1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
14 * - Now that the driver was significantly simplified, I need to rework
15 * the locking. I'm sure we don't need _2_ spinlocks, and we probably
16 * can avoid taking most of them for so long period of time (and schedule
17 * instead). The main issues at this point are caused by the netdev layer
20 * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
21 * help by net/core/dev.c, thus they can't schedule. That means they can't
22 * call netif_poll_disable() neither, thus force gem_poll() to keep a spinlock
23 * where it could have been dropped. change_mtu especially would love also to
24 * be able to msleep instead of horrid locked delays when resetting the HW,
25 * but that read_lock() makes it impossible, unless I defer it's action to
26 * the reset task, which means it'll be asynchronous (won't take effect until
27 * the system schedules a bit).
29 * Also, it would probably be possible to also remove most of the long-life
30 * locking in open/resume code path (gem_reinit_chip) by beeing more careful
31 * about when we can start taking interrupts or get xmit() called...
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/fcntl.h>
38 #include <linux/interrupt.h>
39 #include <linux/ioport.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/delay.h>
44 #include <linux/init.h>
45 #include <linux/errno.h>
46 #include <linux/pci.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/mii.h>
52 #include <linux/ethtool.h>
53 #include <linux/crc32.h>
54 #include <linux/random.h>
55 #include <linux/workqueue.h>
56 #include <linux/if_vlan.h>
57 #include <linux/bitops.h>
58 #include <linux/mutex.h>
61 #include <asm/system.h>
63 #include <asm/byteorder.h>
64 #include <asm/uaccess.h>
68 #include <asm/idprom.h>
69 #include <asm/openprom.h>
70 #include <asm/oplib.h>
74 #ifdef CONFIG_PPC_PMAC
75 #include <asm/pci-bridge.h>
77 #include <asm/machdep.h>
78 #include <asm/pmac_feature.h>
81 #include "sungem_phy.h"
84 /* Stripping FCS is causing problems, disabled for now */
87 #define DEFAULT_MSG (NETIF_MSG_DRV | \
91 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
92 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
93 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
94 SUPPORTED_Pause | SUPPORTED_Autoneg)
96 #define DRV_NAME "sungem"
97 #define DRV_VERSION "0.98"
98 #define DRV_RELDATE "8/24/03"
99 #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
101 static char version[] __devinitdata =
102 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
104 MODULE_AUTHOR(DRV_AUTHOR);
105 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
106 MODULE_LICENSE("GPL");
108 #define GEM_MODULE_NAME "gem"
109 #define PFX GEM_MODULE_NAME ": "
111 static struct pci_device_id gem_pci_tbl[] = {
112 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
113 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
115 /* These models only differ from the original GEM in
116 * that their tx/rx fifos are of a different size and
117 * they only support 10/100 speeds. -DaveM
119 * Apple's GMAC does support gigabit on machines with
120 * the BCM54xx PHYs. -BenH
122 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
123 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
124 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
125 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
126 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
127 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
128 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
129 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
130 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
131 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
132 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
133 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
134 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
135 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
139 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
141 static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
148 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
149 cmd |= (reg << 18) & MIF_FRAME_REGAD;
150 cmd |= (MIF_FRAME_TAMSB);
151 writel(cmd, gp->regs + MIF_FRAME);
154 cmd = readl(gp->regs + MIF_FRAME);
155 if (cmd & MIF_FRAME_TALSB)
164 return cmd & MIF_FRAME_DATA;
167 static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
169 struct gem *gp = dev->priv;
170 return __phy_read(gp, mii_id, reg);
173 static inline u16 phy_read(struct gem *gp, int reg)
175 return __phy_read(gp, gp->mii_phy_addr, reg);
178 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
185 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
186 cmd |= (reg << 18) & MIF_FRAME_REGAD;
187 cmd |= (MIF_FRAME_TAMSB);
188 cmd |= (val & MIF_FRAME_DATA);
189 writel(cmd, gp->regs + MIF_FRAME);
192 cmd = readl(gp->regs + MIF_FRAME);
193 if (cmd & MIF_FRAME_TALSB)
200 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
202 struct gem *gp = dev->priv;
203 __phy_write(gp, mii_id, reg, val & 0xffff);
206 static inline void phy_write(struct gem *gp, int reg, u16 val)
208 __phy_write(gp, gp->mii_phy_addr, reg, val);
211 static inline void gem_enable_ints(struct gem *gp)
213 /* Enable all interrupts but TXDONE */
214 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
217 static inline void gem_disable_ints(struct gem *gp)
219 /* Disable all interrupts, including TXDONE */
220 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
223 static void gem_get_cell(struct gem *gp)
225 BUG_ON(gp->cell_enabled < 0);
227 #ifdef CONFIG_PPC_PMAC
228 if (gp->cell_enabled == 1) {
230 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
233 #endif /* CONFIG_PPC_PMAC */
236 /* Turn off the chip's clock */
237 static void gem_put_cell(struct gem *gp)
239 BUG_ON(gp->cell_enabled <= 0);
241 #ifdef CONFIG_PPC_PMAC
242 if (gp->cell_enabled == 0) {
244 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
247 #endif /* CONFIG_PPC_PMAC */
250 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
252 if (netif_msg_intr(gp))
253 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
256 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
258 u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
261 if (netif_msg_intr(gp))
262 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
263 gp->dev->name, pcs_istat);
265 if (!(pcs_istat & PCS_ISTAT_LSC)) {
266 printk(KERN_ERR "%s: PCS irq but no link status change???\n",
271 /* The link status bit latches on zero, so you must
272 * read it twice in such a case to see a transition
273 * to the link being up.
275 pcs_miistat = readl(gp->regs + PCS_MIISTAT);
276 if (!(pcs_miistat & PCS_MIISTAT_LS))
278 (readl(gp->regs + PCS_MIISTAT) &
281 if (pcs_miistat & PCS_MIISTAT_ANC) {
282 /* The remote-fault indication is only valid
283 * when autoneg has completed.
285 if (pcs_miistat & PCS_MIISTAT_RF)
286 printk(KERN_INFO "%s: PCS AutoNEG complete, "
287 "RemoteFault\n", dev->name);
289 printk(KERN_INFO "%s: PCS AutoNEG complete.\n",
293 if (pcs_miistat & PCS_MIISTAT_LS) {
294 printk(KERN_INFO "%s: PCS link is now up.\n",
296 netif_carrier_on(gp->dev);
298 printk(KERN_INFO "%s: PCS link is now down.\n",
300 netif_carrier_off(gp->dev);
301 /* If this happens and the link timer is not running,
302 * reset so we re-negotiate.
304 if (!timer_pending(&gp->link_timer))
311 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
313 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
315 if (netif_msg_intr(gp))
316 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
317 gp->dev->name, txmac_stat);
319 /* Defer timer expiration is quite normal,
320 * don't even log the event.
322 if ((txmac_stat & MAC_TXSTAT_DTE) &&
323 !(txmac_stat & ~MAC_TXSTAT_DTE))
326 if (txmac_stat & MAC_TXSTAT_URUN) {
327 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
329 gp->net_stats.tx_fifo_errors++;
332 if (txmac_stat & MAC_TXSTAT_MPE) {
333 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
335 gp->net_stats.tx_errors++;
338 /* The rest are all cases of one of the 16-bit TX
341 if (txmac_stat & MAC_TXSTAT_NCE)
342 gp->net_stats.collisions += 0x10000;
344 if (txmac_stat & MAC_TXSTAT_ECE) {
345 gp->net_stats.tx_aborted_errors += 0x10000;
346 gp->net_stats.collisions += 0x10000;
349 if (txmac_stat & MAC_TXSTAT_LCE) {
350 gp->net_stats.tx_aborted_errors += 0x10000;
351 gp->net_stats.collisions += 0x10000;
354 /* We do not keep track of MAC_TXSTAT_FCE and
355 * MAC_TXSTAT_PCE events.
360 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
361 * so we do the following.
363 * If any part of the reset goes wrong, we return 1 and that causes the
364 * whole chip to be reset.
366 static int gem_rxmac_reset(struct gem *gp)
368 struct net_device *dev = gp->dev;
373 /* First, reset & disable MAC RX. */
374 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
375 for (limit = 0; limit < 5000; limit++) {
376 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
381 printk(KERN_ERR "%s: RX MAC will not reset, resetting whole "
382 "chip.\n", dev->name);
386 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
387 gp->regs + MAC_RXCFG);
388 for (limit = 0; limit < 5000; limit++) {
389 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
394 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
395 "chip.\n", dev->name);
399 /* Second, disable RX DMA. */
400 writel(0, gp->regs + RXDMA_CFG);
401 for (limit = 0; limit < 5000; limit++) {
402 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
407 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
408 "chip.\n", dev->name);
414 /* Execute RX reset command. */
415 writel(gp->swrst_base | GREG_SWRST_RXRST,
416 gp->regs + GREG_SWRST);
417 for (limit = 0; limit < 5000; limit++) {
418 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
423 printk(KERN_ERR "%s: RX reset command will not execute, resetting "
424 "whole chip.\n", dev->name);
428 /* Refresh the RX ring. */
429 for (i = 0; i < RX_RING_SIZE; i++) {
430 struct gem_rxd *rxd = &gp->init_block->rxd[i];
432 if (gp->rx_skbs[i] == NULL) {
433 printk(KERN_ERR "%s: Parts of RX ring empty, resetting "
434 "whole chip.\n", dev->name);
438 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
440 gp->rx_new = gp->rx_old = 0;
442 /* Now we must reprogram the rest of RX unit. */
443 desc_dma = (u64) gp->gblock_dvma;
444 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
445 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
446 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
447 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
448 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
449 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
450 writel(val, gp->regs + RXDMA_CFG);
451 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
452 writel(((5 & RXDMA_BLANK_IPKTS) |
453 ((8 << 12) & RXDMA_BLANK_ITIME)),
454 gp->regs + RXDMA_BLANK);
456 writel(((5 & RXDMA_BLANK_IPKTS) |
457 ((4 << 12) & RXDMA_BLANK_ITIME)),
458 gp->regs + RXDMA_BLANK);
459 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
460 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
461 writel(val, gp->regs + RXDMA_PTHRESH);
462 val = readl(gp->regs + RXDMA_CFG);
463 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
464 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
465 val = readl(gp->regs + MAC_RXCFG);
466 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
471 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
473 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
476 if (netif_msg_intr(gp))
477 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
478 gp->dev->name, rxmac_stat);
480 if (rxmac_stat & MAC_RXSTAT_OFLW) {
481 u32 smac = readl(gp->regs + MAC_SMACHINE);
483 printk(KERN_ERR "%s: RX MAC fifo overflow smac[%08x].\n",
485 gp->net_stats.rx_over_errors++;
486 gp->net_stats.rx_fifo_errors++;
488 ret = gem_rxmac_reset(gp);
491 if (rxmac_stat & MAC_RXSTAT_ACE)
492 gp->net_stats.rx_frame_errors += 0x10000;
494 if (rxmac_stat & MAC_RXSTAT_CCE)
495 gp->net_stats.rx_crc_errors += 0x10000;
497 if (rxmac_stat & MAC_RXSTAT_LCE)
498 gp->net_stats.rx_length_errors += 0x10000;
500 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
506 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
508 u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
510 if (netif_msg_intr(gp))
511 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
512 gp->dev->name, mac_cstat);
514 /* This interrupt is just for pause frame and pause
515 * tracking. It is useful for diagnostics and debug
516 * but probably by default we will mask these events.
518 if (mac_cstat & MAC_CSTAT_PS)
521 if (mac_cstat & MAC_CSTAT_PRCV)
522 gp->pause_last_time_recvd = (mac_cstat >> 16);
527 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
529 u32 mif_status = readl(gp->regs + MIF_STATUS);
530 u32 reg_val, changed_bits;
532 reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
533 changed_bits = (mif_status & MIF_STATUS_STAT);
535 gem_handle_mif_event(gp, reg_val, changed_bits);
540 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
542 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
544 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
545 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
546 printk(KERN_ERR "%s: PCI error [%04x] ",
547 dev->name, pci_estat);
549 if (pci_estat & GREG_PCIESTAT_BADACK)
550 printk("<No ACK64# during ABS64 cycle> ");
551 if (pci_estat & GREG_PCIESTAT_DTRTO)
552 printk("<Delayed transaction timeout> ");
553 if (pci_estat & GREG_PCIESTAT_OTHER)
557 pci_estat |= GREG_PCIESTAT_OTHER;
558 printk(KERN_ERR "%s: PCI error\n", dev->name);
561 if (pci_estat & GREG_PCIESTAT_OTHER) {
564 /* Interrogate PCI config space for the
567 pci_read_config_word(gp->pdev, PCI_STATUS,
569 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
570 dev->name, pci_cfg_stat);
571 if (pci_cfg_stat & PCI_STATUS_PARITY)
572 printk(KERN_ERR "%s: PCI parity error detected.\n",
574 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
575 printk(KERN_ERR "%s: PCI target abort.\n",
577 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
578 printk(KERN_ERR "%s: PCI master acks target abort.\n",
580 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
581 printk(KERN_ERR "%s: PCI master abort.\n",
583 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
584 printk(KERN_ERR "%s: PCI system error SERR#.\n",
586 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
587 printk(KERN_ERR "%s: PCI parity error.\n",
590 /* Write the error bits back to clear them. */
591 pci_cfg_stat &= (PCI_STATUS_PARITY |
592 PCI_STATUS_SIG_TARGET_ABORT |
593 PCI_STATUS_REC_TARGET_ABORT |
594 PCI_STATUS_REC_MASTER_ABORT |
595 PCI_STATUS_SIG_SYSTEM_ERROR |
596 PCI_STATUS_DETECTED_PARITY);
597 pci_write_config_word(gp->pdev,
598 PCI_STATUS, pci_cfg_stat);
601 /* For all PCI errors, we should reset the chip. */
605 /* All non-normal interrupt conditions get serviced here.
606 * Returns non-zero if we should just exit the interrupt
607 * handler right now (ie. if we reset the card which invalidates
608 * all of the other original irq status bits).
610 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
612 if (gem_status & GREG_STAT_RXNOBUF) {
613 /* Frame arrived, no free RX buffers available. */
614 if (netif_msg_rx_err(gp))
615 printk(KERN_DEBUG "%s: no buffer for rx frame\n",
617 gp->net_stats.rx_dropped++;
620 if (gem_status & GREG_STAT_RXTAGERR) {
621 /* corrupt RX tag framing */
622 if (netif_msg_rx_err(gp))
623 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
625 gp->net_stats.rx_errors++;
630 if (gem_status & GREG_STAT_PCS) {
631 if (gem_pcs_interrupt(dev, gp, gem_status))
635 if (gem_status & GREG_STAT_TXMAC) {
636 if (gem_txmac_interrupt(dev, gp, gem_status))
640 if (gem_status & GREG_STAT_RXMAC) {
641 if (gem_rxmac_interrupt(dev, gp, gem_status))
645 if (gem_status & GREG_STAT_MAC) {
646 if (gem_mac_interrupt(dev, gp, gem_status))
650 if (gem_status & GREG_STAT_MIF) {
651 if (gem_mif_interrupt(dev, gp, gem_status))
655 if (gem_status & GREG_STAT_PCIERR) {
656 if (gem_pci_interrupt(dev, gp, gem_status))
663 gp->reset_task_pending = 1;
664 schedule_work(&gp->reset_task);
669 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
673 if (netif_msg_intr(gp))
674 printk(KERN_DEBUG "%s: tx interrupt, gem_status: 0x%x\n",
675 gp->dev->name, gem_status);
678 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
679 while (entry != limit) {
686 if (netif_msg_tx_done(gp))
687 printk(KERN_DEBUG "%s: tx done, slot %d\n",
688 gp->dev->name, entry);
689 skb = gp->tx_skbs[entry];
690 if (skb_shinfo(skb)->nr_frags) {
691 int last = entry + skb_shinfo(skb)->nr_frags;
695 last &= (TX_RING_SIZE - 1);
697 walk = NEXT_TX(walk);
706 gp->tx_skbs[entry] = NULL;
707 gp->net_stats.tx_bytes += skb->len;
709 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
710 txd = &gp->init_block->txd[entry];
712 dma_addr = le64_to_cpu(txd->buffer);
713 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
715 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
716 entry = NEXT_TX(entry);
719 gp->net_stats.tx_packets++;
720 dev_kfree_skb_irq(skb);
724 if (netif_queue_stopped(dev) &&
725 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
726 netif_wake_queue(dev);
729 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
731 int cluster_start, curr, count, kick;
733 cluster_start = curr = (gp->rx_new & ~(4 - 1));
737 while (curr != limit) {
738 curr = NEXT_RX(curr);
740 struct gem_rxd *rxd =
741 &gp->init_block->rxd[cluster_start];
743 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
745 cluster_start = NEXT_RX(cluster_start);
746 if (cluster_start == curr)
755 writel(kick, gp->regs + RXDMA_KICK);
759 static int gem_rx(struct gem *gp, int work_to_do)
761 int entry, drops, work_done = 0;
764 if (netif_msg_rx_status(gp))
765 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
766 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
770 done = readl(gp->regs + RXDMA_DONE);
772 struct gem_rxd *rxd = &gp->init_block->rxd[entry];
774 u64 status = cpu_to_le64(rxd->status_word);
778 if ((status & RXDCTRL_OWN) != 0)
781 if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
784 /* When writing back RX descriptor, GEM writes status
785 * then buffer address, possibly in seperate transactions.
786 * If we don't wait for the chip to write both, we could
787 * post a new buffer to this descriptor then have GEM spam
788 * on the buffer address. We sync on the RX completion
789 * register to prevent this from happening.
792 done = readl(gp->regs + RXDMA_DONE);
797 /* We can now account for the work we're about to do */
800 skb = gp->rx_skbs[entry];
802 len = (status & RXDCTRL_BUFSZ) >> 16;
803 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
804 gp->net_stats.rx_errors++;
806 gp->net_stats.rx_length_errors++;
807 if (len & RXDCTRL_BAD)
808 gp->net_stats.rx_crc_errors++;
810 /* We'll just return it to GEM. */
812 gp->net_stats.rx_dropped++;
816 dma_addr = cpu_to_le64(rxd->buffer);
817 if (len > RX_COPY_THRESHOLD) {
818 struct sk_buff *new_skb;
820 new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
821 if (new_skb == NULL) {
825 pci_unmap_page(gp->pdev, dma_addr,
826 RX_BUF_ALLOC_SIZE(gp),
828 gp->rx_skbs[entry] = new_skb;
829 new_skb->dev = gp->dev;
830 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
831 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
832 virt_to_page(new_skb->data),
833 offset_in_page(new_skb->data),
834 RX_BUF_ALLOC_SIZE(gp),
835 PCI_DMA_FROMDEVICE));
836 skb_reserve(new_skb, RX_OFFSET);
838 /* Trim the original skb for the netif. */
841 struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
843 if (copy_skb == NULL) {
848 copy_skb->dev = gp->dev;
849 skb_reserve(copy_skb, 2);
850 skb_put(copy_skb, len);
851 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
852 memcpy(copy_skb->data, skb->data, len);
853 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
855 /* We'll reuse the original ring buffer. */
859 skb->csum = ntohs((status & RXDCTRL_TCPCSUM) ^ 0xffff);
860 skb->ip_summed = CHECKSUM_COMPLETE;
861 skb->protocol = eth_type_trans(skb, gp->dev);
863 netif_receive_skb(skb);
865 gp->net_stats.rx_packets++;
866 gp->net_stats.rx_bytes += len;
867 gp->dev->last_rx = jiffies;
870 entry = NEXT_RX(entry);
873 gem_post_rxds(gp, entry);
878 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
884 static int gem_poll(struct net_device *dev, int *budget)
886 struct gem *gp = dev->priv;
890 * NAPI locking nightmare: See comment at head of driver
892 spin_lock_irqsave(&gp->lock, flags);
895 int work_to_do, work_done;
897 /* Handle anomalies */
898 if (gp->status & GREG_STAT_ABNORMAL) {
899 if (gem_abnormal_irq(dev, gp, gp->status))
903 /* Run TX completion thread */
904 spin_lock(&gp->tx_lock);
905 gem_tx(dev, gp, gp->status);
906 spin_unlock(&gp->tx_lock);
908 spin_unlock_irqrestore(&gp->lock, flags);
910 /* Run RX thread. We don't use any locking here,
911 * code willing to do bad things - like cleaning the
912 * rx ring - must call netif_poll_disable(), which
913 * schedule_timeout()'s if polling is already disabled.
915 work_to_do = min(*budget, dev->quota);
917 work_done = gem_rx(gp, work_to_do);
919 *budget -= work_done;
920 dev->quota -= work_done;
922 if (work_done >= work_to_do)
925 spin_lock_irqsave(&gp->lock, flags);
927 gp->status = readl(gp->regs + GREG_STAT);
928 } while (gp->status & GREG_STAT_NAPI);
930 __netif_rx_complete(dev);
933 spin_unlock_irqrestore(&gp->lock, flags);
937 static irqreturn_t gem_interrupt(int irq, void *dev_id)
939 struct net_device *dev = dev_id;
940 struct gem *gp = dev->priv;
943 /* Swallow interrupts when shutting the chip down, though
944 * that shouldn't happen, we should have done free_irq() at
950 spin_lock_irqsave(&gp->lock, flags);
952 if (netif_rx_schedule_prep(dev)) {
953 u32 gem_status = readl(gp->regs + GREG_STAT);
955 if (gem_status == 0) {
956 netif_poll_enable(dev);
957 spin_unlock_irqrestore(&gp->lock, flags);
960 gp->status = gem_status;
961 gem_disable_ints(gp);
962 __netif_rx_schedule(dev);
965 spin_unlock_irqrestore(&gp->lock, flags);
967 /* If polling was disabled at the time we received that
968 * interrupt, we may return IRQ_HANDLED here while we
969 * should return IRQ_NONE. No big deal...
974 #ifdef CONFIG_NET_POLL_CONTROLLER
975 static void gem_poll_controller(struct net_device *dev)
977 /* gem_interrupt is safe to reentrance so no need
978 * to disable_irq here.
980 gem_interrupt(dev->irq, dev);
984 static void gem_tx_timeout(struct net_device *dev)
986 struct gem *gp = dev->priv;
988 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
990 printk("%s: hrm.. hw not running !\n", dev->name);
993 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x]\n",
995 readl(gp->regs + TXDMA_CFG),
996 readl(gp->regs + MAC_TXSTAT),
997 readl(gp->regs + MAC_TXCFG));
998 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
1000 readl(gp->regs + RXDMA_CFG),
1001 readl(gp->regs + MAC_RXSTAT),
1002 readl(gp->regs + MAC_RXCFG));
1004 spin_lock_irq(&gp->lock);
1005 spin_lock(&gp->tx_lock);
1007 gp->reset_task_pending = 1;
1008 schedule_work(&gp->reset_task);
1010 spin_unlock(&gp->tx_lock);
1011 spin_unlock_irq(&gp->lock);
1014 static __inline__ int gem_intme(int entry)
1016 /* Algorithm: IRQ every 1/2 of descriptors. */
1017 if (!(entry & ((TX_RING_SIZE>>1)-1)))
1023 static int gem_start_xmit(struct sk_buff *skb, struct net_device *dev)
1025 struct gem *gp = dev->priv;
1028 unsigned long flags;
1031 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1032 u64 csum_start_off, csum_stuff_off;
1034 csum_start_off = (u64) (skb->h.raw - skb->data);
1035 csum_stuff_off = csum_start_off + skb->csum_offset;
1037 ctrl = (TXDCTRL_CENAB |
1038 (csum_start_off << 15) |
1039 (csum_stuff_off << 21));
1042 local_irq_save(flags);
1043 if (!spin_trylock(&gp->tx_lock)) {
1044 /* Tell upper layer to requeue */
1045 local_irq_restore(flags);
1046 return NETDEV_TX_LOCKED;
1048 /* We raced with gem_do_stop() */
1050 spin_unlock_irqrestore(&gp->tx_lock, flags);
1051 return NETDEV_TX_BUSY;
1054 /* This is a hard error, log it. */
1055 if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
1056 netif_stop_queue(dev);
1057 spin_unlock_irqrestore(&gp->tx_lock, flags);
1058 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
1060 return NETDEV_TX_BUSY;
1064 gp->tx_skbs[entry] = skb;
1066 if (skb_shinfo(skb)->nr_frags == 0) {
1067 struct gem_txd *txd = &gp->init_block->txd[entry];
1072 mapping = pci_map_page(gp->pdev,
1073 virt_to_page(skb->data),
1074 offset_in_page(skb->data),
1075 len, PCI_DMA_TODEVICE);
1076 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1077 if (gem_intme(entry))
1078 ctrl |= TXDCTRL_INTME;
1079 txd->buffer = cpu_to_le64(mapping);
1081 txd->control_word = cpu_to_le64(ctrl);
1082 entry = NEXT_TX(entry);
1084 struct gem_txd *txd;
1087 dma_addr_t first_mapping;
1088 int frag, first_entry = entry;
1091 if (gem_intme(entry))
1092 intme |= TXDCTRL_INTME;
1094 /* We must give this initial chunk to the device last.
1095 * Otherwise we could race with the device.
1097 first_len = skb_headlen(skb);
1098 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1099 offset_in_page(skb->data),
1100 first_len, PCI_DMA_TODEVICE);
1101 entry = NEXT_TX(entry);
1103 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1104 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1109 len = this_frag->size;
1110 mapping = pci_map_page(gp->pdev,
1112 this_frag->page_offset,
1113 len, PCI_DMA_TODEVICE);
1115 if (frag == skb_shinfo(skb)->nr_frags - 1)
1116 this_ctrl |= TXDCTRL_EOF;
1118 txd = &gp->init_block->txd[entry];
1119 txd->buffer = cpu_to_le64(mapping);
1121 txd->control_word = cpu_to_le64(this_ctrl | len);
1123 if (gem_intme(entry))
1124 intme |= TXDCTRL_INTME;
1126 entry = NEXT_TX(entry);
1128 txd = &gp->init_block->txd[first_entry];
1129 txd->buffer = cpu_to_le64(first_mapping);
1132 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1136 if (TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))
1137 netif_stop_queue(dev);
1139 if (netif_msg_tx_queued(gp))
1140 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1141 dev->name, entry, skb->len);
1143 writel(gp->tx_new, gp->regs + TXDMA_KICK);
1144 spin_unlock_irqrestore(&gp->tx_lock, flags);
1146 dev->trans_start = jiffies;
1148 return NETDEV_TX_OK;
1151 #define STOP_TRIES 32
1153 /* Must be invoked under gp->lock and gp->tx_lock. */
1154 static void gem_reset(struct gem *gp)
1159 /* Make sure we won't get any more interrupts */
1160 writel(0xffffffff, gp->regs + GREG_IMASK);
1162 /* Reset the chip */
1163 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1164 gp->regs + GREG_SWRST);
1170 val = readl(gp->regs + GREG_SWRST);
1173 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1176 printk(KERN_ERR "%s: SW reset is ghetto.\n", gp->dev->name);
1179 /* Must be invoked under gp->lock and gp->tx_lock. */
1180 static void gem_start_dma(struct gem *gp)
1184 /* We are ready to rock, turn everything on. */
1185 val = readl(gp->regs + TXDMA_CFG);
1186 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1187 val = readl(gp->regs + RXDMA_CFG);
1188 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1189 val = readl(gp->regs + MAC_TXCFG);
1190 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1191 val = readl(gp->regs + MAC_RXCFG);
1192 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1194 (void) readl(gp->regs + MAC_RXCFG);
1197 gem_enable_ints(gp);
1199 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1202 /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
1203 * actually stopped before about 4ms tho ...
1205 static void gem_stop_dma(struct gem *gp)
1209 /* We are done rocking, turn everything off. */
1210 val = readl(gp->regs + TXDMA_CFG);
1211 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1212 val = readl(gp->regs + RXDMA_CFG);
1213 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1214 val = readl(gp->regs + MAC_TXCFG);
1215 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1216 val = readl(gp->regs + MAC_RXCFG);
1217 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1219 (void) readl(gp->regs + MAC_RXCFG);
1221 /* Need to wait a bit ... done by the caller */
1225 /* Must be invoked under gp->lock and gp->tx_lock. */
1226 // XXX dbl check what that function should do when called on PCS PHY
1227 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1229 u32 advertise, features;
1234 if (gp->phy_type != phy_mii_mdio0 &&
1235 gp->phy_type != phy_mii_mdio1)
1238 /* Setup advertise */
1239 if (found_mii_phy(gp))
1240 features = gp->phy_mii.def->features;
1244 advertise = features & ADVERTISE_MASK;
1245 if (gp->phy_mii.advertising != 0)
1246 advertise &= gp->phy_mii.advertising;
1248 autoneg = gp->want_autoneg;
1249 speed = gp->phy_mii.speed;
1250 duplex = gp->phy_mii.duplex;
1252 /* Setup link parameters */
1255 if (ep->autoneg == AUTONEG_ENABLE) {
1256 advertise = ep->advertising;
1261 duplex = ep->duplex;
1265 /* Sanitize settings based on PHY capabilities */
1266 if ((features & SUPPORTED_Autoneg) == 0)
1268 if (speed == SPEED_1000 &&
1269 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1271 if (speed == SPEED_100 &&
1272 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1274 if (duplex == DUPLEX_FULL &&
1275 !(features & (SUPPORTED_1000baseT_Full |
1276 SUPPORTED_100baseT_Full |
1277 SUPPORTED_10baseT_Full)))
1278 duplex = DUPLEX_HALF;
1282 /* If we are asleep, we don't try to actually setup the PHY, we
1283 * just store the settings
1286 gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1287 gp->phy_mii.speed = speed;
1288 gp->phy_mii.duplex = duplex;
1292 /* Configure PHY & start aneg */
1293 gp->want_autoneg = autoneg;
1295 if (found_mii_phy(gp))
1296 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1297 gp->lstate = link_aneg;
1299 if (found_mii_phy(gp))
1300 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1301 gp->lstate = link_force_ok;
1305 gp->timer_ticks = 0;
1306 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1309 /* A link-up condition has occurred, initialize and enable the
1312 * Must be invoked under gp->lock and gp->tx_lock.
1314 static int gem_set_link_modes(struct gem *gp)
1317 int full_duplex, speed, pause;
1323 if (found_mii_phy(gp)) {
1324 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1326 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1327 speed = gp->phy_mii.speed;
1328 pause = gp->phy_mii.pause;
1329 } else if (gp->phy_type == phy_serialink ||
1330 gp->phy_type == phy_serdes) {
1331 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1333 if (pcs_lpa & PCS_MIIADV_FD)
1338 if (netif_msg_link(gp))
1339 printk(KERN_INFO "%s: Link is up at %d Mbps, %s-duplex.\n",
1340 gp->dev->name, speed, (full_duplex ? "full" : "half"));
1345 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1347 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1349 /* MAC_TXCFG_NBO must be zero. */
1351 writel(val, gp->regs + MAC_TXCFG);
1353 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1355 (gp->phy_type == phy_mii_mdio0 ||
1356 gp->phy_type == phy_mii_mdio1)) {
1357 val |= MAC_XIFCFG_DISE;
1358 } else if (full_duplex) {
1359 val |= MAC_XIFCFG_FLED;
1362 if (speed == SPEED_1000)
1363 val |= (MAC_XIFCFG_GMII);
1365 writel(val, gp->regs + MAC_XIFCFG);
1367 /* If gigabit and half-duplex, enable carrier extension
1368 * mode. Else, disable it.
1370 if (speed == SPEED_1000 && !full_duplex) {
1371 val = readl(gp->regs + MAC_TXCFG);
1372 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1374 val = readl(gp->regs + MAC_RXCFG);
1375 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1377 val = readl(gp->regs + MAC_TXCFG);
1378 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1380 val = readl(gp->regs + MAC_RXCFG);
1381 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1384 if (gp->phy_type == phy_serialink ||
1385 gp->phy_type == phy_serdes) {
1386 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1388 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1392 if (netif_msg_link(gp)) {
1394 printk(KERN_INFO "%s: Pause is enabled "
1395 "(rxfifo: %d off: %d on: %d)\n",
1401 printk(KERN_INFO "%s: Pause is disabled\n",
1407 writel(512, gp->regs + MAC_STIME);
1409 writel(64, gp->regs + MAC_STIME);
1410 val = readl(gp->regs + MAC_MCCFG);
1412 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1414 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1415 writel(val, gp->regs + MAC_MCCFG);
1422 /* Must be invoked under gp->lock and gp->tx_lock. */
1423 static int gem_mdio_link_not_up(struct gem *gp)
1425 switch (gp->lstate) {
1426 case link_force_ret:
1427 if (netif_msg_link(gp))
1428 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1429 " forced mode\n", gp->dev->name);
1430 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1431 gp->last_forced_speed, DUPLEX_HALF);
1432 gp->timer_ticks = 5;
1433 gp->lstate = link_force_ok;
1436 /* We try forced modes after a failed aneg only on PHYs that don't
1437 * have "magic_aneg" bit set, which means they internally do the
1438 * while forced-mode thingy. On these, we just restart aneg
1440 if (gp->phy_mii.def->magic_aneg)
1442 if (netif_msg_link(gp))
1443 printk(KERN_INFO "%s: switching to forced 100bt\n",
1445 /* Try forced modes. */
1446 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1448 gp->timer_ticks = 5;
1449 gp->lstate = link_force_try;
1451 case link_force_try:
1452 /* Downgrade from 100 to 10 Mbps if necessary.
1453 * If already at 10Mbps, warn user about the
1454 * situation every 10 ticks.
1456 if (gp->phy_mii.speed == SPEED_100) {
1457 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1459 gp->timer_ticks = 5;
1460 if (netif_msg_link(gp))
1461 printk(KERN_INFO "%s: switching to forced 10bt\n",
1471 static void gem_link_timer(unsigned long data)
1473 struct gem *gp = (struct gem *) data;
1474 int restart_aneg = 0;
1479 spin_lock_irq(&gp->lock);
1480 spin_lock(&gp->tx_lock);
1483 /* If the reset task is still pending, we just
1484 * reschedule the link timer
1486 if (gp->reset_task_pending)
1489 if (gp->phy_type == phy_serialink ||
1490 gp->phy_type == phy_serdes) {
1491 u32 val = readl(gp->regs + PCS_MIISTAT);
1493 if (!(val & PCS_MIISTAT_LS))
1494 val = readl(gp->regs + PCS_MIISTAT);
1496 if ((val & PCS_MIISTAT_LS) != 0) {
1497 gp->lstate = link_up;
1498 netif_carrier_on(gp->dev);
1499 (void)gem_set_link_modes(gp);
1503 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1504 /* Ok, here we got a link. If we had it due to a forced
1505 * fallback, and we were configured for autoneg, we do
1506 * retry a short autoneg pass. If you know your hub is
1507 * broken, use ethtool ;)
1509 if (gp->lstate == link_force_try && gp->want_autoneg) {
1510 gp->lstate = link_force_ret;
1511 gp->last_forced_speed = gp->phy_mii.speed;
1512 gp->timer_ticks = 5;
1513 if (netif_msg_link(gp))
1514 printk(KERN_INFO "%s: Got link after fallback, retrying"
1515 " autoneg once...\n", gp->dev->name);
1516 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1517 } else if (gp->lstate != link_up) {
1518 gp->lstate = link_up;
1519 netif_carrier_on(gp->dev);
1520 if (gem_set_link_modes(gp))
1524 /* If the link was previously up, we restart the
1527 if (gp->lstate == link_up) {
1528 gp->lstate = link_down;
1529 if (netif_msg_link(gp))
1530 printk(KERN_INFO "%s: Link down\n",
1532 netif_carrier_off(gp->dev);
1533 gp->reset_task_pending = 1;
1534 schedule_work(&gp->reset_task);
1536 } else if (++gp->timer_ticks > 10) {
1537 if (found_mii_phy(gp))
1538 restart_aneg = gem_mdio_link_not_up(gp);
1544 gem_begin_auto_negotiation(gp, NULL);
1548 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1551 spin_unlock(&gp->tx_lock);
1552 spin_unlock_irq(&gp->lock);
1555 /* Must be invoked under gp->lock and gp->tx_lock. */
1556 static void gem_clean_rings(struct gem *gp)
1558 struct gem_init_block *gb = gp->init_block;
1559 struct sk_buff *skb;
1561 dma_addr_t dma_addr;
1563 for (i = 0; i < RX_RING_SIZE; i++) {
1564 struct gem_rxd *rxd;
1567 if (gp->rx_skbs[i] != NULL) {
1568 skb = gp->rx_skbs[i];
1569 dma_addr = le64_to_cpu(rxd->buffer);
1570 pci_unmap_page(gp->pdev, dma_addr,
1571 RX_BUF_ALLOC_SIZE(gp),
1572 PCI_DMA_FROMDEVICE);
1573 dev_kfree_skb_any(skb);
1574 gp->rx_skbs[i] = NULL;
1576 rxd->status_word = 0;
1581 for (i = 0; i < TX_RING_SIZE; i++) {
1582 if (gp->tx_skbs[i] != NULL) {
1583 struct gem_txd *txd;
1586 skb = gp->tx_skbs[i];
1587 gp->tx_skbs[i] = NULL;
1589 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1590 int ent = i & (TX_RING_SIZE - 1);
1592 txd = &gb->txd[ent];
1593 dma_addr = le64_to_cpu(txd->buffer);
1594 pci_unmap_page(gp->pdev, dma_addr,
1595 le64_to_cpu(txd->control_word) &
1596 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1598 if (frag != skb_shinfo(skb)->nr_frags)
1601 dev_kfree_skb_any(skb);
1606 /* Must be invoked under gp->lock and gp->tx_lock. */
1607 static void gem_init_rings(struct gem *gp)
1609 struct gem_init_block *gb = gp->init_block;
1610 struct net_device *dev = gp->dev;
1612 dma_addr_t dma_addr;
1614 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1616 gem_clean_rings(gp);
1618 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1619 (unsigned)VLAN_ETH_FRAME_LEN);
1621 for (i = 0; i < RX_RING_SIZE; i++) {
1622 struct sk_buff *skb;
1623 struct gem_rxd *rxd = &gb->rxd[i];
1625 skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
1628 rxd->status_word = 0;
1632 gp->rx_skbs[i] = skb;
1634 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1635 dma_addr = pci_map_page(gp->pdev,
1636 virt_to_page(skb->data),
1637 offset_in_page(skb->data),
1638 RX_BUF_ALLOC_SIZE(gp),
1639 PCI_DMA_FROMDEVICE);
1640 rxd->buffer = cpu_to_le64(dma_addr);
1642 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1643 skb_reserve(skb, RX_OFFSET);
1646 for (i = 0; i < TX_RING_SIZE; i++) {
1647 struct gem_txd *txd = &gb->txd[i];
1649 txd->control_word = 0;
1656 /* Init PHY interface and start link poll state machine */
1657 static void gem_init_phy(struct gem *gp)
1661 /* Revert MIF CFG setting done on stop_phy */
1662 mifcfg = readl(gp->regs + MIF_CFG);
1663 mifcfg &= ~MIF_CFG_BBMODE;
1664 writel(mifcfg, gp->regs + MIF_CFG);
1666 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1669 /* Those delay sucks, the HW seem to love them though, I'll
1670 * serisouly consider breaking some locks here to be able
1671 * to schedule instead
1673 for (i = 0; i < 3; i++) {
1674 #ifdef CONFIG_PPC_PMAC
1675 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1678 /* Some PHYs used by apple have problem getting back to us,
1679 * we do an additional reset here
1681 phy_write(gp, MII_BMCR, BMCR_RESET);
1683 if (phy_read(gp, MII_BMCR) != 0xffff)
1686 printk(KERN_WARNING "%s: GMAC PHY not responding !\n",
1691 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1692 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1695 /* Init datapath mode register. */
1696 if (gp->phy_type == phy_mii_mdio0 ||
1697 gp->phy_type == phy_mii_mdio1) {
1698 val = PCS_DMODE_MGM;
1699 } else if (gp->phy_type == phy_serialink) {
1700 val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1702 val = PCS_DMODE_ESM;
1705 writel(val, gp->regs + PCS_DMODE);
1708 if (gp->phy_type == phy_mii_mdio0 ||
1709 gp->phy_type == phy_mii_mdio1) {
1710 // XXX check for errors
1711 mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1714 if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1715 gp->phy_mii.def->ops->init(&gp->phy_mii);
1720 /* Reset PCS unit. */
1721 val = readl(gp->regs + PCS_MIICTRL);
1722 val |= PCS_MIICTRL_RST;
1723 writeb(val, gp->regs + PCS_MIICTRL);
1726 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1732 printk(KERN_WARNING "%s: PCS reset bit would not clear.\n",
1735 /* Make sure PCS is disabled while changing advertisement
1738 val = readl(gp->regs + PCS_CFG);
1739 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1740 writel(val, gp->regs + PCS_CFG);
1742 /* Advertise all capabilities except assymetric
1745 val = readl(gp->regs + PCS_MIIADV);
1746 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1747 PCS_MIIADV_SP | PCS_MIIADV_AP);
1748 writel(val, gp->regs + PCS_MIIADV);
1750 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1751 * and re-enable PCS.
1753 val = readl(gp->regs + PCS_MIICTRL);
1754 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1755 val &= ~PCS_MIICTRL_WB;
1756 writel(val, gp->regs + PCS_MIICTRL);
1758 val = readl(gp->regs + PCS_CFG);
1759 val |= PCS_CFG_ENABLE;
1760 writel(val, gp->regs + PCS_CFG);
1762 /* Make sure serialink loopback is off. The meaning
1763 * of this bit is logically inverted based upon whether
1764 * you are in Serialink or SERDES mode.
1766 val = readl(gp->regs + PCS_SCTRL);
1767 if (gp->phy_type == phy_serialink)
1768 val &= ~PCS_SCTRL_LOOP;
1770 val |= PCS_SCTRL_LOOP;
1771 writel(val, gp->regs + PCS_SCTRL);
1774 /* Default aneg parameters */
1775 gp->timer_ticks = 0;
1776 gp->lstate = link_down;
1777 netif_carrier_off(gp->dev);
1779 /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
1780 spin_lock_irq(&gp->lock);
1781 gem_begin_auto_negotiation(gp, NULL);
1782 spin_unlock_irq(&gp->lock);
1785 /* Must be invoked under gp->lock and gp->tx_lock. */
1786 static void gem_init_dma(struct gem *gp)
1788 u64 desc_dma = (u64) gp->gblock_dvma;
1791 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1792 writel(val, gp->regs + TXDMA_CFG);
1794 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1795 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1796 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1798 writel(0, gp->regs + TXDMA_KICK);
1800 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1801 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1802 writel(val, gp->regs + RXDMA_CFG);
1804 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1805 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1807 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1809 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1810 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1811 writel(val, gp->regs + RXDMA_PTHRESH);
1813 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1814 writel(((5 & RXDMA_BLANK_IPKTS) |
1815 ((8 << 12) & RXDMA_BLANK_ITIME)),
1816 gp->regs + RXDMA_BLANK);
1818 writel(((5 & RXDMA_BLANK_IPKTS) |
1819 ((4 << 12) & RXDMA_BLANK_ITIME)),
1820 gp->regs + RXDMA_BLANK);
1823 /* Must be invoked under gp->lock and gp->tx_lock. */
1824 static u32 gem_setup_multicast(struct gem *gp)
1829 if ((gp->dev->flags & IFF_ALLMULTI) ||
1830 (gp->dev->mc_count > 256)) {
1831 for (i=0; i<16; i++)
1832 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1833 rxcfg |= MAC_RXCFG_HFE;
1834 } else if (gp->dev->flags & IFF_PROMISC) {
1835 rxcfg |= MAC_RXCFG_PROM;
1839 struct dev_mc_list *dmi = gp->dev->mc_list;
1842 for (i = 0; i < 16; i++)
1845 for (i = 0; i < gp->dev->mc_count; i++) {
1846 char *addrs = dmi->dmi_addr;
1853 crc = ether_crc_le(6, addrs);
1855 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1857 for (i=0; i<16; i++)
1858 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1859 rxcfg |= MAC_RXCFG_HFE;
1865 /* Must be invoked under gp->lock and gp->tx_lock. */
1866 static void gem_init_mac(struct gem *gp)
1868 unsigned char *e = &gp->dev->dev_addr[0];
1870 writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1872 writel(0x00, gp->regs + MAC_IPG0);
1873 writel(0x08, gp->regs + MAC_IPG1);
1874 writel(0x04, gp->regs + MAC_IPG2);
1875 writel(0x40, gp->regs + MAC_STIME);
1876 writel(0x40, gp->regs + MAC_MINFSZ);
1878 /* Ethernet payload + header + FCS + optional VLAN tag. */
1879 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1881 writel(0x07, gp->regs + MAC_PASIZE);
1882 writel(0x04, gp->regs + MAC_JAMSIZE);
1883 writel(0x10, gp->regs + MAC_ATTLIM);
1884 writel(0x8808, gp->regs + MAC_MCTYPE);
1886 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1888 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1889 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1890 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1892 writel(0, gp->regs + MAC_ADDR3);
1893 writel(0, gp->regs + MAC_ADDR4);
1894 writel(0, gp->regs + MAC_ADDR5);
1896 writel(0x0001, gp->regs + MAC_ADDR6);
1897 writel(0xc200, gp->regs + MAC_ADDR7);
1898 writel(0x0180, gp->regs + MAC_ADDR8);
1900 writel(0, gp->regs + MAC_AFILT0);
1901 writel(0, gp->regs + MAC_AFILT1);
1902 writel(0, gp->regs + MAC_AFILT2);
1903 writel(0, gp->regs + MAC_AF21MSK);
1904 writel(0, gp->regs + MAC_AF0MSK);
1906 gp->mac_rx_cfg = gem_setup_multicast(gp);
1908 gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1910 writel(0, gp->regs + MAC_NCOLL);
1911 writel(0, gp->regs + MAC_FASUCC);
1912 writel(0, gp->regs + MAC_ECOLL);
1913 writel(0, gp->regs + MAC_LCOLL);
1914 writel(0, gp->regs + MAC_DTIMER);
1915 writel(0, gp->regs + MAC_PATMPS);
1916 writel(0, gp->regs + MAC_RFCTR);
1917 writel(0, gp->regs + MAC_LERR);
1918 writel(0, gp->regs + MAC_AERR);
1919 writel(0, gp->regs + MAC_FCSERR);
1920 writel(0, gp->regs + MAC_RXCVERR);
1922 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1923 * them once a link is established.
1925 writel(0, gp->regs + MAC_TXCFG);
1926 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1927 writel(0, gp->regs + MAC_MCCFG);
1928 writel(0, gp->regs + MAC_XIFCFG);
1930 /* Setup MAC interrupts. We want to get all of the interesting
1931 * counter expiration events, but we do not want to hear about
1932 * normal rx/tx as the DMA engine tells us that.
1934 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1935 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1937 /* Don't enable even the PAUSE interrupts for now, we
1938 * make no use of those events other than to record them.
1940 writel(0xffffffff, gp->regs + MAC_MCMASK);
1942 /* Don't enable GEM's WOL in normal operations
1945 writel(0, gp->regs + WOL_WAKECSR);
1948 /* Must be invoked under gp->lock and gp->tx_lock. */
1949 static void gem_init_pause_thresholds(struct gem *gp)
1953 /* Calculate pause thresholds. Setting the OFF threshold to the
1954 * full RX fifo size effectively disables PAUSE generation which
1955 * is what we do for 10/100 only GEMs which have FIFOs too small
1956 * to make real gains from PAUSE.
1958 if (gp->rx_fifo_sz <= (2 * 1024)) {
1959 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1961 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1962 int off = (gp->rx_fifo_sz - (max_frame * 2));
1963 int on = off - max_frame;
1965 gp->rx_pause_off = off;
1966 gp->rx_pause_on = on;
1970 /* Configure the chip "burst" DMA mode & enable some
1971 * HW bug fixes on Apple version
1974 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1975 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1976 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1977 cfg |= GREG_CFG_IBURST;
1979 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1980 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1981 writel(cfg, gp->regs + GREG_CFG);
1983 /* If Infinite Burst didn't stick, then use different
1984 * thresholds (and Apple bug fixes don't exist)
1986 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1987 cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1988 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1989 writel(cfg, gp->regs + GREG_CFG);
1993 static int gem_check_invariants(struct gem *gp)
1995 struct pci_dev *pdev = gp->pdev;
1998 /* On Apple's sungem, we can't rely on registers as the chip
1999 * was been powered down by the firmware. The PHY is looked
2002 if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
2003 gp->phy_type = phy_mii_mdio0;
2004 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2005 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2008 mif_cfg = readl(gp->regs + MIF_CFG);
2009 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
2010 mif_cfg |= MIF_CFG_MDI0;
2011 writel(mif_cfg, gp->regs + MIF_CFG);
2012 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
2013 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
2015 /* We hard-code the PHY address so we can properly bring it out of
2016 * reset later on, we can't really probe it at this point, though
2017 * that isn't an issue.
2019 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
2020 gp->mii_phy_addr = 1;
2022 gp->mii_phy_addr = 0;
2027 mif_cfg = readl(gp->regs + MIF_CFG);
2029 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2030 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
2031 /* One of the MII PHYs _must_ be present
2032 * as this chip has no gigabit PHY.
2034 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
2035 printk(KERN_ERR PFX "RIO GEM lacks MII phy, mif_cfg[%08x]\n",
2041 /* Determine initial PHY interface type guess. MDIO1 is the
2042 * external PHY and thus takes precedence over MDIO0.
2045 if (mif_cfg & MIF_CFG_MDI1) {
2046 gp->phy_type = phy_mii_mdio1;
2047 mif_cfg |= MIF_CFG_PSELECT;
2048 writel(mif_cfg, gp->regs + MIF_CFG);
2049 } else if (mif_cfg & MIF_CFG_MDI0) {
2050 gp->phy_type = phy_mii_mdio0;
2051 mif_cfg &= ~MIF_CFG_PSELECT;
2052 writel(mif_cfg, gp->regs + MIF_CFG);
2054 gp->phy_type = phy_serialink;
2056 if (gp->phy_type == phy_mii_mdio1 ||
2057 gp->phy_type == phy_mii_mdio0) {
2060 for (i = 0; i < 32; i++) {
2061 gp->mii_phy_addr = i;
2062 if (phy_read(gp, MII_BMCR) != 0xffff)
2066 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2067 printk(KERN_ERR PFX "RIO MII phy will not respond.\n");
2070 gp->phy_type = phy_serdes;
2074 /* Fetch the FIFO configurations now too. */
2075 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2076 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2078 if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2079 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2080 if (gp->tx_fifo_sz != (9 * 1024) ||
2081 gp->rx_fifo_sz != (20 * 1024)) {
2082 printk(KERN_ERR PFX "GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2083 gp->tx_fifo_sz, gp->rx_fifo_sz);
2088 if (gp->tx_fifo_sz != (2 * 1024) ||
2089 gp->rx_fifo_sz != (2 * 1024)) {
2090 printk(KERN_ERR PFX "RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2091 gp->tx_fifo_sz, gp->rx_fifo_sz);
2094 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2101 /* Must be invoked under gp->lock and gp->tx_lock. */
2102 static void gem_reinit_chip(struct gem *gp)
2104 /* Reset the chip */
2107 /* Make sure ints are disabled */
2108 gem_disable_ints(gp);
2110 /* Allocate & setup ring buffers */
2113 /* Configure pause thresholds */
2114 gem_init_pause_thresholds(gp);
2116 /* Init DMA & MAC engines */
2122 /* Must be invoked with no lock held. */
2123 static void gem_stop_phy(struct gem *gp, int wol)
2126 unsigned long flags;
2128 /* Let the chip settle down a bit, it seems that helps
2129 * for sleep mode on some models
2133 /* Make sure we aren't polling PHY status change. We
2134 * don't currently use that feature though
2136 mifcfg = readl(gp->regs + MIF_CFG);
2137 mifcfg &= ~MIF_CFG_POLL;
2138 writel(mifcfg, gp->regs + MIF_CFG);
2140 if (wol && gp->has_wol) {
2141 unsigned char *e = &gp->dev->dev_addr[0];
2144 /* Setup wake-on-lan for MAGIC packet */
2145 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2146 gp->regs + MAC_RXCFG);
2147 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2148 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2149 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2151 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2152 csr = WOL_WAKECSR_ENABLE;
2153 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2154 csr |= WOL_WAKECSR_MII;
2155 writel(csr, gp->regs + WOL_WAKECSR);
2157 writel(0, gp->regs + MAC_RXCFG);
2158 (void)readl(gp->regs + MAC_RXCFG);
2159 /* Machine sleep will die in strange ways if we
2160 * dont wait a bit here, looks like the chip takes
2161 * some time to really shut down
2166 writel(0, gp->regs + MAC_TXCFG);
2167 writel(0, gp->regs + MAC_XIFCFG);
2168 writel(0, gp->regs + TXDMA_CFG);
2169 writel(0, gp->regs + RXDMA_CFG);
2172 spin_lock_irqsave(&gp->lock, flags);
2173 spin_lock(&gp->tx_lock);
2175 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2176 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2177 spin_unlock(&gp->tx_lock);
2178 spin_unlock_irqrestore(&gp->lock, flags);
2180 /* No need to take the lock here */
2182 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2183 gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2185 /* According to Apple, we must set the MDIO pins to this begnign
2186 * state or we may 1) eat more current, 2) damage some PHYs
2188 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2189 writel(0, gp->regs + MIF_BBCLK);
2190 writel(0, gp->regs + MIF_BBDATA);
2191 writel(0, gp->regs + MIF_BBOENAB);
2192 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2193 (void) readl(gp->regs + MAC_XIFCFG);
2198 static int gem_do_start(struct net_device *dev)
2200 struct gem *gp = dev->priv;
2201 unsigned long flags;
2203 spin_lock_irqsave(&gp->lock, flags);
2204 spin_lock(&gp->tx_lock);
2206 /* Enable the cell */
2209 /* Init & setup chip hardware */
2210 gem_reinit_chip(gp);
2214 if (gp->lstate == link_up) {
2215 netif_carrier_on(gp->dev);
2216 gem_set_link_modes(gp);
2219 netif_wake_queue(gp->dev);
2221 spin_unlock(&gp->tx_lock);
2222 spin_unlock_irqrestore(&gp->lock, flags);
2224 if (request_irq(gp->pdev->irq, gem_interrupt,
2225 IRQF_SHARED, dev->name, (void *)dev)) {
2226 printk(KERN_ERR "%s: failed to request irq !\n", gp->dev->name);
2228 spin_lock_irqsave(&gp->lock, flags);
2229 spin_lock(&gp->tx_lock);
2233 gem_clean_rings(gp);
2236 spin_unlock(&gp->tx_lock);
2237 spin_unlock_irqrestore(&gp->lock, flags);
2245 static void gem_do_stop(struct net_device *dev, int wol)
2247 struct gem *gp = dev->priv;
2248 unsigned long flags;
2250 spin_lock_irqsave(&gp->lock, flags);
2251 spin_lock(&gp->tx_lock);
2255 /* Stop netif queue */
2256 netif_stop_queue(dev);
2258 /* Make sure ints are disabled */
2259 gem_disable_ints(gp);
2261 /* We can drop the lock now */
2262 spin_unlock(&gp->tx_lock);
2263 spin_unlock_irqrestore(&gp->lock, flags);
2265 /* If we are going to sleep with WOL */
2272 /* Get rid of rings */
2273 gem_clean_rings(gp);
2275 /* No irq needed anymore */
2276 free_irq(gp->pdev->irq, (void *) dev);
2278 /* Cell not needed neither if no WOL */
2280 spin_lock_irqsave(&gp->lock, flags);
2282 spin_unlock_irqrestore(&gp->lock, flags);
2286 static void gem_reset_task(struct work_struct *work)
2288 struct gem *gp = container_of(work, struct gem, reset_task);
2290 mutex_lock(&gp->pm_mutex);
2292 netif_poll_disable(gp->dev);
2294 spin_lock_irq(&gp->lock);
2295 spin_lock(&gp->tx_lock);
2297 if (gp->running == 0)
2301 netif_stop_queue(gp->dev);
2303 /* Reset the chip & rings */
2304 gem_reinit_chip(gp);
2305 if (gp->lstate == link_up)
2306 gem_set_link_modes(gp);
2307 netif_wake_queue(gp->dev);
2310 gp->reset_task_pending = 0;
2312 spin_unlock(&gp->tx_lock);
2313 spin_unlock_irq(&gp->lock);
2315 netif_poll_enable(gp->dev);
2317 mutex_unlock(&gp->pm_mutex);
2321 static int gem_open(struct net_device *dev)
2323 struct gem *gp = dev->priv;
2326 mutex_lock(&gp->pm_mutex);
2328 /* We need the cell enabled */
2330 rc = gem_do_start(dev);
2331 gp->opened = (rc == 0);
2333 mutex_unlock(&gp->pm_mutex);
2338 static int gem_close(struct net_device *dev)
2340 struct gem *gp = dev->priv;
2342 /* Note: we don't need to call netif_poll_disable() here because
2343 * our caller (dev_close) already did it for us
2346 mutex_lock(&gp->pm_mutex);
2350 gem_do_stop(dev, 0);
2352 mutex_unlock(&gp->pm_mutex);
2358 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2360 struct net_device *dev = pci_get_drvdata(pdev);
2361 struct gem *gp = dev->priv;
2362 unsigned long flags;
2364 mutex_lock(&gp->pm_mutex);
2366 netif_poll_disable(dev);
2368 printk(KERN_INFO "%s: suspending, WakeOnLan %s\n",
2370 (gp->wake_on_lan && gp->opened) ? "enabled" : "disabled");
2372 /* Keep the cell enabled during the entire operation */
2373 spin_lock_irqsave(&gp->lock, flags);
2374 spin_lock(&gp->tx_lock);
2376 spin_unlock(&gp->tx_lock);
2377 spin_unlock_irqrestore(&gp->lock, flags);
2379 /* If the driver is opened, we stop the MAC */
2381 /* Stop traffic, mark us closed */
2382 netif_device_detach(dev);
2384 /* Switch off MAC, remember WOL setting */
2385 gp->asleep_wol = gp->wake_on_lan;
2386 gem_do_stop(dev, gp->asleep_wol);
2390 /* Mark us asleep */
2394 /* Stop the link timer */
2395 del_timer_sync(&gp->link_timer);
2397 /* Now we release the mutex to not block the reset task who
2398 * can take it too. We are marked asleep, so there will be no
2401 mutex_unlock(&gp->pm_mutex);
2403 /* Wait for a pending reset task to complete */
2404 while (gp->reset_task_pending)
2406 flush_scheduled_work();
2408 /* Shut the PHY down eventually and setup WOL */
2409 gem_stop_phy(gp, gp->asleep_wol);
2411 /* Make sure bus master is disabled */
2412 pci_disable_device(gp->pdev);
2414 /* Release the cell, no need to take a lock at this point since
2415 * nothing else can happen now
2422 static int gem_resume(struct pci_dev *pdev)
2424 struct net_device *dev = pci_get_drvdata(pdev);
2425 struct gem *gp = dev->priv;
2426 unsigned long flags;
2428 printk(KERN_INFO "%s: resuming\n", dev->name);
2430 mutex_lock(&gp->pm_mutex);
2432 /* Keep the cell enabled during the entire operation, no need to
2433 * take a lock here tho since nothing else can happen while we are
2438 /* Make sure PCI access and bus master are enabled */
2439 if (pci_enable_device(gp->pdev)) {
2440 printk(KERN_ERR "%s: Can't re-enable chip !\n",
2442 /* Put cell and forget it for now, it will be considered as
2443 * still asleep, a new sleep cycle may bring it back
2446 mutex_unlock(&gp->pm_mutex);
2449 pci_set_master(gp->pdev);
2451 /* Reset everything */
2454 /* Mark us woken up */
2458 /* Bring the PHY back. Again, lock is useless at this point as
2459 * nothing can be happening until we restart the whole thing
2463 /* If we were opened, bring everything back */
2468 /* Re-attach net device */
2469 netif_device_attach(dev);
2473 spin_lock_irqsave(&gp->lock, flags);
2474 spin_lock(&gp->tx_lock);
2476 /* If we had WOL enabled, the cell clock was never turned off during
2477 * sleep, so we end up beeing unbalanced. Fix that here
2482 /* This function doesn't need to hold the cell, it will be held if the
2483 * driver is open by gem_do_start().
2487 spin_unlock(&gp->tx_lock);
2488 spin_unlock_irqrestore(&gp->lock, flags);
2490 netif_poll_enable(dev);
2492 mutex_unlock(&gp->pm_mutex);
2496 #endif /* CONFIG_PM */
2498 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2500 struct gem *gp = dev->priv;
2501 struct net_device_stats *stats = &gp->net_stats;
2503 spin_lock_irq(&gp->lock);
2504 spin_lock(&gp->tx_lock);
2506 /* I have seen this being called while the PM was in progress,
2507 * so we shield against this
2510 stats->rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2511 writel(0, gp->regs + MAC_FCSERR);
2513 stats->rx_frame_errors += readl(gp->regs + MAC_AERR);
2514 writel(0, gp->regs + MAC_AERR);
2516 stats->rx_length_errors += readl(gp->regs + MAC_LERR);
2517 writel(0, gp->regs + MAC_LERR);
2519 stats->tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2520 stats->collisions +=
2521 (readl(gp->regs + MAC_ECOLL) +
2522 readl(gp->regs + MAC_LCOLL));
2523 writel(0, gp->regs + MAC_ECOLL);
2524 writel(0, gp->regs + MAC_LCOLL);
2527 spin_unlock(&gp->tx_lock);
2528 spin_unlock_irq(&gp->lock);
2530 return &gp->net_stats;
2533 static void gem_set_multicast(struct net_device *dev)
2535 struct gem *gp = dev->priv;
2536 u32 rxcfg, rxcfg_new;
2540 spin_lock_irq(&gp->lock);
2541 spin_lock(&gp->tx_lock);
2546 netif_stop_queue(dev);
2548 rxcfg = readl(gp->regs + MAC_RXCFG);
2549 rxcfg_new = gem_setup_multicast(gp);
2551 rxcfg_new |= MAC_RXCFG_SFCS;
2553 gp->mac_rx_cfg = rxcfg_new;
2555 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2556 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2562 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2565 writel(rxcfg, gp->regs + MAC_RXCFG);
2567 netif_wake_queue(dev);
2570 spin_unlock(&gp->tx_lock);
2571 spin_unlock_irq(&gp->lock);
2574 /* Jumbo-grams don't seem to work :-( */
2575 #define GEM_MIN_MTU 68
2577 #define GEM_MAX_MTU 1500
2579 #define GEM_MAX_MTU 9000
2582 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2584 struct gem *gp = dev->priv;
2586 if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2589 if (!netif_running(dev) || !netif_device_present(dev)) {
2590 /* We'll just catch it later when the
2591 * device is up'd or resumed.
2597 mutex_lock(&gp->pm_mutex);
2598 spin_lock_irq(&gp->lock);
2599 spin_lock(&gp->tx_lock);
2602 gem_reinit_chip(gp);
2603 if (gp->lstate == link_up)
2604 gem_set_link_modes(gp);
2606 spin_unlock(&gp->tx_lock);
2607 spin_unlock_irq(&gp->lock);
2608 mutex_unlock(&gp->pm_mutex);
2613 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2615 struct gem *gp = dev->priv;
2617 strcpy(info->driver, DRV_NAME);
2618 strcpy(info->version, DRV_VERSION);
2619 strcpy(info->bus_info, pci_name(gp->pdev));
2622 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2624 struct gem *gp = dev->priv;
2626 if (gp->phy_type == phy_mii_mdio0 ||
2627 gp->phy_type == phy_mii_mdio1) {
2628 if (gp->phy_mii.def)
2629 cmd->supported = gp->phy_mii.def->features;
2631 cmd->supported = (SUPPORTED_10baseT_Half |
2632 SUPPORTED_10baseT_Full);
2634 /* XXX hardcoded stuff for now */
2635 cmd->port = PORT_MII;
2636 cmd->transceiver = XCVR_EXTERNAL;
2637 cmd->phy_address = 0; /* XXX fixed PHYAD */
2639 /* Return current PHY settings */
2640 spin_lock_irq(&gp->lock);
2641 cmd->autoneg = gp->want_autoneg;
2642 cmd->speed = gp->phy_mii.speed;
2643 cmd->duplex = gp->phy_mii.duplex;
2644 cmd->advertising = gp->phy_mii.advertising;
2646 /* If we started with a forced mode, we don't have a default
2647 * advertise set, we need to return something sensible so
2648 * userland can re-enable autoneg properly.
2650 if (cmd->advertising == 0)
2651 cmd->advertising = cmd->supported;
2652 spin_unlock_irq(&gp->lock);
2653 } else { // XXX PCS ?
2655 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2656 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2658 cmd->advertising = cmd->supported;
2660 cmd->duplex = cmd->port = cmd->phy_address =
2661 cmd->transceiver = cmd->autoneg = 0;
2663 cmd->maxtxpkt = cmd->maxrxpkt = 0;
2668 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2670 struct gem *gp = dev->priv;
2672 /* Verify the settings we care about. */
2673 if (cmd->autoneg != AUTONEG_ENABLE &&
2674 cmd->autoneg != AUTONEG_DISABLE)
2677 if (cmd->autoneg == AUTONEG_ENABLE &&
2678 cmd->advertising == 0)
2681 if (cmd->autoneg == AUTONEG_DISABLE &&
2682 ((cmd->speed != SPEED_1000 &&
2683 cmd->speed != SPEED_100 &&
2684 cmd->speed != SPEED_10) ||
2685 (cmd->duplex != DUPLEX_HALF &&
2686 cmd->duplex != DUPLEX_FULL)))
2689 /* Apply settings and restart link process. */
2690 spin_lock_irq(&gp->lock);
2692 gem_begin_auto_negotiation(gp, cmd);
2694 spin_unlock_irq(&gp->lock);
2699 static int gem_nway_reset(struct net_device *dev)
2701 struct gem *gp = dev->priv;
2703 if (!gp->want_autoneg)
2706 /* Restart link process. */
2707 spin_lock_irq(&gp->lock);
2709 gem_begin_auto_negotiation(gp, NULL);
2711 spin_unlock_irq(&gp->lock);
2716 static u32 gem_get_msglevel(struct net_device *dev)
2718 struct gem *gp = dev->priv;
2719 return gp->msg_enable;
2722 static void gem_set_msglevel(struct net_device *dev, u32 value)
2724 struct gem *gp = dev->priv;
2725 gp->msg_enable = value;
2729 /* Add more when I understand how to program the chip */
2730 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2732 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2734 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2736 struct gem *gp = dev->priv;
2738 /* Add more when I understand how to program the chip */
2740 wol->supported = WOL_SUPPORTED_MASK;
2741 wol->wolopts = gp->wake_on_lan;
2748 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2750 struct gem *gp = dev->priv;
2754 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2758 static const struct ethtool_ops gem_ethtool_ops = {
2759 .get_drvinfo = gem_get_drvinfo,
2760 .get_link = ethtool_op_get_link,
2761 .get_settings = gem_get_settings,
2762 .set_settings = gem_set_settings,
2763 .nway_reset = gem_nway_reset,
2764 .get_msglevel = gem_get_msglevel,
2765 .set_msglevel = gem_set_msglevel,
2766 .get_wol = gem_get_wol,
2767 .set_wol = gem_set_wol,
2770 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2772 struct gem *gp = dev->priv;
2773 struct mii_ioctl_data *data = if_mii(ifr);
2774 int rc = -EOPNOTSUPP;
2775 unsigned long flags;
2777 /* Hold the PM mutex while doing ioctl's or we may collide
2778 * with power management.
2780 mutex_lock(&gp->pm_mutex);
2782 spin_lock_irqsave(&gp->lock, flags);
2784 spin_unlock_irqrestore(&gp->lock, flags);
2787 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2788 data->phy_id = gp->mii_phy_addr;
2789 /* Fallthrough... */
2791 case SIOCGMIIREG: /* Read MII PHY register. */
2795 data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2796 data->reg_num & 0x1f);
2801 case SIOCSMIIREG: /* Write MII PHY register. */
2802 if (!capable(CAP_NET_ADMIN))
2804 else if (!gp->running)
2807 __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2814 spin_lock_irqsave(&gp->lock, flags);
2816 spin_unlock_irqrestore(&gp->lock, flags);
2818 mutex_unlock(&gp->pm_mutex);
2823 #if (!defined(__sparc__) && !defined(CONFIG_PPC_PMAC))
2824 /* Fetch MAC address from vital product data of PCI ROM. */
2825 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2829 for (this_offset = 0x20; this_offset < len; this_offset++) {
2830 void __iomem *p = rom_base + this_offset;
2833 if (readb(p + 0) != 0x90 ||
2834 readb(p + 1) != 0x00 ||
2835 readb(p + 2) != 0x09 ||
2836 readb(p + 3) != 0x4e ||
2837 readb(p + 4) != 0x41 ||
2838 readb(p + 5) != 0x06)
2844 for (i = 0; i < 6; i++)
2845 dev_addr[i] = readb(p + i);
2851 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2854 void __iomem *p = pci_map_rom(pdev, &size);
2859 found = readb(p) == 0x55 &&
2860 readb(p + 1) == 0xaa &&
2861 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2862 pci_unmap_rom(pdev, p);
2867 /* Sun MAC prefix then 3 random bytes. */
2871 get_random_bytes(dev_addr + 3, 3);
2874 #endif /* not Sparc and not PPC */
2876 static int __devinit gem_get_device_address(struct gem *gp)
2878 #if defined(__sparc__) || defined(CONFIG_PPC_PMAC)
2879 struct net_device *dev = gp->dev;
2882 #if defined(__sparc__)
2883 struct pci_dev *pdev = gp->pdev;
2884 struct pcidev_cookie *pcp = pdev->sysdata;
2888 unsigned char *addr;
2891 addr = of_get_property(pcp->prom_node, "local-mac-address",
2893 if (addr && len == 6) {
2895 memcpy(dev->dev_addr, addr, 6);
2899 memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
2900 #elif defined(CONFIG_PPC_PMAC)
2901 const unsigned char *addr;
2903 addr = get_property(gp->of_node, "local-mac-address", NULL);
2906 printk(KERN_ERR "%s: can't get mac-address\n", dev->name);
2909 memcpy(dev->dev_addr, addr, 6);
2911 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2916 static void gem_remove_one(struct pci_dev *pdev)
2918 struct net_device *dev = pci_get_drvdata(pdev);
2921 struct gem *gp = dev->priv;
2923 unregister_netdev(dev);
2925 /* Stop the link timer */
2926 del_timer_sync(&gp->link_timer);
2928 /* We shouldn't need any locking here */
2931 /* Wait for a pending reset task to complete */
2932 while (gp->reset_task_pending)
2934 flush_scheduled_work();
2936 /* Shut the PHY down */
2937 gem_stop_phy(gp, 0);
2941 /* Make sure bus master is disabled */
2942 pci_disable_device(gp->pdev);
2944 /* Free resources */
2945 pci_free_consistent(pdev,
2946 sizeof(struct gem_init_block),
2950 pci_release_regions(pdev);
2953 pci_set_drvdata(pdev, NULL);
2957 static int __devinit gem_init_one(struct pci_dev *pdev,
2958 const struct pci_device_id *ent)
2960 static int gem_version_printed = 0;
2961 unsigned long gemreg_base, gemreg_len;
2962 struct net_device *dev;
2964 int i, err, pci_using_dac;
2966 if (gem_version_printed++ == 0)
2967 printk(KERN_INFO "%s", version);
2969 /* Apple gmac note: during probe, the chip is powered up by
2970 * the arch code to allow the code below to work (and to let
2971 * the chip be probed on the config space. It won't stay powered
2972 * up until the interface is brought up however, so we can't rely
2973 * on register configuration done at this point.
2975 err = pci_enable_device(pdev);
2977 printk(KERN_ERR PFX "Cannot enable MMIO operation, "
2981 pci_set_master(pdev);
2983 /* Configure DMA attributes. */
2985 /* All of the GEM documentation states that 64-bit DMA addressing
2986 * is fully supported and should work just fine. However the
2987 * front end for RIO based GEMs is different and only supports
2988 * 32-bit addressing.
2990 * For now we assume the various PPC GEMs are 32-bit only as well.
2992 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2993 pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2994 !pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
2997 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2999 printk(KERN_ERR PFX "No usable DMA configuration, "
3001 goto err_disable_device;
3006 gemreg_base = pci_resource_start(pdev, 0);
3007 gemreg_len = pci_resource_len(pdev, 0);
3009 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3010 printk(KERN_ERR PFX "Cannot find proper PCI device "
3011 "base address, aborting.\n");
3013 goto err_disable_device;
3016 dev = alloc_etherdev(sizeof(*gp));
3018 printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
3020 goto err_disable_device;
3022 SET_MODULE_OWNER(dev);
3023 SET_NETDEV_DEV(dev, &pdev->dev);
3027 err = pci_request_regions(pdev, DRV_NAME);
3029 printk(KERN_ERR PFX "Cannot obtain PCI resources, "
3031 goto err_out_free_netdev;
3035 dev->base_addr = (long) pdev;
3038 gp->msg_enable = DEFAULT_MSG;
3040 spin_lock_init(&gp->lock);
3041 spin_lock_init(&gp->tx_lock);
3042 mutex_init(&gp->pm_mutex);
3044 init_timer(&gp->link_timer);
3045 gp->link_timer.function = gem_link_timer;
3046 gp->link_timer.data = (unsigned long) gp;
3048 INIT_WORK(&gp->reset_task, gem_reset_task);
3050 gp->lstate = link_down;
3051 gp->timer_ticks = 0;
3052 netif_carrier_off(dev);
3054 gp->regs = ioremap(gemreg_base, gemreg_len);
3055 if (gp->regs == 0UL) {
3056 printk(KERN_ERR PFX "Cannot map device registers, "
3059 goto err_out_free_res;
3062 /* On Apple, we want a reference to the Open Firmware device-tree
3063 * node. We use it for clock control.
3065 #ifdef CONFIG_PPC_PMAC
3066 gp->of_node = pci_device_to_OF_node(pdev);
3069 /* Only Apple version supports WOL afaik */
3070 if (pdev->vendor == PCI_VENDOR_ID_APPLE)
3073 /* Make sure cell is enabled */
3076 /* Make sure everything is stopped and in init state */
3079 /* Fill up the mii_phy structure (even if we won't use it) */
3080 gp->phy_mii.dev = dev;
3081 gp->phy_mii.mdio_read = _phy_read;
3082 gp->phy_mii.mdio_write = _phy_write;
3083 #ifdef CONFIG_PPC_PMAC
3084 gp->phy_mii.platform_data = gp->of_node;
3086 /* By default, we start with autoneg */
3087 gp->want_autoneg = 1;
3089 /* Check fifo sizes, PHY type, etc... */
3090 if (gem_check_invariants(gp)) {
3092 goto err_out_iounmap;
3095 /* It is guaranteed that the returned buffer will be at least
3096 * PAGE_SIZE aligned.
3098 gp->init_block = (struct gem_init_block *)
3099 pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
3101 if (!gp->init_block) {
3102 printk(KERN_ERR PFX "Cannot allocate init block, "
3105 goto err_out_iounmap;
3108 if (gem_get_device_address(gp))
3109 goto err_out_free_consistent;
3111 dev->open = gem_open;
3112 dev->stop = gem_close;
3113 dev->hard_start_xmit = gem_start_xmit;
3114 dev->get_stats = gem_get_stats;
3115 dev->set_multicast_list = gem_set_multicast;
3116 dev->do_ioctl = gem_ioctl;
3117 dev->poll = gem_poll;
3119 dev->ethtool_ops = &gem_ethtool_ops;
3120 dev->tx_timeout = gem_tx_timeout;
3121 dev->watchdog_timeo = 5 * HZ;
3122 dev->change_mtu = gem_change_mtu;
3123 dev->irq = pdev->irq;
3125 #ifdef CONFIG_NET_POLL_CONTROLLER
3126 dev->poll_controller = gem_poll_controller;
3129 /* Set that now, in case PM kicks in now */
3130 pci_set_drvdata(pdev, dev);
3132 /* Detect & init PHY, start autoneg, we release the cell now
3133 * too, it will be managed by whoever needs it
3137 spin_lock_irq(&gp->lock);
3139 spin_unlock_irq(&gp->lock);
3141 /* Register with kernel */
3142 if (register_netdev(dev)) {
3143 printk(KERN_ERR PFX "Cannot register net device, "
3146 goto err_out_free_consistent;
3149 printk(KERN_INFO "%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet ",
3151 for (i = 0; i < 6; i++)
3152 printk("%2.2x%c", dev->dev_addr[i],
3153 i == 5 ? ' ' : ':');
3156 if (gp->phy_type == phy_mii_mdio0 ||
3157 gp->phy_type == phy_mii_mdio1)
3158 printk(KERN_INFO "%s: Found %s PHY\n", dev->name,
3159 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
3161 /* GEM can do it all... */
3162 dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_LLTX;
3164 dev->features |= NETIF_F_HIGHDMA;
3168 err_out_free_consistent:
3169 gem_remove_one(pdev);
3175 pci_release_regions(pdev);
3177 err_out_free_netdev:
3180 pci_disable_device(pdev);
3186 static struct pci_driver gem_driver = {
3187 .name = GEM_MODULE_NAME,
3188 .id_table = gem_pci_tbl,
3189 .probe = gem_init_one,
3190 .remove = gem_remove_one,
3192 .suspend = gem_suspend,
3193 .resume = gem_resume,
3194 #endif /* CONFIG_PM */
3197 static int __init gem_init(void)
3199 return pci_register_driver(&gem_driver);
3202 static void __exit gem_cleanup(void)
3204 pci_unregister_driver(&gem_driver);
3207 module_init(gem_init);
3208 module_exit(gem_cleanup);