2 * drivers/base/power/trace.c
4 * Copyright (C) 2006 Linus Torvalds
6 * Trace facility for suspend/resume problems, when none of the
7 * devices may be working.
10 #include <linux/resume-trace.h>
11 #include <linux/rtc.h>
18 * Horrid, horrid, horrid.
20 * It turns out that the _only_ piece of hardware that actually
21 * keeps its value across a hard boot (and, more importantly, the
22 * POST init sequence) is literally the realtime clock.
24 * Never mind that an RTC chip has 114 bytes (and often a whole
25 * other bank of an additional 128 bytes) of nice SRAM that is
26 * _designed_ to keep data - the POST will clear it. So we literally
27 * can just use the few bytes of actual time data, which means that
28 * we're really limited.
30 * It means, for example, that we can't use the seconds at all
31 * (since the time between the hang and the boot might be more
32 * than a minute), and we'd better not depend on the low bits of
35 * There are the wday fields etc, but I wouldn't guarantee those
36 * are dependable either. And if the date isn't valid, either the
37 * hw or POST will do strange things.
42 * - day-of-month: 1-28
46 * Giving us a total range of 0-16128000 (0xf61800), ie less
47 * than 24 bits of actual data we can save across reboots.
49 * And if your box can't boot in less than three minutes,
52 * Now, almost 24 bits of data is pitifully small, so we need
53 * to be pretty dense if we want to use it for anything nice.
54 * What we do is that instead of saving off nice readable info,
55 * we save off _hashes_ of information that we can hopefully
56 * regenerate after the reboot.
58 * In particular, this means that we might be unlucky, and hit
59 * a case where we have a hash collision, and we end up not
60 * being able to tell for certain exactly which case happened.
61 * But that's hopefully unlikely.
63 * What we do is to take the bits we can fit, and split them
64 * into three parts (16*997*1009 = 16095568), and use the values
66 * - 0-15: user-settable
67 * - 0-996: file + line number
71 #define FILEHASH (997)
72 #define DEVHASH (1009)
74 #define DEVSEED (7919)
76 static unsigned int dev_hash_value;
78 static int set_magic_time(unsigned int user, unsigned int file, unsigned int device)
80 unsigned int n = user + USERHASH*(file + FILEHASH*device);
83 static struct rtc_time time = {
88 .tm_mon = 5, // June - counting from zero
95 time.tm_year = (n % 100);
97 time.tm_mon = (n % 12);
99 time.tm_mday = (n % 28) + 1;
101 time.tm_hour = (n % 24);
103 time.tm_min = (n % 20) * 3;
109 static unsigned int read_magic_time(void)
111 struct rtc_time time;
115 printk("Time: %2d:%02d:%02d Date: %02d/%02d/%02d\n",
116 time.tm_hour, time.tm_min, time.tm_sec,
117 time.tm_mon + 1, time.tm_mday, time.tm_year % 100);
118 val = time.tm_year; /* 100 years */
121 val += time.tm_mon * 100; /* 12 months */
122 val += (time.tm_mday-1) * 100 * 12; /* 28 month-days */
123 val += time.tm_hour * 100 * 12 * 28; /* 24 hours */
124 val += (time.tm_min / 3) * 100 * 12 * 28 * 24; /* 20 3-minute intervals */
129 * This is just the sdbm hash function with a user-supplied
130 * seed and final size parameter.
132 static unsigned int hash_string(unsigned int seed, const char *data, unsigned int mod)
135 while ((c = *data++) != 0) {
136 seed = (seed << 16) + (seed << 6) - seed + c;
141 void set_trace_device(struct device *dev)
143 dev_hash_value = hash_string(DEVSEED, dev->bus_id, DEVHASH);
145 EXPORT_SYMBOL(set_trace_device);
148 * We could just take the "tracedata" index into the .tracedata
149 * section instead. Generating a hash of the data gives us a
150 * chance to work across kernel versions, and perhaps more
151 * importantly it also gives us valid/invalid check (ie we will
152 * likely not give totally bogus reports - if the hash matches,
153 * it's not any guarantee, but it's a high _likelihood_ that
154 * the match is valid).
156 void generate_resume_trace(const void *tracedata, unsigned int user)
158 unsigned short lineno = *(unsigned short *)tracedata;
159 const char *file = *(const char **)(tracedata + 2);
160 unsigned int user_hash_value, file_hash_value;
162 user_hash_value = user % USERHASH;
163 file_hash_value = hash_string(lineno, file, FILEHASH);
164 set_magic_time(user_hash_value, file_hash_value, dev_hash_value);
166 EXPORT_SYMBOL(generate_resume_trace);
168 extern char __tracedata_start, __tracedata_end;
169 static int show_file_hash(unsigned int value)
175 for (tracedata = &__tracedata_start ; tracedata < &__tracedata_end ;
176 tracedata += 2 + sizeof(unsigned long)) {
177 unsigned short lineno = *(unsigned short *)tracedata;
178 const char *file = *(const char **)(tracedata + 2);
179 unsigned int hash = hash_string(lineno, file, FILEHASH);
182 printk(" hash matches %s:%u\n", file, lineno);
188 static int show_dev_hash(unsigned int value)
191 struct list_head * entry = dpm_active.prev;
193 while (entry != &dpm_active) {
194 struct device * dev = to_device(entry);
195 unsigned int hash = hash_string(DEVSEED, dev->bus_id, DEVHASH);
197 printk(" hash matches device %s\n", dev->bus_id);
205 static unsigned int hash_value_early_read;
207 static int early_resume_init(void)
209 hash_value_early_read = read_magic_time();
213 static int late_resume_init(void)
215 unsigned int val = hash_value_early_read;
216 unsigned int user, file, dev;
218 user = val % USERHASH;
219 val = val / USERHASH;
220 file = val % FILEHASH;
221 val = val / FILEHASH;
222 dev = val /* % DEVHASH */;
224 printk(" Magic number: %d:%d:%d\n", user, file, dev);
225 show_file_hash(file);
230 core_initcall(early_resume_init);
231 late_initcall(late_resume_init);