2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/ide.h>
22 #include <linux/bitops.h>
23 #include <linux/nmi.h>
25 #include <asm/byteorder.h>
27 #include <asm/uaccess.h>
31 * Conventional PIO operations for ATA devices
34 static u8 ide_inb (unsigned long port)
36 return (u8) inb(port);
39 static void ide_outb (u8 val, unsigned long port)
45 * MMIO operations, typically used for SATA controllers
48 static u8 ide_mm_inb (unsigned long port)
50 return (u8) readb((void __iomem *) port);
53 static void ide_mm_outb (u8 value, unsigned long port)
55 writeb(value, (void __iomem *) port);
58 void SELECT_DRIVE (ide_drive_t *drive)
60 ide_hwif_t *hwif = drive->hwif;
61 const struct ide_port_ops *port_ops = hwif->port_ops;
64 if (port_ops && port_ops->selectproc)
65 port_ops->selectproc(drive);
67 memset(&task, 0, sizeof(task));
68 task.tf_flags = IDE_TFLAG_OUT_DEVICE;
70 drive->hwif->tp_ops->tf_load(drive, &task);
73 void SELECT_MASK(ide_drive_t *drive, int mask)
75 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
77 if (port_ops && port_ops->maskproc)
78 port_ops->maskproc(drive, mask);
81 void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
83 if (hwif->host_flags & IDE_HFLAG_MMIO)
84 writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
86 outb(cmd, hwif->io_ports.command_addr);
88 EXPORT_SYMBOL_GPL(ide_exec_command);
90 u8 ide_read_status(ide_hwif_t *hwif)
92 if (hwif->host_flags & IDE_HFLAG_MMIO)
93 return readb((void __iomem *)hwif->io_ports.status_addr);
95 return inb(hwif->io_ports.status_addr);
97 EXPORT_SYMBOL_GPL(ide_read_status);
99 u8 ide_read_altstatus(ide_hwif_t *hwif)
101 if (hwif->host_flags & IDE_HFLAG_MMIO)
102 return readb((void __iomem *)hwif->io_ports.ctl_addr);
104 return inb(hwif->io_ports.ctl_addr);
106 EXPORT_SYMBOL_GPL(ide_read_altstatus);
108 void ide_set_irq(ide_hwif_t *hwif, int on)
110 u8 ctl = ATA_DEVCTL_OBS;
112 if (on == 4) { /* hack for SRST */
119 if (hwif->host_flags & IDE_HFLAG_MMIO)
120 writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
122 outb(ctl, hwif->io_ports.ctl_addr);
124 EXPORT_SYMBOL_GPL(ide_set_irq);
126 void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
128 ide_hwif_t *hwif = drive->hwif;
129 struct ide_io_ports *io_ports = &hwif->io_ports;
130 struct ide_taskfile *tf = &task->tf;
131 void (*tf_outb)(u8 addr, unsigned long port);
132 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
133 u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
136 tf_outb = ide_mm_outb;
140 if (task->tf_flags & IDE_TFLAG_FLAGGED)
143 if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
144 u16 data = (tf->hob_data << 8) | tf->data;
147 writew(data, (void __iomem *)io_ports->data_addr);
149 outw(data, io_ports->data_addr);
152 if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
153 tf_outb(tf->hob_feature, io_ports->feature_addr);
154 if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
155 tf_outb(tf->hob_nsect, io_ports->nsect_addr);
156 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
157 tf_outb(tf->hob_lbal, io_ports->lbal_addr);
158 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
159 tf_outb(tf->hob_lbam, io_ports->lbam_addr);
160 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
161 tf_outb(tf->hob_lbah, io_ports->lbah_addr);
163 if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
164 tf_outb(tf->feature, io_ports->feature_addr);
165 if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
166 tf_outb(tf->nsect, io_ports->nsect_addr);
167 if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
168 tf_outb(tf->lbal, io_ports->lbal_addr);
169 if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
170 tf_outb(tf->lbam, io_ports->lbam_addr);
171 if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
172 tf_outb(tf->lbah, io_ports->lbah_addr);
174 if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
175 tf_outb((tf->device & HIHI) | drive->select,
176 io_ports->device_addr);
178 EXPORT_SYMBOL_GPL(ide_tf_load);
180 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
182 ide_hwif_t *hwif = drive->hwif;
183 struct ide_io_ports *io_ports = &hwif->io_ports;
184 struct ide_taskfile *tf = &task->tf;
185 void (*tf_outb)(u8 addr, unsigned long port);
186 u8 (*tf_inb)(unsigned long port);
187 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
190 tf_outb = ide_mm_outb;
197 if (task->tf_flags & IDE_TFLAG_IN_DATA) {
201 data = readw((void __iomem *)io_ports->data_addr);
203 data = inw(io_ports->data_addr);
205 tf->data = data & 0xff;
206 tf->hob_data = (data >> 8) & 0xff;
209 /* be sure we're looking at the low order bits */
210 tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
212 if (task->tf_flags & IDE_TFLAG_IN_FEATURE)
213 tf->feature = tf_inb(io_ports->feature_addr);
214 if (task->tf_flags & IDE_TFLAG_IN_NSECT)
215 tf->nsect = tf_inb(io_ports->nsect_addr);
216 if (task->tf_flags & IDE_TFLAG_IN_LBAL)
217 tf->lbal = tf_inb(io_ports->lbal_addr);
218 if (task->tf_flags & IDE_TFLAG_IN_LBAM)
219 tf->lbam = tf_inb(io_ports->lbam_addr);
220 if (task->tf_flags & IDE_TFLAG_IN_LBAH)
221 tf->lbah = tf_inb(io_ports->lbah_addr);
222 if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
223 tf->device = tf_inb(io_ports->device_addr);
225 if (task->tf_flags & IDE_TFLAG_LBA48) {
226 tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
228 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
229 tf->hob_feature = tf_inb(io_ports->feature_addr);
230 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
231 tf->hob_nsect = tf_inb(io_ports->nsect_addr);
232 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
233 tf->hob_lbal = tf_inb(io_ports->lbal_addr);
234 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
235 tf->hob_lbam = tf_inb(io_ports->lbam_addr);
236 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
237 tf->hob_lbah = tf_inb(io_ports->lbah_addr);
240 EXPORT_SYMBOL_GPL(ide_tf_read);
243 * Some localbus EIDE interfaces require a special access sequence
244 * when using 32-bit I/O instructions to transfer data. We call this
245 * the "vlb_sync" sequence, which consists of three successive reads
246 * of the sector count register location, with interrupts disabled
247 * to ensure that the reads all happen together.
249 static void ata_vlb_sync(unsigned long port)
257 * This is used for most PIO data transfers *from* the IDE interface
259 * These routines will round up any request for an odd number of bytes,
260 * so if an odd len is specified, be sure that there's at least one
261 * extra byte allocated for the buffer.
263 void ide_input_data(ide_drive_t *drive, struct request *rq, void *buf,
266 ide_hwif_t *hwif = drive->hwif;
267 struct ide_io_ports *io_ports = &hwif->io_ports;
268 unsigned long data_addr = io_ports->data_addr;
269 u8 io_32bit = drive->io_32bit;
270 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
275 unsigned long uninitialized_var(flags);
277 if ((io_32bit & 2) && !mmio) {
278 local_irq_save(flags);
279 ata_vlb_sync(io_ports->nsect_addr);
283 __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
285 insl(data_addr, buf, len / 4);
287 if ((io_32bit & 2) && !mmio)
288 local_irq_restore(flags);
290 if ((len & 3) >= 2) {
292 __ide_mm_insw((void __iomem *)data_addr,
293 (u8 *)buf + (len & ~3), 1);
295 insw(data_addr, (u8 *)buf + (len & ~3), 1);
299 __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
301 insw(data_addr, buf, len / 2);
304 EXPORT_SYMBOL_GPL(ide_input_data);
307 * This is used for most PIO data transfers *to* the IDE interface
309 void ide_output_data(ide_drive_t *drive, struct request *rq, void *buf,
312 ide_hwif_t *hwif = drive->hwif;
313 struct ide_io_ports *io_ports = &hwif->io_ports;
314 unsigned long data_addr = io_ports->data_addr;
315 u8 io_32bit = drive->io_32bit;
316 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
321 unsigned long uninitialized_var(flags);
323 if ((io_32bit & 2) && !mmio) {
324 local_irq_save(flags);
325 ata_vlb_sync(io_ports->nsect_addr);
329 __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
331 outsl(data_addr, buf, len / 4);
333 if ((io_32bit & 2) && !mmio)
334 local_irq_restore(flags);
336 if ((len & 3) >= 2) {
338 __ide_mm_outsw((void __iomem *)data_addr,
339 (u8 *)buf + (len & ~3), 1);
341 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
345 __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
347 outsw(data_addr, buf, len / 2);
350 EXPORT_SYMBOL_GPL(ide_output_data);
352 u8 ide_read_error(ide_drive_t *drive)
356 memset(&task, 0, sizeof(task));
357 task.tf_flags = IDE_TFLAG_IN_FEATURE;
359 drive->hwif->tp_ops->tf_read(drive, &task);
361 return task.tf.error;
363 EXPORT_SYMBOL_GPL(ide_read_error);
365 void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason)
369 memset(&task, 0, sizeof(task));
370 task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM |
373 drive->hwif->tp_ops->tf_read(drive, &task);
375 *bcount = (task.tf.lbah << 8) | task.tf.lbam;
376 *ireason = task.tf.nsect & 3;
378 EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason);
380 const struct ide_tp_ops default_tp_ops = {
381 .exec_command = ide_exec_command,
382 .read_status = ide_read_status,
383 .read_altstatus = ide_read_altstatus,
385 .set_irq = ide_set_irq,
387 .tf_load = ide_tf_load,
388 .tf_read = ide_tf_read,
390 .input_data = ide_input_data,
391 .output_data = ide_output_data,
394 void ide_fix_driveid(u16 *id)
396 #ifndef __LITTLE_ENDIAN
400 for (i = 0; i < 256; i++)
401 id[i] = __le16_to_cpu(id[i]);
403 # error "Please fix <asm/byteorder.h>"
409 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
410 * removing leading/trailing blanks and compressing internal blanks.
411 * It is primarily used to tidy up the model name/number fields as
412 * returned by the ATA_CMD_ID_ATA[PI] commands.
415 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
417 u8 *p, *end = &s[bytecount & ~1]; /* bytecount must be even */
420 /* convert from big-endian to host byte order */
421 for (p = s ; p != end ; p += 2)
422 be16_to_cpus((u16 *) p);
425 /* strip leading blanks */
427 while (s != end && *s == ' ')
429 /* compress internal blanks and strip trailing blanks */
430 while (s != end && *s) {
431 if (*s++ != ' ' || (s != end && *s && *s != ' '))
434 /* wipe out trailing garbage */
439 EXPORT_SYMBOL(ide_fixstring);
442 * Needed for PCI irq sharing
444 int drive_is_ready (ide_drive_t *drive)
446 ide_hwif_t *hwif = drive->hwif;
449 if (drive->waiting_for_dma)
450 return hwif->dma_ops->dma_test_irq(drive);
453 * We do a passive status test under shared PCI interrupts on
454 * cards that truly share the ATA side interrupt, but may also share
455 * an interrupt with another pci card/device. We make no assumptions
456 * about possible isa-pnp and pci-pnp issues yet.
458 if (hwif->io_ports.ctl_addr &&
459 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
460 stat = hwif->tp_ops->read_altstatus(hwif);
462 /* Note: this may clear a pending IRQ!! */
463 stat = hwif->tp_ops->read_status(hwif);
466 /* drive busy: definitely not interrupting */
469 /* drive ready: *might* be interrupting */
473 EXPORT_SYMBOL(drive_is_ready);
476 * This routine busy-waits for the drive status to be not "busy".
477 * It then checks the status for all of the "good" bits and none
478 * of the "bad" bits, and if all is okay it returns 0. All other
479 * cases return error -- caller may then invoke ide_error().
481 * This routine should get fixed to not hog the cpu during extra long waits..
482 * That could be done by busy-waiting for the first jiffy or two, and then
483 * setting a timer to wake up at half second intervals thereafter,
484 * until timeout is achieved, before timing out.
486 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
488 ide_hwif_t *hwif = drive->hwif;
489 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
494 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
495 stat = tp_ops->read_status(hwif);
497 if (stat & ATA_BUSY) {
498 local_save_flags(flags);
499 local_irq_enable_in_hardirq();
501 while ((stat = tp_ops->read_status(hwif)) & ATA_BUSY) {
502 if (time_after(jiffies, timeout)) {
504 * One last read after the timeout in case
505 * heavy interrupt load made us not make any
506 * progress during the timeout..
508 stat = tp_ops->read_status(hwif);
509 if ((stat & ATA_BUSY) == 0)
512 local_irq_restore(flags);
517 local_irq_restore(flags);
520 * Allow status to settle, then read it again.
521 * A few rare drives vastly violate the 400ns spec here,
522 * so we'll wait up to 10usec for a "good" status
523 * rather than expensively fail things immediately.
524 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
526 for (i = 0; i < 10; i++) {
528 stat = tp_ops->read_status(hwif);
530 if (OK_STAT(stat, good, bad)) {
540 * In case of error returns error value after doing "*startstop = ide_error()".
541 * The caller should return the updated value of "startstop" in this case,
542 * "startstop" is unchanged when the function returns 0.
544 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
549 /* bail early if we've exceeded max_failures */
550 if (drive->max_failures && (drive->failures > drive->max_failures)) {
551 *startstop = ide_stopped;
555 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
558 char *s = (err == -EBUSY) ? "status timeout" : "status error";
559 *startstop = ide_error(drive, s, stat);
565 EXPORT_SYMBOL(ide_wait_stat);
568 * ide_in_drive_list - look for drive in black/white list
569 * @id: drive identifier
570 * @table: list to inspect
572 * Look for a drive in the blacklist and the whitelist tables
573 * Returns 1 if the drive is found in the table.
576 int ide_in_drive_list(u16 *id, const struct drive_list_entry *table)
578 for ( ; table->id_model; table++)
579 if ((!strcmp(table->id_model, (char *)&id[ATA_ID_PROD])) &&
580 (!table->id_firmware ||
581 strstr((char *)&id[ATA_ID_FW_REV], table->id_firmware)))
586 EXPORT_SYMBOL_GPL(ide_in_drive_list);
589 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
590 * We list them here and depend on the device side cable detection for them.
592 * Some optical devices with the buggy firmwares have the same problem.
594 static const struct drive_list_entry ivb_list[] = {
595 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
596 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
597 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
598 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
599 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
600 { "TSSTcorp CDDVDW SH-S202H" , "SB00" },
601 { "TSSTcorp CDDVDW SH-S202H" , "SB01" },
602 { "SAMSUNG SP0822N" , "WA100-10" },
607 * All hosts that use the 80c ribbon must use!
608 * The name is derived from upper byte of word 93 and the 80c ribbon.
610 u8 eighty_ninty_three (ide_drive_t *drive)
612 ide_hwif_t *hwif = drive->hwif;
614 int ivb = ide_in_drive_list(id, ivb_list);
616 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
620 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
623 if (ata_id_is_sata(id) && !ivb)
626 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
631 * - change master/slave IDENTIFY order
632 * - force bit13 (80c cable present) check also for !ivb devices
633 * (unless the slave device is pre-ATA3)
635 if ((id[ATA_ID_HW_CONFIG] & 0x4000) ||
636 (ivb && (id[ATA_ID_HW_CONFIG] & 0x2000)))
640 if (drive->dev_flags & IDE_DFLAG_UDMA33_WARNED)
643 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
644 "limiting max speed to UDMA33\n",
646 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
648 drive->dev_flags |= IDE_DFLAG_UDMA33_WARNED;
653 int ide_driveid_update(ide_drive_t *drive)
655 ide_hwif_t *hwif = drive->hwif;
656 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
662 * Re-read drive->id for possible DMA mode
663 * change (copied from ide-probe.c)
666 SELECT_MASK(drive, 1);
667 tp_ops->set_irq(hwif, 0);
669 tp_ops->exec_command(hwif, ATA_CMD_ID_ATA);
671 if (ide_busy_sleep(hwif, WAIT_WORSTCASE, 1)) {
672 SELECT_MASK(drive, 0);
676 msleep(50); /* wait for IRQ and ATA_DRQ */
677 stat = tp_ops->read_status(hwif);
679 if (!OK_STAT(stat, ATA_DRQ, BAD_R_STAT)) {
680 SELECT_MASK(drive, 0);
681 printk("%s: CHECK for good STATUS\n", drive->name);
684 local_irq_save(flags);
685 SELECT_MASK(drive, 0);
686 id = kmalloc(SECTOR_SIZE, GFP_ATOMIC);
688 local_irq_restore(flags);
691 tp_ops->input_data(drive, NULL, id, SECTOR_SIZE);
692 (void)tp_ops->read_status(hwif); /* clear drive IRQ */
694 local_irq_restore(flags);
697 drive->id[ATA_ID_UDMA_MODES] = id[ATA_ID_UDMA_MODES];
698 drive->id[ATA_ID_MWDMA_MODES] = id[ATA_ID_MWDMA_MODES];
699 drive->id[ATA_ID_SWDMA_MODES] = id[ATA_ID_SWDMA_MODES];
700 /* anything more ? */
704 if ((drive->dev_flags & IDE_DFLAG_USING_DMA) && ide_id_dma_bug(drive))
710 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
712 ide_hwif_t *hwif = drive->hwif;
713 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
714 u16 *id = drive->id, i;
719 #ifdef CONFIG_BLK_DEV_IDEDMA
720 if (hwif->dma_ops) /* check if host supports DMA */
721 hwif->dma_ops->dma_host_set(drive, 0);
724 /* Skip setting PIO flow-control modes on pre-EIDE drives */
725 if ((speed & 0xf8) == XFER_PIO_0 && ata_id_has_iordy(drive->id) == 0)
729 * Don't use ide_wait_cmd here - it will
730 * attempt to set_geometry and recalibrate,
731 * but for some reason these don't work at
732 * this point (lost interrupt).
735 * Select the drive, and issue the SETFEATURES command
737 disable_irq_nosync(hwif->irq);
740 * FIXME: we race against the running IRQ here if
741 * this is called from non IRQ context. If we use
742 * disable_irq() we hang on the error path. Work
748 SELECT_MASK(drive, 1);
750 tp_ops->set_irq(hwif, 0);
752 memset(&task, 0, sizeof(task));
753 task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT;
754 task.tf.feature = SETFEATURES_XFER;
755 task.tf.nsect = speed;
757 tp_ops->tf_load(drive, &task);
759 tp_ops->exec_command(hwif, ATA_CMD_SET_FEATURES);
761 if (drive->quirk_list == 2)
762 tp_ops->set_irq(hwif, 1);
764 error = __ide_wait_stat(drive, drive->ready_stat,
765 ATA_BUSY | ATA_DRQ | ATA_ERR,
768 SELECT_MASK(drive, 0);
770 enable_irq(hwif->irq);
773 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
777 id[ATA_ID_UDMA_MODES] &= ~0xFF00;
778 id[ATA_ID_MWDMA_MODES] &= ~0x0F00;
779 id[ATA_ID_SWDMA_MODES] &= ~0x0F00;
782 #ifdef CONFIG_BLK_DEV_IDEDMA
783 if (speed >= XFER_SW_DMA_0 && (drive->dev_flags & IDE_DFLAG_USING_DMA))
784 hwif->dma_ops->dma_host_set(drive, 1);
785 else if (hwif->dma_ops) /* check if host supports DMA */
786 ide_dma_off_quietly(drive);
789 if (speed >= XFER_UDMA_0) {
790 i = 1 << (speed - XFER_UDMA_0);
791 id[ATA_ID_UDMA_MODES] |= (i << 8 | i);
792 } else if (speed >= XFER_MW_DMA_0) {
793 i = 1 << (speed - XFER_MW_DMA_0);
794 id[ATA_ID_MWDMA_MODES] |= (i << 8 | i);
795 } else if (speed >= XFER_SW_DMA_0) {
796 i = 1 << (speed - XFER_SW_DMA_0);
797 id[ATA_ID_SWDMA_MODES] |= (i << 8 | i);
800 if (!drive->init_speed)
801 drive->init_speed = speed;
802 drive->current_speed = speed;
807 * This should get invoked any time we exit the driver to
808 * wait for an interrupt response from a drive. handler() points
809 * at the appropriate code to handle the next interrupt, and a
810 * timer is started to prevent us from waiting forever in case
811 * something goes wrong (see the ide_timer_expiry() handler later on).
813 * See also ide_execute_command
815 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
816 unsigned int timeout, ide_expiry_t *expiry)
818 ide_hwif_t *hwif = drive->hwif;
820 BUG_ON(hwif->handler);
821 hwif->handler = handler;
822 hwif->expiry = expiry;
823 hwif->timer.expires = jiffies + timeout;
824 hwif->req_gen_timer = hwif->req_gen;
825 add_timer(&hwif->timer);
828 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
829 unsigned int timeout, ide_expiry_t *expiry)
831 ide_hwif_t *hwif = drive->hwif;
834 spin_lock_irqsave(&hwif->lock, flags);
835 __ide_set_handler(drive, handler, timeout, expiry);
836 spin_unlock_irqrestore(&hwif->lock, flags);
839 EXPORT_SYMBOL(ide_set_handler);
842 * ide_execute_command - execute an IDE command
843 * @drive: IDE drive to issue the command against
844 * @command: command byte to write
845 * @handler: handler for next phase
846 * @timeout: timeout for command
847 * @expiry: handler to run on timeout
849 * Helper function to issue an IDE command. This handles the
850 * atomicity requirements, command timing and ensures that the
851 * handler and IRQ setup do not race. All IDE command kick off
852 * should go via this function or do equivalent locking.
855 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
856 unsigned timeout, ide_expiry_t *expiry)
858 ide_hwif_t *hwif = drive->hwif;
861 spin_lock_irqsave(&hwif->lock, flags);
862 __ide_set_handler(drive, handler, timeout, expiry);
863 hwif->tp_ops->exec_command(hwif, cmd);
865 * Drive takes 400nS to respond, we must avoid the IRQ being
866 * serviced before that.
868 * FIXME: we could skip this delay with care on non shared devices
871 spin_unlock_irqrestore(&hwif->lock, flags);
873 EXPORT_SYMBOL(ide_execute_command);
875 void ide_execute_pkt_cmd(ide_drive_t *drive)
877 ide_hwif_t *hwif = drive->hwif;
880 spin_lock_irqsave(&hwif->lock, flags);
881 hwif->tp_ops->exec_command(hwif, ATA_CMD_PACKET);
883 spin_unlock_irqrestore(&hwif->lock, flags);
885 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
887 static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
889 struct request *rq = drive->hwif->rq;
891 if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
892 ide_end_request(drive, err ? err : 1, 0);
896 static ide_startstop_t do_reset1 (ide_drive_t *, int);
899 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
900 * during an atapi drive reset operation. If the drive has not yet responded,
901 * and we have not yet hit our maximum waiting time, then the timer is restarted
904 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
906 ide_hwif_t *hwif = drive->hwif;
911 stat = hwif->tp_ops->read_status(hwif);
913 if (OK_STAT(stat, 0, ATA_BUSY))
914 printk("%s: ATAPI reset complete\n", drive->name);
916 if (time_before(jiffies, hwif->poll_timeout)) {
917 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
918 /* continue polling */
923 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
925 /* do it the old fashioned way */
926 return do_reset1(drive, 1);
930 ide_complete_drive_reset(drive, 0);
934 static void ide_reset_report_error(ide_hwif_t *hwif, u8 err)
936 static const char *err_master_vals[] =
937 { NULL, "passed", "formatter device error",
938 "sector buffer error", "ECC circuitry error",
939 "controlling MPU error" };
941 u8 err_master = err & 0x7f;
943 printk(KERN_ERR "%s: reset: master: ", hwif->name);
944 if (err_master && err_master < 6)
945 printk(KERN_CONT "%s", err_master_vals[err_master]);
947 printk(KERN_CONT "error (0x%02x?)", err);
949 printk(KERN_CONT "; slave: failed");
950 printk(KERN_CONT "\n");
954 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
955 * during an ide reset operation. If the drives have not yet responded,
956 * and we have not yet hit our maximum waiting time, then the timer is restarted
959 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
961 ide_hwif_t *hwif = drive->hwif;
962 const struct ide_port_ops *port_ops = hwif->port_ops;
966 if (port_ops && port_ops->reset_poll) {
967 err = port_ops->reset_poll(drive);
969 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
970 hwif->name, drive->name);
975 tmp = hwif->tp_ops->read_status(hwif);
977 if (!OK_STAT(tmp, 0, ATA_BUSY)) {
978 if (time_before(jiffies, hwif->poll_timeout)) {
979 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
980 /* continue polling */
983 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
987 tmp = ide_read_error(drive);
990 printk(KERN_INFO "%s: reset: success\n", hwif->name);
993 ide_reset_report_error(hwif, tmp);
999 hwif->polling = 0; /* done polling */
1000 ide_complete_drive_reset(drive, err);
1004 static void ide_disk_pre_reset(ide_drive_t *drive)
1006 int legacy = (drive->id[ATA_ID_CFS_ENABLE_2] & 0x0400) ? 0 : 1;
1008 drive->special.all = 0;
1009 drive->special.b.set_geometry = legacy;
1010 drive->special.b.recalibrate = legacy;
1012 drive->mult_count = 0;
1013 drive->dev_flags &= ~IDE_DFLAG_PARKED;
1015 if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0 &&
1016 (drive->dev_flags & IDE_DFLAG_USING_DMA) == 0)
1017 drive->mult_req = 0;
1019 if (drive->mult_req != drive->mult_count)
1020 drive->special.b.set_multmode = 1;
1023 static void pre_reset(ide_drive_t *drive)
1025 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1027 if (drive->media == ide_disk)
1028 ide_disk_pre_reset(drive);
1030 drive->dev_flags |= IDE_DFLAG_POST_RESET;
1032 if (drive->dev_flags & IDE_DFLAG_USING_DMA) {
1033 if (drive->crc_count)
1034 ide_check_dma_crc(drive);
1039 if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0) {
1040 if ((drive->dev_flags & IDE_DFLAG_USING_DMA) == 0) {
1041 drive->dev_flags &= ~IDE_DFLAG_UNMASK;
1042 drive->io_32bit = 0;
1047 if (port_ops && port_ops->pre_reset)
1048 port_ops->pre_reset(drive);
1050 if (drive->current_speed != 0xff)
1051 drive->desired_speed = drive->current_speed;
1052 drive->current_speed = 0xff;
1056 * do_reset1() attempts to recover a confused drive by resetting it.
1057 * Unfortunately, resetting a disk drive actually resets all devices on
1058 * the same interface, so it can really be thought of as resetting the
1059 * interface rather than resetting the drive.
1061 * ATAPI devices have their own reset mechanism which allows them to be
1062 * individually reset without clobbering other devices on the same interface.
1064 * Unfortunately, the IDE interface does not generate an interrupt to let
1065 * us know when the reset operation has finished, so we must poll for this.
1066 * Equally poor, though, is the fact that this may a very long time to complete,
1067 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1068 * we set a timer to poll at 50ms intervals.
1070 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1072 ide_hwif_t *hwif = drive->hwif;
1073 struct ide_io_ports *io_ports = &hwif->io_ports;
1074 const struct ide_tp_ops *tp_ops = hwif->tp_ops;
1075 const struct ide_port_ops *port_ops;
1076 ide_drive_t *tdrive;
1077 unsigned long flags, timeout;
1081 spin_lock_irqsave(&hwif->lock, flags);
1083 /* We must not reset with running handlers */
1084 BUG_ON(hwif->handler != NULL);
1086 /* For an ATAPI device, first try an ATAPI SRST. */
1087 if (drive->media != ide_disk && !do_not_try_atapi) {
1089 SELECT_DRIVE(drive);
1091 tp_ops->exec_command(hwif, ATA_CMD_DEV_RESET);
1093 hwif->poll_timeout = jiffies + WAIT_WORSTCASE;
1095 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1096 spin_unlock_irqrestore(&hwif->lock, flags);
1100 /* We must not disturb devices in the IDE_DFLAG_PARKED state. */
1104 prepare_to_wait(&ide_park_wq, &wait, TASK_UNINTERRUPTIBLE);
1106 ide_port_for_each_dev(i, tdrive, hwif) {
1107 if (tdrive->dev_flags & IDE_DFLAG_PRESENT &&
1108 tdrive->dev_flags & IDE_DFLAG_PARKED &&
1109 time_after(tdrive->sleep, timeout))
1110 timeout = tdrive->sleep;
1114 if (time_before_eq(timeout, now))
1117 spin_unlock_irqrestore(&hwif->lock, flags);
1118 timeout = schedule_timeout_uninterruptible(timeout - now);
1119 spin_lock_irqsave(&hwif->lock, flags);
1121 finish_wait(&ide_park_wq, &wait);
1124 * First, reset any device state data we were maintaining
1125 * for any of the drives on this interface.
1127 ide_port_for_each_dev(i, tdrive, hwif)
1130 if (io_ports->ctl_addr == 0) {
1131 spin_unlock_irqrestore(&hwif->lock, flags);
1132 ide_complete_drive_reset(drive, -ENXIO);
1137 * Note that we also set nIEN while resetting the device,
1138 * to mask unwanted interrupts from the interface during the reset.
1139 * However, due to the design of PC hardware, this will cause an
1140 * immediate interrupt due to the edge transition it produces.
1141 * This single interrupt gives us a "fast poll" for drives that
1142 * recover from reset very quickly, saving us the first 50ms wait time.
1144 * TODO: add ->softreset method and stop abusing ->set_irq
1146 /* set SRST and nIEN */
1147 tp_ops->set_irq(hwif, 4);
1148 /* more than enough time */
1150 /* clear SRST, leave nIEN (unless device is on the quirk list) */
1151 tp_ops->set_irq(hwif, drive->quirk_list == 2);
1152 /* more than enough time */
1154 hwif->poll_timeout = jiffies + WAIT_WORSTCASE;
1156 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1159 * Some weird controller like resetting themselves to a strange
1160 * state when the disks are reset this way. At least, the Winbond
1161 * 553 documentation says that
1163 port_ops = hwif->port_ops;
1164 if (port_ops && port_ops->resetproc)
1165 port_ops->resetproc(drive);
1167 spin_unlock_irqrestore(&hwif->lock, flags);
1172 * ide_do_reset() is the entry point to the drive/interface reset code.
1175 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1177 return do_reset1(drive, 0);
1180 EXPORT_SYMBOL(ide_do_reset);
1183 * ide_wait_not_busy() waits for the currently selected device on the hwif
1184 * to report a non-busy status, see comments in ide_probe_port().
1186 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1192 * Turn this into a schedule() sleep once I'm sure
1193 * about locking issues (2.5 work ?).
1196 stat = hwif->tp_ops->read_status(hwif);
1197 if ((stat & ATA_BUSY) == 0)
1200 * Assume a value of 0xff means nothing is connected to
1201 * the interface and it doesn't implement the pull-down
1206 touch_softlockup_watchdog();
1207 touch_nmi_watchdog();