4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
57 #include <asm/tlbflush.h>
58 #include <asm/pgtable.h>
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
63 #ifndef CONFIG_NEED_MULTIPLE_NODES
64 /* use the per-pgdat data instead for discontigmem - mbligh */
65 unsigned long max_mapnr;
68 EXPORT_SYMBOL(max_mapnr);
69 EXPORT_SYMBOL(mem_map);
72 unsigned long num_physpages;
74 * A number of key systems in x86 including ioremap() rely on the assumption
75 * that high_memory defines the upper bound on direct map memory, then end
76 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
77 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82 EXPORT_SYMBOL(num_physpages);
83 EXPORT_SYMBOL(high_memory);
85 int randomize_va_space __read_mostly = 1;
87 static int __init disable_randmaps(char *s)
89 randomize_va_space = 0;
92 __setup("norandmaps", disable_randmaps);
96 * If a p?d_bad entry is found while walking page tables, report
97 * the error, before resetting entry to p?d_none. Usually (but
98 * very seldom) called out from the p?d_none_or_clear_bad macros.
101 void pgd_clear_bad(pgd_t *pgd)
107 void pud_clear_bad(pud_t *pud)
113 void pmd_clear_bad(pmd_t *pmd)
120 * Note: this doesn't free the actual pages themselves. That
121 * has been handled earlier when unmapping all the memory regions.
123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
125 struct page *page = pmd_page(*pmd);
127 pte_lock_deinit(page);
128 pte_free_tlb(tlb, page);
129 dec_zone_page_state(page, NR_PAGETABLE);
133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134 unsigned long addr, unsigned long end,
135 unsigned long floor, unsigned long ceiling)
142 pmd = pmd_offset(pud, addr);
144 next = pmd_addr_end(addr, end);
145 if (pmd_none_or_clear_bad(pmd))
147 free_pte_range(tlb, pmd);
148 } while (pmd++, addr = next, addr != end);
158 if (end - 1 > ceiling - 1)
161 pmd = pmd_offset(pud, start);
163 pmd_free_tlb(tlb, pmd);
166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167 unsigned long addr, unsigned long end,
168 unsigned long floor, unsigned long ceiling)
175 pud = pud_offset(pgd, addr);
177 next = pud_addr_end(addr, end);
178 if (pud_none_or_clear_bad(pud))
180 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
181 } while (pud++, addr = next, addr != end);
187 ceiling &= PGDIR_MASK;
191 if (end - 1 > ceiling - 1)
194 pud = pud_offset(pgd, start);
196 pud_free_tlb(tlb, pud);
200 * This function frees user-level page tables of a process.
202 * Must be called with pagetable lock held.
204 void free_pgd_range(struct mmu_gather **tlb,
205 unsigned long addr, unsigned long end,
206 unsigned long floor, unsigned long ceiling)
213 * The next few lines have given us lots of grief...
215 * Why are we testing PMD* at this top level? Because often
216 * there will be no work to do at all, and we'd prefer not to
217 * go all the way down to the bottom just to discover that.
219 * Why all these "- 1"s? Because 0 represents both the bottom
220 * of the address space and the top of it (using -1 for the
221 * top wouldn't help much: the masks would do the wrong thing).
222 * The rule is that addr 0 and floor 0 refer to the bottom of
223 * the address space, but end 0 and ceiling 0 refer to the top
224 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225 * that end 0 case should be mythical).
227 * Wherever addr is brought up or ceiling brought down, we must
228 * be careful to reject "the opposite 0" before it confuses the
229 * subsequent tests. But what about where end is brought down
230 * by PMD_SIZE below? no, end can't go down to 0 there.
232 * Whereas we round start (addr) and ceiling down, by different
233 * masks at different levels, in order to test whether a table
234 * now has no other vmas using it, so can be freed, we don't
235 * bother to round floor or end up - the tests don't need that.
249 if (end - 1 > ceiling - 1)
255 pgd = pgd_offset((*tlb)->mm, addr);
257 next = pgd_addr_end(addr, end);
258 if (pgd_none_or_clear_bad(pgd))
260 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
261 } while (pgd++, addr = next, addr != end);
264 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
265 unsigned long floor, unsigned long ceiling)
268 struct vm_area_struct *next = vma->vm_next;
269 unsigned long addr = vma->vm_start;
272 * Hide vma from rmap and vmtruncate before freeing pgtables
274 anon_vma_unlink(vma);
275 unlink_file_vma(vma);
277 if (is_vm_hugetlb_page(vma)) {
278 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
279 floor, next? next->vm_start: ceiling);
282 * Optimization: gather nearby vmas into one call down
284 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
285 && !is_vm_hugetlb_page(next)) {
288 anon_vma_unlink(vma);
289 unlink_file_vma(vma);
291 free_pgd_range(tlb, addr, vma->vm_end,
292 floor, next? next->vm_start: ceiling);
298 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
300 struct page *new = pte_alloc_one(mm, address);
305 spin_lock(&mm->page_table_lock);
306 if (pmd_present(*pmd)) { /* Another has populated it */
307 pte_lock_deinit(new);
311 inc_zone_page_state(new, NR_PAGETABLE);
312 pmd_populate(mm, pmd, new);
314 spin_unlock(&mm->page_table_lock);
318 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
320 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
324 spin_lock(&init_mm.page_table_lock);
325 if (pmd_present(*pmd)) /* Another has populated it */
326 pte_free_kernel(new);
328 pmd_populate_kernel(&init_mm, pmd, new);
329 spin_unlock(&init_mm.page_table_lock);
333 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
336 add_mm_counter(mm, file_rss, file_rss);
338 add_mm_counter(mm, anon_rss, anon_rss);
342 * This function is called to print an error when a bad pte
343 * is found. For example, we might have a PFN-mapped pte in
344 * a region that doesn't allow it.
346 * The calling function must still handle the error.
348 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
350 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
351 "vm_flags = %lx, vaddr = %lx\n",
352 (long long)pte_val(pte),
353 (vma->vm_mm == current->mm ? current->comm : "???"),
354 vma->vm_flags, vaddr);
358 static inline int is_cow_mapping(unsigned int flags)
360 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
364 * This function gets the "struct page" associated with a pte.
366 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
367 * will have each page table entry just pointing to a raw page frame
368 * number, and as far as the VM layer is concerned, those do not have
369 * pages associated with them - even if the PFN might point to memory
370 * that otherwise is perfectly fine and has a "struct page".
372 * The way we recognize those mappings is through the rules set up
373 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
374 * and the vm_pgoff will point to the first PFN mapped: thus every
375 * page that is a raw mapping will always honor the rule
377 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
379 * and if that isn't true, the page has been COW'ed (in which case it
380 * _does_ have a "struct page" associated with it even if it is in a
383 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
385 unsigned long pfn = pte_pfn(pte);
387 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
388 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
389 if (pfn == vma->vm_pgoff + off)
391 if (!is_cow_mapping(vma->vm_flags))
396 * Add some anal sanity checks for now. Eventually,
397 * we should just do "return pfn_to_page(pfn)", but
398 * in the meantime we check that we get a valid pfn,
399 * and that the resulting page looks ok.
401 if (unlikely(!pfn_valid(pfn))) {
402 print_bad_pte(vma, pte, addr);
407 * NOTE! We still have PageReserved() pages in the page
410 * The PAGE_ZERO() pages and various VDSO mappings can
411 * cause them to exist.
413 return pfn_to_page(pfn);
417 * copy one vm_area from one task to the other. Assumes the page tables
418 * already present in the new task to be cleared in the whole range
419 * covered by this vma.
423 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
424 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
425 unsigned long addr, int *rss)
427 unsigned long vm_flags = vma->vm_flags;
428 pte_t pte = *src_pte;
431 /* pte contains position in swap or file, so copy. */
432 if (unlikely(!pte_present(pte))) {
433 if (!pte_file(pte)) {
434 swp_entry_t entry = pte_to_swp_entry(pte);
436 swap_duplicate(entry);
437 /* make sure dst_mm is on swapoff's mmlist. */
438 if (unlikely(list_empty(&dst_mm->mmlist))) {
439 spin_lock(&mmlist_lock);
440 if (list_empty(&dst_mm->mmlist))
441 list_add(&dst_mm->mmlist,
443 spin_unlock(&mmlist_lock);
445 if (is_write_migration_entry(entry) &&
446 is_cow_mapping(vm_flags)) {
448 * COW mappings require pages in both parent
449 * and child to be set to read.
451 make_migration_entry_read(&entry);
452 pte = swp_entry_to_pte(entry);
453 set_pte_at(src_mm, addr, src_pte, pte);
460 * If it's a COW mapping, write protect it both
461 * in the parent and the child
463 if (is_cow_mapping(vm_flags)) {
464 ptep_set_wrprotect(src_mm, addr, src_pte);
465 pte = pte_wrprotect(pte);
469 * If it's a shared mapping, mark it clean in
472 if (vm_flags & VM_SHARED)
473 pte = pte_mkclean(pte);
474 pte = pte_mkold(pte);
476 page = vm_normal_page(vma, addr, pte);
479 page_dup_rmap(page, vma, addr);
480 rss[!!PageAnon(page)]++;
484 set_pte_at(dst_mm, addr, dst_pte, pte);
487 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
488 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
489 unsigned long addr, unsigned long end)
491 pte_t *src_pte, *dst_pte;
492 spinlock_t *src_ptl, *dst_ptl;
498 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
501 src_pte = pte_offset_map_nested(src_pmd, addr);
502 src_ptl = pte_lockptr(src_mm, src_pmd);
503 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
504 arch_enter_lazy_mmu_mode();
508 * We are holding two locks at this point - either of them
509 * could generate latencies in another task on another CPU.
511 if (progress >= 32) {
513 if (need_resched() ||
514 need_lockbreak(src_ptl) ||
515 need_lockbreak(dst_ptl))
518 if (pte_none(*src_pte)) {
522 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
524 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
526 arch_leave_lazy_mmu_mode();
527 spin_unlock(src_ptl);
528 pte_unmap_nested(src_pte - 1);
529 add_mm_rss(dst_mm, rss[0], rss[1]);
530 pte_unmap_unlock(dst_pte - 1, dst_ptl);
537 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
538 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
539 unsigned long addr, unsigned long end)
541 pmd_t *src_pmd, *dst_pmd;
544 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
547 src_pmd = pmd_offset(src_pud, addr);
549 next = pmd_addr_end(addr, end);
550 if (pmd_none_or_clear_bad(src_pmd))
552 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
555 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
559 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
560 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
561 unsigned long addr, unsigned long end)
563 pud_t *src_pud, *dst_pud;
566 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
569 src_pud = pud_offset(src_pgd, addr);
571 next = pud_addr_end(addr, end);
572 if (pud_none_or_clear_bad(src_pud))
574 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
577 } while (dst_pud++, src_pud++, addr = next, addr != end);
581 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
582 struct vm_area_struct *vma)
584 pgd_t *src_pgd, *dst_pgd;
586 unsigned long addr = vma->vm_start;
587 unsigned long end = vma->vm_end;
590 * Don't copy ptes where a page fault will fill them correctly.
591 * Fork becomes much lighter when there are big shared or private
592 * readonly mappings. The tradeoff is that copy_page_range is more
593 * efficient than faulting.
595 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
600 if (is_vm_hugetlb_page(vma))
601 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
603 dst_pgd = pgd_offset(dst_mm, addr);
604 src_pgd = pgd_offset(src_mm, addr);
606 next = pgd_addr_end(addr, end);
607 if (pgd_none_or_clear_bad(src_pgd))
609 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
612 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
616 static unsigned long zap_pte_range(struct mmu_gather *tlb,
617 struct vm_area_struct *vma, pmd_t *pmd,
618 unsigned long addr, unsigned long end,
619 long *zap_work, struct zap_details *details)
621 struct mm_struct *mm = tlb->mm;
627 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
628 arch_enter_lazy_mmu_mode();
631 if (pte_none(ptent)) {
636 (*zap_work) -= PAGE_SIZE;
638 if (pte_present(ptent)) {
641 page = vm_normal_page(vma, addr, ptent);
642 if (unlikely(details) && page) {
644 * unmap_shared_mapping_pages() wants to
645 * invalidate cache without truncating:
646 * unmap shared but keep private pages.
648 if (details->check_mapping &&
649 details->check_mapping != page->mapping)
652 * Each page->index must be checked when
653 * invalidating or truncating nonlinear.
655 if (details->nonlinear_vma &&
656 (page->index < details->first_index ||
657 page->index > details->last_index))
660 ptent = ptep_get_and_clear_full(mm, addr, pte,
662 tlb_remove_tlb_entry(tlb, pte, addr);
665 if (unlikely(details) && details->nonlinear_vma
666 && linear_page_index(details->nonlinear_vma,
667 addr) != page->index)
668 set_pte_at(mm, addr, pte,
669 pgoff_to_pte(page->index));
673 if (pte_dirty(ptent))
674 set_page_dirty(page);
675 if (pte_young(ptent))
676 SetPageReferenced(page);
679 page_remove_rmap(page, vma);
680 tlb_remove_page(tlb, page);
684 * If details->check_mapping, we leave swap entries;
685 * if details->nonlinear_vma, we leave file entries.
687 if (unlikely(details))
689 if (!pte_file(ptent))
690 free_swap_and_cache(pte_to_swp_entry(ptent));
691 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
692 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
694 add_mm_rss(mm, file_rss, anon_rss);
695 arch_leave_lazy_mmu_mode();
696 pte_unmap_unlock(pte - 1, ptl);
701 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
702 struct vm_area_struct *vma, pud_t *pud,
703 unsigned long addr, unsigned long end,
704 long *zap_work, struct zap_details *details)
709 pmd = pmd_offset(pud, addr);
711 next = pmd_addr_end(addr, end);
712 if (pmd_none_or_clear_bad(pmd)) {
716 next = zap_pte_range(tlb, vma, pmd, addr, next,
718 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
723 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
724 struct vm_area_struct *vma, pgd_t *pgd,
725 unsigned long addr, unsigned long end,
726 long *zap_work, struct zap_details *details)
731 pud = pud_offset(pgd, addr);
733 next = pud_addr_end(addr, end);
734 if (pud_none_or_clear_bad(pud)) {
738 next = zap_pmd_range(tlb, vma, pud, addr, next,
740 } while (pud++, addr = next, (addr != end && *zap_work > 0));
745 static unsigned long unmap_page_range(struct mmu_gather *tlb,
746 struct vm_area_struct *vma,
747 unsigned long addr, unsigned long end,
748 long *zap_work, struct zap_details *details)
753 if (details && !details->check_mapping && !details->nonlinear_vma)
757 tlb_start_vma(tlb, vma);
758 pgd = pgd_offset(vma->vm_mm, addr);
760 next = pgd_addr_end(addr, end);
761 if (pgd_none_or_clear_bad(pgd)) {
765 next = zap_pud_range(tlb, vma, pgd, addr, next,
767 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
768 tlb_end_vma(tlb, vma);
773 #ifdef CONFIG_PREEMPT
774 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
776 /* No preempt: go for improved straight-line efficiency */
777 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
781 * unmap_vmas - unmap a range of memory covered by a list of vma's
782 * @tlbp: address of the caller's struct mmu_gather
783 * @vma: the starting vma
784 * @start_addr: virtual address at which to start unmapping
785 * @end_addr: virtual address at which to end unmapping
786 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
787 * @details: details of nonlinear truncation or shared cache invalidation
789 * Returns the end address of the unmapping (restart addr if interrupted).
791 * Unmap all pages in the vma list.
793 * We aim to not hold locks for too long (for scheduling latency reasons).
794 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
795 * return the ending mmu_gather to the caller.
797 * Only addresses between `start' and `end' will be unmapped.
799 * The VMA list must be sorted in ascending virtual address order.
801 * unmap_vmas() assumes that the caller will flush the whole unmapped address
802 * range after unmap_vmas() returns. So the only responsibility here is to
803 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
804 * drops the lock and schedules.
806 unsigned long unmap_vmas(struct mmu_gather **tlbp,
807 struct vm_area_struct *vma, unsigned long start_addr,
808 unsigned long end_addr, unsigned long *nr_accounted,
809 struct zap_details *details)
811 long zap_work = ZAP_BLOCK_SIZE;
812 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
813 int tlb_start_valid = 0;
814 unsigned long start = start_addr;
815 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
816 int fullmm = (*tlbp)->fullmm;
818 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
821 start = max(vma->vm_start, start_addr);
822 if (start >= vma->vm_end)
824 end = min(vma->vm_end, end_addr);
825 if (end <= vma->vm_start)
828 if (vma->vm_flags & VM_ACCOUNT)
829 *nr_accounted += (end - start) >> PAGE_SHIFT;
831 while (start != end) {
832 if (!tlb_start_valid) {
837 if (unlikely(is_vm_hugetlb_page(vma))) {
838 unmap_hugepage_range(vma, start, end);
839 zap_work -= (end - start) /
840 (HPAGE_SIZE / PAGE_SIZE);
843 start = unmap_page_range(*tlbp, vma,
844 start, end, &zap_work, details);
847 BUG_ON(start != end);
851 tlb_finish_mmu(*tlbp, tlb_start, start);
853 if (need_resched() ||
854 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
862 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
864 zap_work = ZAP_BLOCK_SIZE;
868 return start; /* which is now the end (or restart) address */
872 * zap_page_range - remove user pages in a given range
873 * @vma: vm_area_struct holding the applicable pages
874 * @address: starting address of pages to zap
875 * @size: number of bytes to zap
876 * @details: details of nonlinear truncation or shared cache invalidation
878 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
879 unsigned long size, struct zap_details *details)
881 struct mm_struct *mm = vma->vm_mm;
882 struct mmu_gather *tlb;
883 unsigned long end = address + size;
884 unsigned long nr_accounted = 0;
887 tlb = tlb_gather_mmu(mm, 0);
888 update_hiwater_rss(mm);
889 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
891 tlb_finish_mmu(tlb, address, end);
896 * Do a quick page-table lookup for a single page.
898 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
907 struct mm_struct *mm = vma->vm_mm;
909 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
911 BUG_ON(flags & FOLL_GET);
916 pgd = pgd_offset(mm, address);
917 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
920 pud = pud_offset(pgd, address);
921 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
924 pmd = pmd_offset(pud, address);
925 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
928 if (pmd_huge(*pmd)) {
929 BUG_ON(flags & FOLL_GET);
930 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
934 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
939 if (!pte_present(pte))
941 if ((flags & FOLL_WRITE) && !pte_write(pte))
943 page = vm_normal_page(vma, address, pte);
947 if (flags & FOLL_GET)
949 if (flags & FOLL_TOUCH) {
950 if ((flags & FOLL_WRITE) &&
951 !pte_dirty(pte) && !PageDirty(page))
952 set_page_dirty(page);
953 mark_page_accessed(page);
956 pte_unmap_unlock(ptep, ptl);
962 * When core dumping an enormous anonymous area that nobody
963 * has touched so far, we don't want to allocate page tables.
965 if (flags & FOLL_ANON) {
967 if (flags & FOLL_GET)
969 BUG_ON(flags & FOLL_WRITE);
974 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
975 unsigned long start, int len, int write, int force,
976 struct page **pages, struct vm_area_struct **vmas)
979 unsigned int vm_flags;
982 * Require read or write permissions.
983 * If 'force' is set, we only require the "MAY" flags.
985 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
986 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
990 struct vm_area_struct *vma;
991 unsigned int foll_flags;
993 vma = find_extend_vma(mm, start);
994 if (!vma && in_gate_area(tsk, start)) {
995 unsigned long pg = start & PAGE_MASK;
996 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1001 if (write) /* user gate pages are read-only */
1002 return i ? : -EFAULT;
1004 pgd = pgd_offset_k(pg);
1006 pgd = pgd_offset_gate(mm, pg);
1007 BUG_ON(pgd_none(*pgd));
1008 pud = pud_offset(pgd, pg);
1009 BUG_ON(pud_none(*pud));
1010 pmd = pmd_offset(pud, pg);
1012 return i ? : -EFAULT;
1013 pte = pte_offset_map(pmd, pg);
1014 if (pte_none(*pte)) {
1016 return i ? : -EFAULT;
1019 struct page *page = vm_normal_page(gate_vma, start, *pte);
1033 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1034 || !(vm_flags & vma->vm_flags))
1035 return i ? : -EFAULT;
1037 if (is_vm_hugetlb_page(vma)) {
1038 i = follow_hugetlb_page(mm, vma, pages, vmas,
1039 &start, &len, i, write);
1043 foll_flags = FOLL_TOUCH;
1045 foll_flags |= FOLL_GET;
1046 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1047 (!vma->vm_ops || (!vma->vm_ops->nopage &&
1048 !vma->vm_ops->fault)))
1049 foll_flags |= FOLL_ANON;
1055 * If tsk is ooming, cut off its access to large memory
1056 * allocations. It has a pending SIGKILL, but it can't
1057 * be processed until returning to user space.
1059 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1063 foll_flags |= FOLL_WRITE;
1066 while (!(page = follow_page(vma, start, foll_flags))) {
1068 ret = handle_mm_fault(mm, vma, start,
1069 foll_flags & FOLL_WRITE);
1070 if (ret & VM_FAULT_ERROR) {
1071 if (ret & VM_FAULT_OOM)
1072 return i ? i : -ENOMEM;
1073 else if (ret & VM_FAULT_SIGBUS)
1074 return i ? i : -EFAULT;
1077 if (ret & VM_FAULT_MAJOR)
1083 * The VM_FAULT_WRITE bit tells us that
1084 * do_wp_page has broken COW when necessary,
1085 * even if maybe_mkwrite decided not to set
1086 * pte_write. We can thus safely do subsequent
1087 * page lookups as if they were reads.
1089 if (ret & VM_FAULT_WRITE)
1090 foll_flags &= ~FOLL_WRITE;
1097 flush_anon_page(vma, page, start);
1098 flush_dcache_page(page);
1105 } while (len && start < vma->vm_end);
1109 EXPORT_SYMBOL(get_user_pages);
1111 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1113 pgd_t * pgd = pgd_offset(mm, addr);
1114 pud_t * pud = pud_alloc(mm, pgd, addr);
1116 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1118 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1124 * This is the old fallback for page remapping.
1126 * For historical reasons, it only allows reserved pages. Only
1127 * old drivers should use this, and they needed to mark their
1128 * pages reserved for the old functions anyway.
1130 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1140 flush_dcache_page(page);
1141 pte = get_locked_pte(mm, addr, &ptl);
1145 if (!pte_none(*pte))
1148 /* Ok, finally just insert the thing.. */
1150 inc_mm_counter(mm, file_rss);
1151 page_add_file_rmap(page);
1152 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1156 pte_unmap_unlock(pte, ptl);
1162 * vm_insert_page - insert single page into user vma
1163 * @vma: user vma to map to
1164 * @addr: target user address of this page
1165 * @page: source kernel page
1167 * This allows drivers to insert individual pages they've allocated
1170 * The page has to be a nice clean _individual_ kernel allocation.
1171 * If you allocate a compound page, you need to have marked it as
1172 * such (__GFP_COMP), or manually just split the page up yourself
1173 * (see split_page()).
1175 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1176 * took an arbitrary page protection parameter. This doesn't allow
1177 * that. Your vma protection will have to be set up correctly, which
1178 * means that if you want a shared writable mapping, you'd better
1179 * ask for a shared writable mapping!
1181 * The page does not need to be reserved.
1183 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1185 if (addr < vma->vm_start || addr >= vma->vm_end)
1187 if (!page_count(page))
1189 vma->vm_flags |= VM_INSERTPAGE;
1190 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1192 EXPORT_SYMBOL(vm_insert_page);
1195 * vm_insert_pfn - insert single pfn into user vma
1196 * @vma: user vma to map to
1197 * @addr: target user address of this page
1198 * @pfn: source kernel pfn
1200 * Similar to vm_inert_page, this allows drivers to insert individual pages
1201 * they've allocated into a user vma. Same comments apply.
1203 * This function should only be called from a vm_ops->fault handler, and
1204 * in that case the handler should return NULL.
1206 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1209 struct mm_struct *mm = vma->vm_mm;
1214 BUG_ON(!(vma->vm_flags & VM_PFNMAP));
1215 BUG_ON(is_cow_mapping(vma->vm_flags));
1218 pte = get_locked_pte(mm, addr, &ptl);
1222 if (!pte_none(*pte))
1225 /* Ok, finally just insert the thing.. */
1226 entry = pfn_pte(pfn, vma->vm_page_prot);
1227 set_pte_at(mm, addr, pte, entry);
1228 update_mmu_cache(vma, addr, entry);
1232 pte_unmap_unlock(pte, ptl);
1237 EXPORT_SYMBOL(vm_insert_pfn);
1240 * maps a range of physical memory into the requested pages. the old
1241 * mappings are removed. any references to nonexistent pages results
1242 * in null mappings (currently treated as "copy-on-access")
1244 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1245 unsigned long addr, unsigned long end,
1246 unsigned long pfn, pgprot_t prot)
1251 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1254 arch_enter_lazy_mmu_mode();
1256 BUG_ON(!pte_none(*pte));
1257 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1259 } while (pte++, addr += PAGE_SIZE, addr != end);
1260 arch_leave_lazy_mmu_mode();
1261 pte_unmap_unlock(pte - 1, ptl);
1265 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1266 unsigned long addr, unsigned long end,
1267 unsigned long pfn, pgprot_t prot)
1272 pfn -= addr >> PAGE_SHIFT;
1273 pmd = pmd_alloc(mm, pud, addr);
1277 next = pmd_addr_end(addr, end);
1278 if (remap_pte_range(mm, pmd, addr, next,
1279 pfn + (addr >> PAGE_SHIFT), prot))
1281 } while (pmd++, addr = next, addr != end);
1285 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1286 unsigned long addr, unsigned long end,
1287 unsigned long pfn, pgprot_t prot)
1292 pfn -= addr >> PAGE_SHIFT;
1293 pud = pud_alloc(mm, pgd, addr);
1297 next = pud_addr_end(addr, end);
1298 if (remap_pmd_range(mm, pud, addr, next,
1299 pfn + (addr >> PAGE_SHIFT), prot))
1301 } while (pud++, addr = next, addr != end);
1306 * remap_pfn_range - remap kernel memory to userspace
1307 * @vma: user vma to map to
1308 * @addr: target user address to start at
1309 * @pfn: physical address of kernel memory
1310 * @size: size of map area
1311 * @prot: page protection flags for this mapping
1313 * Note: this is only safe if the mm semaphore is held when called.
1315 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1316 unsigned long pfn, unsigned long size, pgprot_t prot)
1320 unsigned long end = addr + PAGE_ALIGN(size);
1321 struct mm_struct *mm = vma->vm_mm;
1325 * Physically remapped pages are special. Tell the
1326 * rest of the world about it:
1327 * VM_IO tells people not to look at these pages
1328 * (accesses can have side effects).
1329 * VM_RESERVED is specified all over the place, because
1330 * in 2.4 it kept swapout's vma scan off this vma; but
1331 * in 2.6 the LRU scan won't even find its pages, so this
1332 * flag means no more than count its pages in reserved_vm,
1333 * and omit it from core dump, even when VM_IO turned off.
1334 * VM_PFNMAP tells the core MM that the base pages are just
1335 * raw PFN mappings, and do not have a "struct page" associated
1338 * There's a horrible special case to handle copy-on-write
1339 * behaviour that some programs depend on. We mark the "original"
1340 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1342 if (is_cow_mapping(vma->vm_flags)) {
1343 if (addr != vma->vm_start || end != vma->vm_end)
1345 vma->vm_pgoff = pfn;
1348 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1350 BUG_ON(addr >= end);
1351 pfn -= addr >> PAGE_SHIFT;
1352 pgd = pgd_offset(mm, addr);
1353 flush_cache_range(vma, addr, end);
1355 next = pgd_addr_end(addr, end);
1356 err = remap_pud_range(mm, pgd, addr, next,
1357 pfn + (addr >> PAGE_SHIFT), prot);
1360 } while (pgd++, addr = next, addr != end);
1363 EXPORT_SYMBOL(remap_pfn_range);
1365 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1366 unsigned long addr, unsigned long end,
1367 pte_fn_t fn, void *data)
1371 struct page *pmd_page;
1372 spinlock_t *uninitialized_var(ptl);
1374 pte = (mm == &init_mm) ?
1375 pte_alloc_kernel(pmd, addr) :
1376 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1380 BUG_ON(pmd_huge(*pmd));
1382 pmd_page = pmd_page(*pmd);
1385 err = fn(pte, pmd_page, addr, data);
1388 } while (pte++, addr += PAGE_SIZE, addr != end);
1391 pte_unmap_unlock(pte-1, ptl);
1395 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1396 unsigned long addr, unsigned long end,
1397 pte_fn_t fn, void *data)
1403 pmd = pmd_alloc(mm, pud, addr);
1407 next = pmd_addr_end(addr, end);
1408 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1411 } while (pmd++, addr = next, addr != end);
1415 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1416 unsigned long addr, unsigned long end,
1417 pte_fn_t fn, void *data)
1423 pud = pud_alloc(mm, pgd, addr);
1427 next = pud_addr_end(addr, end);
1428 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1431 } while (pud++, addr = next, addr != end);
1436 * Scan a region of virtual memory, filling in page tables as necessary
1437 * and calling a provided function on each leaf page table.
1439 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1440 unsigned long size, pte_fn_t fn, void *data)
1444 unsigned long end = addr + size;
1447 BUG_ON(addr >= end);
1448 pgd = pgd_offset(mm, addr);
1450 next = pgd_addr_end(addr, end);
1451 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1454 } while (pgd++, addr = next, addr != end);
1457 EXPORT_SYMBOL_GPL(apply_to_page_range);
1460 * handle_pte_fault chooses page fault handler according to an entry
1461 * which was read non-atomically. Before making any commitment, on
1462 * those architectures or configurations (e.g. i386 with PAE) which
1463 * might give a mix of unmatched parts, do_swap_page and do_file_page
1464 * must check under lock before unmapping the pte and proceeding
1465 * (but do_wp_page is only called after already making such a check;
1466 * and do_anonymous_page and do_no_page can safely check later on).
1468 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1469 pte_t *page_table, pte_t orig_pte)
1472 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1473 if (sizeof(pte_t) > sizeof(unsigned long)) {
1474 spinlock_t *ptl = pte_lockptr(mm, pmd);
1476 same = pte_same(*page_table, orig_pte);
1480 pte_unmap(page_table);
1485 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1486 * servicing faults for write access. In the normal case, do always want
1487 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1488 * that do not have writing enabled, when used by access_process_vm.
1490 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1492 if (likely(vma->vm_flags & VM_WRITE))
1493 pte = pte_mkwrite(pte);
1497 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1500 * If the source page was a PFN mapping, we don't have
1501 * a "struct page" for it. We do a best-effort copy by
1502 * just copying from the original user address. If that
1503 * fails, we just zero-fill it. Live with it.
1505 if (unlikely(!src)) {
1506 void *kaddr = kmap_atomic(dst, KM_USER0);
1507 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1510 * This really shouldn't fail, because the page is there
1511 * in the page tables. But it might just be unreadable,
1512 * in which case we just give up and fill the result with
1515 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1516 memset(kaddr, 0, PAGE_SIZE);
1517 kunmap_atomic(kaddr, KM_USER0);
1518 flush_dcache_page(dst);
1522 copy_user_highpage(dst, src, va, vma);
1526 * This routine handles present pages, when users try to write
1527 * to a shared page. It is done by copying the page to a new address
1528 * and decrementing the shared-page counter for the old page.
1530 * Note that this routine assumes that the protection checks have been
1531 * done by the caller (the low-level page fault routine in most cases).
1532 * Thus we can safely just mark it writable once we've done any necessary
1535 * We also mark the page dirty at this point even though the page will
1536 * change only once the write actually happens. This avoids a few races,
1537 * and potentially makes it more efficient.
1539 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1540 * but allow concurrent faults), with pte both mapped and locked.
1541 * We return with mmap_sem still held, but pte unmapped and unlocked.
1543 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1544 unsigned long address, pte_t *page_table, pmd_t *pmd,
1545 spinlock_t *ptl, pte_t orig_pte)
1547 struct page *old_page, *new_page;
1549 int reuse = 0, ret = 0;
1550 int page_mkwrite = 0;
1551 struct page *dirty_page = NULL;
1553 old_page = vm_normal_page(vma, address, orig_pte);
1558 * Take out anonymous pages first, anonymous shared vmas are
1559 * not dirty accountable.
1561 if (PageAnon(old_page)) {
1562 if (!TestSetPageLocked(old_page)) {
1563 reuse = can_share_swap_page(old_page);
1564 unlock_page(old_page);
1566 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1567 (VM_WRITE|VM_SHARED))) {
1569 * Only catch write-faults on shared writable pages,
1570 * read-only shared pages can get COWed by
1571 * get_user_pages(.write=1, .force=1).
1573 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1575 * Notify the address space that the page is about to
1576 * become writable so that it can prohibit this or wait
1577 * for the page to get into an appropriate state.
1579 * We do this without the lock held, so that it can
1580 * sleep if it needs to.
1582 page_cache_get(old_page);
1583 pte_unmap_unlock(page_table, ptl);
1585 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1586 goto unwritable_page;
1589 * Since we dropped the lock we need to revalidate
1590 * the PTE as someone else may have changed it. If
1591 * they did, we just return, as we can count on the
1592 * MMU to tell us if they didn't also make it writable.
1594 page_table = pte_offset_map_lock(mm, pmd, address,
1596 page_cache_release(old_page);
1597 if (!pte_same(*page_table, orig_pte))
1602 dirty_page = old_page;
1603 get_page(dirty_page);
1608 flush_cache_page(vma, address, pte_pfn(orig_pte));
1609 entry = pte_mkyoung(orig_pte);
1610 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1611 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1612 update_mmu_cache(vma, address, entry);
1613 ret |= VM_FAULT_WRITE;
1618 * Ok, we need to copy. Oh, well..
1620 page_cache_get(old_page);
1622 pte_unmap_unlock(page_table, ptl);
1624 if (unlikely(anon_vma_prepare(vma)))
1626 VM_BUG_ON(old_page == ZERO_PAGE(0));
1627 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1630 cow_user_page(new_page, old_page, address, vma);
1633 * Re-check the pte - we dropped the lock
1635 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1636 if (likely(pte_same(*page_table, orig_pte))) {
1638 page_remove_rmap(old_page, vma);
1639 if (!PageAnon(old_page)) {
1640 dec_mm_counter(mm, file_rss);
1641 inc_mm_counter(mm, anon_rss);
1644 inc_mm_counter(mm, anon_rss);
1645 flush_cache_page(vma, address, pte_pfn(orig_pte));
1646 entry = mk_pte(new_page, vma->vm_page_prot);
1647 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1649 * Clear the pte entry and flush it first, before updating the
1650 * pte with the new entry. This will avoid a race condition
1651 * seen in the presence of one thread doing SMC and another
1654 ptep_clear_flush(vma, address, page_table);
1655 set_pte_at(mm, address, page_table, entry);
1656 update_mmu_cache(vma, address, entry);
1657 lru_cache_add_active(new_page);
1658 page_add_new_anon_rmap(new_page, vma, address);
1660 /* Free the old page.. */
1661 new_page = old_page;
1662 ret |= VM_FAULT_WRITE;
1665 page_cache_release(new_page);
1667 page_cache_release(old_page);
1669 pte_unmap_unlock(page_table, ptl);
1672 * Yes, Virginia, this is actually required to prevent a race
1673 * with clear_page_dirty_for_io() from clearing the page dirty
1674 * bit after it clear all dirty ptes, but before a racing
1675 * do_wp_page installs a dirty pte.
1677 * do_no_page is protected similarly.
1679 wait_on_page_locked(dirty_page);
1680 set_page_dirty_balance(dirty_page, page_mkwrite);
1681 put_page(dirty_page);
1686 page_cache_release(old_page);
1687 return VM_FAULT_OOM;
1690 page_cache_release(old_page);
1691 return VM_FAULT_SIGBUS;
1695 * Helper functions for unmap_mapping_range().
1697 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1699 * We have to restart searching the prio_tree whenever we drop the lock,
1700 * since the iterator is only valid while the lock is held, and anyway
1701 * a later vma might be split and reinserted earlier while lock dropped.
1703 * The list of nonlinear vmas could be handled more efficiently, using
1704 * a placeholder, but handle it in the same way until a need is shown.
1705 * It is important to search the prio_tree before nonlinear list: a vma
1706 * may become nonlinear and be shifted from prio_tree to nonlinear list
1707 * while the lock is dropped; but never shifted from list to prio_tree.
1709 * In order to make forward progress despite restarting the search,
1710 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1711 * quickly skip it next time around. Since the prio_tree search only
1712 * shows us those vmas affected by unmapping the range in question, we
1713 * can't efficiently keep all vmas in step with mapping->truncate_count:
1714 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1715 * mapping->truncate_count and vma->vm_truncate_count are protected by
1718 * In order to make forward progress despite repeatedly restarting some
1719 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1720 * and restart from that address when we reach that vma again. It might
1721 * have been split or merged, shrunk or extended, but never shifted: so
1722 * restart_addr remains valid so long as it remains in the vma's range.
1723 * unmap_mapping_range forces truncate_count to leap over page-aligned
1724 * values so we can save vma's restart_addr in its truncate_count field.
1726 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1728 static void reset_vma_truncate_counts(struct address_space *mapping)
1730 struct vm_area_struct *vma;
1731 struct prio_tree_iter iter;
1733 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1734 vma->vm_truncate_count = 0;
1735 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1736 vma->vm_truncate_count = 0;
1739 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1740 unsigned long start_addr, unsigned long end_addr,
1741 struct zap_details *details)
1743 unsigned long restart_addr;
1747 * files that support invalidating or truncating portions of the
1748 * file from under mmaped areas must have their ->fault function
1749 * return a locked page (and set VM_FAULT_LOCKED in the return).
1750 * This provides synchronisation against concurrent unmapping here.
1754 restart_addr = vma->vm_truncate_count;
1755 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1756 start_addr = restart_addr;
1757 if (start_addr >= end_addr) {
1758 /* Top of vma has been split off since last time */
1759 vma->vm_truncate_count = details->truncate_count;
1764 restart_addr = zap_page_range(vma, start_addr,
1765 end_addr - start_addr, details);
1766 need_break = need_resched() ||
1767 need_lockbreak(details->i_mmap_lock);
1769 if (restart_addr >= end_addr) {
1770 /* We have now completed this vma: mark it so */
1771 vma->vm_truncate_count = details->truncate_count;
1775 /* Note restart_addr in vma's truncate_count field */
1776 vma->vm_truncate_count = restart_addr;
1781 spin_unlock(details->i_mmap_lock);
1783 spin_lock(details->i_mmap_lock);
1787 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1788 struct zap_details *details)
1790 struct vm_area_struct *vma;
1791 struct prio_tree_iter iter;
1792 pgoff_t vba, vea, zba, zea;
1795 vma_prio_tree_foreach(vma, &iter, root,
1796 details->first_index, details->last_index) {
1797 /* Skip quickly over those we have already dealt with */
1798 if (vma->vm_truncate_count == details->truncate_count)
1801 vba = vma->vm_pgoff;
1802 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1803 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1804 zba = details->first_index;
1807 zea = details->last_index;
1811 if (unmap_mapping_range_vma(vma,
1812 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1813 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1819 static inline void unmap_mapping_range_list(struct list_head *head,
1820 struct zap_details *details)
1822 struct vm_area_struct *vma;
1825 * In nonlinear VMAs there is no correspondence between virtual address
1826 * offset and file offset. So we must perform an exhaustive search
1827 * across *all* the pages in each nonlinear VMA, not just the pages
1828 * whose virtual address lies outside the file truncation point.
1831 list_for_each_entry(vma, head, shared.vm_set.list) {
1832 /* Skip quickly over those we have already dealt with */
1833 if (vma->vm_truncate_count == details->truncate_count)
1835 details->nonlinear_vma = vma;
1836 if (unmap_mapping_range_vma(vma, vma->vm_start,
1837 vma->vm_end, details) < 0)
1843 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1844 * @mapping: the address space containing mmaps to be unmapped.
1845 * @holebegin: byte in first page to unmap, relative to the start of
1846 * the underlying file. This will be rounded down to a PAGE_SIZE
1847 * boundary. Note that this is different from vmtruncate(), which
1848 * must keep the partial page. In contrast, we must get rid of
1850 * @holelen: size of prospective hole in bytes. This will be rounded
1851 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1853 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1854 * but 0 when invalidating pagecache, don't throw away private data.
1856 void unmap_mapping_range(struct address_space *mapping,
1857 loff_t const holebegin, loff_t const holelen, int even_cows)
1859 struct zap_details details;
1860 pgoff_t hba = holebegin >> PAGE_SHIFT;
1861 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1863 /* Check for overflow. */
1864 if (sizeof(holelen) > sizeof(hlen)) {
1866 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1867 if (holeend & ~(long long)ULONG_MAX)
1868 hlen = ULONG_MAX - hba + 1;
1871 details.check_mapping = even_cows? NULL: mapping;
1872 details.nonlinear_vma = NULL;
1873 details.first_index = hba;
1874 details.last_index = hba + hlen - 1;
1875 if (details.last_index < details.first_index)
1876 details.last_index = ULONG_MAX;
1877 details.i_mmap_lock = &mapping->i_mmap_lock;
1879 spin_lock(&mapping->i_mmap_lock);
1881 /* Protect against endless unmapping loops */
1882 mapping->truncate_count++;
1883 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1884 if (mapping->truncate_count == 0)
1885 reset_vma_truncate_counts(mapping);
1886 mapping->truncate_count++;
1888 details.truncate_count = mapping->truncate_count;
1890 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1891 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1892 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1893 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1894 spin_unlock(&mapping->i_mmap_lock);
1896 EXPORT_SYMBOL(unmap_mapping_range);
1899 * vmtruncate - unmap mappings "freed" by truncate() syscall
1900 * @inode: inode of the file used
1901 * @offset: file offset to start truncating
1903 * NOTE! We have to be ready to update the memory sharing
1904 * between the file and the memory map for a potential last
1905 * incomplete page. Ugly, but necessary.
1907 int vmtruncate(struct inode * inode, loff_t offset)
1909 struct address_space *mapping = inode->i_mapping;
1910 unsigned long limit;
1912 if (inode->i_size < offset)
1915 * truncation of in-use swapfiles is disallowed - it would cause
1916 * subsequent swapout to scribble on the now-freed blocks.
1918 if (IS_SWAPFILE(inode))
1920 i_size_write(inode, offset);
1923 * unmap_mapping_range is called twice, first simply for efficiency
1924 * so that truncate_inode_pages does fewer single-page unmaps. However
1925 * after this first call, and before truncate_inode_pages finishes,
1926 * it is possible for private pages to be COWed, which remain after
1927 * truncate_inode_pages finishes, hence the second unmap_mapping_range
1928 * call must be made for correctness.
1930 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1931 truncate_inode_pages(mapping, offset);
1932 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1936 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1937 if (limit != RLIM_INFINITY && offset > limit)
1939 if (offset > inode->i_sb->s_maxbytes)
1941 i_size_write(inode, offset);
1944 if (inode->i_op && inode->i_op->truncate)
1945 inode->i_op->truncate(inode);
1948 send_sig(SIGXFSZ, current, 0);
1954 EXPORT_SYMBOL(vmtruncate);
1956 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1958 struct address_space *mapping = inode->i_mapping;
1961 * If the underlying filesystem is not going to provide
1962 * a way to truncate a range of blocks (punch a hole) -
1963 * we should return failure right now.
1965 if (!inode->i_op || !inode->i_op->truncate_range)
1968 mutex_lock(&inode->i_mutex);
1969 down_write(&inode->i_alloc_sem);
1970 unmap_mapping_range(mapping, offset, (end - offset), 1);
1971 truncate_inode_pages_range(mapping, offset, end);
1972 unmap_mapping_range(mapping, offset, (end - offset), 1);
1973 inode->i_op->truncate_range(inode, offset, end);
1974 up_write(&inode->i_alloc_sem);
1975 mutex_unlock(&inode->i_mutex);
1981 * swapin_readahead - swap in pages in hope we need them soon
1982 * @entry: swap entry of this memory
1983 * @addr: address to start
1984 * @vma: user vma this addresses belong to
1986 * Primitive swap readahead code. We simply read an aligned block of
1987 * (1 << page_cluster) entries in the swap area. This method is chosen
1988 * because it doesn't cost us any seek time. We also make sure to queue
1989 * the 'original' request together with the readahead ones...
1991 * This has been extended to use the NUMA policies from the mm triggering
1994 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1996 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1999 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
2002 struct page *new_page;
2003 unsigned long offset;
2006 * Get the number of handles we should do readahead io to.
2008 num = valid_swaphandles(entry, &offset);
2009 for (i = 0; i < num; offset++, i++) {
2010 /* Ok, do the async read-ahead now */
2011 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
2012 offset), vma, addr);
2015 page_cache_release(new_page);
2018 * Find the next applicable VMA for the NUMA policy.
2024 if (addr >= vma->vm_end) {
2026 next_vma = vma ? vma->vm_next : NULL;
2028 if (vma && addr < vma->vm_start)
2031 if (next_vma && addr >= next_vma->vm_start) {
2033 next_vma = vma->vm_next;
2038 lru_add_drain(); /* Push any new pages onto the LRU now */
2042 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2043 * but allow concurrent faults), and pte mapped but not yet locked.
2044 * We return with mmap_sem still held, but pte unmapped and unlocked.
2046 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2047 unsigned long address, pte_t *page_table, pmd_t *pmd,
2048 int write_access, pte_t orig_pte)
2056 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2059 entry = pte_to_swp_entry(orig_pte);
2060 if (is_migration_entry(entry)) {
2061 migration_entry_wait(mm, pmd, address);
2064 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2065 page = lookup_swap_cache(entry);
2067 grab_swap_token(); /* Contend for token _before_ read-in */
2068 swapin_readahead(entry, address, vma);
2069 page = read_swap_cache_async(entry, vma, address);
2072 * Back out if somebody else faulted in this pte
2073 * while we released the pte lock.
2075 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2076 if (likely(pte_same(*page_table, orig_pte)))
2078 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2082 /* Had to read the page from swap area: Major fault */
2083 ret = VM_FAULT_MAJOR;
2084 count_vm_event(PGMAJFAULT);
2087 mark_page_accessed(page);
2089 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2092 * Back out if somebody else already faulted in this pte.
2094 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2095 if (unlikely(!pte_same(*page_table, orig_pte)))
2098 if (unlikely(!PageUptodate(page))) {
2099 ret = VM_FAULT_SIGBUS;
2103 /* The page isn't present yet, go ahead with the fault. */
2105 inc_mm_counter(mm, anon_rss);
2106 pte = mk_pte(page, vma->vm_page_prot);
2107 if (write_access && can_share_swap_page(page)) {
2108 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2112 flush_icache_page(vma, page);
2113 set_pte_at(mm, address, page_table, pte);
2114 page_add_anon_rmap(page, vma, address);
2118 remove_exclusive_swap_page(page);
2122 /* XXX: We could OR the do_wp_page code with this one? */
2123 if (do_wp_page(mm, vma, address,
2124 page_table, pmd, ptl, pte) & VM_FAULT_OOM)
2129 /* No need to invalidate - it was non-present before */
2130 update_mmu_cache(vma, address, pte);
2132 pte_unmap_unlock(page_table, ptl);
2136 pte_unmap_unlock(page_table, ptl);
2138 page_cache_release(page);
2143 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2144 * but allow concurrent faults), and pte mapped but not yet locked.
2145 * We return with mmap_sem still held, but pte unmapped and unlocked.
2147 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2148 unsigned long address, pte_t *page_table, pmd_t *pmd,
2155 /* Allocate our own private page. */
2156 pte_unmap(page_table);
2158 if (unlikely(anon_vma_prepare(vma)))
2160 page = alloc_zeroed_user_highpage_movable(vma, address);
2164 entry = mk_pte(page, vma->vm_page_prot);
2165 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2167 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2168 if (!pte_none(*page_table))
2170 inc_mm_counter(mm, anon_rss);
2171 lru_cache_add_active(page);
2172 page_add_new_anon_rmap(page, vma, address);
2173 set_pte_at(mm, address, page_table, entry);
2175 /* No need to invalidate - it was non-present before */
2176 update_mmu_cache(vma, address, entry);
2178 pte_unmap_unlock(page_table, ptl);
2181 page_cache_release(page);
2184 return VM_FAULT_OOM;
2188 * __do_fault() tries to create a new page mapping. It aggressively
2189 * tries to share with existing pages, but makes a separate copy if
2190 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2191 * the next page fault.
2193 * As this is called only for pages that do not currently exist, we
2194 * do not need to flush old virtual caches or the TLB.
2196 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2197 * but allow concurrent faults), and pte neither mapped nor locked.
2198 * We return with mmap_sem still held, but pte unmapped and unlocked.
2200 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2201 unsigned long address, pmd_t *pmd,
2202 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2209 struct page *dirty_page = NULL;
2210 struct vm_fault vmf;
2212 int page_mkwrite = 0;
2214 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2219 BUG_ON(vma->vm_flags & VM_PFNMAP);
2221 if (likely(vma->vm_ops->fault)) {
2222 ret = vma->vm_ops->fault(vma, &vmf);
2223 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2226 /* Legacy ->nopage path */
2228 vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2229 /* no page was available -- either SIGBUS or OOM */
2230 if (unlikely(vmf.page == NOPAGE_SIGBUS))
2231 return VM_FAULT_SIGBUS;
2232 else if (unlikely(vmf.page == NOPAGE_OOM))
2233 return VM_FAULT_OOM;
2237 * For consistency in subsequent calls, make the faulted page always
2240 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2241 lock_page(vmf.page);
2243 VM_BUG_ON(!PageLocked(vmf.page));
2246 * Should we do an early C-O-W break?
2249 if (flags & FAULT_FLAG_WRITE) {
2250 if (!(vma->vm_flags & VM_SHARED)) {
2252 if (unlikely(anon_vma_prepare(vma))) {
2256 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2262 copy_user_highpage(page, vmf.page, address, vma);
2265 * If the page will be shareable, see if the backing
2266 * address space wants to know that the page is about
2267 * to become writable
2269 if (vma->vm_ops->page_mkwrite) {
2271 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2272 ret = VM_FAULT_SIGBUS;
2273 anon = 1; /* no anon but release vmf.page */
2278 * XXX: this is not quite right (racy vs
2279 * invalidate) to unlock and relock the page
2280 * like this, however a better fix requires
2281 * reworking page_mkwrite locking API, which
2282 * is better done later.
2284 if (!page->mapping) {
2286 anon = 1; /* no anon but release vmf.page */
2295 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2298 * This silly early PAGE_DIRTY setting removes a race
2299 * due to the bad i386 page protection. But it's valid
2300 * for other architectures too.
2302 * Note that if write_access is true, we either now have
2303 * an exclusive copy of the page, or this is a shared mapping,
2304 * so we can make it writable and dirty to avoid having to
2305 * handle that later.
2307 /* Only go through if we didn't race with anybody else... */
2308 if (likely(pte_same(*page_table, orig_pte))) {
2309 flush_icache_page(vma, page);
2310 entry = mk_pte(page, vma->vm_page_prot);
2311 if (flags & FAULT_FLAG_WRITE)
2312 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2313 set_pte_at(mm, address, page_table, entry);
2315 inc_mm_counter(mm, anon_rss);
2316 lru_cache_add_active(page);
2317 page_add_new_anon_rmap(page, vma, address);
2319 inc_mm_counter(mm, file_rss);
2320 page_add_file_rmap(page);
2321 if (flags & FAULT_FLAG_WRITE) {
2323 get_page(dirty_page);
2327 /* no need to invalidate: a not-present page won't be cached */
2328 update_mmu_cache(vma, address, entry);
2331 page_cache_release(page);
2333 anon = 1; /* no anon but release faulted_page */
2336 pte_unmap_unlock(page_table, ptl);
2339 unlock_page(vmf.page);
2342 page_cache_release(vmf.page);
2343 else if (dirty_page) {
2344 set_page_dirty_balance(dirty_page, page_mkwrite);
2345 put_page(dirty_page);
2351 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2352 unsigned long address, pte_t *page_table, pmd_t *pmd,
2353 int write_access, pte_t orig_pte)
2355 pgoff_t pgoff = (((address & PAGE_MASK)
2356 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2357 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2359 pte_unmap(page_table);
2360 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2365 * do_no_pfn() tries to create a new page mapping for a page without
2366 * a struct_page backing it
2368 * As this is called only for pages that do not currently exist, we
2369 * do not need to flush old virtual caches or the TLB.
2371 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2372 * but allow concurrent faults), and pte mapped but not yet locked.
2373 * We return with mmap_sem still held, but pte unmapped and unlocked.
2375 * It is expected that the ->nopfn handler always returns the same pfn
2376 * for a given virtual mapping.
2378 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2380 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2381 unsigned long address, pte_t *page_table, pmd_t *pmd,
2388 pte_unmap(page_table);
2389 BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2390 BUG_ON(is_cow_mapping(vma->vm_flags));
2392 pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2393 if (unlikely(pfn == NOPFN_OOM))
2394 return VM_FAULT_OOM;
2395 else if (unlikely(pfn == NOPFN_SIGBUS))
2396 return VM_FAULT_SIGBUS;
2397 else if (unlikely(pfn == NOPFN_REFAULT))
2400 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2402 /* Only go through if we didn't race with anybody else... */
2403 if (pte_none(*page_table)) {
2404 entry = pfn_pte(pfn, vma->vm_page_prot);
2406 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2407 set_pte_at(mm, address, page_table, entry);
2409 pte_unmap_unlock(page_table, ptl);
2414 * Fault of a previously existing named mapping. Repopulate the pte
2415 * from the encoded file_pte if possible. This enables swappable
2418 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2419 * but allow concurrent faults), and pte mapped but not yet locked.
2420 * We return with mmap_sem still held, but pte unmapped and unlocked.
2422 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2423 unsigned long address, pte_t *page_table, pmd_t *pmd,
2424 int write_access, pte_t orig_pte)
2426 unsigned int flags = FAULT_FLAG_NONLINEAR |
2427 (write_access ? FAULT_FLAG_WRITE : 0);
2430 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2433 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2434 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2436 * Page table corrupted: show pte and kill process.
2438 print_bad_pte(vma, orig_pte, address);
2439 return VM_FAULT_OOM;
2442 pgoff = pte_to_pgoff(orig_pte);
2443 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2447 * These routines also need to handle stuff like marking pages dirty
2448 * and/or accessed for architectures that don't do it in hardware (most
2449 * RISC architectures). The early dirtying is also good on the i386.
2451 * There is also a hook called "update_mmu_cache()" that architectures
2452 * with external mmu caches can use to update those (ie the Sparc or
2453 * PowerPC hashed page tables that act as extended TLBs).
2455 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2456 * but allow concurrent faults), and pte mapped but not yet locked.
2457 * We return with mmap_sem still held, but pte unmapped and unlocked.
2459 static inline int handle_pte_fault(struct mm_struct *mm,
2460 struct vm_area_struct *vma, unsigned long address,
2461 pte_t *pte, pmd_t *pmd, int write_access)
2467 if (!pte_present(entry)) {
2468 if (pte_none(entry)) {
2470 if (vma->vm_ops->fault || vma->vm_ops->nopage)
2471 return do_linear_fault(mm, vma, address,
2472 pte, pmd, write_access, entry);
2473 if (unlikely(vma->vm_ops->nopfn))
2474 return do_no_pfn(mm, vma, address, pte,
2477 return do_anonymous_page(mm, vma, address,
2478 pte, pmd, write_access);
2480 if (pte_file(entry))
2481 return do_nonlinear_fault(mm, vma, address,
2482 pte, pmd, write_access, entry);
2483 return do_swap_page(mm, vma, address,
2484 pte, pmd, write_access, entry);
2487 ptl = pte_lockptr(mm, pmd);
2489 if (unlikely(!pte_same(*pte, entry)))
2492 if (!pte_write(entry))
2493 return do_wp_page(mm, vma, address,
2494 pte, pmd, ptl, entry);
2495 entry = pte_mkdirty(entry);
2497 entry = pte_mkyoung(entry);
2498 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2499 update_mmu_cache(vma, address, entry);
2502 * This is needed only for protection faults but the arch code
2503 * is not yet telling us if this is a protection fault or not.
2504 * This still avoids useless tlb flushes for .text page faults
2508 flush_tlb_page(vma, address);
2511 pte_unmap_unlock(pte, ptl);
2516 * By the time we get here, we already hold the mm semaphore
2518 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2519 unsigned long address, int write_access)
2526 __set_current_state(TASK_RUNNING);
2528 count_vm_event(PGFAULT);
2530 if (unlikely(is_vm_hugetlb_page(vma)))
2531 return hugetlb_fault(mm, vma, address, write_access);
2533 pgd = pgd_offset(mm, address);
2534 pud = pud_alloc(mm, pgd, address);
2536 return VM_FAULT_OOM;
2537 pmd = pmd_alloc(mm, pud, address);
2539 return VM_FAULT_OOM;
2540 pte = pte_alloc_map(mm, pmd, address);
2542 return VM_FAULT_OOM;
2544 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2547 #ifndef __PAGETABLE_PUD_FOLDED
2549 * Allocate page upper directory.
2550 * We've already handled the fast-path in-line.
2552 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2554 pud_t *new = pud_alloc_one(mm, address);
2558 spin_lock(&mm->page_table_lock);
2559 if (pgd_present(*pgd)) /* Another has populated it */
2562 pgd_populate(mm, pgd, new);
2563 spin_unlock(&mm->page_table_lock);
2566 #endif /* __PAGETABLE_PUD_FOLDED */
2568 #ifndef __PAGETABLE_PMD_FOLDED
2570 * Allocate page middle directory.
2571 * We've already handled the fast-path in-line.
2573 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2575 pmd_t *new = pmd_alloc_one(mm, address);
2579 spin_lock(&mm->page_table_lock);
2580 #ifndef __ARCH_HAS_4LEVEL_HACK
2581 if (pud_present(*pud)) /* Another has populated it */
2584 pud_populate(mm, pud, new);
2586 if (pgd_present(*pud)) /* Another has populated it */
2589 pgd_populate(mm, pud, new);
2590 #endif /* __ARCH_HAS_4LEVEL_HACK */
2591 spin_unlock(&mm->page_table_lock);
2594 #endif /* __PAGETABLE_PMD_FOLDED */
2596 int make_pages_present(unsigned long addr, unsigned long end)
2598 int ret, len, write;
2599 struct vm_area_struct * vma;
2601 vma = find_vma(current->mm, addr);
2604 write = (vma->vm_flags & VM_WRITE) != 0;
2605 BUG_ON(addr >= end);
2606 BUG_ON(end > vma->vm_end);
2607 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2608 ret = get_user_pages(current, current->mm, addr,
2609 len, write, 0, NULL, NULL);
2612 return ret == len ? 0 : -1;
2616 * Map a vmalloc()-space virtual address to the physical page.
2618 struct page * vmalloc_to_page(void * vmalloc_addr)
2620 unsigned long addr = (unsigned long) vmalloc_addr;
2621 struct page *page = NULL;
2622 pgd_t *pgd = pgd_offset_k(addr);
2627 if (!pgd_none(*pgd)) {
2628 pud = pud_offset(pgd, addr);
2629 if (!pud_none(*pud)) {
2630 pmd = pmd_offset(pud, addr);
2631 if (!pmd_none(*pmd)) {
2632 ptep = pte_offset_map(pmd, addr);
2634 if (pte_present(pte))
2635 page = pte_page(pte);
2643 EXPORT_SYMBOL(vmalloc_to_page);
2646 * Map a vmalloc()-space virtual address to the physical page frame number.
2648 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2650 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2653 EXPORT_SYMBOL(vmalloc_to_pfn);
2655 #if !defined(__HAVE_ARCH_GATE_AREA)
2657 #if defined(AT_SYSINFO_EHDR)
2658 static struct vm_area_struct gate_vma;
2660 static int __init gate_vma_init(void)
2662 gate_vma.vm_mm = NULL;
2663 gate_vma.vm_start = FIXADDR_USER_START;
2664 gate_vma.vm_end = FIXADDR_USER_END;
2665 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2666 gate_vma.vm_page_prot = __P101;
2668 * Make sure the vDSO gets into every core dump.
2669 * Dumping its contents makes post-mortem fully interpretable later
2670 * without matching up the same kernel and hardware config to see
2671 * what PC values meant.
2673 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2676 __initcall(gate_vma_init);
2679 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2681 #ifdef AT_SYSINFO_EHDR
2688 int in_gate_area_no_task(unsigned long addr)
2690 #ifdef AT_SYSINFO_EHDR
2691 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2697 #endif /* __HAVE_ARCH_GATE_AREA */
2700 * Access another process' address space.
2701 * Source/target buffer must be kernel space,
2702 * Do not walk the page table directly, use get_user_pages
2704 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2706 struct mm_struct *mm;
2707 struct vm_area_struct *vma;
2709 void *old_buf = buf;
2711 mm = get_task_mm(tsk);
2715 down_read(&mm->mmap_sem);
2716 /* ignore errors, just check how much was successfully transferred */
2718 int bytes, ret, offset;
2721 ret = get_user_pages(tsk, mm, addr, 1,
2722 write, 1, &page, &vma);
2727 offset = addr & (PAGE_SIZE-1);
2728 if (bytes > PAGE_SIZE-offset)
2729 bytes = PAGE_SIZE-offset;
2733 copy_to_user_page(vma, page, addr,
2734 maddr + offset, buf, bytes);
2735 set_page_dirty_lock(page);
2737 copy_from_user_page(vma, page, addr,
2738 buf, maddr + offset, bytes);
2741 page_cache_release(page);
2746 up_read(&mm->mmap_sem);
2749 return buf - old_buf;