2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Copyright 2003 PathScale, Inc.
4 * Derived from include/asm-i386/pgtable.h
5 * Licensed under the GPL
11 #include <asm/fixmap.h>
13 #define _PAGE_PRESENT 0x001
14 #define _PAGE_NEWPAGE 0x002
15 #define _PAGE_NEWPROT 0x004
16 #define _PAGE_RW 0x020
17 #define _PAGE_USER 0x040
18 #define _PAGE_ACCESSED 0x080
19 #define _PAGE_DIRTY 0x100
20 /* If _PAGE_PRESENT is clear, we use these: */
21 #define _PAGE_FILE 0x008 /* nonlinear file mapping, saved PTE; unset:swap */
22 #define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
23 pte_present gives true */
25 #ifdef CONFIG_3_LEVEL_PGTABLES
26 #include "asm/pgtable-3level.h"
28 #include "asm/pgtable-2level.h"
31 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
33 /* zero page used for uninitialized stuff */
34 extern unsigned long *empty_zero_page;
36 #define pgtable_cache_init() do ; while (0)
38 /* Just any arbitrary offset to the start of the vmalloc VM area: the
39 * current 8MB value just means that there will be a 8MB "hole" after the
40 * physical memory until the kernel virtual memory starts. That means that
41 * any out-of-bounds memory accesses will hopefully be caught.
42 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
43 * area for the same reason. ;)
46 extern unsigned long end_iomem;
48 #define VMALLOC_OFFSET (__va_space)
49 #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
51 # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
53 # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
56 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
57 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
58 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
60 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
61 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
62 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
63 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
64 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
67 * The i386 can't do page protection for execute, and considers that the same
69 * Also, write permissions imply read permissions. This is the closest we can
72 #define __P000 PAGE_NONE
73 #define __P001 PAGE_READONLY
74 #define __P010 PAGE_COPY
75 #define __P011 PAGE_COPY
76 #define __P100 PAGE_READONLY
77 #define __P101 PAGE_READONLY
78 #define __P110 PAGE_COPY
79 #define __P111 PAGE_COPY
81 #define __S000 PAGE_NONE
82 #define __S001 PAGE_READONLY
83 #define __S010 PAGE_SHARED
84 #define __S011 PAGE_SHARED
85 #define __S100 PAGE_READONLY
86 #define __S101 PAGE_READONLY
87 #define __S110 PAGE_SHARED
88 #define __S111 PAGE_SHARED
91 * ZERO_PAGE is a global shared page that is always zero: used
92 * for zero-mapped memory areas etc..
94 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
96 #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
98 #define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
99 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
101 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
102 #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
104 #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
105 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
107 #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
108 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
110 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
112 #define pte_page(x) pfn_to_page(pte_pfn(x))
114 #define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
117 * =================================
118 * Flags checking section.
119 * =================================
122 static inline int pte_none(pte_t pte)
124 return pte_is_zero(pte);
128 * The following only work if pte_present() is true.
129 * Undefined behaviour if not..
131 static inline int pte_read(pte_t pte)
133 return((pte_get_bits(pte, _PAGE_USER)) &&
134 !(pte_get_bits(pte, _PAGE_PROTNONE)));
137 static inline int pte_exec(pte_t pte){
138 return((pte_get_bits(pte, _PAGE_USER)) &&
139 !(pte_get_bits(pte, _PAGE_PROTNONE)));
142 static inline int pte_write(pte_t pte)
144 return((pte_get_bits(pte, _PAGE_RW)) &&
145 !(pte_get_bits(pte, _PAGE_PROTNONE)));
149 * The following only works if pte_present() is not true.
151 static inline int pte_file(pte_t pte)
153 return pte_get_bits(pte, _PAGE_FILE);
156 static inline int pte_dirty(pte_t pte)
158 return pte_get_bits(pte, _PAGE_DIRTY);
161 static inline int pte_young(pte_t pte)
163 return pte_get_bits(pte, _PAGE_ACCESSED);
166 static inline int pte_newpage(pte_t pte)
168 return pte_get_bits(pte, _PAGE_NEWPAGE);
171 static inline int pte_newprot(pte_t pte)
173 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
176 static inline int pte_special(pte_t pte)
182 * =================================
183 * Flags setting section.
184 * =================================
187 static inline pte_t pte_mknewprot(pte_t pte)
189 pte_set_bits(pte, _PAGE_NEWPROT);
193 static inline pte_t pte_mkclean(pte_t pte)
195 pte_clear_bits(pte, _PAGE_DIRTY);
199 static inline pte_t pte_mkold(pte_t pte)
201 pte_clear_bits(pte, _PAGE_ACCESSED);
205 static inline pte_t pte_wrprotect(pte_t pte)
207 pte_clear_bits(pte, _PAGE_RW);
208 return(pte_mknewprot(pte));
211 static inline pte_t pte_mkread(pte_t pte)
213 pte_set_bits(pte, _PAGE_USER);
214 return(pte_mknewprot(pte));
217 static inline pte_t pte_mkdirty(pte_t pte)
219 pte_set_bits(pte, _PAGE_DIRTY);
223 static inline pte_t pte_mkyoung(pte_t pte)
225 pte_set_bits(pte, _PAGE_ACCESSED);
229 static inline pte_t pte_mkwrite(pte_t pte)
231 pte_set_bits(pte, _PAGE_RW);
232 return(pte_mknewprot(pte));
235 static inline pte_t pte_mkuptodate(pte_t pte)
237 pte_clear_bits(pte, _PAGE_NEWPAGE);
239 pte_clear_bits(pte, _PAGE_NEWPROT);
243 static inline pte_t pte_mknewpage(pte_t pte)
245 pte_set_bits(pte, _PAGE_NEWPAGE);
249 static inline pte_t pte_mkspecial(pte_t pte)
254 static inline void set_pte(pte_t *pteptr, pte_t pteval)
256 pte_copy(*pteptr, pteval);
258 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
259 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to
263 *pteptr = pte_mknewpage(*pteptr);
264 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
266 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
269 * Conversion functions: convert a page and protection to a page entry,
270 * and a page entry and page directory to the page they refer to.
273 #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
274 #define __virt_to_page(virt) phys_to_page(__pa(virt))
275 #define page_to_phys(page) pfn_to_phys((pfn_t) page_to_pfn(page))
276 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
278 #define mk_pte(page, pgprot) \
281 pte_set_val(pte, page_to_phys(page), (pgprot)); \
282 if (pte_present(pte)) \
283 pte_mknewprot(pte_mknewpage(pte)); \
286 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
288 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
293 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
295 * this macro returns the index of the entry in the pgd page which would
296 * control the given virtual address
298 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
301 * pgd_offset() returns a (pgd_t *)
302 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
304 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
307 * a shortcut which implies the use of the kernel's pgd, instead
310 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
313 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
315 * this macro returns the index of the entry in the pmd page which would
316 * control the given virtual address
318 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
319 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
321 #define pmd_page_vaddr(pmd) \
322 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
325 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
327 * this macro returns the index of the entry in the pte page which would
328 * control the given virtual address
330 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
331 #define pte_offset_kernel(dir, address) \
332 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
333 #define pte_offset_map(dir, address) \
334 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
335 #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
336 #define pte_unmap(pte) do { } while (0)
337 #define pte_unmap_nested(pte) do { } while (0)
340 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
342 #define update_mmu_cache(vma,address,pte) do ; while (0)
344 /* Encode and de-code a swap entry */
345 #define __swp_type(x) (((x).val >> 4) & 0x3f)
346 #define __swp_offset(x) ((x).val >> 11)
348 #define __swp_entry(type, offset) \
349 ((swp_entry_t) { ((type) << 4) | ((offset) << 11) })
350 #define __pte_to_swp_entry(pte) \
351 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
352 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
354 #define kern_addr_valid(addr) (1)
356 #include <asm-generic/pgtable.h>