;
439                 } else if ((err & BAD_CRC) == BAD_CRC) {
440                         /* UDMA crc error, just retry the operation */
441                         drive->crc_count++;
442                 } else if (err & (BBD_ERR | ECC_ERR)) {
443                         /* retries won't help these */
444                         rq->errors = ERROR_MAX;
445                 } else if (err & TRK0_ERR) {
446                         /* help it find track zero */
447                         rq->errors |= ERROR_RECAL;
448                 }
449         }
450
451         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
452             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
453                 try_to_flush_leftover_data(drive);
454
455         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
456                 ide_kill_rq(drive, rq);
457                 return ide_stopped;
458         }
459
460         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
461                 rq->errors |= ERROR_RESET;
462
463         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
464                 ++rq->errors;
465                 return ide_do_reset(drive);
466         }
467
468         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
469                 drive->special.b.recalibrate = 1;
470
471         ++rq->errors;
472
473         return ide_stopped;
474 }
475
476 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
477 {
478         ide_hwif_t *hwif = drive->hwif;
479
480         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
481                 /* other bits are useless when BUSY */
482                 rq->errors |= ERROR_RESET;
483         } else {
484                 /* add decoding error stuff */
485         }
486
487         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
488                 /* force an abort */
489                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
490
491         if (rq->errors >= ERROR_MAX) {
492                 ide_kill_rq(drive, rq);
493         } else {
494                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
495                         ++rq->errors;
496                         return ide_do_reset(drive);
497                 }
498                 ++rq->errors;
499         }
500
501         return ide_stopped;
502 }
503
504 ide_startstop_t
505 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
506 {
507         if (drive->media == ide_disk)
508                 return ide_ata_error(drive, rq, stat, err);
509         return ide_atapi_error(drive, rq, stat, err);
510 }
511
512 EXPORT_SYMBOL_GPL(__ide_error);
513
514 /**
515  *      ide_error       -       handle an error on the IDE
516  *      @drive: drive the error occurred on
517  *      @msg: message to report
518  *      @stat: status bits
519  *
520  *      ide_error() takes action based on the error returned by the drive.
521  *      For normal I/O that may well include retries. We deal with
522  *      both new-style (taskfile) and old style command handling here.
523  *      In the case of taskfile command handling there is work left to
524  *      do
525  */
526  
527 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
528 {
529         struct request *rq;
530         u8 err;
531
532         err = ide_dump_status(drive, msg, stat);
533
534         if ((rq = HWGROUP(drive)->rq) == NULL)
535                 return ide_stopped;
536
537         /* retry only "normal" I/O: */
538         if (!blk_fs_request(rq)) {
539                 rq->errors = 1;
540                 ide_end_drive_cmd(drive, stat, err);
541                 return ide_stopped;
542         }
543
544         if (rq->rq_disk) {
545                 ide_driver_t *drv;
546
547                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
548                 return drv->error(drive, rq, stat, err);
549         } else
550                 return __ide_error(drive, rq, stat, err);
551 }
552
553 EXPORT_SYMBOL_GPL(ide_error);
554
555 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
556 {
557         if (drive->media != ide_disk)
558                 rq->errors |= ERROR_RESET;
559
560         ide_kill_rq(drive, rq);
561
562         return ide_stopped;
563 }
564
565 EXPORT_SYMBOL_GPL(__ide_abort);
566
567 /**
568  *      ide_abort       -       abort pending IDE operations
569  *      @drive: drive the error occurred on
570  *      @msg: message to report
571  *
572  *      ide_abort kills and cleans up when we are about to do a 
573  *      host initiated reset on active commands. Longer term we
574  *      want handlers to have sensible abort handling themselves
575  *
576  *      This differs fundamentally from ide_error because in 
577  *      this case the command is doing just fine when we
578  *      blow it away.
579  */
580  
581 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
582 {
583         struct request *rq;
584
585         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
586                 return ide_stopped;
587
588         /* retry only "normal" I/O: */
589         if (!blk_fs_request(rq)) {
590                 rq->errors = 1;
591                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
592                 return ide_stopped;
593         }
594
595         if (rq->rq_disk) {
596                 ide_driver_t *drv;
597
598                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
599                 return drv->abort(drive, rq);
600         } else
601                 return __ide_abort(drive, rq);
602 }
603
604 /**
605  *      drive_cmd_intr          -       drive command completion interrupt
606  *      @drive: drive the completion interrupt occurred on
607  *
608  *      drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
609  *      We do any necessary data reading and then wait for the drive to
610  *      go non busy. At that point we may read the error data and complete
611  *      the request
612  */
613  
614 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
615 {
616         struct request *rq = HWGROUP(drive)->rq;
617         ide_hwif_t *hwif = HWIF(drive);
618         u8 *args = (u8 *) rq->buffer;
619         u8 stat = hwif->INB(IDE_STATUS_REG);
620         int retries = 10;
621
622         local_irq_enable_in_hardirq();
623         if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
624             (stat & DRQ_STAT) && args && args[3]) {
625                 u8 io_32bit = drive->io_32bit;
626                 drive->io_32bit = 0;
627                 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
628                 drive->io_32bit = io_32bit;
629                 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
630                         udelay(100);
631         }
632
633         if (!OK_STAT(stat, READY_STAT, BAD_STAT))
634                 return ide_error(drive, "drive_cmd", stat);
635                 /* calls ide_end_drive_cmd */
636         ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
637         return ide_stopped;
638 }
639
640 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
641 {
642         tf->nsect   = drive->sect;
643         tf->lbal    = drive->sect;
644         tf->lbam    = drive->cyl;
645         tf->lbah    = drive->cyl >> 8;
646         tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
647         tf->command = WIN_SPECIFY;
648 }
649
650 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
651 {
652         tf->nsect   = drive->sect;
653         tf->command = WIN_RESTORE;
654 }
655
656 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
657 {
658         tf->nsect   = drive->mult_req;
659         tf->command = WIN_SETMULT;
660 }
661
662 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
663 {
664         special_t *s = &drive->special;
665         ide_task_t args;
666
667         memset(&args, 0, sizeof(ide_task_t));
668         args.data_phase = TASKFILE_NO_DATA;
669
670         if (s->b.set_geometry) {
671                 s->b.set_geometry = 0;
672                 ide_tf_set_specify_cmd(drive, &args.tf);
673         } else if (s->b.recalibrate) {
674                 s->b.recalibrate = 0;
675                 ide_tf_set_restore_cmd(drive, &args.tf);
676         } else if (s->b.set_multmode) {
677                 s->b.set_multmode = 0;
678                 if (drive->mult_req > drive->id->max_multsect)
679                         drive->mult_req = drive->id->max_multsect;
680                 ide_tf_set_setmult_cmd(drive, &args.tf);
681         } else if (s->all) {
682                 int special = s->all;
683                 s->all = 0;
684                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
685                 return ide_stopped;
686         }
687
688         args.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE |
689                         IDE_TFLAG_CUSTOM_HANDLER;
690
691         do_rw_taskfile(drive, &args);
692
693         return ide_started;
694 }
695
696 /*
697  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
698  */
699 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
700 {
701         switch (req_pio) {
702         case 202:
703         case 201:
704         case 200:
705         case 102:
706         case 101:
707         case 100:
708                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
709         case 9:
710         case 8:
711                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
712         case 7:
713         case 6:
714                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
715         default:
716                 return 0;
717         }
718 }
719
720 /**
721  *      do_special              -       issue some special commands
722  *      @drive: drive the command is for
723  *
724  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
725  *      commands to a drive.  It used to do much more, but has been scaled
726  *      back.
727  */
728
729 static ide_startstop_t do_special (ide_drive_t *drive)
730 {
731         special_t *s = &drive->special;
732
733 #ifdef DEBUG
734         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
735 #endif
736         if (s->b.set_tune) {
737                 ide_hwif_t *hwif = drive->hwif;
738                 u8 req_pio = drive->tune_req;
739
740                 s->b.set_tune = 0;
741
742                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
743
744                         if (hwif->set_pio_mode == NULL)
745                                 return ide_stopped;
746
747                         /*
748                          * take ide_lock for drive->[no_]unmask/[no_]io_32bit
749                          */
750                         if (req_pio == 8 || req_pio == 9) {
751                                 unsigned long flags;
752
753                                 spin_lock_irqsave(&ide_lock, flags);
754                                 hwif->set_pio_mode(drive, req_pio);
755                                 spin_unlock_irqrestore(&ide_lock, flags);
756                         } else
757                                 hwif->set_pio_mode(drive, req_pio);
758                 } else {
759                         int keep_dma = drive->using_dma;
760
761                         ide_set_pio(drive, req_pio);
762
763                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
764                                 if (keep_dma)
765                                         hwif->ide_dma_on(drive);
766                         }
767                 }
768
769                 return ide_stopped;
770         } else {
771                 if (drive->media == ide_disk)
772                         return ide_disk_special(drive);
773
774                 s->all = 0;
775                 drive->mult_req = 0;
776                 return ide_stopped;
777         }
778 }
779
780 void ide_map_sg(ide_drive_t *drive, struct request *rq)
781 {
782         ide_hwif_t *hwif = drive->hwif;
783         struct scatterlist *sg = hwif->sg_table;
784
785         if (hwif->sg_mapped)    /* needed by ide-scsi */
786                 return;
787
788         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
789                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
790         } else {
791                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
792                 hwif->sg_nents = 1;
793         }
794 }
795
796 EXPORT_SYMBOL_GPL(ide_map_sg);
797
798 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
799 {
800         ide_hwif_t *hwif = drive->hwif;
801
802         hwif->nsect = hwif->nleft = rq->nr_sectors;
803         hwif->cursg_ofs = 0;
804         hwif->cursg = NULL;
805 }
806
807 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
808
809 /**
810  *      execute_drive_command   -       issue special drive command
811  *      @drive: the drive to issue the command on
812  *      @rq: the request structure holding the command
813  *
814  *      execute_drive_cmd() issues a special drive command,  usually 
815  *      initiated by ioctl() from the external hdparm program. The
816  *      command can be a drive command, drive task or taskfile 
817  *      operation. Weirdly you can call it with NULL to wait for
818  *      all commands to finish. Don't do this as that is due to change
819  */
820
821 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
822                 struct request *rq)
823 {
824         ide_hwif_t *hwif = HWIF(drive);
825         u8 *args = rq->buffer;
826         ide_task_t ltask;
827         struct ide_taskfile *tf = &ltask.tf;
828
829         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
830                 ide_task_t *task = rq->special;
831  
832                 if (task == NULL)
833                         goto done;
834
835                 hwif->data_phase = task->data_phase;
836
837                 switch (hwif->data_phase) {
838                 case TASKFILE_MULTI_OUT:
839                 case TASKFILE_OUT:
840                 case TASKFILE_MULTI_IN:
841                 case TASKFILE_IN:
842                         ide_init_sg_cmd(drive, rq);
843                         ide_map_sg(drive, rq);
844                 default:
845                         break;
846                 }
847
848                 return do_rw_taskfile(drive, task);
849         }
850
851         if (args == NULL)
852                 goto done;
853
854         memset(&ltask, 0, sizeof(ltask));
855         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
856 #ifdef DEBUG
857                 printk("%s: DRIVE_CMD\n", drive->name);
858 #endif
859                 tf->feature = args[2];
860                 if (args[0] == WIN_SMART) {
861                         tf->nsect = args[3];
862                         tf->lbal  = args[1];
863                         tf->lbam  = 0x4f;
864                         tf->lbah  = 0xc2;
865                         ltask.tf_flags = IDE_TFLAG_OUT_TF;
866                 } else {
867                         tf->nsect = args[1];
868                         ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
869                                          IDE_TFLAG_OUT_NSECT;
870                 }
871         }
872         tf->command = args[0];
873         ide_tf_load(drive, &ltask);
874         ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
875         return ide_started;
876
877 done:
878         /*
879          * NULL is actually a valid way of waiting for
880          * all current requests to be flushed from the queue.
881          */
882 #ifdef DEBUG
883         printk("%s: DRIVE_CMD (null)\n", drive->name);
884 #endif
885         ide_end_drive_cmd(drive,
886                         hwif->INB(IDE_STATUS_REG),
887                         hwif->INB(IDE_ERROR_REG));
888         return ide_stopped;
889 }
890
891 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
892 {
893         struct request_pm_state *pm = rq->data;
894
895         if (blk_pm_suspend_request(rq) &&
896             pm->pm_step == ide_pm_state_start_suspend)
897                 /* Mark drive blocked when starting the suspend sequence. */
898                 drive->blocked = 1;
899         else if (blk_pm_resume_request(rq) &&
900                  pm->pm_step == ide_pm_state_start_resume) {
901                 /* 
902                  * The first thing we do on wakeup is to wait for BSY bit to
903                  * go away (with a looong timeout) as a drive on this hwif may
904                  * just be POSTing itself.
905                  * We do that before even selecting as the "other" device on
906                  * the bus may be broken enough to walk on our toes at this
907                  * point.
908                  */
909                 int rc;
910 #ifdef DEBUG_PM
911                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
912 #endif
913                 rc = ide_wait_not_busy(HWIF(drive), 35000);
914                 if (rc)
915                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
916                 SELECT_DRIVE(drive);
917                 if (IDE_CONTROL_REG)
918                         HWIF(drive)->OUTB(drive->ctl, IDE_CONTROL_REG);
919                 rc = ide_wait_not_busy(HWIF(drive), 100000);
920                 if (rc)
921                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
922         }
923 }
924
925 /**
926  *      start_request   -       start of I/O and command issuing for IDE
927  *
928  *      start_request() initiates handling of a new I/O request. It
929  *      accepts commands and I/O (read/write) requests. It also does
930  *      the final remapping for weird stuff like EZDrive. Once 
931  *      device mapper can work sector level the EZDrive stuff can go away
932  *
933  *      FIXME: this function needs a rename
934  */
935  
936 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
937 {
938         ide_startstop_t startstop;
939         sector_t block;
940
941         BUG_ON(!blk_rq_started(rq));
942
943 #ifdef DEBUG
944         printk("%s: start_request: current=0x%08lx\n",
945                 HWIF(drive)->name, (unsigned long) rq);
946 #endif
947
948         /* bail early if we've exceeded max_failures */
949         if (drive->max_failures && (drive->failures > drive->max_failures)) {
950                 rq->cmd_flags |= REQ_FAILED;
951                 goto kill_rq;
952         }
953
954         block    = rq->sector;
955         if (blk_fs_request(rq) &&
956             (drive->media == ide_disk || drive->media == ide_floppy)) {
957                 block += drive->sect0;
958         }
959         /* Yecch - this will shift the entire interval,
960            possibly killing some innocent following sector */
961         if (block == 0 && drive->remap_0_to_1 == 1)
962                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
963
964         if (blk_pm_request(rq))
965                 ide_check_pm_state(drive, rq);
966
967         SELECT_DRIVE(drive);
968         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
969                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
970                 return startstop;
971         }
972         if (!drive->special.all) {
973                 ide_driver_t *drv;
974
975                 /*
976                  * We reset the drive so we need to issue a SETFEATURES.
977                  * Do it _after_ do_special() restored device parameters.
978                  */
979                 if (drive->current_speed == 0xff)
980                         ide_config_drive_speed(drive, drive->desired_speed);
981
982                 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
983                     rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
984                         return execute_drive_cmd(drive, rq);
985                 else if (blk_pm_request(rq)) {
986                         struct request_pm_state *pm = rq->data;
987 #ifdef DEBUG_PM
988                         printk("%s: start_power_step(step: %d)\n",
989                                 drive->name, rq->pm->pm_step);
990 #endif
991                         startstop = ide_start_power_step(drive, rq);
992                         if (startstop == ide_stopped &&
993                             pm->pm_step == ide_pm_state_completed)
994                                 ide_complete_pm_request(drive, rq);
995                         return startstop;
996                 }
997
998                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
999                 return drv->do_request(drive, rq, block);
1000         }
1001         return do_special(drive);
1002 kill_rq:
1003         ide_kill_rq(drive, rq);
1004         return ide_stopped;
1005 }
1006
1007 /**
1008  *      ide_stall_queue         -       pause an IDE device
1009  *      @drive: drive to stall
1010  *      @timeout: time to stall for (jiffies)
1011  *
1012  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
1013  *      to the hwgroup by sleeping for timeout jiffies.
1014  */
1015  
1016 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1017 {
1018         if (timeout > WAIT_WORSTCASE)
1019                 timeout = WAIT_WORSTCASE;
1020         drive->sleep = timeout + jiffies;
1021         drive->sleeping = 1;
1022 }
1023
1024 EXPORT_SYMBOL(ide_stall_queue);
1025
1026 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
1027
1028 /**
1029  *      choose_drive            -       select a drive to service
1030  *      @hwgroup: hardware group to select on
1031  *
1032  *      choose_drive() selects the next drive which will be serviced.
1033  *      This is necessary because the IDE layer can't issue commands
1034  *      to both drives on the same cable, unlike SCSI.
1035  */
1036  
1037 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1038 {
1039         ide_drive_t *drive, *best;
1040
1041 repeat: 
1042         best = NULL;
1043         drive = hwgroup->drive;
1044
1045         /*
1046          * drive is doing pre-flush, ordered write, post-flush sequence. even
1047          * though that is 3 requests, it must be seen as a single transaction.
1048          * we must not preempt this drive until that is complete
1049          */
1050         if (blk_queue_flushing(drive->queue)) {
1051                 /*
1052                  * small race where queue could get replugged during
1053                  * the 3-request flush cycle, just yank the plug since
1054                  * we want it to finish asap
1055                  */
1056                 blk_remove_plug(drive->queue);
1057                 return drive;
1058         }
1059
1060         do {
1061                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1062                     && !elv_queue_empty(drive->queue)) {
1063                         if (!best
1064                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1065                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1066                         {
1067                                 if (!blk_queue_plugged(drive->queue))
1068                                         best = drive;
1069                         }
1070                 }
1071         } while ((drive = drive->next) != hwgroup->drive);
1072         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1073                 long t = (signed long)(WAKEUP(best) - jiffies);
1074                 if (t >= WAIT_MIN_SLEEP) {
1075                 /*
1076                  * We *may* have some time to spare, but first let's see if
1077                  * someone can potentially benefit from our nice mood today..
1078                  */
1079                         drive = best->next;
1080                         do {
1081                                 if (!drive->sleeping
1082                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1083                                  && time_before(WAKEUP(drive), jiffies + t))
1084                                 {
1085                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1086                                         goto repeat;
1087                                 }
1088                         } while ((drive = drive->next) != best);
1089                 }
1090         }
1091         return best;
1092 }
1093
1094 /*
1095  * Issue a new request to a drive from hwgroup
1096  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1097  *
1098  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1099  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1100  * may have both interfaces in a single hwgroup to "serialize" access.
1101  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1102  * together into one hwgroup for serialized access.
1103  *
1104  * Note also that several hwgroups can end up sharing a single IRQ,
1105  * possibly along with many other devices.  This is especially common in
1106  * PCI-based systems with off-board IDE controller cards.
1107  *
1108  * The IDE driver uses the single global ide_lock spinlock to protect
1109  * access to the request queues, and to protect the hwgroup->busy flag.
1110  *
1111  * The first thread into the driver for a particular hwgroup sets the
1112  * hwgroup->busy flag to indicate that this hwgroup is now active,
1113  * and then initiates processing of the top request from the request queue.
1114  *
1115  * Other threads attempting entry notice the busy setting, and will simply
1116  * queue their new requests and exit immediately.  Note that hwgroup->busy
1117  * remains set even when the driver is merely awaiting the next interrupt.
1118  * Thus, the meaning is "this hwgroup is busy processing a request".
1119  *
1120  * When processing of a request completes, the completing thread or IRQ-handler
1121  * will start the next request from the queue.  If no more work remains,
1122  * the driver will clear the hwgroup->busy flag and exit.
1123  *
1124  * The ide_lock (spinlock) is used to protect all access to the
1125  * hwgroup->busy flag, but is otherwise not needed for most processing in
1126  * the driver.  This makes the driver much more friendlier to shared IRQs
1127  * than previous designs, while remaining 100% (?) SMP safe and capable.
1128  */
1129 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1130 {
1131         ide_drive_t     *drive;
1132         ide_hwif_t      *hwif;
1133         struct request  *rq;
1134         ide_startstop_t startstop;
1135         int             loops = 0;
1136
1137         /* for atari only: POSSIBLY BROKEN HERE(?) */
1138         ide_get_lock(ide_intr, hwgroup);
1139
1140         /* caller must own ide_lock */
1141         BUG_ON(!irqs_disabled());
1142
1143         while (!hwgroup->busy) {
1144                 hwgroup->busy = 1;
1145                 drive = choose_drive(hwgroup);
1146                 if (drive == NULL) {
1147                         int sleeping = 0;
1148                         unsigned long sleep = 0; /* shut up, gcc */
1149                         hwgroup->rq = NULL;
1150                         drive = hwgroup->drive;
1151                         do {
1152                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1153                                         sleeping = 1;
1154                                         sleep = drive->sleep;
1155                                 }
1156                         } while ((drive = drive->next) != hwgroup->drive);
1157                         if (sleeping) {
1158                 /*
1159                  * Take a short snooze, and then wake up this hwgroup again.
1160                  * This gives other hwgroups on the same a chance to
1161                  * play fairly with us, just in case there are big differences
1162                  * in relative throughputs.. don't want to hog the cpu too much.
1163                  */
1164                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1165                                         sleep = jiffies + WAIT_MIN_SLEEP;
1166 #if 1
1167                                 if (timer_pending(&hwgroup->timer))
1168                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1169 #endif
1170                                 /* so that ide_timer_expiry knows what to do */
1171                                 hwgroup->sleeping = 1;
1172                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1173                                 mod_timer(&hwgroup->timer, sleep);
1174                                 /* we purposely leave hwgroup->busy==1
1175                                  * while sleeping */
1176                         } else {
1177                                 /* Ugly, but how can we sleep for the lock
1178                                  * otherwise? perhaps from tq_disk?
1179                                  */
1180
1181                                 /* for atari only */
1182                                 ide_release_lock();
1183                                 hwgroup->busy = 0;
1184                         }
1185
1186                         /* no more work for this hwgroup (for now) */
1187                         return;
1188                 }
1189         again:
1190                 hwif = HWIF(drive);
1191                 if (hwgroup->hwif->sharing_irq &&
1192                     hwif != hwgroup->hwif &&
1193                     hwif->io_ports[IDE_CONTROL_OFFSET]) {
1194                         /*
1195                          * set nIEN for previous hwif, drives in the
1196                          * quirk_list may not like intr setups/cleanups
1197                          */
1198                         if (drive->quirk_list != 1)
1199                                 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
1200                 }
1201                 hwgroup->hwif = hwif;
1202                 hwgroup->drive = drive;
1203                 drive->sleeping = 0;
1204                 drive->service_start = jiffies;
1205
1206                 if (blk_queue_plugged(drive->queue)) {
1207                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1208                         break;
1209                 }
1210
1211                 /*
1212                  * we know that the queue isn't empty, but this can happen
1213                  * if the q->prep_rq_fn() decides to kill a request
1214                  */
1215                 rq = elv_next_request(drive->queue);
1216                 if (!rq) {
1217                         hwgroup->busy = 0;
1218                         break;
1219                 }
1220
1221                 /*
1222                  * Sanity: don't accept a request that isn't a PM request
1223                  * if we are currently power managed. This is very important as
1224                  * blk_stop_queue() doesn't prevent the elv_next_request()
1225                  * above to return us whatever is in the queue. Since we call
1226                  * ide_do_request() ourselves, we end up taking requests while
1227                  * the queue is blocked...
1228                  * 
1229                  * We let requests forced at head of queue with ide-preempt
1230                  * though. I hope that doesn't happen too much, hopefully not
1231                  * unless the subdriver triggers such a thing in its own PM
1232                  * state machine.
1233                  *
1234                  * We count how many times we loop here to make sure we service
1235                  * all drives in the hwgroup without looping for ever
1236                  */
1237                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1238                         drive = drive->next ? drive->next : hwgroup->drive;
1239                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1240                                 goto again;
1241                         /* We clear busy, there should be no pending ATA command at this point. */
1242                         hwgroup->busy = 0;
1243                         break;
1244                 }
1245
1246                 hwgroup->rq = rq;
1247
1248                 /*
1249                  * Some systems have trouble with IDE IRQs arriving while
1250                  * the driver is still setting things up.  So, here we disable
1251                  * the IRQ used by this interface while the request is being started.
1252                  * This may look bad at first, but pretty much the same thing
1253                  * happens anyway when any interrupt comes in, IDE or otherwise
1254                  *  -- the kernel masks the IRQ while it is being handled.
1255                  */
1256                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1257                         disable_irq_nosync(hwif->irq);
1258                 spin_unlock(&ide_lock);
1259                 local_irq_enable_in_hardirq();
1260                         /* allow other IRQs while we start this request */
1261                 startstop = start_request(drive, rq);
1262                 spin_lock_irq(&ide_lock);
1263                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1264                         enable_irq(hwif->irq);
1265                 if (startstop == ide_stopped)
1266                         hwgroup->busy = 0;
1267         }
1268 }
1269
1270 /*
1271  * Passes the stuff to ide_do_request
1272  */
1273 void do_ide_request(struct request_queue *q)
1274 {
1275         ide_drive_t *drive = q->queuedata;
1276
1277         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1278 }
1279
1280 /*
1281  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1282  * retry the current request in pio mode instead of risking tossing it
1283  * all away
1284  */
1285 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1286 {
1287         ide_hwif_t *hwif = HWIF(drive);
1288         struct request *rq;
1289         ide_startstop_t ret = ide_stopped;
1290
1291         /*
1292          * end current dma transaction
1293          */
1294
1295         if (error < 0) {
1296                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1297                 (void)HWIF(drive)->ide_dma_end(drive);
1298                 ret = ide_error(drive, "dma timeout error",
1299                                                 hwif->INB(IDE_STATUS_REG));
1300         } else {
1301                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1302                 hwif->dma_timeout(drive);
1303         }
1304
1305         /*
1306          * disable dma for now, but remember that we did so because of
1307          * a timeout -- we'll reenable after we finish this next request
1308          * (or rather the first chunk of it) in pio.
1309          */
1310         drive->retry_pio++;
1311         drive->state = DMA_PIO_RETRY;
1312         hwif->dma_off_quietly(drive);
1313
1314         /*
1315          * un-busy drive etc (hwgroup->busy is cleared on return) and
1316          * make sure request is sane
1317          */
1318         rq = HWGROUP(drive)->rq;
1319
1320         if (!rq)
1321                 goto out;
1322
1323         HWGROUP(drive)->rq = NULL;
1324
1325         rq->errors = 0;
1326
1327         if (!rq->bio)
1328                 goto out;
1329
1330         rq->sector = rq->bio->bi_sector;
1331         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1332         rq->hard_cur_sectors = rq->current_nr_sectors;
1333         rq->buffer = bio_data(rq->bio);
1334 out:
1335         return ret;
1336 }
1337
1338 /**
1339  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1340  *      @data: timer callback magic (hwgroup)
1341  *
1342  *      An IDE command has timed out before the expected drive return
1343  *      occurred. At this point we attempt to clean up the current
1344  *      mess. If the current handler includes an expiry handler then
1345  *      we invoke the expiry handler, and providing it is happy the
1346  *      work is done. If that fails we apply generic recovery rules
1347  *      invoking the handler and checking the drive DMA status. We
1348  *      have an excessively incestuous relationship with the DMA
1349  *      logic that wants cleaning up.
1350  */
1351  
1352 void ide_timer_expiry (unsigned long data)
1353 {
1354         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1355         ide_handler_t   *handler;
1356         ide_expiry_t    *expiry;
1357         unsigned long   flags;
1358         unsigned long   wait = -1;
1359
1360         spin_lock_irqsave(&ide_lock, flags);
1361
1362         if (((handler = hwgroup->handler) == NULL) ||
1363             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1364                 /*
1365                  * Either a marginal timeout occurred
1366                  * (got the interrupt just as timer expired),
1367                  * or we were "sleeping" to give other devices a chance.
1368                  * Either way, we don't really want to complain about anything.
1369                  */
1370                 if (hwgroup->sleeping) {
1371                         hwgroup->sleeping = 0;
1372                         hwgroup->busy = 0;
1373                 }
1374         } else {
1375                 ide_drive_t *drive = hwgroup->drive;
1376                 if (!drive) {
1377                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1378                         hwgroup->handler = NULL;
1379                 } else {
1380                         ide_hwif_t *hwif;
1381                         ide_startstop_t startstop = ide_stopped;
1382                         if (!hwgroup->busy) {
1383                                 hwgroup->busy = 1;      /* paranoia */
1384                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1385                         }
1386                         if ((expiry = hwgroup->expiry) != NULL) {
1387                                 /* continue */
1388                                 if ((wait = expiry(drive)) > 0) {
1389                                         /* reset timer */
1390                                         hwgroup->timer.expires  = jiffies + wait;
1391                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1392                                         add_timer(&hwgroup->timer);
1393                                         spin_unlock_irqrestore(&ide_lock, flags);
1394                                         return;
1395                                 }
1396                         }
1397                         hwgroup->handler = NULL;
1398                         /*
1399                          * We need to simulate a real interrupt when invoking
1400                          * the handler() function, which means we need to
1401                          * globally mask the specific IRQ:
1402                          */
1403                         spin_unlock(&ide_lock);
1404                         hwif  = HWIF(drive);
1405                         /* disable_irq_nosync ?? */
1406                         disable_irq(hwif->irq);
1407                         /* local CPU only,
1408                          * as if we were handling an interrupt */
1409                         local_irq_disable();
1410                         if (hwgroup->polling) {
1411                                 startstop = handler(drive);
1412                         } else if (drive_is_ready(drive)) {
1413                                 if (drive->waiting_for_dma)
1414                                         hwgroup->hwif->dma_lost_irq(drive);
1415                                 (void)ide_ack_intr(hwif);
1416                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1417                                 startstop = handler(drive);
1418                         } else {
1419                                 if (drive->waiting_for_dma) {
1420                                         startstop = ide_dma_timeout_retry(drive, wait);
1421                                 } else
1422                                         startstop =
1423                                         ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1424                         }
1425                         drive->service_time = jiffies - drive->service_start;
1426                         spin_lock_irq(&ide_lock);
1427                         enable_irq(hwif->irq);
1428                         if (startstop == ide_stopped)
1429                                 hwgroup->busy = 0;
1430                 }
1431         }
1432         ide_do_request(hwgroup, IDE_NO_IRQ);
1433         spin_unlock_irqrestore(&ide_lock, flags);
1434 }
1435
1436 /**
1437  *      unexpected_intr         -       handle an unexpected IDE interrupt
1438  *      @irq: interrupt line
1439  *      @hwgroup: hwgroup being processed
1440  *
1441  *      There's nothing really useful we can do with an unexpected interrupt,
1442  *      other than reading the status register (to clear it), and logging it.
1443  *      There should be no way that an irq can happen before we're ready for it,
1444  *      so we needn't worry much about losing an "important" interrupt here.
1445  *
1446  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1447  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1448  *      looks "good", we just ignore the interrupt completely.
1449  *
1450  *      This routine assumes __cli() is in effect when called.
1451  *
1452  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1453  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1454  *      we could screw up by interfering with a new request being set up for 
1455  *      irq15.
1456  *
1457  *      In reality, this is a non-issue.  The new command is not sent unless 
1458  *      the drive is ready to accept one, in which case we know the drive is
1459  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1460  *      before completing the issuance of any new drive command, so we will not
1461  *      be accidentally invoked as a result of any valid command completion
1462  *      interrupt.
1463  *
1464  *      Note that we must walk the entire hwgroup here. We know which hwif
1465  *      is doing the current command, but we don't know which hwif burped
1466  *      mysteriously.
1467  */
1468  
1469 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1470 {
1471         u8 stat;
1472         ide_hwif_t *hwif = hwgroup->hwif;
1473
1474         /*
1475          * handle the unexpected interrupt
1476          */
1477         do {
1478                 if (hwif->irq == irq) {
1479                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1480                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1481                                 /* Try to not flood the console with msgs */
1482                                 static unsigned long last_msgtime, count;
1483                                 ++count;
1484                                 if (time_after(jiffies, last_msgtime + HZ)) {
1485                                         last_msgtime = jiffies;
1486                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1487                                                 "status=0x%02x, count=%ld\n",
1488                                                 hwif->name,
1489                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1490                                 }
1491                         }
1492                 }
1493         } while ((hwif = hwif->next) != hwgroup->hwif);
1494 }
1495
1496 /**
1497  *      ide_intr        -       default IDE interrupt handler
1498  *      @irq: interrupt number
1499  *      @dev_id: hwif group
1500  *      @regs: unused weirdness from the kernel irq layer
1501  *
1502  *      This is the default IRQ handler for the IDE layer. You should
1503  *      not need to override it. If you do be aware it is subtle in
1504  *      places
1505  *
1506  *      hwgroup->hwif is the interface in the group currently performing
1507  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1508  *      the IRQ handler to call. As we issue a command the handlers
1509  *      step through multiple states, reassigning the handler to the
1510  *      next step in the process. Unlike a smart SCSI controller IDE
1511  *      expects the main processor to sequence the various transfer
1512  *      stages. We also manage a poll timer to catch up with most
1513  *      timeout situations. There are still a few where the handlers
1514  *      don't ever decide to give up.
1515  *
1516  *      The handler eventually returns ide_stopped to indicate the
1517  *      request completed. At this point we issue the next request
1518  *      on the hwgroup and the process begins again.
1519  */
1520  
1521 irqreturn_t ide_intr (int irq, void *dev_id)
1522 {
1523         unsigned long flags;
1524         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1525         ide_hwif_t *hwif;
1526         ide_drive_t *drive;
1527         ide_handler_t *handler;
1528         ide_startstop_t startstop;
1529
1530         spin_lock_irqsave(&ide_lock, flags);
1531         hwif = hwgroup->hwif;
1532
1533         if (!ide_ack_intr(hwif)) {
1534                 spin_unlock_irqrestore(&ide_lock, flags);
1535                 return IRQ_NONE;
1536         }
1537
1538         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1539                 /*
1540                  * Not expecting an interrupt from this drive.
1541                  * That means this could be:
1542                  *      (1) an interrupt from another PCI device
1543                  *      sharing the same PCI INT# as us.
1544                  * or   (2) a drive just entered sleep or standby mode,
1545                  *      and is interrupting to let us know.
1546                  * or   (3) a spurious interrupt of unknown origin.
1547                  *
1548                  * For PCI, we cannot tell the difference,
1549                  * so in that case we just ignore it and hope it goes away.
1550                  *
1551                  * FIXME: unexpected_intr should be hwif-> then we can
1552                  * remove all the ifdef PCI crap
1553                  */
1554 #ifdef CONFIG_BLK_DEV_IDEPCI
1555                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1556 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1557                 {
1558                         /*
1559                          * Probably not a shared PCI interrupt,
1560                          * so we can safely try to do something about it:
1561                          */
1562                         unexpected_intr(irq, hwgroup);
1563 #ifdef CONFIG_BLK_DEV_IDEPCI
1564                 } else {
1565                         /*
1566                          * Whack the status register, just in case
1567                          * we have a leftover pending IRQ.
1568                          */
1569                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1570 #endif /* CONFIG_BLK_DEV_IDEPCI */
1571                 }
1572                 spin_unlock_irqrestore(&ide_lock, flags);
1573                 return IRQ_NONE;
1574         }
1575         drive = hwgroup->drive;
1576         if (!drive) {
1577                 /*
1578                  * This should NEVER happen, and there isn't much
1579                  * we could do about it here.
1580                  *
1581                  * [Note - this can occur if the drive is hot unplugged]
1582                  */
1583                 spin_unlock_irqrestore(&ide_lock, flags);
1584                 return IRQ_HANDLED;
1585         }
1586         if (!drive_is_ready(drive)) {
1587                 /*
1588                  * This happens regularly when we share a PCI IRQ with
1589                  * another device.  Unfortunately, it can also happen
1590                  * with some buggy drives that trigger the IRQ before
1591                  * their status register is up to date.  Hopefully we have
1592                  * enough advance overhead that the latter isn't a problem.
1593                  */
1594                 spin_unlock_irqrestore(&ide_lock, flags);
1595                 return IRQ_NONE;
1596         }
1597         if (!hwgroup->busy) {
1598                 hwgroup->busy = 1;      /* paranoia */
1599                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1600         }
1601         hwgroup->handler = NULL;
1602         hwgroup->req_gen++;
1603         del_timer(&hwgroup->timer);
1604         spin_unlock(&ide_lock);
1605
1606         /* Some controllers might set DMA INTR no matter DMA or PIO;
1607          * bmdma status might need to be cleared even for
1608          * PIO interrupts to prevent spurious/lost irq.
1609          */
1610         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1611                 /* ide_dma_end() needs bmdma status for error checking.
1612                  * So, skip clearing bmdma status here and leave it
1613                  * to ide_dma_end() if this is dma interrupt.
1614                  */
1615                 hwif->ide_dma_clear_irq(drive);
1616
1617         if (drive->unmask)
1618                 local_irq_enable_in_hardirq();
1619         /* service this interrupt, may set handler for next interrupt */
1620         startstop = handler(drive);
1621         spin_lock_irq(&ide_lock);
1622
1623         /*
1624          * Note that handler() may have set things up for another
1625          * interrupt to occur soon, but it cannot happen until
1626          * we exit from this routine, because it will be the
1627          * same irq as is currently being serviced here, and Linux
1628          * won't allow another of the same (on any CPU) until we return.
1629          */
1630         drive->service_time = jiffies - drive->service_start;
1631         if (startstop == ide_stopped) {
1632                 if (hwgroup->handler == NULL) { /* paranoia */
1633                         hwgroup->busy = 0;
1634                         ide_do_request(hwgroup, hwif->irq);
1635                 } else {
1636                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1637                                 "on exit\n", drive->name);
1638                 }
1639         }
1640         spin_unlock_irqrestore(&ide_lock, flags);
1641         return IRQ_HANDLED;
1642 }
1643
1644 /**
1645  *      ide_init_drive_cmd      -       initialize a drive command request
1646  *      @rq: request object
1647  *
1648  *      Initialize a request before we fill it in and send it down to
1649  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1650  *      now it doesn't do a lot, but if that changes abusers will have a
1651  *      nasty surprise.
1652  */
1653
1654 void ide_init_drive_cmd (struct request *rq)
1655 {
1656         memset(rq, 0, sizeof(*rq));
1657         rq->cmd_type = REQ_TYPE_ATA_CMD;
1658         rq->ref_count = 1;
1659 }
1660
1661 EXPORT_SYMBOL(ide_init_drive_cmd);
1662
1663 /**
1664  *      ide_do_drive_cmd        -       issue IDE special command
1665  *      @drive: device to issue command
1666  *      @rq: request to issue
1667  *      @action: action for processing
1668  *
1669  *      This function issues a special IDE device request
1670  *      onto the request queue.
1671  *
1672  *      If action is ide_wait, then the rq is queued at the end of the
1673  *      request queue, and the function sleeps until it has been processed.
1674  *      This is for use when invoked from an ioctl handler.
1675  *
1676  *      If action is ide_preempt, then the rq is queued at the head of
1677  *      the request queue, displacing the currently-being-processed
1678  *      request and this function returns immediately without waiting
1679  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1680  *      intended for careful use by the ATAPI tape/cdrom driver code.
1681  *
1682  *      If action is ide_end, then the rq is queued at the end of the
1683  *      request queue, and the function returns immediately without waiting
1684  *      for the new rq to be completed. This is again intended for careful
1685  *      use by the ATAPI tape/cdrom driver code.
1686  */
1687  
1688 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1689 {
1690         unsigned long flags;
1691         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1692         DECLARE_COMPLETION_ONSTACK(wait);
1693         int where = ELEVATOR_INSERT_BACK, err;
1694         int must_wait = (action == ide_wait || action == ide_head_wait);
1695
1696         rq->errors = 0;
1697
1698         /*
1699          * we need to hold an extra reference to request for safe inspection
1700          * after completion
1701          */
1702         if (must_wait) {
1703                 rq->ref_count++;
1704                 rq->end_io_data = &wait;
1705                 rq->end_io = blk_end_sync_rq;
1706         }
1707
1708         spin_lock_irqsave(&ide_lock, flags);
1709         if (action == ide_preempt)
1710                 hwgroup->rq = NULL;
1711         if (action == ide_preempt || action == ide_head_wait) {
1712                 where = ELEVATOR_INSERT_FRONT;
1713                 rq->cmd_flags |= REQ_PREEMPT;
1714         }
1715         __elv_add_request(drive->queue, rq, where, 0);
1716         ide_do_request(hwgroup, IDE_NO_IRQ);
1717         spin_unlock_irqrestore(&ide_lock, flags);
1718
1719         err = 0;
1720         if (must_wait) {
1721                 wait_for_completion(&wait);
1722                 if (rq->errors)
1723                         err = -EIO;
1724
1725                 blk_put_request(rq);
1726         }
1727
1728         return err;
1729 }
1730
1731 EXPORT_SYMBOL(ide_do_drive_cmd);
1732
1733 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1734 {
1735         ide_task_t task;
1736
1737         memset(&task, 0, sizeof(task));
1738         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1739                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1740         task.tf.feature = dma;          /* Use PIO/DMA */
1741         task.tf.lbam    = bcount & 0xff;
1742         task.tf.lbah    = (bcount >> 8) & 0xff;
1743
1744         ide_tf_load(drive, &task);
1745 }
1746
1747 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);