4 * (C) Copyright IBM Corp. 2005
6 * Author: Mark Nutter <mnutter@us.ibm.com>
8 * Host-side part of SPU context switch sequence outlined in
9 * Synergistic Processor Element, Book IV.
11 * A fully premptive switch of an SPE is very expensive in terms
12 * of time and system resources. SPE Book IV indicates that SPE
13 * allocation should follow a "serially reusable device" model,
14 * in which the SPE is assigned a task until it completes. When
15 * this is not possible, this sequence may be used to premptively
16 * save, and then later (optionally) restore the context of a
17 * program executing on an SPE.
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2, or (at your option)
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, write to the Free Software
32 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/module.h>
36 #include <linux/errno.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
40 #include <linux/vmalloc.h>
41 #include <linux/smp.h>
42 #include <linux/smp_lock.h>
43 #include <linux/stddef.h>
44 #include <linux/unistd.h>
48 #include <asm/spu_priv1.h>
49 #include <asm/spu_csa.h>
50 #include <asm/mmu_context.h>
52 #include "spu_save_dump.h"
53 #include "spu_restore_dump.h"
56 #define POLL_WHILE_TRUE(_c) { \
61 #define RELAX_SPIN_COUNT 1000
62 #define POLL_WHILE_TRUE(_c) { \
65 for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
68 if (unlikely(_c)) yield(); \
74 #define POLL_WHILE_FALSE(_c) POLL_WHILE_TRUE(!(_c))
76 static inline void acquire_spu_lock(struct spu *spu)
80 * Acquire SPU-specific mutual exclusion lock.
85 static inline void release_spu_lock(struct spu *spu)
88 * Release SPU-specific mutual exclusion lock.
93 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
95 struct spu_problem __iomem *prob = spu->problem;
100 * If SPU_Status[E,L,IS] any field is '1', this
101 * SPU is in isolate state and cannot be context
102 * saved at this time.
104 isolate_state = SPU_STATUS_ISOLATED_STATE |
105 SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
106 return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
109 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
113 * Save INT_Mask_class0 in CSA.
114 * Write INT_MASK_class0 with value of 0.
115 * Save INT_Mask_class1 in CSA.
116 * Write INT_MASK_class1 with value of 0.
117 * Save INT_Mask_class2 in CSA.
118 * Write INT_MASK_class2 with value of 0.
120 spin_lock_irq(&spu->register_lock);
122 csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
123 csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
124 csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
126 spu_int_mask_set(spu, 0, 0ul);
127 spu_int_mask_set(spu, 1, 0ul);
128 spu_int_mask_set(spu, 2, 0ul);
130 spin_unlock_irq(&spu->register_lock);
133 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
137 * Set a software watchdog timer, which specifies the
138 * maximum allowable time for a context save sequence.
140 * For present, this implementation will not set a global
141 * watchdog timer, as virtualization & variable system load
142 * may cause unpredictable execution times.
146 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
150 * Inhibit user-space access (if provided) to this
151 * SPU by unmapping the virtual pages assigned to
152 * the SPU memory-mapped I/O (MMIO) for problem
157 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
161 * Set a software context switch pending flag.
163 set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
167 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
169 struct spu_priv2 __iomem *priv2 = spu->priv2;
172 * Suspend DMA and save MFC_CNTL.
174 switch (in_be64(&priv2->mfc_control_RW) &
175 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
176 case MFC_CNTL_SUSPEND_IN_PROGRESS:
177 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
178 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
179 MFC_CNTL_SUSPEND_COMPLETE);
181 case MFC_CNTL_SUSPEND_COMPLETE:
183 csa->priv2.mfc_control_RW =
184 in_be64(&priv2->mfc_control_RW) |
185 MFC_CNTL_SUSPEND_DMA_QUEUE;
188 case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
189 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
190 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
191 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
192 MFC_CNTL_SUSPEND_COMPLETE);
194 csa->priv2.mfc_control_RW =
195 in_be64(&priv2->mfc_control_RW) &
196 ~MFC_CNTL_SUSPEND_DMA_QUEUE;
202 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
204 struct spu_problem __iomem *prob = spu->problem;
207 * Save SPU_Runcntl in the CSA. This value contains
208 * the "Application Desired State".
210 csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
213 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
216 * Save MFC_SR1 in the CSA.
218 csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
221 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
223 struct spu_problem __iomem *prob = spu->problem;
226 * Read SPU_Status[R], and save to CSA.
228 if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
229 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
233 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
235 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
238 SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
239 SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
240 if ((in_be32(&prob->spu_status_R) & stopped) == 0)
241 csa->prob.spu_status_R = SPU_STATUS_RUNNING;
243 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
247 static inline void save_mfc_decr(struct spu_state *csa, struct spu *spu)
249 struct spu_priv2 __iomem *priv2 = spu->priv2;
252 * Read MFC_CNTL[Ds]. Update saved copy of
255 if (in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DECREMENTER_RUNNING) {
256 csa->priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
257 csa->suspend_time = get_cycles();
258 out_be64(&priv2->spu_chnlcntptr_RW, 7ULL);
260 csa->spu_chnldata_RW[7] = in_be64(&priv2->spu_chnldata_RW);
263 csa->priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
267 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
269 struct spu_priv2 __iomem *priv2 = spu->priv2;
272 * Write MFC_CNTL[Dh] set to a '1' to halt
275 out_be64(&priv2->mfc_control_RW, MFC_CNTL_DECREMENTER_HALTED);
279 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
282 * Read PPE Timebase High and Timebase low registers
283 * and save in CSA. TBD.
285 csa->suspend_time = get_cycles();
288 static inline void remove_other_spu_access(struct spu_state *csa,
292 * Remove other SPU access to this SPU by unmapping
293 * this SPU's pages from their address space. TBD.
297 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
299 struct spu_problem __iomem *prob = spu->problem;
303 * Write SPU_MSSync register. Poll SPU_MSSync[P]
306 out_be64(&prob->spc_mssync_RW, 1UL);
307 POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
310 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
315 * Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
316 * Then issue a PPE sync instruction.
318 spu_tlb_invalidate(spu);
322 static inline void handle_pending_interrupts(struct spu_state *csa,
326 * Handle any pending interrupts from this SPU
327 * here. This is OS or hypervisor specific. One
328 * option is to re-enable interrupts to handle any
329 * pending interrupts, with the interrupt handlers
330 * recognizing the software Context Switch Pending
331 * flag, to ensure the SPU execution or MFC command
332 * queue is not restarted. TBD.
336 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
338 struct spu_priv2 __iomem *priv2 = spu->priv2;
342 * If MFC_Cntl[Se]=0 then save
343 * MFC command queues.
345 if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
346 for (i = 0; i < 8; i++) {
347 csa->priv2.puq[i].mfc_cq_data0_RW =
348 in_be64(&priv2->puq[i].mfc_cq_data0_RW);
349 csa->priv2.puq[i].mfc_cq_data1_RW =
350 in_be64(&priv2->puq[i].mfc_cq_data1_RW);
351 csa->priv2.puq[i].mfc_cq_data2_RW =
352 in_be64(&priv2->puq[i].mfc_cq_data2_RW);
353 csa->priv2.puq[i].mfc_cq_data3_RW =
354 in_be64(&priv2->puq[i].mfc_cq_data3_RW);
356 for (i = 0; i < 16; i++) {
357 csa->priv2.spuq[i].mfc_cq_data0_RW =
358 in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
359 csa->priv2.spuq[i].mfc_cq_data1_RW =
360 in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
361 csa->priv2.spuq[i].mfc_cq_data2_RW =
362 in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
363 csa->priv2.spuq[i].mfc_cq_data3_RW =
364 in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
369 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
371 struct spu_problem __iomem *prob = spu->problem;
374 * Save the PPU_QueryMask register
377 csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
380 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
382 struct spu_problem __iomem *prob = spu->problem;
385 * Save the PPU_QueryType register
388 csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
391 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
393 struct spu_priv2 __iomem *priv2 = spu->priv2;
396 * Save the MFC_CSR_TSQ register
399 csa->priv2.spu_tag_status_query_RW =
400 in_be64(&priv2->spu_tag_status_query_RW);
403 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
405 struct spu_priv2 __iomem *priv2 = spu->priv2;
408 * Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
409 * registers in the CSA.
411 csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
412 csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
415 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
417 struct spu_priv2 __iomem *priv2 = spu->priv2;
420 * Save the MFC_CSR_ATO register in
423 csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
426 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
429 * Save the MFC_TCLASS_ID register in
432 csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
435 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
439 * Write the MFC_TCLASS_ID register with
440 * the value 0x10000000.
442 spu_mfc_tclass_id_set(spu, 0x10000000);
446 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
448 struct spu_priv2 __iomem *priv2 = spu->priv2;
452 * Write MFC_CNTL[Pc]=1 (purge queue).
454 out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST);
458 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
460 struct spu_priv2 __iomem *priv2 = spu->priv2;
463 * Poll MFC_CNTL[Ps] until value '11' is read
466 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
467 MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
468 MFC_CNTL_PURGE_DMA_COMPLETE);
471 static inline void save_mfc_slbs(struct spu_state *csa, struct spu *spu)
473 struct spu_priv2 __iomem *priv2 = spu->priv2;
477 * If MFC_SR1[R]='1', save SLBs in CSA.
479 if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK) {
480 csa->priv2.slb_index_W = in_be64(&priv2->slb_index_W);
481 for (i = 0; i < 8; i++) {
482 out_be64(&priv2->slb_index_W, i);
484 csa->slb_esid_RW[i] = in_be64(&priv2->slb_esid_RW);
485 csa->slb_vsid_RW[i] = in_be64(&priv2->slb_vsid_RW);
491 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
495 * Write MFC_SR1 with MFC_SR1[D=0,S=1] and
496 * MFC_SR1[TL,R,Pr,T] set correctly for the
497 * OS specific environment.
499 * Implementation note: The SPU-side code
500 * for save/restore is privileged, so the
501 * MFC_SR1[Pr] bit is not set.
504 spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
505 MFC_STATE1_RELOCATE_MASK |
506 MFC_STATE1_BUS_TLBIE_MASK));
509 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
511 struct spu_problem __iomem *prob = spu->problem;
514 * Save SPU_NPC in the CSA.
516 csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
519 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
521 struct spu_priv2 __iomem *priv2 = spu->priv2;
524 * Save SPU_PrivCntl in the CSA.
526 csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
529 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
531 struct spu_priv2 __iomem *priv2 = spu->priv2;
535 * Write SPU_PrivCntl[S,Le,A] fields reset to 0.
537 out_be64(&priv2->spu_privcntl_RW, 0UL);
541 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
543 struct spu_priv2 __iomem *priv2 = spu->priv2;
546 * Save SPU_LSLR in the CSA.
548 csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
551 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
553 struct spu_priv2 __iomem *priv2 = spu->priv2;
559 out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
563 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
565 struct spu_priv2 __iomem *priv2 = spu->priv2;
568 * Save SPU_Cfg in the CSA.
570 csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
573 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
576 * Save PM_Trace_Tag_Wait_Mask in the CSA.
577 * Not performed by this implementation.
581 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
584 * Save RA_GROUP_ID register and the
585 * RA_ENABLE reigster in the CSA.
587 csa->priv1.resource_allocation_groupID_RW =
588 spu_resource_allocation_groupID_get(spu);
589 csa->priv1.resource_allocation_enable_RW =
590 spu_resource_allocation_enable_get(spu);
593 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
595 struct spu_problem __iomem *prob = spu->problem;
598 * Save MB_Stat register in the CSA.
600 csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
603 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
605 struct spu_problem __iomem *prob = spu->problem;
608 * Save the PPU_MB register in the CSA.
610 csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
613 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
615 struct spu_priv2 __iomem *priv2 = spu->priv2;
618 * Save the PPUINT_MB register in the CSA.
620 csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
623 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
625 struct spu_priv2 __iomem *priv2 = spu->priv2;
626 u64 idx, ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
632 /* Save CH 1, without channel count */
633 out_be64(&priv2->spu_chnlcntptr_RW, 1);
634 csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
636 /* Save the following CH: [0,3,4,24,25,27] */
637 for (i = 0; i < 7; i++) {
639 out_be64(&priv2->spu_chnlcntptr_RW, idx);
641 csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
642 csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
643 out_be64(&priv2->spu_chnldata_RW, 0UL);
644 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
649 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
651 struct spu_priv2 __iomem *priv2 = spu->priv2;
655 * Save SPU Read Mailbox Channel.
657 out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
659 csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
660 for (i = 0; i < 4; i++) {
661 csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
663 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
667 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
669 struct spu_priv2 __iomem *priv2 = spu->priv2;
672 * Save MFC_CMD Channel.
674 out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
676 csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
680 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
682 struct spu_priv2 __iomem *priv2 = spu->priv2;
683 u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
684 u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
689 * Reset the following CH: [21, 23, 28, 30]
691 for (i = 0; i < 4; i++) {
693 out_be64(&priv2->spu_chnlcntptr_RW, idx);
695 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
700 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
702 struct spu_priv2 __iomem *priv2 = spu->priv2;
706 * Write MFC_CNTL[Sc]=0 (resume queue processing).
708 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
711 static inline void invalidate_slbs(struct spu_state *csa, struct spu *spu)
713 struct spu_priv2 __iomem *priv2 = spu->priv2;
717 * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All.
719 if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK) {
720 out_be64(&priv2->slb_invalidate_all_W, 0UL);
725 static inline void get_kernel_slb(u64 ea, u64 slb[2])
729 if (REGION_ID(ea) == KERNEL_REGION_ID)
730 llp = mmu_psize_defs[mmu_linear_psize].sllp;
732 llp = mmu_psize_defs[mmu_virtual_psize].sllp;
733 slb[0] = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) |
734 SLB_VSID_KERNEL | llp;
735 slb[1] = (ea & ESID_MASK) | SLB_ESID_V;
738 static inline void load_mfc_slb(struct spu *spu, u64 slb[2], int slbe)
740 struct spu_priv2 __iomem *priv2 = spu->priv2;
742 out_be64(&priv2->slb_index_W, slbe);
744 out_be64(&priv2->slb_vsid_RW, slb[0]);
745 out_be64(&priv2->slb_esid_RW, slb[1]);
749 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu)
756 * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
757 * register, then initialize SLB_VSID and SLB_ESID
758 * to provide access to SPU context save code and
761 * This implementation places both the context
762 * switch code and LSCSA in kernel address space.
764 * Further this implementation assumes that the
765 * MFC_SR1[R]=1 (in other words, assume that
766 * translation is desired by OS environment).
768 invalidate_slbs(csa, spu);
769 get_kernel_slb((unsigned long)&spu_save_code[0], code_slb);
770 get_kernel_slb((unsigned long)csa->lscsa, lscsa_slb);
771 load_mfc_slb(spu, code_slb, 0);
772 if ((lscsa_slb[0] != code_slb[0]) || (lscsa_slb[1] != code_slb[1]))
773 load_mfc_slb(spu, lscsa_slb, 1);
776 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
780 * Change the software context switch pending flag
781 * to context switch active.
783 set_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
784 clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
788 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
790 unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
791 CLASS1_ENABLE_STORAGE_FAULT_INTR;
795 * Reset and then enable interrupts, as
798 * This implementation enables only class1
799 * (translation) interrupts.
801 spin_lock_irq(&spu->register_lock);
802 spu_int_stat_clear(spu, 0, ~0ul);
803 spu_int_stat_clear(spu, 1, ~0ul);
804 spu_int_stat_clear(spu, 2, ~0ul);
805 spu_int_mask_set(spu, 0, 0ul);
806 spu_int_mask_set(spu, 1, class1_mask);
807 spu_int_mask_set(spu, 2, 0ul);
808 spin_unlock_irq(&spu->register_lock);
811 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
812 unsigned int ls_offset, unsigned int size,
813 unsigned int tag, unsigned int rclass,
816 struct spu_problem __iomem *prob = spu->problem;
817 union mfc_tag_size_class_cmd command;
818 unsigned int transfer_size;
819 volatile unsigned int status = 0x0;
823 (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
824 command.u.mfc_size = transfer_size;
825 command.u.mfc_tag = tag;
826 command.u.mfc_rclassid = rclass;
827 command.u.mfc_cmd = cmd;
829 out_be32(&prob->mfc_lsa_W, ls_offset);
830 out_be64(&prob->mfc_ea_W, ea);
831 out_be64(&prob->mfc_union_W.all64, command.all64);
833 in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
834 if (unlikely(status & 0x2)) {
837 } while (status & 0x3);
838 size -= transfer_size;
840 ls_offset += transfer_size;
845 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
847 unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
848 unsigned int ls_offset = 0x0;
849 unsigned int size = 16384;
850 unsigned int tag = 0;
851 unsigned int rclass = 0;
852 unsigned int cmd = MFC_PUT_CMD;
855 * Issue a DMA command to copy the first 16K bytes
856 * of local storage to the CSA.
858 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
861 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
863 struct spu_problem __iomem *prob = spu->problem;
867 * Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
868 * point address of context save code in local
871 * This implementation uses SPU-side save/restore
872 * programs with entry points at LSA of 0.
874 out_be32(&prob->spu_npc_RW, 0);
878 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
880 struct spu_problem __iomem *prob = spu->problem;
888 * Write SPU_Sig_Notify_1 register with upper 32-bits
889 * of the CSA.LSCSA effective address.
891 addr64.ull = (u64) csa->lscsa;
892 out_be32(&prob->signal_notify1, addr64.ui[0]);
896 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
898 struct spu_problem __iomem *prob = spu->problem;
906 * Write SPU_Sig_Notify_2 register with lower 32-bits
907 * of the CSA.LSCSA effective address.
909 addr64.ull = (u64) csa->lscsa;
910 out_be32(&prob->signal_notify2, addr64.ui[1]);
914 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
916 unsigned long addr = (unsigned long)&spu_save_code[0];
917 unsigned int ls_offset = 0x0;
918 unsigned int size = sizeof(spu_save_code);
919 unsigned int tag = 0;
920 unsigned int rclass = 0;
921 unsigned int cmd = MFC_GETFS_CMD;
924 * Issue a DMA command to copy context save code
925 * to local storage and start SPU.
927 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
930 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
932 struct spu_problem __iomem *prob = spu->problem;
936 * Write PPU_QueryMask=1 (enable Tag Group 0)
937 * and issue eieio instruction.
939 out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
943 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
945 struct spu_problem __iomem *prob = spu->problem;
946 u32 mask = MFC_TAGID_TO_TAGMASK(0);
953 * Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
954 * or write PPU_QueryType[TS]=01 and wait for Tag Group
955 * Complete Interrupt. Write INT_Stat_Class0 or
956 * INT_Stat_Class2 with value of 'handled'.
958 POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
960 local_irq_save(flags);
961 spu_int_stat_clear(spu, 0, ~(0ul));
962 spu_int_stat_clear(spu, 2, ~(0ul));
963 local_irq_restore(flags);
966 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
968 struct spu_problem __iomem *prob = spu->problem;
973 * Poll until SPU_Status[R]=0 or wait for SPU Class 0
974 * or SPU Class 2 interrupt. Write INT_Stat_class0
975 * or INT_Stat_class2 with value of handled.
977 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
979 local_irq_save(flags);
980 spu_int_stat_clear(spu, 0, ~(0ul));
981 spu_int_stat_clear(spu, 2, ~(0ul));
982 local_irq_restore(flags);
985 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
987 struct spu_problem __iomem *prob = spu->problem;
991 * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
992 * context save succeeded, otherwise context save
995 complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
996 SPU_STATUS_STOPPED_BY_STOP);
997 return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1000 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
1003 * If required, notify the "using application" that
1004 * the SPU task has been terminated. TBD.
1008 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1010 struct spu_priv2 __iomem *priv2 = spu->priv2;
1014 * Write MFC_Cntl[Dh,Sc]='1','1' to suspend
1015 * the queue and halt the decrementer.
1017 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
1018 MFC_CNTL_DECREMENTER_HALTED);
1022 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
1025 struct spu_priv2 __iomem *priv2 = spu->priv2;
1029 * Poll MFC_CNTL[Ss] until 11 is returned.
1031 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
1032 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
1033 MFC_CNTL_SUSPEND_COMPLETE);
1036 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
1038 struct spu_problem __iomem *prob = spu->problem;
1041 * If SPU_Status[R]=1, stop SPU execution
1042 * and wait for stop to complete.
1044 * Returns 1 if SPU_Status[R]=1 on entry.
1047 if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1048 if (in_be32(&prob->spu_status_R) &
1049 SPU_STATUS_ISOLATED_EXIT_STATUS) {
1050 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1051 SPU_STATUS_RUNNING);
1053 if ((in_be32(&prob->spu_status_R) &
1054 SPU_STATUS_ISOLATED_LOAD_STATUS)
1055 || (in_be32(&prob->spu_status_R) &
1056 SPU_STATUS_ISOLATED_STATE)) {
1057 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1059 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1060 SPU_STATUS_RUNNING);
1061 out_be32(&prob->spu_runcntl_RW, 0x2);
1063 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1064 SPU_STATUS_RUNNING);
1066 if (in_be32(&prob->spu_status_R) &
1067 SPU_STATUS_WAITING_FOR_CHANNEL) {
1068 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1070 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1071 SPU_STATUS_RUNNING);
1078 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1080 struct spu_problem __iomem *prob = spu->problem;
1082 /* Restore, Step 10:
1083 * If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1084 * release SPU from isolate state.
1086 if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1087 if (in_be32(&prob->spu_status_R) &
1088 SPU_STATUS_ISOLATED_EXIT_STATUS) {
1089 spu_mfc_sr1_set(spu,
1090 MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1092 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1094 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1095 SPU_STATUS_RUNNING);
1097 if ((in_be32(&prob->spu_status_R) &
1098 SPU_STATUS_ISOLATED_LOAD_STATUS)
1099 || (in_be32(&prob->spu_status_R) &
1100 SPU_STATUS_ISOLATED_STATE)) {
1101 spu_mfc_sr1_set(spu,
1102 MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1104 out_be32(&prob->spu_runcntl_RW, 0x2);
1106 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1107 SPU_STATUS_RUNNING);
1112 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1114 struct spu_priv2 __iomem *priv2 = spu->priv2;
1115 u64 ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1119 /* Restore, Step 20:
1123 out_be64(&priv2->spu_chnlcntptr_RW, 1);
1124 out_be64(&priv2->spu_chnldata_RW, 0UL);
1126 /* Reset the following CH: [0,3,4,24,25,27] */
1127 for (i = 0; i < 7; i++) {
1128 idx = ch_indices[i];
1129 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1131 out_be64(&priv2->spu_chnldata_RW, 0UL);
1132 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1137 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1139 struct spu_priv2 __iomem *priv2 = spu->priv2;
1140 u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1141 u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1145 /* Restore, Step 21:
1146 * Reset the following CH: [21, 23, 28, 29, 30]
1148 for (i = 0; i < 5; i++) {
1149 idx = ch_indices[i];
1150 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1152 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1157 static inline void setup_spu_status_part1(struct spu_state *csa,
1160 u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1161 u32 status_I = SPU_STATUS_INVALID_INSTR;
1162 u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1163 u32 status_S = SPU_STATUS_SINGLE_STEP;
1164 u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1165 u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1166 u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1167 u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1170 /* Restore, Step 27:
1171 * If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1172 * instruction sequence to the end of the SPU based restore
1173 * code (after the "context restored" stop and signal) to
1174 * restore the correct SPU status.
1176 * NOTE: Rather than modifying the SPU executable, we
1177 * instead add a new 'stopped_status' field to the
1178 * LSCSA. The SPU-side restore reads this field and
1179 * takes the appropriate action when exiting.
1183 (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1184 if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1186 /* SPU_Status[P,I]=1 - Illegal Instruction followed
1187 * by Stop and Signal instruction, followed by 'br -4'.
1190 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1191 csa->lscsa->stopped_status.slot[1] = status_code;
1193 } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1195 /* SPU_Status[P,H]=1 - Halt Conditional, followed
1196 * by Stop and Signal instruction, followed by
1199 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1200 csa->lscsa->stopped_status.slot[1] = status_code;
1202 } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1204 /* SPU_Status[S,P]=1 - Stop and Signal instruction
1205 * followed by 'br -4'.
1207 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1208 csa->lscsa->stopped_status.slot[1] = status_code;
1210 } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1212 /* SPU_Status[S,I]=1 - Illegal instruction followed
1215 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1216 csa->lscsa->stopped_status.slot[1] = status_code;
1218 } else if ((csa->prob.spu_status_R & status_P) == status_P) {
1220 /* SPU_Status[P]=1 - Stop and Signal instruction
1221 * followed by 'br -4'.
1223 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1224 csa->lscsa->stopped_status.slot[1] = status_code;
1226 } else if ((csa->prob.spu_status_R & status_H) == status_H) {
1228 /* SPU_Status[H]=1 - Halt Conditional, followed
1231 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1233 } else if ((csa->prob.spu_status_R & status_S) == status_S) {
1235 /* SPU_Status[S]=1 - Two nop instructions.
1237 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1239 } else if ((csa->prob.spu_status_R & status_I) == status_I) {
1241 /* SPU_Status[I]=1 - Illegal instruction followed
1244 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1249 static inline void setup_spu_status_part2(struct spu_state *csa,
1254 /* Restore, Step 28:
1255 * If the CSA.SPU_Status[I,S,H,P,R]=0 then
1256 * add a 'br *' instruction to the end of
1257 * the SPU based restore code.
1259 * NOTE: Rather than modifying the SPU executable, we
1260 * instead add a new 'stopped_status' field to the
1261 * LSCSA. The SPU-side restore reads this field and
1262 * takes the appropriate action when exiting.
1264 mask = SPU_STATUS_INVALID_INSTR |
1265 SPU_STATUS_SINGLE_STEP |
1266 SPU_STATUS_STOPPED_BY_HALT |
1267 SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1268 if (!(csa->prob.spu_status_R & mask)) {
1269 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1273 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1275 /* Restore, Step 29:
1276 * Restore RA_GROUP_ID register and the
1277 * RA_ENABLE reigster from the CSA.
1279 spu_resource_allocation_groupID_set(spu,
1280 csa->priv1.resource_allocation_groupID_RW);
1281 spu_resource_allocation_enable_set(spu,
1282 csa->priv1.resource_allocation_enable_RW);
1285 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1287 unsigned long addr = (unsigned long)&spu_restore_code[0];
1288 unsigned int ls_offset = 0x0;
1289 unsigned int size = sizeof(spu_restore_code);
1290 unsigned int tag = 0;
1291 unsigned int rclass = 0;
1292 unsigned int cmd = MFC_GETFS_CMD;
1294 /* Restore, Step 37:
1295 * Issue MFC DMA command to copy context
1296 * restore code to local storage.
1298 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1301 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1303 /* Restore, Step 34:
1304 * If CSA.MFC_CNTL[Ds]=1 (decrementer was
1305 * running) then adjust decrementer, set
1306 * decrementer running status in LSCSA,
1307 * and set decrementer "wrapped" status
1310 if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1311 cycles_t resume_time = get_cycles();
1312 cycles_t delta_time = resume_time - csa->suspend_time;
1314 csa->lscsa->decr.slot[0] -= delta_time;
1318 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1320 /* Restore, Step 35:
1321 * Copy the CSA.PU_MB data into the LSCSA.
1323 csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1326 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1328 /* Restore, Step 36:
1329 * Copy the CSA.PUINT_MB data into the LSCSA.
1331 csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1334 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1336 struct spu_problem __iomem *prob = spu->problem;
1339 /* Restore, Step 40:
1340 * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1341 * context restore succeeded, otherwise context restore
1344 complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1345 SPU_STATUS_STOPPED_BY_STOP);
1346 return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1349 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1351 struct spu_priv2 __iomem *priv2 = spu->priv2;
1353 /* Restore, Step 41:
1354 * Restore SPU_PrivCntl from the CSA.
1356 out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1360 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1362 struct spu_problem __iomem *prob = spu->problem;
1365 /* Restore, Step 42:
1366 * If any CSA.SPU_Status[I,S,H,P]=1, then
1367 * restore the error or single step state.
1369 mask = SPU_STATUS_INVALID_INSTR |
1370 SPU_STATUS_SINGLE_STEP |
1371 SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1372 if (csa->prob.spu_status_R & mask) {
1373 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1375 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1376 SPU_STATUS_RUNNING);
1380 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1382 struct spu_problem __iomem *prob = spu->problem;
1385 /* Restore, Step 43:
1386 * If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1387 * SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1388 * then write '00' to SPU_RunCntl[R0R1] and wait
1389 * for SPU_Status[R]=0.
1391 mask = SPU_STATUS_INVALID_INSTR |
1392 SPU_STATUS_SINGLE_STEP |
1393 SPU_STATUS_STOPPED_BY_HALT |
1394 SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1395 if (!(csa->prob.spu_status_R & mask)) {
1396 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1398 POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1399 SPU_STATUS_RUNNING);
1400 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1402 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1403 SPU_STATUS_RUNNING);
1407 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1409 unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1410 unsigned int ls_offset = 0x0;
1411 unsigned int size = 16384;
1412 unsigned int tag = 0;
1413 unsigned int rclass = 0;
1414 unsigned int cmd = MFC_GET_CMD;
1416 /* Restore, Step 44:
1417 * Issue a DMA command to restore the first
1418 * 16kb of local storage from CSA.
1420 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1423 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1425 /* Restore, Step 49:
1426 * Write INT_MASK_class0 with value of 0.
1427 * Write INT_MASK_class1 with value of 0.
1428 * Write INT_MASK_class2 with value of 0.
1429 * Write INT_STAT_class0 with value of -1.
1430 * Write INT_STAT_class1 with value of -1.
1431 * Write INT_STAT_class2 with value of -1.
1433 spin_lock_irq(&spu->register_lock);
1434 spu_int_mask_set(spu, 0, 0ul);
1435 spu_int_mask_set(spu, 1, 0ul);
1436 spu_int_mask_set(spu, 2, 0ul);
1437 spu_int_stat_clear(spu, 0, ~0ul);
1438 spu_int_stat_clear(spu, 1, ~0ul);
1439 spu_int_stat_clear(spu, 2, ~0ul);
1440 spin_unlock_irq(&spu->register_lock);
1443 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1445 struct spu_priv2 __iomem *priv2 = spu->priv2;
1448 /* Restore, Step 50:
1449 * If MFC_Cntl[Se]!=0 then restore
1450 * MFC command queues.
1452 if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1453 for (i = 0; i < 8; i++) {
1454 out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1455 csa->priv2.puq[i].mfc_cq_data0_RW);
1456 out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1457 csa->priv2.puq[i].mfc_cq_data1_RW);
1458 out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1459 csa->priv2.puq[i].mfc_cq_data2_RW);
1460 out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1461 csa->priv2.puq[i].mfc_cq_data3_RW);
1463 for (i = 0; i < 16; i++) {
1464 out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1465 csa->priv2.spuq[i].mfc_cq_data0_RW);
1466 out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1467 csa->priv2.spuq[i].mfc_cq_data1_RW);
1468 out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1469 csa->priv2.spuq[i].mfc_cq_data2_RW);
1470 out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1471 csa->priv2.spuq[i].mfc_cq_data3_RW);
1477 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1479 struct spu_problem __iomem *prob = spu->problem;
1481 /* Restore, Step 51:
1482 * Restore the PPU_QueryMask register from CSA.
1484 out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1488 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1490 struct spu_problem __iomem *prob = spu->problem;
1492 /* Restore, Step 52:
1493 * Restore the PPU_QueryType register from CSA.
1495 out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1499 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1501 struct spu_priv2 __iomem *priv2 = spu->priv2;
1503 /* Restore, Step 53:
1504 * Restore the MFC_CSR_TSQ register from CSA.
1506 out_be64(&priv2->spu_tag_status_query_RW,
1507 csa->priv2.spu_tag_status_query_RW);
1511 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1513 struct spu_priv2 __iomem *priv2 = spu->priv2;
1515 /* Restore, Step 54:
1516 * Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1517 * registers from CSA.
1519 out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1520 out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1524 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1526 struct spu_priv2 __iomem *priv2 = spu->priv2;
1528 /* Restore, Step 55:
1529 * Restore the MFC_CSR_ATO register from CSA.
1531 out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1534 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1536 /* Restore, Step 56:
1537 * Restore the MFC_TCLASS_ID register from CSA.
1539 spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1543 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1545 u64 ch0_cnt, ch0_data;
1548 /* Restore, Step 57:
1549 * Set the Lock Line Reservation Lost Event by:
1550 * 1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1551 * 2. If CSA.SPU_Channel_0_Count=0 and
1552 * CSA.SPU_Wr_Event_Mask[Lr]=1 and
1553 * CSA.SPU_Event_Status[Lr]=0 then set
1554 * CSA.SPU_Event_Status_Count=1.
1556 ch0_cnt = csa->spu_chnlcnt_RW[0];
1557 ch0_data = csa->spu_chnldata_RW[0];
1558 ch1_data = csa->spu_chnldata_RW[1];
1559 csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1560 if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1561 (ch1_data & MFC_LLR_LOST_EVENT)) {
1562 csa->spu_chnlcnt_RW[0] = 1;
1566 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1568 /* Restore, Step 58:
1569 * If the status of the CSA software decrementer
1570 * "wrapped" flag is set, OR in a '1' to
1571 * CSA.SPU_Event_Status[Tm].
1573 if (csa->lscsa->decr_status.slot[0] == 1) {
1574 csa->spu_chnldata_RW[0] |= 0x20;
1576 if ((csa->lscsa->decr_status.slot[0] == 1) &&
1577 (csa->spu_chnlcnt_RW[0] == 0 &&
1578 ((csa->spu_chnldata_RW[2] & 0x20) == 0x0) &&
1579 ((csa->spu_chnldata_RW[0] & 0x20) != 0x1))) {
1580 csa->spu_chnlcnt_RW[0] = 1;
1584 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1586 struct spu_priv2 __iomem *priv2 = spu->priv2;
1587 u64 idx, ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1590 /* Restore, Step 59:
1593 /* Restore CH 1 without count */
1594 out_be64(&priv2->spu_chnlcntptr_RW, 1);
1595 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[1]);
1597 /* Restore the following CH: [0,3,4,24,25,27] */
1598 for (i = 0; i < 7; i++) {
1599 idx = ch_indices[i];
1600 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1602 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1603 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1608 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1610 struct spu_priv2 __iomem *priv2 = spu->priv2;
1611 u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1612 u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1616 /* Restore, Step 60:
1617 * Restore the following CH: [9,21,23].
1620 ch_counts[1] = csa->spu_chnlcnt_RW[21];
1622 for (i = 0; i < 3; i++) {
1623 idx = ch_indices[i];
1624 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1626 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1631 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1633 struct spu_priv2 __iomem *priv2 = spu->priv2;
1635 /* Restore, Step 61:
1636 * Restore the SPU_LSLR register from CSA.
1638 out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1642 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1644 struct spu_priv2 __iomem *priv2 = spu->priv2;
1646 /* Restore, Step 62:
1647 * Restore the SPU_Cfg register from CSA.
1649 out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1653 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1655 /* Restore, Step 63:
1656 * Restore PM_Trace_Tag_Wait_Mask from CSA.
1657 * Not performed by this implementation.
1661 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1663 struct spu_problem __iomem *prob = spu->problem;
1665 /* Restore, Step 64:
1666 * Restore SPU_NPC from CSA.
1668 out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1672 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1674 struct spu_priv2 __iomem *priv2 = spu->priv2;
1677 /* Restore, Step 65:
1678 * Restore MFC_RdSPU_MB from CSA.
1680 out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1682 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1683 for (i = 0; i < 4; i++) {
1684 out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1689 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1691 struct spu_problem __iomem *prob = spu->problem;
1694 /* Restore, Step 66:
1695 * If CSA.MB_Stat[P]=0 (mailbox empty) then
1696 * read from the PPU_MB register.
1698 if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1699 dummy = in_be32(&prob->pu_mb_R);
1704 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1706 struct spu_priv2 __iomem *priv2 = spu->priv2;
1709 /* Restore, Step 66:
1710 * If CSA.MB_Stat[I]=0 (mailbox empty) then
1711 * read from the PPUINT_MB register.
1713 if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1714 dummy = in_be64(&priv2->puint_mb_R);
1716 spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1721 static inline void restore_mfc_slbs(struct spu_state *csa, struct spu *spu)
1723 struct spu_priv2 __iomem *priv2 = spu->priv2;
1726 /* Restore, Step 68:
1727 * If MFC_SR1[R]='1', restore SLBs from CSA.
1729 if (csa->priv1.mfc_sr1_RW & MFC_STATE1_RELOCATE_MASK) {
1730 for (i = 0; i < 8; i++) {
1731 out_be64(&priv2->slb_index_W, i);
1733 out_be64(&priv2->slb_esid_RW, csa->slb_esid_RW[i]);
1734 out_be64(&priv2->slb_vsid_RW, csa->slb_vsid_RW[i]);
1737 out_be64(&priv2->slb_index_W, csa->priv2.slb_index_W);
1742 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1744 /* Restore, Step 69:
1745 * Restore the MFC_SR1 register from CSA.
1747 spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1751 static inline void restore_other_spu_access(struct spu_state *csa,
1754 /* Restore, Step 70:
1755 * Restore other SPU mappings to this SPU. TBD.
1759 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1761 struct spu_problem __iomem *prob = spu->problem;
1763 /* Restore, Step 71:
1764 * If CSA.SPU_Status[R]=1 then write
1765 * SPU_RunCntl[R0R1]='01'.
1767 if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1768 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1773 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1775 struct spu_priv2 __iomem *priv2 = spu->priv2;
1777 /* Restore, Step 72:
1778 * Restore the MFC_CNTL register for the CSA.
1780 out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1783 * FIXME: this is to restart a DMA that we were processing
1784 * before the save. better remember the fault information
1785 * in the csa instead.
1787 if ((csa->priv2.mfc_control_RW & MFC_CNTL_SUSPEND_DMA_QUEUE_MASK)) {
1788 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
1793 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1795 /* Restore, Step 73:
1796 * Enable user-space access (if provided) to this
1797 * SPU by mapping the virtual pages assigned to
1798 * the SPU memory-mapped I/O (MMIO) for problem
1803 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1805 /* Restore, Step 74:
1806 * Reset the "context switch active" flag.
1808 clear_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
1812 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1814 /* Restore, Step 75:
1815 * Re-enable SPU interrupts.
1817 spin_lock_irq(&spu->register_lock);
1818 spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1819 spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1820 spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1821 spin_unlock_irq(&spu->register_lock);
1824 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1827 * Combined steps 2-18 of SPU context save sequence, which
1828 * quiesce the SPU state (disable SPU execution, MFC command
1829 * queues, decrementer, SPU interrupts, etc.).
1831 * Returns 0 on success.
1832 * 2 if failed step 2.
1833 * 6 if failed step 6.
1836 if (check_spu_isolate(prev, spu)) { /* Step 2. */
1839 disable_interrupts(prev, spu); /* Step 3. */
1840 set_watchdog_timer(prev, spu); /* Step 4. */
1841 inhibit_user_access(prev, spu); /* Step 5. */
1842 if (check_spu_isolate(prev, spu)) { /* Step 6. */
1845 set_switch_pending(prev, spu); /* Step 7. */
1846 save_mfc_cntl(prev, spu); /* Step 8. */
1847 save_spu_runcntl(prev, spu); /* Step 9. */
1848 save_mfc_sr1(prev, spu); /* Step 10. */
1849 save_spu_status(prev, spu); /* Step 11. */
1850 save_mfc_decr(prev, spu); /* Step 12. */
1851 halt_mfc_decr(prev, spu); /* Step 13. */
1852 save_timebase(prev, spu); /* Step 14. */
1853 remove_other_spu_access(prev, spu); /* Step 15. */
1854 do_mfc_mssync(prev, spu); /* Step 16. */
1855 issue_mfc_tlbie(prev, spu); /* Step 17. */
1856 handle_pending_interrupts(prev, spu); /* Step 18. */
1861 static void save_csa(struct spu_state *prev, struct spu *spu)
1864 * Combine steps 19-44 of SPU context save sequence, which
1865 * save regions of the privileged & problem state areas.
1868 save_mfc_queues(prev, spu); /* Step 19. */
1869 save_ppu_querymask(prev, spu); /* Step 20. */
1870 save_ppu_querytype(prev, spu); /* Step 21. */
1871 save_mfc_csr_tsq(prev, spu); /* Step 22. */
1872 save_mfc_csr_cmd(prev, spu); /* Step 23. */
1873 save_mfc_csr_ato(prev, spu); /* Step 24. */
1874 save_mfc_tclass_id(prev, spu); /* Step 25. */
1875 set_mfc_tclass_id(prev, spu); /* Step 26. */
1876 purge_mfc_queue(prev, spu); /* Step 27. */
1877 wait_purge_complete(prev, spu); /* Step 28. */
1878 save_mfc_slbs(prev, spu); /* Step 29. */
1879 setup_mfc_sr1(prev, spu); /* Step 30. */
1880 save_spu_npc(prev, spu); /* Step 31. */
1881 save_spu_privcntl(prev, spu); /* Step 32. */
1882 reset_spu_privcntl(prev, spu); /* Step 33. */
1883 save_spu_lslr(prev, spu); /* Step 34. */
1884 reset_spu_lslr(prev, spu); /* Step 35. */
1885 save_spu_cfg(prev, spu); /* Step 36. */
1886 save_pm_trace(prev, spu); /* Step 37. */
1887 save_mfc_rag(prev, spu); /* Step 38. */
1888 save_ppu_mb_stat(prev, spu); /* Step 39. */
1889 save_ppu_mb(prev, spu); /* Step 40. */
1890 save_ppuint_mb(prev, spu); /* Step 41. */
1891 save_ch_part1(prev, spu); /* Step 42. */
1892 save_spu_mb(prev, spu); /* Step 43. */
1893 save_mfc_cmd(prev, spu); /* Step 44. */
1894 reset_ch(prev, spu); /* Step 45. */
1897 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1900 * Perform steps 46-57 of SPU context save sequence,
1901 * which save regions of the local store and register
1905 resume_mfc_queue(prev, spu); /* Step 46. */
1906 setup_mfc_slbs(prev, spu); /* Step 47. */
1907 set_switch_active(prev, spu); /* Step 48. */
1908 enable_interrupts(prev, spu); /* Step 49. */
1909 save_ls_16kb(prev, spu); /* Step 50. */
1910 set_spu_npc(prev, spu); /* Step 51. */
1911 set_signot1(prev, spu); /* Step 52. */
1912 set_signot2(prev, spu); /* Step 53. */
1913 send_save_code(prev, spu); /* Step 54. */
1914 set_ppu_querymask(prev, spu); /* Step 55. */
1915 wait_tag_complete(prev, spu); /* Step 56. */
1916 wait_spu_stopped(prev, spu); /* Step 57. */
1919 static void force_spu_isolate_exit(struct spu *spu)
1921 struct spu_problem __iomem *prob = spu->problem;
1922 struct spu_priv2 __iomem *priv2 = spu->priv2;
1924 /* Stop SPE execution and wait for completion. */
1925 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1927 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1929 /* Restart SPE master runcntl. */
1930 spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1933 /* Initiate isolate exit request and wait for completion. */
1934 out_be64(&priv2->spu_privcntl_RW, 4LL);
1936 out_be32(&prob->spu_runcntl_RW, 2);
1938 POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1939 & SPU_STATUS_STOPPED_BY_STOP));
1941 /* Reset load request to normal. */
1942 out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1948 * Check SPU run-control state and force isolated
1949 * exit function as necessary.
1951 static void stop_spu_isolate(struct spu *spu)
1953 struct spu_problem __iomem *prob = spu->problem;
1955 if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1956 /* The SPU is in isolated state; the only way
1957 * to get it out is to perform an isolated
1958 * exit (clean) operation.
1960 force_spu_isolate_exit(spu);
1964 static void harvest(struct spu_state *prev, struct spu *spu)
1967 * Perform steps 2-25 of SPU context restore sequence,
1968 * which resets an SPU either after a failed save, or
1969 * when using SPU for first time.
1972 disable_interrupts(prev, spu); /* Step 2. */
1973 inhibit_user_access(prev, spu); /* Step 3. */
1974 terminate_spu_app(prev, spu); /* Step 4. */
1975 set_switch_pending(prev, spu); /* Step 5. */
1976 stop_spu_isolate(spu); /* NEW. */
1977 remove_other_spu_access(prev, spu); /* Step 6. */
1978 suspend_mfc(prev, spu); /* Step 7. */
1979 wait_suspend_mfc_complete(prev, spu); /* Step 8. */
1980 if (!suspend_spe(prev, spu)) /* Step 9. */
1981 clear_spu_status(prev, spu); /* Step 10. */
1982 do_mfc_mssync(prev, spu); /* Step 11. */
1983 issue_mfc_tlbie(prev, spu); /* Step 12. */
1984 handle_pending_interrupts(prev, spu); /* Step 13. */
1985 purge_mfc_queue(prev, spu); /* Step 14. */
1986 wait_purge_complete(prev, spu); /* Step 15. */
1987 reset_spu_privcntl(prev, spu); /* Step 16. */
1988 reset_spu_lslr(prev, spu); /* Step 17. */
1989 setup_mfc_sr1(prev, spu); /* Step 18. */
1990 invalidate_slbs(prev, spu); /* Step 19. */
1991 reset_ch_part1(prev, spu); /* Step 20. */
1992 reset_ch_part2(prev, spu); /* Step 21. */
1993 enable_interrupts(prev, spu); /* Step 22. */
1994 set_switch_active(prev, spu); /* Step 23. */
1995 set_mfc_tclass_id(prev, spu); /* Step 24. */
1996 resume_mfc_queue(prev, spu); /* Step 25. */
1999 static void restore_lscsa(struct spu_state *next, struct spu *spu)
2002 * Perform steps 26-40 of SPU context restore sequence,
2003 * which restores regions of the local store and register
2007 set_watchdog_timer(next, spu); /* Step 26. */
2008 setup_spu_status_part1(next, spu); /* Step 27. */
2009 setup_spu_status_part2(next, spu); /* Step 28. */
2010 restore_mfc_rag(next, spu); /* Step 29. */
2011 setup_mfc_slbs(next, spu); /* Step 30. */
2012 set_spu_npc(next, spu); /* Step 31. */
2013 set_signot1(next, spu); /* Step 32. */
2014 set_signot2(next, spu); /* Step 33. */
2015 setup_decr(next, spu); /* Step 34. */
2016 setup_ppu_mb(next, spu); /* Step 35. */
2017 setup_ppuint_mb(next, spu); /* Step 36. */
2018 send_restore_code(next, spu); /* Step 37. */
2019 set_ppu_querymask(next, spu); /* Step 38. */
2020 wait_tag_complete(next, spu); /* Step 39. */
2021 wait_spu_stopped(next, spu); /* Step 40. */
2024 static void restore_csa(struct spu_state *next, struct spu *spu)
2027 * Combine steps 41-76 of SPU context restore sequence, which
2028 * restore regions of the privileged & problem state areas.
2031 restore_spu_privcntl(next, spu); /* Step 41. */
2032 restore_status_part1(next, spu); /* Step 42. */
2033 restore_status_part2(next, spu); /* Step 43. */
2034 restore_ls_16kb(next, spu); /* Step 44. */
2035 wait_tag_complete(next, spu); /* Step 45. */
2036 suspend_mfc(next, spu); /* Step 46. */
2037 wait_suspend_mfc_complete(next, spu); /* Step 47. */
2038 issue_mfc_tlbie(next, spu); /* Step 48. */
2039 clear_interrupts(next, spu); /* Step 49. */
2040 restore_mfc_queues(next, spu); /* Step 50. */
2041 restore_ppu_querymask(next, spu); /* Step 51. */
2042 restore_ppu_querytype(next, spu); /* Step 52. */
2043 restore_mfc_csr_tsq(next, spu); /* Step 53. */
2044 restore_mfc_csr_cmd(next, spu); /* Step 54. */
2045 restore_mfc_csr_ato(next, spu); /* Step 55. */
2046 restore_mfc_tclass_id(next, spu); /* Step 56. */
2047 set_llr_event(next, spu); /* Step 57. */
2048 restore_decr_wrapped(next, spu); /* Step 58. */
2049 restore_ch_part1(next, spu); /* Step 59. */
2050 restore_ch_part2(next, spu); /* Step 60. */
2051 restore_spu_lslr(next, spu); /* Step 61. */
2052 restore_spu_cfg(next, spu); /* Step 62. */
2053 restore_pm_trace(next, spu); /* Step 63. */
2054 restore_spu_npc(next, spu); /* Step 64. */
2055 restore_spu_mb(next, spu); /* Step 65. */
2056 check_ppu_mb_stat(next, spu); /* Step 66. */
2057 check_ppuint_mb_stat(next, spu); /* Step 67. */
2058 restore_mfc_slbs(next, spu); /* Step 68. */
2059 restore_mfc_sr1(next, spu); /* Step 69. */
2060 restore_other_spu_access(next, spu); /* Step 70. */
2061 restore_spu_runcntl(next, spu); /* Step 71. */
2062 restore_mfc_cntl(next, spu); /* Step 72. */
2063 enable_user_access(next, spu); /* Step 73. */
2064 reset_switch_active(next, spu); /* Step 74. */
2065 reenable_interrupts(next, spu); /* Step 75. */
2068 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2073 * SPU context save can be broken into three phases:
2075 * (a) quiesce [steps 2-16].
2076 * (b) save of CSA, performed by PPE [steps 17-42]
2077 * (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2079 * Returns 0 on success.
2080 * 2,6 if failed to quiece SPU
2081 * 53 if SPU-side of save failed.
2084 rc = quiece_spu(prev, spu); /* Steps 2-16. */
2095 save_csa(prev, spu); /* Steps 17-43. */
2096 save_lscsa(prev, spu); /* Steps 44-53. */
2097 return check_save_status(prev, spu); /* Step 54. */
2100 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2105 * SPU context restore can be broken into three phases:
2107 * (a) harvest (or reset) SPU [steps 2-24].
2108 * (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2109 * (c) restore CSA [steps 41-76], performed by PPE.
2111 * The 'harvest' step is not performed here, but rather
2115 restore_lscsa(next, spu); /* Steps 24-39. */
2116 rc = check_restore_status(next, spu); /* Step 40. */
2119 /* Failed. Return now. */
2123 /* Fall through to next step. */
2126 restore_csa(next, spu);
2132 * spu_save - SPU context save, with locking.
2133 * @prev: pointer to SPU context save area, to be saved.
2134 * @spu: pointer to SPU iomem structure.
2136 * Acquire locks, perform the save operation then return.
2138 int spu_save(struct spu_state *prev, struct spu *spu)
2142 acquire_spu_lock(spu); /* Step 1. */
2143 rc = __do_spu_save(prev, spu); /* Steps 2-53. */
2144 release_spu_lock(spu);
2145 if (rc != 0 && rc != 2 && rc != 6) {
2146 panic("%s failed on SPU[%d], rc=%d.\n",
2147 __func__, spu->number, rc);
2151 EXPORT_SYMBOL_GPL(spu_save);
2154 * spu_restore - SPU context restore, with harvest and locking.
2155 * @new: pointer to SPU context save area, to be restored.
2156 * @spu: pointer to SPU iomem structure.
2158 * Perform harvest + restore, as we may not be coming
2159 * from a previous successful save operation, and the
2160 * hardware state is unknown.
2162 int spu_restore(struct spu_state *new, struct spu *spu)
2166 acquire_spu_lock(spu);
2170 spu->slb_replace = 0;
2171 spu->class_0_pending = 0;
2172 rc = __do_spu_restore(new, spu);
2173 release_spu_lock(spu);
2175 panic("%s failed on SPU[%d] rc=%d.\n",
2176 __func__, spu->number, rc);
2180 EXPORT_SYMBOL_GPL(spu_restore);
2183 * spu_harvest - SPU harvest (reset) operation
2184 * @spu: pointer to SPU iomem structure.
2186 * Perform SPU harvest (reset) operation.
2188 void spu_harvest(struct spu *spu)
2190 acquire_spu_lock(spu);
2192 release_spu_lock(spu);
2195 static void init_prob(struct spu_state *csa)
2197 csa->spu_chnlcnt_RW[9] = 1;
2198 csa->spu_chnlcnt_RW[21] = 16;
2199 csa->spu_chnlcnt_RW[23] = 1;
2200 csa->spu_chnlcnt_RW[28] = 1;
2201 csa->spu_chnlcnt_RW[30] = 1;
2202 csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2203 csa->prob.mb_stat_R = 0x000400;
2206 static void init_priv1(struct spu_state *csa)
2208 /* Enable decode, relocate, tlbie response, master runcntl. */
2209 csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2210 MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2211 MFC_STATE1_PROBLEM_STATE_MASK |
2212 MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2214 /* Enable OS-specific set of interrupts. */
2215 csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2216 CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2217 CLASS0_ENABLE_SPU_ERROR_INTR;
2218 csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2219 CLASS1_ENABLE_STORAGE_FAULT_INTR;
2220 csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2221 CLASS2_ENABLE_SPU_HALT_INTR |
2222 CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2225 static void init_priv2(struct spu_state *csa)
2227 csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2228 csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2229 MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2230 MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2234 * spu_alloc_csa - allocate and initialize an SPU context save area.
2236 * Allocate and initialize the contents of an SPU context save area.
2237 * This includes enabling address translation, interrupt masks, etc.,
2238 * as appropriate for the given OS environment.
2240 * Note that storage for the 'lscsa' is allocated separately,
2241 * as it is by far the largest of the context save regions,
2242 * and may need to be pinned or otherwise specially aligned.
2244 void spu_init_csa(struct spu_state *csa)
2246 struct spu_lscsa *lscsa;
2251 memset(csa, 0, sizeof(struct spu_state));
2253 lscsa = vmalloc(sizeof(struct spu_lscsa));
2257 memset(lscsa, 0, sizeof(struct spu_lscsa));
2259 spin_lock_init(&csa->register_lock);
2261 /* Set LS pages reserved to allow for user-space mapping. */
2262 for (p = lscsa->ls; p < lscsa->ls + LS_SIZE; p += PAGE_SIZE)
2263 SetPageReserved(vmalloc_to_page(p));
2269 EXPORT_SYMBOL_GPL(spu_init_csa);
2271 void spu_fini_csa(struct spu_state *csa)
2273 /* Clear reserved bit before vfree. */
2275 for (p = csa->lscsa->ls; p < csa->lscsa->ls + LS_SIZE; p += PAGE_SIZE)
2276 ClearPageReserved(vmalloc_to_page(p));
2280 EXPORT_SYMBOL_GPL(spu_fini_csa);