4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
52 #include <asm/unistd.h>
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
59 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
68 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
73 * Some helpers for converting nanosecond timing to jiffy resolution
75 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
79 * These are the 'tuning knobs' of the scheduler:
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
85 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT 30
88 #define CHILD_PENALTY 95
89 #define PARENT_PENALTY 100
91 #define PRIO_BONUS_RATIO 25
92 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA 2
94 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
104 * This part scales the interactivity limit depending on niceness.
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
126 #define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
130 #define GRANULARITY (10 * HZ / 1000 ? : 1)
133 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
141 #define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
147 #define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
150 #define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
154 #define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
166 #define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
169 static unsigned int task_timeslice(task_t *p)
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
180 * These are the runqueue data structures:
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
185 typedef struct runqueue runqueue_t;
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
194 * This is the main, per-CPU runqueue data structure.
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
207 unsigned long nr_running;
209 unsigned long cpu_load[3];
211 unsigned long long nr_switches;
214 * This is part of a global counter where only the total sum
215 * over all CPUs matters. A task can increase this counter on
216 * one CPU and if it got migrated afterwards it may decrease
217 * it on another CPU. Always updated under the runqueue lock:
219 unsigned long nr_uninterruptible;
221 unsigned long expired_timestamp;
222 unsigned long long timestamp_last_tick;
224 struct mm_struct *prev_mm;
225 prio_array_t *active, *expired, arrays[2];
226 int best_expired_prio;
230 struct sched_domain *sd;
232 /* For active balancing */
236 task_t *migration_thread;
237 struct list_head migration_queue;
240 #ifdef CONFIG_SCHEDSTATS
242 struct sched_info rq_sched_info;
244 /* sys_sched_yield() stats */
245 unsigned long yld_exp_empty;
246 unsigned long yld_act_empty;
247 unsigned long yld_both_empty;
248 unsigned long yld_cnt;
250 /* schedule() stats */
251 unsigned long sched_switch;
252 unsigned long sched_cnt;
253 unsigned long sched_goidle;
255 /* try_to_wake_up() stats */
256 unsigned long ttwu_cnt;
257 unsigned long ttwu_local;
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
264 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
265 * See detach_destroy_domains: synchronize_sched for details.
267 * The domain tree of any CPU may only be accessed from within
268 * preempt-disabled sections.
270 #define for_each_domain(cpu, domain) \
271 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
273 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
274 #define this_rq() (&__get_cpu_var(runqueues))
275 #define task_rq(p) cpu_rq(task_cpu(p))
276 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
278 #ifndef prepare_arch_switch
279 # define prepare_arch_switch(next) do { } while (0)
281 #ifndef finish_arch_switch
282 # define finish_arch_switch(prev) do { } while (0)
285 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
286 static inline int task_running(runqueue_t *rq, task_t *p)
288 return rq->curr == p;
291 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
295 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
297 spin_unlock_irq(&rq->lock);
300 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
301 static inline int task_running(runqueue_t *rq, task_t *p)
306 return rq->curr == p;
310 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
314 * We can optimise this out completely for !SMP, because the
315 * SMP rebalancing from interrupt is the only thing that cares
320 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
321 spin_unlock_irq(&rq->lock);
323 spin_unlock(&rq->lock);
327 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
331 * After ->oncpu is cleared, the task can be moved to a different CPU.
332 * We must ensure this doesn't happen until the switch is completely
338 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
342 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
345 * task_rq_lock - lock the runqueue a given task resides on and disable
346 * interrupts. Note the ordering: we can safely lookup the task_rq without
347 * explicitly disabling preemption.
349 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
355 local_irq_save(*flags);
357 spin_lock(&rq->lock);
358 if (unlikely(rq != task_rq(p))) {
359 spin_unlock_irqrestore(&rq->lock, *flags);
360 goto repeat_lock_task;
365 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
368 spin_unlock_irqrestore(&rq->lock, *flags);
371 #ifdef CONFIG_SCHEDSTATS
373 * bump this up when changing the output format or the meaning of an existing
374 * format, so that tools can adapt (or abort)
376 #define SCHEDSTAT_VERSION 12
378 static int show_schedstat(struct seq_file *seq, void *v)
382 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
383 seq_printf(seq, "timestamp %lu\n", jiffies);
384 for_each_online_cpu(cpu) {
385 runqueue_t *rq = cpu_rq(cpu);
387 struct sched_domain *sd;
391 /* runqueue-specific stats */
393 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
394 cpu, rq->yld_both_empty,
395 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
396 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
397 rq->ttwu_cnt, rq->ttwu_local,
398 rq->rq_sched_info.cpu_time,
399 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
401 seq_printf(seq, "\n");
404 /* domain-specific stats */
406 for_each_domain(cpu, sd) {
407 enum idle_type itype;
408 char mask_str[NR_CPUS];
410 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
411 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
412 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
414 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
416 sd->lb_balanced[itype],
417 sd->lb_failed[itype],
418 sd->lb_imbalance[itype],
419 sd->lb_gained[itype],
420 sd->lb_hot_gained[itype],
421 sd->lb_nobusyq[itype],
422 sd->lb_nobusyg[itype]);
424 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
425 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
426 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
427 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
428 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
436 static int schedstat_open(struct inode *inode, struct file *file)
438 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
439 char *buf = kmalloc(size, GFP_KERNEL);
445 res = single_open(file, show_schedstat, NULL);
447 m = file->private_data;
455 struct file_operations proc_schedstat_operations = {
456 .open = schedstat_open,
459 .release = single_release,
462 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
463 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
464 #else /* !CONFIG_SCHEDSTATS */
465 # define schedstat_inc(rq, field) do { } while (0)
466 # define schedstat_add(rq, field, amt) do { } while (0)
470 * rq_lock - lock a given runqueue and disable interrupts.
472 static inline runqueue_t *this_rq_lock(void)
479 spin_lock(&rq->lock);
484 #ifdef CONFIG_SCHEDSTATS
486 * Called when a process is dequeued from the active array and given
487 * the cpu. We should note that with the exception of interactive
488 * tasks, the expired queue will become the active queue after the active
489 * queue is empty, without explicitly dequeuing and requeuing tasks in the
490 * expired queue. (Interactive tasks may be requeued directly to the
491 * active queue, thus delaying tasks in the expired queue from running;
492 * see scheduler_tick()).
494 * This function is only called from sched_info_arrive(), rather than
495 * dequeue_task(). Even though a task may be queued and dequeued multiple
496 * times as it is shuffled about, we're really interested in knowing how
497 * long it was from the *first* time it was queued to the time that it
500 static inline void sched_info_dequeued(task_t *t)
502 t->sched_info.last_queued = 0;
506 * Called when a task finally hits the cpu. We can now calculate how
507 * long it was waiting to run. We also note when it began so that we
508 * can keep stats on how long its timeslice is.
510 static inline void sched_info_arrive(task_t *t)
512 unsigned long now = jiffies, diff = 0;
513 struct runqueue *rq = task_rq(t);
515 if (t->sched_info.last_queued)
516 diff = now - t->sched_info.last_queued;
517 sched_info_dequeued(t);
518 t->sched_info.run_delay += diff;
519 t->sched_info.last_arrival = now;
520 t->sched_info.pcnt++;
525 rq->rq_sched_info.run_delay += diff;
526 rq->rq_sched_info.pcnt++;
530 * Called when a process is queued into either the active or expired
531 * array. The time is noted and later used to determine how long we
532 * had to wait for us to reach the cpu. Since the expired queue will
533 * become the active queue after active queue is empty, without dequeuing
534 * and requeuing any tasks, we are interested in queuing to either. It
535 * is unusual but not impossible for tasks to be dequeued and immediately
536 * requeued in the same or another array: this can happen in sched_yield(),
537 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
540 * This function is only called from enqueue_task(), but also only updates
541 * the timestamp if it is already not set. It's assumed that
542 * sched_info_dequeued() will clear that stamp when appropriate.
544 static inline void sched_info_queued(task_t *t)
546 if (!t->sched_info.last_queued)
547 t->sched_info.last_queued = jiffies;
551 * Called when a process ceases being the active-running process, either
552 * voluntarily or involuntarily. Now we can calculate how long we ran.
554 static inline void sched_info_depart(task_t *t)
556 struct runqueue *rq = task_rq(t);
557 unsigned long diff = jiffies - t->sched_info.last_arrival;
559 t->sched_info.cpu_time += diff;
562 rq->rq_sched_info.cpu_time += diff;
566 * Called when tasks are switched involuntarily due, typically, to expiring
567 * their time slice. (This may also be called when switching to or from
568 * the idle task.) We are only called when prev != next.
570 static inline void sched_info_switch(task_t *prev, task_t *next)
572 struct runqueue *rq = task_rq(prev);
575 * prev now departs the cpu. It's not interesting to record
576 * stats about how efficient we were at scheduling the idle
579 if (prev != rq->idle)
580 sched_info_depart(prev);
582 if (next != rq->idle)
583 sched_info_arrive(next);
586 #define sched_info_queued(t) do { } while (0)
587 #define sched_info_switch(t, next) do { } while (0)
588 #endif /* CONFIG_SCHEDSTATS */
591 * Adding/removing a task to/from a priority array:
593 static void dequeue_task(struct task_struct *p, prio_array_t *array)
596 list_del(&p->run_list);
597 if (list_empty(array->queue + p->prio))
598 __clear_bit(p->prio, array->bitmap);
601 static void enqueue_task(struct task_struct *p, prio_array_t *array)
603 sched_info_queued(p);
604 list_add_tail(&p->run_list, array->queue + p->prio);
605 __set_bit(p->prio, array->bitmap);
611 * Put task to the end of the run list without the overhead of dequeue
612 * followed by enqueue.
614 static void requeue_task(struct task_struct *p, prio_array_t *array)
616 list_move_tail(&p->run_list, array->queue + p->prio);
619 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
621 list_add(&p->run_list, array->queue + p->prio);
622 __set_bit(p->prio, array->bitmap);
628 * effective_prio - return the priority that is based on the static
629 * priority but is modified by bonuses/penalties.
631 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
632 * into the -5 ... 0 ... +5 bonus/penalty range.
634 * We use 25% of the full 0...39 priority range so that:
636 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
637 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
639 * Both properties are important to certain workloads.
641 static int effective_prio(task_t *p)
648 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
650 prio = p->static_prio - bonus;
651 if (prio < MAX_RT_PRIO)
653 if (prio > MAX_PRIO-1)
659 * __activate_task - move a task to the runqueue.
661 static inline void __activate_task(task_t *p, runqueue_t *rq)
663 enqueue_task(p, rq->active);
668 * __activate_idle_task - move idle task to the _front_ of runqueue.
670 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
672 enqueue_task_head(p, rq->active);
676 static int recalc_task_prio(task_t *p, unsigned long long now)
678 /* Caller must always ensure 'now >= p->timestamp' */
679 unsigned long long __sleep_time = now - p->timestamp;
680 unsigned long sleep_time;
682 if (__sleep_time > NS_MAX_SLEEP_AVG)
683 sleep_time = NS_MAX_SLEEP_AVG;
685 sleep_time = (unsigned long)__sleep_time;
687 if (likely(sleep_time > 0)) {
689 * User tasks that sleep a long time are categorised as
690 * idle and will get just interactive status to stay active &
691 * prevent them suddenly becoming cpu hogs and starving
694 if (p->mm && p->activated != -1 &&
695 sleep_time > INTERACTIVE_SLEEP(p)) {
696 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
700 * The lower the sleep avg a task has the more
701 * rapidly it will rise with sleep time.
703 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
706 * Tasks waking from uninterruptible sleep are
707 * limited in their sleep_avg rise as they
708 * are likely to be waiting on I/O
710 if (p->activated == -1 && p->mm) {
711 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
713 else if (p->sleep_avg + sleep_time >=
714 INTERACTIVE_SLEEP(p)) {
715 p->sleep_avg = INTERACTIVE_SLEEP(p);
721 * This code gives a bonus to interactive tasks.
723 * The boost works by updating the 'average sleep time'
724 * value here, based on ->timestamp. The more time a
725 * task spends sleeping, the higher the average gets -
726 * and the higher the priority boost gets as well.
728 p->sleep_avg += sleep_time;
730 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
731 p->sleep_avg = NS_MAX_SLEEP_AVG;
735 return effective_prio(p);
739 * activate_task - move a task to the runqueue and do priority recalculation
741 * Update all the scheduling statistics stuff. (sleep average
742 * calculation, priority modifiers, etc.)
744 static void activate_task(task_t *p, runqueue_t *rq, int local)
746 unsigned long long now;
751 /* Compensate for drifting sched_clock */
752 runqueue_t *this_rq = this_rq();
753 now = (now - this_rq->timestamp_last_tick)
754 + rq->timestamp_last_tick;
758 p->prio = recalc_task_prio(p, now);
761 * This checks to make sure it's not an uninterruptible task
762 * that is now waking up.
766 * Tasks which were woken up by interrupts (ie. hw events)
767 * are most likely of interactive nature. So we give them
768 * the credit of extending their sleep time to the period
769 * of time they spend on the runqueue, waiting for execution
770 * on a CPU, first time around:
776 * Normal first-time wakeups get a credit too for
777 * on-runqueue time, but it will be weighted down:
784 __activate_task(p, rq);
788 * deactivate_task - remove a task from the runqueue.
790 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
793 dequeue_task(p, p->array);
798 * resched_task - mark a task 'to be rescheduled now'.
800 * On UP this means the setting of the need_resched flag, on SMP it
801 * might also involve a cross-CPU call to trigger the scheduler on
805 static void resched_task(task_t *p)
807 int need_resched, nrpolling;
809 assert_spin_locked(&task_rq(p)->lock);
811 /* minimise the chance of sending an interrupt to poll_idle() */
812 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
813 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
814 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
816 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
817 smp_send_reschedule(task_cpu(p));
820 static inline void resched_task(task_t *p)
822 set_tsk_need_resched(p);
827 * task_curr - is this task currently executing on a CPU?
828 * @p: the task in question.
830 inline int task_curr(const task_t *p)
832 return cpu_curr(task_cpu(p)) == p;
837 struct list_head list;
842 struct completion done;
846 * The task's runqueue lock must be held.
847 * Returns true if you have to wait for migration thread.
849 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
851 runqueue_t *rq = task_rq(p);
854 * If the task is not on a runqueue (and not running), then
855 * it is sufficient to simply update the task's cpu field.
857 if (!p->array && !task_running(rq, p)) {
858 set_task_cpu(p, dest_cpu);
862 init_completion(&req->done);
864 req->dest_cpu = dest_cpu;
865 list_add(&req->list, &rq->migration_queue);
870 * wait_task_inactive - wait for a thread to unschedule.
872 * The caller must ensure that the task *will* unschedule sometime soon,
873 * else this function might spin for a *long* time. This function can't
874 * be called with interrupts off, or it may introduce deadlock with
875 * smp_call_function() if an IPI is sent by the same process we are
876 * waiting to become inactive.
878 void wait_task_inactive(task_t *p)
885 rq = task_rq_lock(p, &flags);
886 /* Must be off runqueue entirely, not preempted. */
887 if (unlikely(p->array || task_running(rq, p))) {
888 /* If it's preempted, we yield. It could be a while. */
889 preempted = !task_running(rq, p);
890 task_rq_unlock(rq, &flags);
896 task_rq_unlock(rq, &flags);
900 * kick_process - kick a running thread to enter/exit the kernel
901 * @p: the to-be-kicked thread
903 * Cause a process which is running on another CPU to enter
904 * kernel-mode, without any delay. (to get signals handled.)
906 * NOTE: this function doesnt have to take the runqueue lock,
907 * because all it wants to ensure is that the remote task enters
908 * the kernel. If the IPI races and the task has been migrated
909 * to another CPU then no harm is done and the purpose has been
912 void kick_process(task_t *p)
918 if ((cpu != smp_processor_id()) && task_curr(p))
919 smp_send_reschedule(cpu);
924 * Return a low guess at the load of a migration-source cpu.
926 * We want to under-estimate the load of migration sources, to
927 * balance conservatively.
929 static inline unsigned long source_load(int cpu, int type)
931 runqueue_t *rq = cpu_rq(cpu);
932 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
936 return min(rq->cpu_load[type-1], load_now);
940 * Return a high guess at the load of a migration-target cpu
942 static inline unsigned long target_load(int cpu, int type)
944 runqueue_t *rq = cpu_rq(cpu);
945 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
949 return max(rq->cpu_load[type-1], load_now);
953 * find_idlest_group finds and returns the least busy CPU group within the
956 static struct sched_group *
957 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
959 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
960 unsigned long min_load = ULONG_MAX, this_load = 0;
961 int load_idx = sd->forkexec_idx;
962 int imbalance = 100 + (sd->imbalance_pct-100)/2;
965 unsigned long load, avg_load;
969 /* Skip over this group if it has no CPUs allowed */
970 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
973 local_group = cpu_isset(this_cpu, group->cpumask);
975 /* Tally up the load of all CPUs in the group */
978 for_each_cpu_mask(i, group->cpumask) {
979 /* Bias balancing toward cpus of our domain */
981 load = source_load(i, load_idx);
983 load = target_load(i, load_idx);
988 /* Adjust by relative CPU power of the group */
989 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
992 this_load = avg_load;
994 } else if (avg_load < min_load) {
1000 } while (group != sd->groups);
1002 if (!idlest || 100*this_load < imbalance*min_load)
1008 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1011 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1014 unsigned long load, min_load = ULONG_MAX;
1018 /* Traverse only the allowed CPUs */
1019 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1021 for_each_cpu_mask(i, tmp) {
1022 load = source_load(i, 0);
1024 if (load < min_load || (load == min_load && i == this_cpu)) {
1034 * sched_balance_self: balance the current task (running on cpu) in domains
1035 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1038 * Balance, ie. select the least loaded group.
1040 * Returns the target CPU number, or the same CPU if no balancing is needed.
1042 * preempt must be disabled.
1044 static int sched_balance_self(int cpu, int flag)
1046 struct task_struct *t = current;
1047 struct sched_domain *tmp, *sd = NULL;
1049 for_each_domain(cpu, tmp)
1050 if (tmp->flags & flag)
1055 struct sched_group *group;
1060 group = find_idlest_group(sd, t, cpu);
1064 new_cpu = find_idlest_cpu(group, t, cpu);
1065 if (new_cpu == -1 || new_cpu == cpu)
1068 /* Now try balancing at a lower domain level */
1072 weight = cpus_weight(span);
1073 for_each_domain(cpu, tmp) {
1074 if (weight <= cpus_weight(tmp->span))
1076 if (tmp->flags & flag)
1079 /* while loop will break here if sd == NULL */
1085 #endif /* CONFIG_SMP */
1088 * wake_idle() will wake a task on an idle cpu if task->cpu is
1089 * not idle and an idle cpu is available. The span of cpus to
1090 * search starts with cpus closest then further out as needed,
1091 * so we always favor a closer, idle cpu.
1093 * Returns the CPU we should wake onto.
1095 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1096 static int wake_idle(int cpu, task_t *p)
1099 struct sched_domain *sd;
1105 for_each_domain(cpu, sd) {
1106 if (sd->flags & SD_WAKE_IDLE) {
1107 cpus_and(tmp, sd->span, p->cpus_allowed);
1108 for_each_cpu_mask(i, tmp) {
1119 static inline int wake_idle(int cpu, task_t *p)
1126 * try_to_wake_up - wake up a thread
1127 * @p: the to-be-woken-up thread
1128 * @state: the mask of task states that can be woken
1129 * @sync: do a synchronous wakeup?
1131 * Put it on the run-queue if it's not already there. The "current"
1132 * thread is always on the run-queue (except when the actual
1133 * re-schedule is in progress), and as such you're allowed to do
1134 * the simpler "current->state = TASK_RUNNING" to mark yourself
1135 * runnable without the overhead of this.
1137 * returns failure only if the task is already active.
1139 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1141 int cpu, this_cpu, success = 0;
1142 unsigned long flags;
1146 unsigned long load, this_load;
1147 struct sched_domain *sd, *this_sd = NULL;
1151 rq = task_rq_lock(p, &flags);
1152 old_state = p->state;
1153 if (!(old_state & state))
1160 this_cpu = smp_processor_id();
1163 if (unlikely(task_running(rq, p)))
1168 schedstat_inc(rq, ttwu_cnt);
1169 if (cpu == this_cpu) {
1170 schedstat_inc(rq, ttwu_local);
1174 for_each_domain(this_cpu, sd) {
1175 if (cpu_isset(cpu, sd->span)) {
1176 schedstat_inc(sd, ttwu_wake_remote);
1182 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1186 * Check for affine wakeup and passive balancing possibilities.
1189 int idx = this_sd->wake_idx;
1190 unsigned int imbalance;
1192 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1194 load = source_load(cpu, idx);
1195 this_load = target_load(this_cpu, idx);
1197 new_cpu = this_cpu; /* Wake to this CPU if we can */
1199 if (this_sd->flags & SD_WAKE_AFFINE) {
1200 unsigned long tl = this_load;
1202 * If sync wakeup then subtract the (maximum possible)
1203 * effect of the currently running task from the load
1204 * of the current CPU:
1207 tl -= SCHED_LOAD_SCALE;
1210 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1211 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1213 * This domain has SD_WAKE_AFFINE and
1214 * p is cache cold in this domain, and
1215 * there is no bad imbalance.
1217 schedstat_inc(this_sd, ttwu_move_affine);
1223 * Start passive balancing when half the imbalance_pct
1226 if (this_sd->flags & SD_WAKE_BALANCE) {
1227 if (imbalance*this_load <= 100*load) {
1228 schedstat_inc(this_sd, ttwu_move_balance);
1234 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1236 new_cpu = wake_idle(new_cpu, p);
1237 if (new_cpu != cpu) {
1238 set_task_cpu(p, new_cpu);
1239 task_rq_unlock(rq, &flags);
1240 /* might preempt at this point */
1241 rq = task_rq_lock(p, &flags);
1242 old_state = p->state;
1243 if (!(old_state & state))
1248 this_cpu = smp_processor_id();
1253 #endif /* CONFIG_SMP */
1254 if (old_state == TASK_UNINTERRUPTIBLE) {
1255 rq->nr_uninterruptible--;
1257 * Tasks on involuntary sleep don't earn
1258 * sleep_avg beyond just interactive state.
1264 * Tasks that have marked their sleep as noninteractive get
1265 * woken up without updating their sleep average. (i.e. their
1266 * sleep is handled in a priority-neutral manner, no priority
1267 * boost and no penalty.)
1269 if (old_state & TASK_NONINTERACTIVE)
1270 __activate_task(p, rq);
1272 activate_task(p, rq, cpu == this_cpu);
1274 * Sync wakeups (i.e. those types of wakeups where the waker
1275 * has indicated that it will leave the CPU in short order)
1276 * don't trigger a preemption, if the woken up task will run on
1277 * this cpu. (in this case the 'I will reschedule' promise of
1278 * the waker guarantees that the freshly woken up task is going
1279 * to be considered on this CPU.)
1281 if (!sync || cpu != this_cpu) {
1282 if (TASK_PREEMPTS_CURR(p, rq))
1283 resched_task(rq->curr);
1288 p->state = TASK_RUNNING;
1290 task_rq_unlock(rq, &flags);
1295 int fastcall wake_up_process(task_t *p)
1297 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1298 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1301 EXPORT_SYMBOL(wake_up_process);
1303 int fastcall wake_up_state(task_t *p, unsigned int state)
1305 return try_to_wake_up(p, state, 0);
1309 * Perform scheduler related setup for a newly forked process p.
1310 * p is forked by current.
1312 void fastcall sched_fork(task_t *p, int clone_flags)
1314 int cpu = get_cpu();
1317 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1319 set_task_cpu(p, cpu);
1322 * We mark the process as running here, but have not actually
1323 * inserted it onto the runqueue yet. This guarantees that
1324 * nobody will actually run it, and a signal or other external
1325 * event cannot wake it up and insert it on the runqueue either.
1327 p->state = TASK_RUNNING;
1328 INIT_LIST_HEAD(&p->run_list);
1330 #ifdef CONFIG_SCHEDSTATS
1331 memset(&p->sched_info, 0, sizeof(p->sched_info));
1333 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1336 #ifdef CONFIG_PREEMPT
1337 /* Want to start with kernel preemption disabled. */
1338 p->thread_info->preempt_count = 1;
1341 * Share the timeslice between parent and child, thus the
1342 * total amount of pending timeslices in the system doesn't change,
1343 * resulting in more scheduling fairness.
1345 local_irq_disable();
1346 p->time_slice = (current->time_slice + 1) >> 1;
1348 * The remainder of the first timeslice might be recovered by
1349 * the parent if the child exits early enough.
1351 p->first_time_slice = 1;
1352 current->time_slice >>= 1;
1353 p->timestamp = sched_clock();
1354 if (unlikely(!current->time_slice)) {
1356 * This case is rare, it happens when the parent has only
1357 * a single jiffy left from its timeslice. Taking the
1358 * runqueue lock is not a problem.
1360 current->time_slice = 1;
1368 * wake_up_new_task - wake up a newly created task for the first time.
1370 * This function will do some initial scheduler statistics housekeeping
1371 * that must be done for every newly created context, then puts the task
1372 * on the runqueue and wakes it.
1374 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1376 unsigned long flags;
1378 runqueue_t *rq, *this_rq;
1380 rq = task_rq_lock(p, &flags);
1381 BUG_ON(p->state != TASK_RUNNING);
1382 this_cpu = smp_processor_id();
1386 * We decrease the sleep average of forking parents
1387 * and children as well, to keep max-interactive tasks
1388 * from forking tasks that are max-interactive. The parent
1389 * (current) is done further down, under its lock.
1391 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1392 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1394 p->prio = effective_prio(p);
1396 if (likely(cpu == this_cpu)) {
1397 if (!(clone_flags & CLONE_VM)) {
1399 * The VM isn't cloned, so we're in a good position to
1400 * do child-runs-first in anticipation of an exec. This
1401 * usually avoids a lot of COW overhead.
1403 if (unlikely(!current->array))
1404 __activate_task(p, rq);
1406 p->prio = current->prio;
1407 list_add_tail(&p->run_list, ¤t->run_list);
1408 p->array = current->array;
1409 p->array->nr_active++;
1414 /* Run child last */
1415 __activate_task(p, rq);
1417 * We skip the following code due to cpu == this_cpu
1419 * task_rq_unlock(rq, &flags);
1420 * this_rq = task_rq_lock(current, &flags);
1424 this_rq = cpu_rq(this_cpu);
1427 * Not the local CPU - must adjust timestamp. This should
1428 * get optimised away in the !CONFIG_SMP case.
1430 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1431 + rq->timestamp_last_tick;
1432 __activate_task(p, rq);
1433 if (TASK_PREEMPTS_CURR(p, rq))
1434 resched_task(rq->curr);
1437 * Parent and child are on different CPUs, now get the
1438 * parent runqueue to update the parent's ->sleep_avg:
1440 task_rq_unlock(rq, &flags);
1441 this_rq = task_rq_lock(current, &flags);
1443 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1444 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1445 task_rq_unlock(this_rq, &flags);
1449 * Potentially available exiting-child timeslices are
1450 * retrieved here - this way the parent does not get
1451 * penalized for creating too many threads.
1453 * (this cannot be used to 'generate' timeslices
1454 * artificially, because any timeslice recovered here
1455 * was given away by the parent in the first place.)
1457 void fastcall sched_exit(task_t *p)
1459 unsigned long flags;
1463 * If the child was a (relative-) CPU hog then decrease
1464 * the sleep_avg of the parent as well.
1466 rq = task_rq_lock(p->parent, &flags);
1467 if (p->first_time_slice) {
1468 p->parent->time_slice += p->time_slice;
1469 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1470 p->parent->time_slice = task_timeslice(p);
1472 if (p->sleep_avg < p->parent->sleep_avg)
1473 p->parent->sleep_avg = p->parent->sleep_avg /
1474 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1476 task_rq_unlock(rq, &flags);
1480 * prepare_task_switch - prepare to switch tasks
1481 * @rq: the runqueue preparing to switch
1482 * @next: the task we are going to switch to.
1484 * This is called with the rq lock held and interrupts off. It must
1485 * be paired with a subsequent finish_task_switch after the context
1488 * prepare_task_switch sets up locking and calls architecture specific
1491 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1493 prepare_lock_switch(rq, next);
1494 prepare_arch_switch(next);
1498 * finish_task_switch - clean up after a task-switch
1499 * @rq: runqueue associated with task-switch
1500 * @prev: the thread we just switched away from.
1502 * finish_task_switch must be called after the context switch, paired
1503 * with a prepare_task_switch call before the context switch.
1504 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1505 * and do any other architecture-specific cleanup actions.
1507 * Note that we may have delayed dropping an mm in context_switch(). If
1508 * so, we finish that here outside of the runqueue lock. (Doing it
1509 * with the lock held can cause deadlocks; see schedule() for
1512 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1513 __releases(rq->lock)
1515 struct mm_struct *mm = rq->prev_mm;
1516 unsigned long prev_task_flags;
1521 * A task struct has one reference for the use as "current".
1522 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1523 * calls schedule one last time. The schedule call will never return,
1524 * and the scheduled task must drop that reference.
1525 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1526 * still held, otherwise prev could be scheduled on another cpu, die
1527 * there before we look at prev->state, and then the reference would
1529 * Manfred Spraul <manfred@colorfullife.com>
1531 prev_task_flags = prev->flags;
1532 #ifdef CONFIG_DEBUG_SPINLOCK
1533 /* this is a valid case when another task releases the spinlock */
1534 rq->lock.owner = current;
1536 finish_arch_switch(prev);
1537 finish_lock_switch(rq, prev);
1540 if (unlikely(prev_task_flags & PF_DEAD))
1541 put_task_struct(prev);
1545 * schedule_tail - first thing a freshly forked thread must call.
1546 * @prev: the thread we just switched away from.
1548 asmlinkage void schedule_tail(task_t *prev)
1549 __releases(rq->lock)
1551 runqueue_t *rq = this_rq();
1552 finish_task_switch(rq, prev);
1553 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1554 /* In this case, finish_task_switch does not reenable preemption */
1557 if (current->set_child_tid)
1558 put_user(current->pid, current->set_child_tid);
1562 * context_switch - switch to the new MM and the new
1563 * thread's register state.
1566 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1568 struct mm_struct *mm = next->mm;
1569 struct mm_struct *oldmm = prev->active_mm;
1571 if (unlikely(!mm)) {
1572 next->active_mm = oldmm;
1573 atomic_inc(&oldmm->mm_count);
1574 enter_lazy_tlb(oldmm, next);
1576 switch_mm(oldmm, mm, next);
1578 if (unlikely(!prev->mm)) {
1579 prev->active_mm = NULL;
1580 WARN_ON(rq->prev_mm);
1581 rq->prev_mm = oldmm;
1584 /* Here we just switch the register state and the stack. */
1585 switch_to(prev, next, prev);
1591 * nr_running, nr_uninterruptible and nr_context_switches:
1593 * externally visible scheduler statistics: current number of runnable
1594 * threads, current number of uninterruptible-sleeping threads, total
1595 * number of context switches performed since bootup.
1597 unsigned long nr_running(void)
1599 unsigned long i, sum = 0;
1601 for_each_online_cpu(i)
1602 sum += cpu_rq(i)->nr_running;
1607 unsigned long nr_uninterruptible(void)
1609 unsigned long i, sum = 0;
1612 sum += cpu_rq(i)->nr_uninterruptible;
1615 * Since we read the counters lockless, it might be slightly
1616 * inaccurate. Do not allow it to go below zero though:
1618 if (unlikely((long)sum < 0))
1624 unsigned long long nr_context_switches(void)
1626 unsigned long long i, sum = 0;
1629 sum += cpu_rq(i)->nr_switches;
1634 unsigned long nr_iowait(void)
1636 unsigned long i, sum = 0;
1639 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1647 * double_rq_lock - safely lock two runqueues
1649 * Note this does not disable interrupts like task_rq_lock,
1650 * you need to do so manually before calling.
1652 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1653 __acquires(rq1->lock)
1654 __acquires(rq2->lock)
1657 spin_lock(&rq1->lock);
1658 __acquire(rq2->lock); /* Fake it out ;) */
1661 spin_lock(&rq1->lock);
1662 spin_lock(&rq2->lock);
1664 spin_lock(&rq2->lock);
1665 spin_lock(&rq1->lock);
1671 * double_rq_unlock - safely unlock two runqueues
1673 * Note this does not restore interrupts like task_rq_unlock,
1674 * you need to do so manually after calling.
1676 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1677 __releases(rq1->lock)
1678 __releases(rq2->lock)
1680 spin_unlock(&rq1->lock);
1682 spin_unlock(&rq2->lock);
1684 __release(rq2->lock);
1688 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1690 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1691 __releases(this_rq->lock)
1692 __acquires(busiest->lock)
1693 __acquires(this_rq->lock)
1695 if (unlikely(!spin_trylock(&busiest->lock))) {
1696 if (busiest < this_rq) {
1697 spin_unlock(&this_rq->lock);
1698 spin_lock(&busiest->lock);
1699 spin_lock(&this_rq->lock);
1701 spin_lock(&busiest->lock);
1706 * If dest_cpu is allowed for this process, migrate the task to it.
1707 * This is accomplished by forcing the cpu_allowed mask to only
1708 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1709 * the cpu_allowed mask is restored.
1711 static void sched_migrate_task(task_t *p, int dest_cpu)
1713 migration_req_t req;
1715 unsigned long flags;
1717 rq = task_rq_lock(p, &flags);
1718 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1719 || unlikely(cpu_is_offline(dest_cpu)))
1722 /* force the process onto the specified CPU */
1723 if (migrate_task(p, dest_cpu, &req)) {
1724 /* Need to wait for migration thread (might exit: take ref). */
1725 struct task_struct *mt = rq->migration_thread;
1726 get_task_struct(mt);
1727 task_rq_unlock(rq, &flags);
1728 wake_up_process(mt);
1729 put_task_struct(mt);
1730 wait_for_completion(&req.done);
1734 task_rq_unlock(rq, &flags);
1738 * sched_exec - execve() is a valuable balancing opportunity, because at
1739 * this point the task has the smallest effective memory and cache footprint.
1741 void sched_exec(void)
1743 int new_cpu, this_cpu = get_cpu();
1744 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1746 if (new_cpu != this_cpu)
1747 sched_migrate_task(current, new_cpu);
1751 * pull_task - move a task from a remote runqueue to the local runqueue.
1752 * Both runqueues must be locked.
1755 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1756 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1758 dequeue_task(p, src_array);
1759 src_rq->nr_running--;
1760 set_task_cpu(p, this_cpu);
1761 this_rq->nr_running++;
1762 enqueue_task(p, this_array);
1763 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1764 + this_rq->timestamp_last_tick;
1766 * Note that idle threads have a prio of MAX_PRIO, for this test
1767 * to be always true for them.
1769 if (TASK_PREEMPTS_CURR(p, this_rq))
1770 resched_task(this_rq->curr);
1774 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1777 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1778 struct sched_domain *sd, enum idle_type idle,
1782 * We do not migrate tasks that are:
1783 * 1) running (obviously), or
1784 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1785 * 3) are cache-hot on their current CPU.
1787 if (!cpu_isset(this_cpu, p->cpus_allowed))
1791 if (task_running(rq, p))
1795 * Aggressive migration if:
1796 * 1) task is cache cold, or
1797 * 2) too many balance attempts have failed.
1800 if (sd->nr_balance_failed > sd->cache_nice_tries)
1803 if (task_hot(p, rq->timestamp_last_tick, sd))
1809 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1810 * as part of a balancing operation within "domain". Returns the number of
1813 * Called with both runqueues locked.
1815 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1816 unsigned long max_nr_move, struct sched_domain *sd,
1817 enum idle_type idle, int *all_pinned)
1819 prio_array_t *array, *dst_array;
1820 struct list_head *head, *curr;
1821 int idx, pulled = 0, pinned = 0;
1824 if (max_nr_move == 0)
1830 * We first consider expired tasks. Those will likely not be
1831 * executed in the near future, and they are most likely to
1832 * be cache-cold, thus switching CPUs has the least effect
1835 if (busiest->expired->nr_active) {
1836 array = busiest->expired;
1837 dst_array = this_rq->expired;
1839 array = busiest->active;
1840 dst_array = this_rq->active;
1844 /* Start searching at priority 0: */
1848 idx = sched_find_first_bit(array->bitmap);
1850 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1851 if (idx >= MAX_PRIO) {
1852 if (array == busiest->expired && busiest->active->nr_active) {
1853 array = busiest->active;
1854 dst_array = this_rq->active;
1860 head = array->queue + idx;
1863 tmp = list_entry(curr, task_t, run_list);
1867 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1874 #ifdef CONFIG_SCHEDSTATS
1875 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1876 schedstat_inc(sd, lb_hot_gained[idle]);
1879 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1882 /* We only want to steal up to the prescribed number of tasks. */
1883 if (pulled < max_nr_move) {
1891 * Right now, this is the only place pull_task() is called,
1892 * so we can safely collect pull_task() stats here rather than
1893 * inside pull_task().
1895 schedstat_add(sd, lb_gained[idle], pulled);
1898 *all_pinned = pinned;
1903 * find_busiest_group finds and returns the busiest CPU group within the
1904 * domain. It calculates and returns the number of tasks which should be
1905 * moved to restore balance via the imbalance parameter.
1907 static struct sched_group *
1908 find_busiest_group(struct sched_domain *sd, int this_cpu,
1909 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1911 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1912 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1915 max_load = this_load = total_load = total_pwr = 0;
1916 if (idle == NOT_IDLE)
1917 load_idx = sd->busy_idx;
1918 else if (idle == NEWLY_IDLE)
1919 load_idx = sd->newidle_idx;
1921 load_idx = sd->idle_idx;
1928 local_group = cpu_isset(this_cpu, group->cpumask);
1930 /* Tally up the load of all CPUs in the group */
1933 for_each_cpu_mask(i, group->cpumask) {
1934 if (*sd_idle && !idle_cpu(i))
1937 /* Bias balancing toward cpus of our domain */
1939 load = target_load(i, load_idx);
1941 load = source_load(i, load_idx);
1946 total_load += avg_load;
1947 total_pwr += group->cpu_power;
1949 /* Adjust by relative CPU power of the group */
1950 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1953 this_load = avg_load;
1955 } else if (avg_load > max_load) {
1956 max_load = avg_load;
1959 group = group->next;
1960 } while (group != sd->groups);
1962 if (!busiest || this_load >= max_load)
1965 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1967 if (this_load >= avg_load ||
1968 100*max_load <= sd->imbalance_pct*this_load)
1972 * We're trying to get all the cpus to the average_load, so we don't
1973 * want to push ourselves above the average load, nor do we wish to
1974 * reduce the max loaded cpu below the average load, as either of these
1975 * actions would just result in more rebalancing later, and ping-pong
1976 * tasks around. Thus we look for the minimum possible imbalance.
1977 * Negative imbalances (*we* are more loaded than anyone else) will
1978 * be counted as no imbalance for these purposes -- we can't fix that
1979 * by pulling tasks to us. Be careful of negative numbers as they'll
1980 * appear as very large values with unsigned longs.
1982 /* How much load to actually move to equalise the imbalance */
1983 *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1984 (avg_load - this_load) * this->cpu_power)
1987 if (*imbalance < SCHED_LOAD_SCALE) {
1988 unsigned long pwr_now = 0, pwr_move = 0;
1991 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1997 * OK, we don't have enough imbalance to justify moving tasks,
1998 * however we may be able to increase total CPU power used by
2002 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2003 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2004 pwr_now /= SCHED_LOAD_SCALE;
2006 /* Amount of load we'd subtract */
2007 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2009 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2012 /* Amount of load we'd add */
2013 if (max_load*busiest->cpu_power <
2014 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2015 tmp = max_load*busiest->cpu_power/this->cpu_power;
2017 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2018 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2019 pwr_move /= SCHED_LOAD_SCALE;
2021 /* Move if we gain throughput */
2022 if (pwr_move <= pwr_now)
2029 /* Get rid of the scaling factor, rounding down as we divide */
2030 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2040 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2042 static runqueue_t *find_busiest_queue(struct sched_group *group)
2044 unsigned long load, max_load = 0;
2045 runqueue_t *busiest = NULL;
2048 for_each_cpu_mask(i, group->cpumask) {
2049 load = source_load(i, 0);
2051 if (load > max_load) {
2053 busiest = cpu_rq(i);
2061 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2062 * so long as it is large enough.
2064 #define MAX_PINNED_INTERVAL 512
2067 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2068 * tasks if there is an imbalance.
2070 * Called with this_rq unlocked.
2072 static int load_balance(int this_cpu, runqueue_t *this_rq,
2073 struct sched_domain *sd, enum idle_type idle)
2075 struct sched_group *group;
2076 runqueue_t *busiest;
2077 unsigned long imbalance;
2078 int nr_moved, all_pinned = 0;
2079 int active_balance = 0;
2082 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2085 schedstat_inc(sd, lb_cnt[idle]);
2087 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2089 schedstat_inc(sd, lb_nobusyg[idle]);
2093 busiest = find_busiest_queue(group);
2095 schedstat_inc(sd, lb_nobusyq[idle]);
2099 BUG_ON(busiest == this_rq);
2101 schedstat_add(sd, lb_imbalance[idle], imbalance);
2104 if (busiest->nr_running > 1) {
2106 * Attempt to move tasks. If find_busiest_group has found
2107 * an imbalance but busiest->nr_running <= 1, the group is
2108 * still unbalanced. nr_moved simply stays zero, so it is
2109 * correctly treated as an imbalance.
2111 double_rq_lock(this_rq, busiest);
2112 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2113 imbalance, sd, idle, &all_pinned);
2114 double_rq_unlock(this_rq, busiest);
2116 /* All tasks on this runqueue were pinned by CPU affinity */
2117 if (unlikely(all_pinned))
2122 schedstat_inc(sd, lb_failed[idle]);
2123 sd->nr_balance_failed++;
2125 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2127 spin_lock(&busiest->lock);
2128 if (!busiest->active_balance) {
2129 busiest->active_balance = 1;
2130 busiest->push_cpu = this_cpu;
2133 spin_unlock(&busiest->lock);
2135 wake_up_process(busiest->migration_thread);
2138 * We've kicked active balancing, reset the failure
2141 sd->nr_balance_failed = sd->cache_nice_tries+1;
2144 sd->nr_balance_failed = 0;
2146 if (likely(!active_balance)) {
2147 /* We were unbalanced, so reset the balancing interval */
2148 sd->balance_interval = sd->min_interval;
2151 * If we've begun active balancing, start to back off. This
2152 * case may not be covered by the all_pinned logic if there
2153 * is only 1 task on the busy runqueue (because we don't call
2156 if (sd->balance_interval < sd->max_interval)
2157 sd->balance_interval *= 2;
2160 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2165 schedstat_inc(sd, lb_balanced[idle]);
2167 sd->nr_balance_failed = 0;
2168 /* tune up the balancing interval */
2169 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2170 (sd->balance_interval < sd->max_interval))
2171 sd->balance_interval *= 2;
2173 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2179 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2180 * tasks if there is an imbalance.
2182 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2183 * this_rq is locked.
2185 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2186 struct sched_domain *sd)
2188 struct sched_group *group;
2189 runqueue_t *busiest = NULL;
2190 unsigned long imbalance;
2194 if (sd->flags & SD_SHARE_CPUPOWER)
2197 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2198 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2200 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2204 busiest = find_busiest_queue(group);
2206 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2210 BUG_ON(busiest == this_rq);
2212 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2215 if (busiest->nr_running > 1) {
2216 /* Attempt to move tasks */
2217 double_lock_balance(this_rq, busiest);
2218 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2219 imbalance, sd, NEWLY_IDLE, NULL);
2220 spin_unlock(&busiest->lock);
2224 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2225 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2228 sd->nr_balance_failed = 0;
2233 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2234 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2236 sd->nr_balance_failed = 0;
2241 * idle_balance is called by schedule() if this_cpu is about to become
2242 * idle. Attempts to pull tasks from other CPUs.
2244 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2246 struct sched_domain *sd;
2248 for_each_domain(this_cpu, sd) {
2249 if (sd->flags & SD_BALANCE_NEWIDLE) {
2250 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2251 /* We've pulled tasks over so stop searching */
2259 * active_load_balance is run by migration threads. It pushes running tasks
2260 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2261 * running on each physical CPU where possible, and avoids physical /
2262 * logical imbalances.
2264 * Called with busiest_rq locked.
2266 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2268 struct sched_domain *sd;
2269 runqueue_t *target_rq;
2270 int target_cpu = busiest_rq->push_cpu;
2272 if (busiest_rq->nr_running <= 1)
2273 /* no task to move */
2276 target_rq = cpu_rq(target_cpu);
2279 * This condition is "impossible", if it occurs
2280 * we need to fix it. Originally reported by
2281 * Bjorn Helgaas on a 128-cpu setup.
2283 BUG_ON(busiest_rq == target_rq);
2285 /* move a task from busiest_rq to target_rq */
2286 double_lock_balance(busiest_rq, target_rq);
2288 /* Search for an sd spanning us and the target CPU. */
2289 for_each_domain(target_cpu, sd)
2290 if ((sd->flags & SD_LOAD_BALANCE) &&
2291 cpu_isset(busiest_cpu, sd->span))
2294 if (unlikely(sd == NULL))
2297 schedstat_inc(sd, alb_cnt);
2299 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2300 schedstat_inc(sd, alb_pushed);
2302 schedstat_inc(sd, alb_failed);
2304 spin_unlock(&target_rq->lock);
2308 * rebalance_tick will get called every timer tick, on every CPU.
2310 * It checks each scheduling domain to see if it is due to be balanced,
2311 * and initiates a balancing operation if so.
2313 * Balancing parameters are set up in arch_init_sched_domains.
2316 /* Don't have all balancing operations going off at once */
2317 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2319 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2320 enum idle_type idle)
2322 unsigned long old_load, this_load;
2323 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2324 struct sched_domain *sd;
2327 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2328 /* Update our load */
2329 for (i = 0; i < 3; i++) {
2330 unsigned long new_load = this_load;
2332 old_load = this_rq->cpu_load[i];
2334 * Round up the averaging division if load is increasing. This
2335 * prevents us from getting stuck on 9 if the load is 10, for
2338 if (new_load > old_load)
2339 new_load += scale-1;
2340 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2343 for_each_domain(this_cpu, sd) {
2344 unsigned long interval;
2346 if (!(sd->flags & SD_LOAD_BALANCE))
2349 interval = sd->balance_interval;
2350 if (idle != SCHED_IDLE)
2351 interval *= sd->busy_factor;
2353 /* scale ms to jiffies */
2354 interval = msecs_to_jiffies(interval);
2355 if (unlikely(!interval))
2358 if (j - sd->last_balance >= interval) {
2359 if (load_balance(this_cpu, this_rq, sd, idle)) {
2360 /* We've pulled tasks over so either we're no
2361 * longer idle, or one of our SMT siblings is
2366 sd->last_balance += interval;
2372 * on UP we do not need to balance between CPUs:
2374 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2377 static inline void idle_balance(int cpu, runqueue_t *rq)
2382 static inline int wake_priority_sleeper(runqueue_t *rq)
2385 #ifdef CONFIG_SCHED_SMT
2386 spin_lock(&rq->lock);
2388 * If an SMT sibling task has been put to sleep for priority
2389 * reasons reschedule the idle task to see if it can now run.
2391 if (rq->nr_running) {
2392 resched_task(rq->idle);
2395 spin_unlock(&rq->lock);
2400 DEFINE_PER_CPU(struct kernel_stat, kstat);
2402 EXPORT_PER_CPU_SYMBOL(kstat);
2405 * This is called on clock ticks and on context switches.
2406 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2408 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2409 unsigned long long now)
2411 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2412 p->sched_time += now - last;
2416 * Return current->sched_time plus any more ns on the sched_clock
2417 * that have not yet been banked.
2419 unsigned long long current_sched_time(const task_t *tsk)
2421 unsigned long long ns;
2422 unsigned long flags;
2423 local_irq_save(flags);
2424 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2425 ns = tsk->sched_time + (sched_clock() - ns);
2426 local_irq_restore(flags);
2431 * We place interactive tasks back into the active array, if possible.
2433 * To guarantee that this does not starve expired tasks we ignore the
2434 * interactivity of a task if the first expired task had to wait more
2435 * than a 'reasonable' amount of time. This deadline timeout is
2436 * load-dependent, as the frequency of array switched decreases with
2437 * increasing number of running tasks. We also ignore the interactivity
2438 * if a better static_prio task has expired:
2440 #define EXPIRED_STARVING(rq) \
2441 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2442 (jiffies - (rq)->expired_timestamp >= \
2443 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2444 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2447 * Account user cpu time to a process.
2448 * @p: the process that the cpu time gets accounted to
2449 * @hardirq_offset: the offset to subtract from hardirq_count()
2450 * @cputime: the cpu time spent in user space since the last update
2452 void account_user_time(struct task_struct *p, cputime_t cputime)
2454 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2457 p->utime = cputime_add(p->utime, cputime);
2459 /* Add user time to cpustat. */
2460 tmp = cputime_to_cputime64(cputime);
2461 if (TASK_NICE(p) > 0)
2462 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2464 cpustat->user = cputime64_add(cpustat->user, tmp);
2468 * Account system cpu time to a process.
2469 * @p: the process that the cpu time gets accounted to
2470 * @hardirq_offset: the offset to subtract from hardirq_count()
2471 * @cputime: the cpu time spent in kernel space since the last update
2473 void account_system_time(struct task_struct *p, int hardirq_offset,
2476 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2477 runqueue_t *rq = this_rq();
2480 p->stime = cputime_add(p->stime, cputime);
2482 /* Add system time to cpustat. */
2483 tmp = cputime_to_cputime64(cputime);
2484 if (hardirq_count() - hardirq_offset)
2485 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2486 else if (softirq_count())
2487 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2488 else if (p != rq->idle)
2489 cpustat->system = cputime64_add(cpustat->system, tmp);
2490 else if (atomic_read(&rq->nr_iowait) > 0)
2491 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2493 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2494 /* Account for system time used */
2495 acct_update_integrals(p);
2496 /* Update rss highwater mark */
2497 update_mem_hiwater(p);
2501 * Account for involuntary wait time.
2502 * @p: the process from which the cpu time has been stolen
2503 * @steal: the cpu time spent in involuntary wait
2505 void account_steal_time(struct task_struct *p, cputime_t steal)
2507 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2508 cputime64_t tmp = cputime_to_cputime64(steal);
2509 runqueue_t *rq = this_rq();
2511 if (p == rq->idle) {
2512 p->stime = cputime_add(p->stime, steal);
2513 if (atomic_read(&rq->nr_iowait) > 0)
2514 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2516 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2518 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2522 * This function gets called by the timer code, with HZ frequency.
2523 * We call it with interrupts disabled.
2525 * It also gets called by the fork code, when changing the parent's
2528 void scheduler_tick(void)
2530 int cpu = smp_processor_id();
2531 runqueue_t *rq = this_rq();
2532 task_t *p = current;
2533 unsigned long long now = sched_clock();
2535 update_cpu_clock(p, rq, now);
2537 rq->timestamp_last_tick = now;
2539 if (p == rq->idle) {
2540 if (wake_priority_sleeper(rq))
2542 rebalance_tick(cpu, rq, SCHED_IDLE);
2546 /* Task might have expired already, but not scheduled off yet */
2547 if (p->array != rq->active) {
2548 set_tsk_need_resched(p);
2551 spin_lock(&rq->lock);
2553 * The task was running during this tick - update the
2554 * time slice counter. Note: we do not update a thread's
2555 * priority until it either goes to sleep or uses up its
2556 * timeslice. This makes it possible for interactive tasks
2557 * to use up their timeslices at their highest priority levels.
2561 * RR tasks need a special form of timeslice management.
2562 * FIFO tasks have no timeslices.
2564 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2565 p->time_slice = task_timeslice(p);
2566 p->first_time_slice = 0;
2567 set_tsk_need_resched(p);
2569 /* put it at the end of the queue: */
2570 requeue_task(p, rq->active);
2574 if (!--p->time_slice) {
2575 dequeue_task(p, rq->active);
2576 set_tsk_need_resched(p);
2577 p->prio = effective_prio(p);
2578 p->time_slice = task_timeslice(p);
2579 p->first_time_slice = 0;
2581 if (!rq->expired_timestamp)
2582 rq->expired_timestamp = jiffies;
2583 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2584 enqueue_task(p, rq->expired);
2585 if (p->static_prio < rq->best_expired_prio)
2586 rq->best_expired_prio = p->static_prio;
2588 enqueue_task(p, rq->active);
2591 * Prevent a too long timeslice allowing a task to monopolize
2592 * the CPU. We do this by splitting up the timeslice into
2595 * Note: this does not mean the task's timeslices expire or
2596 * get lost in any way, they just might be preempted by
2597 * another task of equal priority. (one with higher
2598 * priority would have preempted this task already.) We
2599 * requeue this task to the end of the list on this priority
2600 * level, which is in essence a round-robin of tasks with
2603 * This only applies to tasks in the interactive
2604 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2606 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2607 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2608 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2609 (p->array == rq->active)) {
2611 requeue_task(p, rq->active);
2612 set_tsk_need_resched(p);
2616 spin_unlock(&rq->lock);
2618 rebalance_tick(cpu, rq, NOT_IDLE);
2621 #ifdef CONFIG_SCHED_SMT
2622 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2624 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2625 if (rq->curr == rq->idle && rq->nr_running)
2626 resched_task(rq->idle);
2629 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2631 struct sched_domain *tmp, *sd = NULL;
2632 cpumask_t sibling_map;
2635 for_each_domain(this_cpu, tmp)
2636 if (tmp->flags & SD_SHARE_CPUPOWER)
2643 * Unlock the current runqueue because we have to lock in
2644 * CPU order to avoid deadlocks. Caller knows that we might
2645 * unlock. We keep IRQs disabled.
2647 spin_unlock(&this_rq->lock);
2649 sibling_map = sd->span;
2651 for_each_cpu_mask(i, sibling_map)
2652 spin_lock(&cpu_rq(i)->lock);
2654 * We clear this CPU from the mask. This both simplifies the
2655 * inner loop and keps this_rq locked when we exit:
2657 cpu_clear(this_cpu, sibling_map);
2659 for_each_cpu_mask(i, sibling_map) {
2660 runqueue_t *smt_rq = cpu_rq(i);
2662 wakeup_busy_runqueue(smt_rq);
2665 for_each_cpu_mask(i, sibling_map)
2666 spin_unlock(&cpu_rq(i)->lock);
2668 * We exit with this_cpu's rq still held and IRQs
2674 * number of 'lost' timeslices this task wont be able to fully
2675 * utilize, if another task runs on a sibling. This models the
2676 * slowdown effect of other tasks running on siblings:
2678 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2680 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2683 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2685 struct sched_domain *tmp, *sd = NULL;
2686 cpumask_t sibling_map;
2687 prio_array_t *array;
2691 for_each_domain(this_cpu, tmp)
2692 if (tmp->flags & SD_SHARE_CPUPOWER)
2699 * The same locking rules and details apply as for
2700 * wake_sleeping_dependent():
2702 spin_unlock(&this_rq->lock);
2703 sibling_map = sd->span;
2704 for_each_cpu_mask(i, sibling_map)
2705 spin_lock(&cpu_rq(i)->lock);
2706 cpu_clear(this_cpu, sibling_map);
2709 * Establish next task to be run - it might have gone away because
2710 * we released the runqueue lock above:
2712 if (!this_rq->nr_running)
2714 array = this_rq->active;
2715 if (!array->nr_active)
2716 array = this_rq->expired;
2717 BUG_ON(!array->nr_active);
2719 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2722 for_each_cpu_mask(i, sibling_map) {
2723 runqueue_t *smt_rq = cpu_rq(i);
2724 task_t *smt_curr = smt_rq->curr;
2726 /* Kernel threads do not participate in dependent sleeping */
2727 if (!p->mm || !smt_curr->mm || rt_task(p))
2728 goto check_smt_task;
2731 * If a user task with lower static priority than the
2732 * running task on the SMT sibling is trying to schedule,
2733 * delay it till there is proportionately less timeslice
2734 * left of the sibling task to prevent a lower priority
2735 * task from using an unfair proportion of the
2736 * physical cpu's resources. -ck
2738 if (rt_task(smt_curr)) {
2740 * With real time tasks we run non-rt tasks only
2741 * per_cpu_gain% of the time.
2743 if ((jiffies % DEF_TIMESLICE) >
2744 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2747 if (smt_curr->static_prio < p->static_prio &&
2748 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2749 smt_slice(smt_curr, sd) > task_timeslice(p))
2753 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2757 wakeup_busy_runqueue(smt_rq);
2762 * Reschedule a lower priority task on the SMT sibling for
2763 * it to be put to sleep, or wake it up if it has been put to
2764 * sleep for priority reasons to see if it should run now.
2767 if ((jiffies % DEF_TIMESLICE) >
2768 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2769 resched_task(smt_curr);
2771 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2772 smt_slice(p, sd) > task_timeslice(smt_curr))
2773 resched_task(smt_curr);
2775 wakeup_busy_runqueue(smt_rq);
2779 for_each_cpu_mask(i, sibling_map)
2780 spin_unlock(&cpu_rq(i)->lock);
2784 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2788 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2794 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2796 void fastcall add_preempt_count(int val)
2801 BUG_ON((preempt_count() < 0));
2802 preempt_count() += val;
2804 * Spinlock count overflowing soon?
2806 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2808 EXPORT_SYMBOL(add_preempt_count);
2810 void fastcall sub_preempt_count(int val)
2815 BUG_ON(val > preempt_count());
2817 * Is the spinlock portion underflowing?
2819 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2820 preempt_count() -= val;
2822 EXPORT_SYMBOL(sub_preempt_count);
2827 * schedule() is the main scheduler function.
2829 asmlinkage void __sched schedule(void)
2832 task_t *prev, *next;
2834 prio_array_t *array;
2835 struct list_head *queue;
2836 unsigned long long now;
2837 unsigned long run_time;
2838 int cpu, idx, new_prio;
2841 * Test if we are atomic. Since do_exit() needs to call into
2842 * schedule() atomically, we ignore that path for now.
2843 * Otherwise, whine if we are scheduling when we should not be.
2845 if (likely(!current->exit_state)) {
2846 if (unlikely(in_atomic())) {
2847 printk(KERN_ERR "scheduling while atomic: "
2849 current->comm, preempt_count(), current->pid);
2853 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2858 release_kernel_lock(prev);
2859 need_resched_nonpreemptible:
2863 * The idle thread is not allowed to schedule!
2864 * Remove this check after it has been exercised a bit.
2866 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2867 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2871 schedstat_inc(rq, sched_cnt);
2872 now = sched_clock();
2873 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2874 run_time = now - prev->timestamp;
2875 if (unlikely((long long)(now - prev->timestamp) < 0))
2878 run_time = NS_MAX_SLEEP_AVG;
2881 * Tasks charged proportionately less run_time at high sleep_avg to
2882 * delay them losing their interactive status
2884 run_time /= (CURRENT_BONUS(prev) ? : 1);
2886 spin_lock_irq(&rq->lock);
2888 if (unlikely(prev->flags & PF_DEAD))
2889 prev->state = EXIT_DEAD;
2891 switch_count = &prev->nivcsw;
2892 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2893 switch_count = &prev->nvcsw;
2894 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2895 unlikely(signal_pending(prev))))
2896 prev->state = TASK_RUNNING;
2898 if (prev->state == TASK_UNINTERRUPTIBLE)
2899 rq->nr_uninterruptible++;
2900 deactivate_task(prev, rq);
2904 cpu = smp_processor_id();
2905 if (unlikely(!rq->nr_running)) {
2907 idle_balance(cpu, rq);
2908 if (!rq->nr_running) {
2910 rq->expired_timestamp = 0;
2911 wake_sleeping_dependent(cpu, rq);
2913 * wake_sleeping_dependent() might have released
2914 * the runqueue, so break out if we got new
2917 if (!rq->nr_running)
2921 if (dependent_sleeper(cpu, rq)) {
2926 * dependent_sleeper() releases and reacquires the runqueue
2927 * lock, hence go into the idle loop if the rq went
2930 if (unlikely(!rq->nr_running))
2935 if (unlikely(!array->nr_active)) {
2937 * Switch the active and expired arrays.
2939 schedstat_inc(rq, sched_switch);
2940 rq->active = rq->expired;
2941 rq->expired = array;
2943 rq->expired_timestamp = 0;
2944 rq->best_expired_prio = MAX_PRIO;
2947 idx = sched_find_first_bit(array->bitmap);
2948 queue = array->queue + idx;
2949 next = list_entry(queue->next, task_t, run_list);
2951 if (!rt_task(next) && next->activated > 0) {
2952 unsigned long long delta = now - next->timestamp;
2953 if (unlikely((long long)(now - next->timestamp) < 0))
2956 if (next->activated == 1)
2957 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2959 array = next->array;
2960 new_prio = recalc_task_prio(next, next->timestamp + delta);
2962 if (unlikely(next->prio != new_prio)) {
2963 dequeue_task(next, array);
2964 next->prio = new_prio;
2965 enqueue_task(next, array);
2967 requeue_task(next, array);
2969 next->activated = 0;
2971 if (next == rq->idle)
2972 schedstat_inc(rq, sched_goidle);
2974 prefetch_stack(next);
2975 clear_tsk_need_resched(prev);
2976 rcu_qsctr_inc(task_cpu(prev));
2978 update_cpu_clock(prev, rq, now);
2980 prev->sleep_avg -= run_time;
2981 if ((long)prev->sleep_avg <= 0)
2982 prev->sleep_avg = 0;
2983 prev->timestamp = prev->last_ran = now;
2985 sched_info_switch(prev, next);
2986 if (likely(prev != next)) {
2987 next->timestamp = now;
2992 prepare_task_switch(rq, next);
2993 prev = context_switch(rq, prev, next);
2996 * this_rq must be evaluated again because prev may have moved
2997 * CPUs since it called schedule(), thus the 'rq' on its stack
2998 * frame will be invalid.
3000 finish_task_switch(this_rq(), prev);
3002 spin_unlock_irq(&rq->lock);
3005 if (unlikely(reacquire_kernel_lock(prev) < 0))
3006 goto need_resched_nonpreemptible;
3007 preempt_enable_no_resched();
3008 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3012 EXPORT_SYMBOL(schedule);
3014 #ifdef CONFIG_PREEMPT
3016 * this is is the entry point to schedule() from in-kernel preemption
3017 * off of preempt_enable. Kernel preemptions off return from interrupt
3018 * occur there and call schedule directly.
3020 asmlinkage void __sched preempt_schedule(void)
3022 struct thread_info *ti = current_thread_info();
3023 #ifdef CONFIG_PREEMPT_BKL
3024 struct task_struct *task = current;
3025 int saved_lock_depth;
3028 * If there is a non-zero preempt_count or interrupts are disabled,
3029 * we do not want to preempt the current task. Just return..
3031 if (unlikely(ti->preempt_count || irqs_disabled()))
3035 add_preempt_count(PREEMPT_ACTIVE);
3037 * We keep the big kernel semaphore locked, but we
3038 * clear ->lock_depth so that schedule() doesnt
3039 * auto-release the semaphore:
3041 #ifdef CONFIG_PREEMPT_BKL
3042 saved_lock_depth = task->lock_depth;
3043 task->lock_depth = -1;
3046 #ifdef CONFIG_PREEMPT_BKL
3047 task->lock_depth = saved_lock_depth;
3049 sub_preempt_count(PREEMPT_ACTIVE);
3051 /* we could miss a preemption opportunity between schedule and now */
3053 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3057 EXPORT_SYMBOL(preempt_schedule);
3060 * this is is the entry point to schedule() from kernel preemption
3061 * off of irq context.
3062 * Note, that this is called and return with irqs disabled. This will
3063 * protect us against recursive calling from irq.
3065 asmlinkage void __sched preempt_schedule_irq(void)
3067 struct thread_info *ti = current_thread_info();
3068 #ifdef CONFIG_PREEMPT_BKL
3069 struct task_struct *task = current;
3070 int saved_lock_depth;
3072 /* Catch callers which need to be fixed*/
3073 BUG_ON(ti->preempt_count || !irqs_disabled());
3076 add_preempt_count(PREEMPT_ACTIVE);
3078 * We keep the big kernel semaphore locked, but we
3079 * clear ->lock_depth so that schedule() doesnt
3080 * auto-release the semaphore:
3082 #ifdef CONFIG_PREEMPT_BKL
3083 saved_lock_depth = task->lock_depth;
3084 task->lock_depth = -1;
3088 local_irq_disable();
3089 #ifdef CONFIG_PREEMPT_BKL
3090 task->lock_depth = saved_lock_depth;
3092 sub_preempt_count(PREEMPT_ACTIVE);
3094 /* we could miss a preemption opportunity between schedule and now */
3096 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3100 #endif /* CONFIG_PREEMPT */
3102 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3105 task_t *p = curr->private;
3106 return try_to_wake_up(p, mode, sync);
3109 EXPORT_SYMBOL(default_wake_function);
3112 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3113 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3114 * number) then we wake all the non-exclusive tasks and one exclusive task.
3116 * There are circumstances in which we can try to wake a task which has already
3117 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3118 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3120 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3121 int nr_exclusive, int sync, void *key)
3123 struct list_head *tmp, *next;
3125 list_for_each_safe(tmp, next, &q->task_list) {
3128 curr = list_entry(tmp, wait_queue_t, task_list);
3129 flags = curr->flags;
3130 if (curr->func(curr, mode, sync, key) &&
3131 (flags & WQ_FLAG_EXCLUSIVE) &&
3138 * __wake_up - wake up threads blocked on a waitqueue.
3140 * @mode: which threads
3141 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3142 * @key: is directly passed to the wakeup function
3144 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3145 int nr_exclusive, void *key)
3147 unsigned long flags;
3149 spin_lock_irqsave(&q->lock, flags);
3150 __wake_up_common(q, mode, nr_exclusive, 0, key);
3151 spin_unlock_irqrestore(&q->lock, flags);
3154 EXPORT_SYMBOL(__wake_up);
3157 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3159 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3161 __wake_up_common(q, mode, 1, 0, NULL);
3165 * __wake_up_sync - wake up threads blocked on a waitqueue.
3167 * @mode: which threads
3168 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3170 * The sync wakeup differs that the waker knows that it will schedule
3171 * away soon, so while the target thread will be woken up, it will not
3172 * be migrated to another CPU - ie. the two threads are 'synchronized'
3173 * with each other. This can prevent needless bouncing between CPUs.
3175 * On UP it can prevent extra preemption.
3178 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3180 unsigned long flags;
3186 if (unlikely(!nr_exclusive))
3189 spin_lock_irqsave(&q->lock, flags);
3190 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3191 spin_unlock_irqrestore(&q->lock, flags);
3193 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3195 void fastcall complete(struct completion *x)
3197 unsigned long flags;
3199 spin_lock_irqsave(&x->wait.lock, flags);
3201 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3203 spin_unlock_irqrestore(&x->wait.lock, flags);
3205 EXPORT_SYMBOL(complete);
3207 void fastcall complete_all(struct completion *x)
3209 unsigned long flags;
3211 spin_lock_irqsave(&x->wait.lock, flags);
3212 x->done += UINT_MAX/2;
3213 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3215 spin_unlock_irqrestore(&x->wait.lock, flags);
3217 EXPORT_SYMBOL(complete_all);
3219 void fastcall __sched wait_for_completion(struct completion *x)
3222 spin_lock_irq(&x->wait.lock);
3224 DECLARE_WAITQUEUE(wait, current);
3226 wait.flags |= WQ_FLAG_EXCLUSIVE;
3227 __add_wait_queue_tail(&x->wait, &wait);
3229 __set_current_state(TASK_UNINTERRUPTIBLE);
3230 spin_unlock_irq(&x->wait.lock);
3232 spin_lock_irq(&x->wait.lock);
3234 __remove_wait_queue(&x->wait, &wait);
3237 spin_unlock_irq(&x->wait.lock);
3239 EXPORT_SYMBOL(wait_for_completion);
3241 unsigned long fastcall __sched
3242 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3246 spin_lock_irq(&x->wait.lock);
3248 DECLARE_WAITQUEUE(wait, current);
3250 wait.flags |= WQ_FLAG_EXCLUSIVE;
3251 __add_wait_queue_tail(&x->wait, &wait);
3253 __set_current_state(TASK_UNINTERRUPTIBLE);
3254 spin_unlock_irq(&x->wait.lock);
3255 timeout = schedule_timeout(timeout);
3256 spin_lock_irq(&x->wait.lock);
3258 __remove_wait_queue(&x->wait, &wait);
3262 __remove_wait_queue(&x->wait, &wait);
3266 spin_unlock_irq(&x->wait.lock);
3269 EXPORT_SYMBOL(wait_for_completion_timeout);
3271 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3277 spin_lock_irq(&x->wait.lock);
3279 DECLARE_WAITQUEUE(wait, current);
3281 wait.flags |= WQ_FLAG_EXCLUSIVE;
3282 __add_wait_queue_tail(&x->wait, &wait);
3284 if (signal_pending(current)) {
3286 __remove_wait_queue(&x->wait, &wait);
3289 __set_current_state(TASK_INTERRUPTIBLE);
3290 spin_unlock_irq(&x->wait.lock);
3292 spin_lock_irq(&x->wait.lock);
3294 __remove_wait_queue(&x->wait, &wait);
3298 spin_unlock_irq(&x->wait.lock);
3302 EXPORT_SYMBOL(wait_for_completion_interruptible);
3304 unsigned long fastcall __sched
3305 wait_for_completion_interruptible_timeout(struct completion *x,
3306 unsigned long timeout)
3310 spin_lock_irq(&x->wait.lock);
3312 DECLARE_WAITQUEUE(wait, current);
3314 wait.flags |= WQ_FLAG_EXCLUSIVE;
3315 __add_wait_queue_tail(&x->wait, &wait);
3317 if (signal_pending(current)) {
3318 timeout = -ERESTARTSYS;
3319 __remove_wait_queue(&x->wait, &wait);
3322 __set_current_state(TASK_INTERRUPTIBLE);
3323 spin_unlock_irq(&x->wait.lock);
3324 timeout = schedule_timeout(timeout);
3325 spin_lock_irq(&x->wait.lock);
3327 __remove_wait_queue(&x->wait, &wait);
3331 __remove_wait_queue(&x->wait, &wait);
3335 spin_unlock_irq(&x->wait.lock);
3338 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3341 #define SLEEP_ON_VAR \
3342 unsigned long flags; \
3343 wait_queue_t wait; \
3344 init_waitqueue_entry(&wait, current);
3346 #define SLEEP_ON_HEAD \
3347 spin_lock_irqsave(&q->lock,flags); \
3348 __add_wait_queue(q, &wait); \
3349 spin_unlock(&q->lock);
3351 #define SLEEP_ON_TAIL \
3352 spin_lock_irq(&q->lock); \
3353 __remove_wait_queue(q, &wait); \
3354 spin_unlock_irqrestore(&q->lock, flags);
3356 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3360 current->state = TASK_INTERRUPTIBLE;
3367 EXPORT_SYMBOL(interruptible_sleep_on);
3369 long fastcall __sched
3370 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3374 current->state = TASK_INTERRUPTIBLE;
3377 timeout = schedule_timeout(timeout);
3383 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3385 void fastcall __sched sleep_on(wait_queue_head_t *q)
3389 current->state = TASK_UNINTERRUPTIBLE;
3396 EXPORT_SYMBOL(sleep_on);
3398 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3402 current->state = TASK_UNINTERRUPTIBLE;
3405 timeout = schedule_timeout(timeout);
3411 EXPORT_SYMBOL(sleep_on_timeout);
3413 void set_user_nice(task_t *p, long nice)
3415 unsigned long flags;
3416 prio_array_t *array;
3418 int old_prio, new_prio, delta;
3420 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3423 * We have to be careful, if called from sys_setpriority(),
3424 * the task might be in the middle of scheduling on another CPU.
3426 rq = task_rq_lock(p, &flags);
3428 * The RT priorities are set via sched_setscheduler(), but we still
3429 * allow the 'normal' nice value to be set - but as expected
3430 * it wont have any effect on scheduling until the task is
3434 p->static_prio = NICE_TO_PRIO(nice);
3439 dequeue_task(p, array);
3442 new_prio = NICE_TO_PRIO(nice);
3443 delta = new_prio - old_prio;
3444 p->static_prio = NICE_TO_PRIO(nice);
3448 enqueue_task(p, array);
3450 * If the task increased its priority or is running and
3451 * lowered its priority, then reschedule its CPU:
3453 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3454 resched_task(rq->curr);
3457 task_rq_unlock(rq, &flags);
3460 EXPORT_SYMBOL(set_user_nice);
3463 * can_nice - check if a task can reduce its nice value
3467 int can_nice(const task_t *p, const int nice)
3469 /* convert nice value [19,-20] to rlimit style value [1,40] */
3470 int nice_rlim = 20 - nice;
3471 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3472 capable(CAP_SYS_NICE));
3475 #ifdef __ARCH_WANT_SYS_NICE
3478 * sys_nice - change the priority of the current process.
3479 * @increment: priority increment
3481 * sys_setpriority is a more generic, but much slower function that
3482 * does similar things.
3484 asmlinkage long sys_nice(int increment)
3490 * Setpriority might change our priority at the same moment.
3491 * We don't have to worry. Conceptually one call occurs first
3492 * and we have a single winner.
3494 if (increment < -40)
3499 nice = PRIO_TO_NICE(current->static_prio) + increment;
3505 if (increment < 0 && !can_nice(current, nice))
3508 retval = security_task_setnice(current, nice);
3512 set_user_nice(current, nice);
3519 * task_prio - return the priority value of a given task.
3520 * @p: the task in question.
3522 * This is the priority value as seen by users in /proc.
3523 * RT tasks are offset by -200. Normal tasks are centered
3524 * around 0, value goes from -16 to +15.
3526 int task_prio(const task_t *p)
3528 return p->prio - MAX_RT_PRIO;
3532 * task_nice - return the nice value of a given task.
3533 * @p: the task in question.
3535 int task_nice(const task_t *p)
3537 return TASK_NICE(p);
3539 EXPORT_SYMBOL_GPL(task_nice);
3542 * idle_cpu - is a given cpu idle currently?
3543 * @cpu: the processor in question.
3545 int idle_cpu(int cpu)
3547 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3550 EXPORT_SYMBOL_GPL(idle_cpu);
3553 * idle_task - return the idle task for a given cpu.
3554 * @cpu: the processor in question.
3556 task_t *idle_task(int cpu)
3558 return cpu_rq(cpu)->idle;
3562 * find_process_by_pid - find a process with a matching PID value.
3563 * @pid: the pid in question.
3565 static inline task_t *find_process_by_pid(pid_t pid)
3567 return pid ? find_task_by_pid(pid) : current;
3570 /* Actually do priority change: must hold rq lock. */
3571 static void __setscheduler(struct task_struct *p, int policy, int prio)
3575 p->rt_priority = prio;
3576 if (policy != SCHED_NORMAL)
3577 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3579 p->prio = p->static_prio;
3583 * sched_setscheduler - change the scheduling policy and/or RT priority of
3585 * @p: the task in question.
3586 * @policy: new policy.
3587 * @param: structure containing the new RT priority.
3589 int sched_setscheduler(struct task_struct *p, int policy,
3590 struct sched_param *param)
3593 int oldprio, oldpolicy = -1;
3594 prio_array_t *array;
3595 unsigned long flags;
3599 /* double check policy once rq lock held */
3601 policy = oldpolicy = p->policy;
3602 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3603 policy != SCHED_NORMAL)
3606 * Valid priorities for SCHED_FIFO and SCHED_RR are
3607 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3609 if (param->sched_priority < 0 ||
3610 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3611 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3613 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3617 * Allow unprivileged RT tasks to decrease priority:
3619 if (!capable(CAP_SYS_NICE)) {
3620 /* can't change policy */
3621 if (policy != p->policy &&
3622 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3624 /* can't increase priority */
3625 if (policy != SCHED_NORMAL &&
3626 param->sched_priority > p->rt_priority &&
3627 param->sched_priority >
3628 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3630 /* can't change other user's priorities */
3631 if ((current->euid != p->euid) &&
3632 (current->euid != p->uid))
3636 retval = security_task_setscheduler(p, policy, param);
3640 * To be able to change p->policy safely, the apropriate
3641 * runqueue lock must be held.
3643 rq = task_rq_lock(p, &flags);
3644 /* recheck policy now with rq lock held */
3645 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3646 policy = oldpolicy = -1;
3647 task_rq_unlock(rq, &flags);
3652 deactivate_task(p, rq);
3654 __setscheduler(p, policy, param->sched_priority);
3656 __activate_task(p, rq);
3658 * Reschedule if we are currently running on this runqueue and
3659 * our priority decreased, or if we are not currently running on
3660 * this runqueue and our priority is higher than the current's
3662 if (task_running(rq, p)) {
3663 if (p->prio > oldprio)
3664 resched_task(rq->curr);
3665 } else if (TASK_PREEMPTS_CURR(p, rq))
3666 resched_task(rq->curr);
3668 task_rq_unlock(rq, &flags);
3671 EXPORT_SYMBOL_GPL(sched_setscheduler);
3674 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3677 struct sched_param lparam;
3678 struct task_struct *p;
3680 if (!param || pid < 0)
3682 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3684 read_lock_irq(&tasklist_lock);
3685 p = find_process_by_pid(pid);
3687 read_unlock_irq(&tasklist_lock);
3690 retval = sched_setscheduler(p, policy, &lparam);
3691 read_unlock_irq(&tasklist_lock);
3696 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3697 * @pid: the pid in question.
3698 * @policy: new policy.
3699 * @param: structure containing the new RT priority.
3701 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3702 struct sched_param __user *param)
3704 return do_sched_setscheduler(pid, policy, param);
3708 * sys_sched_setparam - set/change the RT priority of a thread
3709 * @pid: the pid in question.
3710 * @param: structure containing the new RT priority.
3712 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3714 return do_sched_setscheduler(pid, -1, param);
3718 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3719 * @pid: the pid in question.
3721 asmlinkage long sys_sched_getscheduler(pid_t pid)
3723 int retval = -EINVAL;
3730 read_lock(&tasklist_lock);
3731 p = find_process_by_pid(pid);
3733 retval = security_task_getscheduler(p);
3737 read_unlock(&tasklist_lock);
3744 * sys_sched_getscheduler - get the RT priority of a thread
3745 * @pid: the pid in question.
3746 * @param: structure containing the RT priority.
3748 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3750 struct sched_param lp;
3751 int retval = -EINVAL;
3754 if (!param || pid < 0)
3757 read_lock(&tasklist_lock);
3758 p = find_process_by_pid(pid);
3763 retval = security_task_getscheduler(p);
3767 lp.sched_priority = p->rt_priority;
3768 read_unlock(&tasklist_lock);
3771 * This one might sleep, we cannot do it with a spinlock held ...
3773 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3779 read_unlock(&tasklist_lock);
3783 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3787 cpumask_t cpus_allowed;
3790 read_lock(&tasklist_lock);
3792 p = find_process_by_pid(pid);
3794 read_unlock(&tasklist_lock);
3795 unlock_cpu_hotplug();
3800 * It is not safe to call set_cpus_allowed with the
3801 * tasklist_lock held. We will bump the task_struct's
3802 * usage count and then drop tasklist_lock.
3805 read_unlock(&tasklist_lock);
3808 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3809 !capable(CAP_SYS_NICE))
3812 cpus_allowed = cpuset_cpus_allowed(p);
3813 cpus_and(new_mask, new_mask, cpus_allowed);
3814 retval = set_cpus_allowed(p, new_mask);
3818 unlock_cpu_hotplug();
3822 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3823 cpumask_t *new_mask)
3825 if (len < sizeof(cpumask_t)) {
3826 memset(new_mask, 0, sizeof(cpumask_t));
3827 } else if (len > sizeof(cpumask_t)) {
3828 len = sizeof(cpumask_t);
3830 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3834 * sys_sched_setaffinity - set the cpu affinity of a process
3835 * @pid: pid of the process
3836 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3837 * @user_mask_ptr: user-space pointer to the new cpu mask
3839 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3840 unsigned long __user *user_mask_ptr)
3845 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3849 return sched_setaffinity(pid, new_mask);
3853 * Represents all cpu's present in the system
3854 * In systems capable of hotplug, this map could dynamically grow
3855 * as new cpu's are detected in the system via any platform specific
3856 * method, such as ACPI for e.g.
3859 cpumask_t cpu_present_map;
3860 EXPORT_SYMBOL(cpu_present_map);
3863 cpumask_t cpu_online_map = CPU_MASK_ALL;
3864 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3867 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3873 read_lock(&tasklist_lock);
3876 p = find_process_by_pid(pid);
3881 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3884 read_unlock(&tasklist_lock);
3885 unlock_cpu_hotplug();
3893 * sys_sched_getaffinity - get the cpu affinity of a process
3894 * @pid: pid of the process
3895 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3896 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3898 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3899 unsigned long __user *user_mask_ptr)
3904 if (len < sizeof(cpumask_t))
3907 ret = sched_getaffinity(pid, &mask);
3911 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3914 return sizeof(cpumask_t);
3918 * sys_sched_yield - yield the current processor to other threads.
3920 * this function yields the current CPU by moving the calling thread
3921 * to the expired array. If there are no other threads running on this
3922 * CPU then this function will return.
3924 asmlinkage long sys_sched_yield(void)
3926 runqueue_t *rq = this_rq_lock();
3927 prio_array_t *array = current->array;
3928 prio_array_t *target = rq->expired;
3930 schedstat_inc(rq, yld_cnt);
3932 * We implement yielding by moving the task into the expired
3935 * (special rule: RT tasks will just roundrobin in the active
3938 if (rt_task(current))
3939 target = rq->active;
3941 if (array->nr_active == 1) {
3942 schedstat_inc(rq, yld_act_empty);
3943 if (!rq->expired->nr_active)
3944 schedstat_inc(rq, yld_both_empty);
3945 } else if (!rq->expired->nr_active)
3946 schedstat_inc(rq, yld_exp_empty);
3948 if (array != target) {
3949 dequeue_task(current, array);
3950 enqueue_task(current, target);
3953 * requeue_task is cheaper so perform that if possible.
3955 requeue_task(current, array);
3958 * Since we are going to call schedule() anyway, there's
3959 * no need to preempt or enable interrupts:
3961 __release(rq->lock);
3962 _raw_spin_unlock(&rq->lock);
3963 preempt_enable_no_resched();
3970 static inline void __cond_resched(void)
3973 * The BKS might be reacquired before we have dropped
3974 * PREEMPT_ACTIVE, which could trigger a second
3975 * cond_resched() call.
3977 if (unlikely(preempt_count()))
3980 add_preempt_count(PREEMPT_ACTIVE);
3982 sub_preempt_count(PREEMPT_ACTIVE);
3983 } while (need_resched());
3986 int __sched cond_resched(void)
3988 if (need_resched()) {
3995 EXPORT_SYMBOL(cond_resched);
3998 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3999 * call schedule, and on return reacquire the lock.
4001 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4002 * operations here to prevent schedule() from being called twice (once via
4003 * spin_unlock(), once by hand).
4005 int cond_resched_lock(spinlock_t *lock)
4009 if (need_lockbreak(lock)) {
4015 if (need_resched()) {
4016 _raw_spin_unlock(lock);
4017 preempt_enable_no_resched();
4025 EXPORT_SYMBOL(cond_resched_lock);
4027 int __sched cond_resched_softirq(void)
4029 BUG_ON(!in_softirq());
4031 if (need_resched()) {
4032 __local_bh_enable();
4040 EXPORT_SYMBOL(cond_resched_softirq);
4044 * yield - yield the current processor to other threads.
4046 * this is a shortcut for kernel-space yielding - it marks the
4047 * thread runnable and calls sys_sched_yield().
4049 void __sched yield(void)
4051 set_current_state(TASK_RUNNING);
4055 EXPORT_SYMBOL(yield);
4058 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4059 * that process accounting knows that this is a task in IO wait state.
4061 * But don't do that if it is a deliberate, throttling IO wait (this task
4062 * has set its backing_dev_info: the queue against which it should throttle)
4064 void __sched io_schedule(void)
4066 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4068 atomic_inc(&rq->nr_iowait);
4070 atomic_dec(&rq->nr_iowait);
4073 EXPORT_SYMBOL(io_schedule);
4075 long __sched io_schedule_timeout(long timeout)
4077 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4080 atomic_inc(&rq->nr_iowait);
4081 ret = schedule_timeout(timeout);
4082 atomic_dec(&rq->nr_iowait);
4087 * sys_sched_get_priority_max - return maximum RT priority.
4088 * @policy: scheduling class.
4090 * this syscall returns the maximum rt_priority that can be used
4091 * by a given scheduling class.
4093 asmlinkage long sys_sched_get_priority_max(int policy)
4100 ret = MAX_USER_RT_PRIO-1;
4110 * sys_sched_get_priority_min - return minimum RT priority.
4111 * @policy: scheduling class.
4113 * this syscall returns the minimum rt_priority that can be used
4114 * by a given scheduling class.
4116 asmlinkage long sys_sched_get_priority_min(int policy)
4132 * sys_sched_rr_get_interval - return the default timeslice of a process.
4133 * @pid: pid of the process.
4134 * @interval: userspace pointer to the timeslice value.
4136 * this syscall writes the default timeslice value of a given process
4137 * into the user-space timespec buffer. A value of '0' means infinity.
4140 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4142 int retval = -EINVAL;
4150 read_lock(&tasklist_lock);
4151 p = find_process_by_pid(pid);
4155 retval = security_task_getscheduler(p);
4159 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4160 0 : task_timeslice(p), &t);
4161 read_unlock(&tasklist_lock);
4162 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4166 read_unlock(&tasklist_lock);
4170 static inline struct task_struct *eldest_child(struct task_struct *p)
4172 if (list_empty(&p->children)) return NULL;
4173 return list_entry(p->children.next,struct task_struct,sibling);
4176 static inline struct task_struct *older_sibling(struct task_struct *p)
4178 if (p->sibling.prev==&p->parent->children) return NULL;
4179 return list_entry(p->sibling.prev,struct task_struct,sibling);
4182 static inline struct task_struct *younger_sibling(struct task_struct *p)
4184 if (p->sibling.next==&p->parent->children) return NULL;
4185 return list_entry(p->sibling.next,struct task_struct,sibling);
4188 static void show_task(task_t *p)
4192 unsigned long free = 0;
4193 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4195 printk("%-13.13s ", p->comm);
4196 state = p->state ? __ffs(p->state) + 1 : 0;
4197 if (state < ARRAY_SIZE(stat_nam))
4198 printk(stat_nam[state]);
4201 #if (BITS_PER_LONG == 32)
4202 if (state == TASK_RUNNING)
4203 printk(" running ");
4205 printk(" %08lX ", thread_saved_pc(p));
4207 if (state == TASK_RUNNING)
4208 printk(" running task ");
4210 printk(" %016lx ", thread_saved_pc(p));
4212 #ifdef CONFIG_DEBUG_STACK_USAGE
4214 unsigned long *n = (unsigned long *) (p->thread_info+1);
4217 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4220 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4221 if ((relative = eldest_child(p)))
4222 printk("%5d ", relative->pid);
4225 if ((relative = younger_sibling(p)))
4226 printk("%7d", relative->pid);
4229 if ((relative = older_sibling(p)))
4230 printk(" %5d", relative->pid);
4234 printk(" (L-TLB)\n");
4236 printk(" (NOTLB)\n");
4238 if (state != TASK_RUNNING)
4239 show_stack(p, NULL);
4242 void show_state(void)
4246 #if (BITS_PER_LONG == 32)
4249 printk(" task PC pid father child younger older\n");
4253 printk(" task PC pid father child younger older\n");
4255 read_lock(&tasklist_lock);
4256 do_each_thread(g, p) {
4258 * reset the NMI-timeout, listing all files on a slow
4259 * console might take alot of time:
4261 touch_nmi_watchdog();
4263 } while_each_thread(g, p);
4265 read_unlock(&tasklist_lock);
4269 * init_idle - set up an idle thread for a given CPU
4270 * @idle: task in question
4271 * @cpu: cpu the idle task belongs to
4273 * NOTE: this function does not set the idle thread's NEED_RESCHED
4274 * flag, to make booting more robust.
4276 void __devinit init_idle(task_t *idle, int cpu)
4278 runqueue_t *rq = cpu_rq(cpu);
4279 unsigned long flags;
4281 idle->sleep_avg = 0;
4283 idle->prio = MAX_PRIO;
4284 idle->state = TASK_RUNNING;
4285 idle->cpus_allowed = cpumask_of_cpu(cpu);
4286 set_task_cpu(idle, cpu);
4288 spin_lock_irqsave(&rq->lock, flags);
4289 rq->curr = rq->idle = idle;
4290 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4293 spin_unlock_irqrestore(&rq->lock, flags);
4295 /* Set the preempt count _outside_ the spinlocks! */
4296 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4297 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4299 idle->thread_info->preempt_count = 0;
4304 * In a system that switches off the HZ timer nohz_cpu_mask
4305 * indicates which cpus entered this state. This is used
4306 * in the rcu update to wait only for active cpus. For system
4307 * which do not switch off the HZ timer nohz_cpu_mask should
4308 * always be CPU_MASK_NONE.
4310 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4314 * This is how migration works:
4316 * 1) we queue a migration_req_t structure in the source CPU's
4317 * runqueue and wake up that CPU's migration thread.
4318 * 2) we down() the locked semaphore => thread blocks.
4319 * 3) migration thread wakes up (implicitly it forces the migrated
4320 * thread off the CPU)
4321 * 4) it gets the migration request and checks whether the migrated
4322 * task is still in the wrong runqueue.
4323 * 5) if it's in the wrong runqueue then the migration thread removes
4324 * it and puts it into the right queue.
4325 * 6) migration thread up()s the semaphore.
4326 * 7) we wake up and the migration is done.
4330 * Change a given task's CPU affinity. Migrate the thread to a
4331 * proper CPU and schedule it away if the CPU it's executing on
4332 * is removed from the allowed bitmask.
4334 * NOTE: the caller must have a valid reference to the task, the
4335 * task must not exit() & deallocate itself prematurely. The
4336 * call is not atomic; no spinlocks may be held.
4338 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4340 unsigned long flags;
4342 migration_req_t req;
4345 rq = task_rq_lock(p, &flags);
4346 if (!cpus_intersects(new_mask, cpu_online_map)) {
4351 p->cpus_allowed = new_mask;
4352 /* Can the task run on the task's current CPU? If so, we're done */
4353 if (cpu_isset(task_cpu(p), new_mask))
4356 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4357 /* Need help from migration thread: drop lock and wait. */
4358 task_rq_unlock(rq, &flags);
4359 wake_up_process(rq->migration_thread);
4360 wait_for_completion(&req.done);
4361 tlb_migrate_finish(p->mm);
4365 task_rq_unlock(rq, &flags);
4369 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4372 * Move (not current) task off this cpu, onto dest cpu. We're doing
4373 * this because either it can't run here any more (set_cpus_allowed()
4374 * away from this CPU, or CPU going down), or because we're
4375 * attempting to rebalance this task on exec (sched_exec).
4377 * So we race with normal scheduler movements, but that's OK, as long
4378 * as the task is no longer on this CPU.
4380 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4382 runqueue_t *rq_dest, *rq_src;
4384 if (unlikely(cpu_is_offline(dest_cpu)))
4387 rq_src = cpu_rq(src_cpu);
4388 rq_dest = cpu_rq(dest_cpu);
4390 double_rq_lock(rq_src, rq_dest);
4391 /* Already moved. */
4392 if (task_cpu(p) != src_cpu)
4394 /* Affinity changed (again). */
4395 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4398 set_task_cpu(p, dest_cpu);
4401 * Sync timestamp with rq_dest's before activating.
4402 * The same thing could be achieved by doing this step
4403 * afterwards, and pretending it was a local activate.
4404 * This way is cleaner and logically correct.
4406 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4407 + rq_dest->timestamp_last_tick;
4408 deactivate_task(p, rq_src);
4409 activate_task(p, rq_dest, 0);
4410 if (TASK_PREEMPTS_CURR(p, rq_dest))
4411 resched_task(rq_dest->curr);
4415 double_rq_unlock(rq_src, rq_dest);
4419 * migration_thread - this is a highprio system thread that performs
4420 * thread migration by bumping thread off CPU then 'pushing' onto
4423 static int migration_thread(void *data)
4426 int cpu = (long)data;
4429 BUG_ON(rq->migration_thread != current);
4431 set_current_state(TASK_INTERRUPTIBLE);
4432 while (!kthread_should_stop()) {
4433 struct list_head *head;
4434 migration_req_t *req;
4438 spin_lock_irq(&rq->lock);
4440 if (cpu_is_offline(cpu)) {
4441 spin_unlock_irq(&rq->lock);
4445 if (rq->active_balance) {
4446 active_load_balance(rq, cpu);
4447 rq->active_balance = 0;
4450 head = &rq->migration_queue;
4452 if (list_empty(head)) {
4453 spin_unlock_irq(&rq->lock);
4455 set_current_state(TASK_INTERRUPTIBLE);
4458 req = list_entry(head->next, migration_req_t, list);
4459 list_del_init(head->next);
4461 spin_unlock(&rq->lock);
4462 __migrate_task(req->task, cpu, req->dest_cpu);
4465 complete(&req->done);
4467 __set_current_state(TASK_RUNNING);
4471 /* Wait for kthread_stop */
4472 set_current_state(TASK_INTERRUPTIBLE);
4473 while (!kthread_should_stop()) {
4475 set_current_state(TASK_INTERRUPTIBLE);
4477 __set_current_state(TASK_RUNNING);
4481 #ifdef CONFIG_HOTPLUG_CPU
4482 /* Figure out where task on dead CPU should go, use force if neccessary. */
4483 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4489 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4490 cpus_and(mask, mask, tsk->cpus_allowed);
4491 dest_cpu = any_online_cpu(mask);
4493 /* On any allowed CPU? */
4494 if (dest_cpu == NR_CPUS)
4495 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4497 /* No more Mr. Nice Guy. */
4498 if (dest_cpu == NR_CPUS) {
4499 cpus_setall(tsk->cpus_allowed);
4500 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4503 * Don't tell them about moving exiting tasks or
4504 * kernel threads (both mm NULL), since they never
4507 if (tsk->mm && printk_ratelimit())
4508 printk(KERN_INFO "process %d (%s) no "
4509 "longer affine to cpu%d\n",
4510 tsk->pid, tsk->comm, dead_cpu);
4512 __migrate_task(tsk, dead_cpu, dest_cpu);
4516 * While a dead CPU has no uninterruptible tasks queued at this point,
4517 * it might still have a nonzero ->nr_uninterruptible counter, because
4518 * for performance reasons the counter is not stricly tracking tasks to
4519 * their home CPUs. So we just add the counter to another CPU's counter,
4520 * to keep the global sum constant after CPU-down:
4522 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4524 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4525 unsigned long flags;
4527 local_irq_save(flags);
4528 double_rq_lock(rq_src, rq_dest);
4529 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4530 rq_src->nr_uninterruptible = 0;
4531 double_rq_unlock(rq_src, rq_dest);
4532 local_irq_restore(flags);
4535 /* Run through task list and migrate tasks from the dead cpu. */
4536 static void migrate_live_tasks(int src_cpu)
4538 struct task_struct *tsk, *t;
4540 write_lock_irq(&tasklist_lock);
4542 do_each_thread(t, tsk) {
4546 if (task_cpu(tsk) == src_cpu)
4547 move_task_off_dead_cpu(src_cpu, tsk);
4548 } while_each_thread(t, tsk);
4550 write_unlock_irq(&tasklist_lock);
4553 /* Schedules idle task to be the next runnable task on current CPU.
4554 * It does so by boosting its priority to highest possible and adding it to
4555 * the _front_ of runqueue. Used by CPU offline code.
4557 void sched_idle_next(void)
4559 int cpu = smp_processor_id();
4560 runqueue_t *rq = this_rq();
4561 struct task_struct *p = rq->idle;
4562 unsigned long flags;
4564 /* cpu has to be offline */
4565 BUG_ON(cpu_online(cpu));
4567 /* Strictly not necessary since rest of the CPUs are stopped by now
4568 * and interrupts disabled on current cpu.
4570 spin_lock_irqsave(&rq->lock, flags);
4572 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4573 /* Add idle task to _front_ of it's priority queue */
4574 __activate_idle_task(p, rq);
4576 spin_unlock_irqrestore(&rq->lock, flags);
4579 /* Ensures that the idle task is using init_mm right before its cpu goes
4582 void idle_task_exit(void)
4584 struct mm_struct *mm = current->active_mm;
4586 BUG_ON(cpu_online(smp_processor_id()));
4589 switch_mm(mm, &init_mm, current);
4593 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4595 struct runqueue *rq = cpu_rq(dead_cpu);
4597 /* Must be exiting, otherwise would be on tasklist. */
4598 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4600 /* Cannot have done final schedule yet: would have vanished. */
4601 BUG_ON(tsk->flags & PF_DEAD);
4603 get_task_struct(tsk);
4606 * Drop lock around migration; if someone else moves it,
4607 * that's OK. No task can be added to this CPU, so iteration is
4610 spin_unlock_irq(&rq->lock);
4611 move_task_off_dead_cpu(dead_cpu, tsk);
4612 spin_lock_irq(&rq->lock);
4614 put_task_struct(tsk);
4617 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4618 static void migrate_dead_tasks(unsigned int dead_cpu)
4621 struct runqueue *rq = cpu_rq(dead_cpu);
4623 for (arr = 0; arr < 2; arr++) {
4624 for (i = 0; i < MAX_PRIO; i++) {
4625 struct list_head *list = &rq->arrays[arr].queue[i];
4626 while (!list_empty(list))
4627 migrate_dead(dead_cpu,
4628 list_entry(list->next, task_t,
4633 #endif /* CONFIG_HOTPLUG_CPU */
4636 * migration_call - callback that gets triggered when a CPU is added.
4637 * Here we can start up the necessary migration thread for the new CPU.
4639 static int migration_call(struct notifier_block *nfb, unsigned long action,
4642 int cpu = (long)hcpu;
4643 struct task_struct *p;
4644 struct runqueue *rq;
4645 unsigned long flags;
4648 case CPU_UP_PREPARE:
4649 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4652 p->flags |= PF_NOFREEZE;
4653 kthread_bind(p, cpu);
4654 /* Must be high prio: stop_machine expects to yield to it. */
4655 rq = task_rq_lock(p, &flags);
4656 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4657 task_rq_unlock(rq, &flags);
4658 cpu_rq(cpu)->migration_thread = p;
4661 /* Strictly unneccessary, as first user will wake it. */
4662 wake_up_process(cpu_rq(cpu)->migration_thread);
4664 #ifdef CONFIG_HOTPLUG_CPU
4665 case CPU_UP_CANCELED:
4666 /* Unbind it from offline cpu so it can run. Fall thru. */
4667 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4668 kthread_stop(cpu_rq(cpu)->migration_thread);
4669 cpu_rq(cpu)->migration_thread = NULL;
4672 migrate_live_tasks(cpu);
4674 kthread_stop(rq->migration_thread);
4675 rq->migration_thread = NULL;
4676 /* Idle task back to normal (off runqueue, low prio) */
4677 rq = task_rq_lock(rq->idle, &flags);
4678 deactivate_task(rq->idle, rq);
4679 rq->idle->static_prio = MAX_PRIO;
4680 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4681 migrate_dead_tasks(cpu);
4682 task_rq_unlock(rq, &flags);
4683 migrate_nr_uninterruptible(rq);
4684 BUG_ON(rq->nr_running != 0);
4686 /* No need to migrate the tasks: it was best-effort if
4687 * they didn't do lock_cpu_hotplug(). Just wake up
4688 * the requestors. */
4689 spin_lock_irq(&rq->lock);
4690 while (!list_empty(&rq->migration_queue)) {
4691 migration_req_t *req;
4692 req = list_entry(rq->migration_queue.next,
4693 migration_req_t, list);
4694 list_del_init(&req->list);
4695 complete(&req->done);
4697 spin_unlock_irq(&rq->lock);
4704 /* Register at highest priority so that task migration (migrate_all_tasks)
4705 * happens before everything else.
4707 static struct notifier_block __devinitdata migration_notifier = {
4708 .notifier_call = migration_call,
4712 int __init migration_init(void)
4714 void *cpu = (void *)(long)smp_processor_id();
4715 /* Start one for boot CPU. */
4716 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4717 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4718 register_cpu_notifier(&migration_notifier);
4724 #undef SCHED_DOMAIN_DEBUG
4725 #ifdef SCHED_DOMAIN_DEBUG
4726 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4731 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4735 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4740 struct sched_group *group = sd->groups;
4741 cpumask_t groupmask;
4743 cpumask_scnprintf(str, NR_CPUS, sd->span);
4744 cpus_clear(groupmask);
4747 for (i = 0; i < level + 1; i++)
4749 printk("domain %d: ", level);
4751 if (!(sd->flags & SD_LOAD_BALANCE)) {
4752 printk("does not load-balance\n");
4754 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4758 printk("span %s\n", str);
4760 if (!cpu_isset(cpu, sd->span))
4761 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4762 if (!cpu_isset(cpu, group->cpumask))
4763 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4766 for (i = 0; i < level + 2; i++)
4772 printk(KERN_ERR "ERROR: group is NULL\n");
4776 if (!group->cpu_power) {
4778 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4781 if (!cpus_weight(group->cpumask)) {
4783 printk(KERN_ERR "ERROR: empty group\n");
4786 if (cpus_intersects(groupmask, group->cpumask)) {
4788 printk(KERN_ERR "ERROR: repeated CPUs\n");
4791 cpus_or(groupmask, groupmask, group->cpumask);
4793 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4796 group = group->next;
4797 } while (group != sd->groups);
4800 if (!cpus_equal(sd->span, groupmask))
4801 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4807 if (!cpus_subset(groupmask, sd->span))
4808 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4814 #define sched_domain_debug(sd, cpu) {}
4817 static int sd_degenerate(struct sched_domain *sd)
4819 if (cpus_weight(sd->span) == 1)
4822 /* Following flags need at least 2 groups */
4823 if (sd->flags & (SD_LOAD_BALANCE |
4824 SD_BALANCE_NEWIDLE |
4827 if (sd->groups != sd->groups->next)
4831 /* Following flags don't use groups */
4832 if (sd->flags & (SD_WAKE_IDLE |
4840 static int sd_parent_degenerate(struct sched_domain *sd,
4841 struct sched_domain *parent)
4843 unsigned long cflags = sd->flags, pflags = parent->flags;
4845 if (sd_degenerate(parent))
4848 if (!cpus_equal(sd->span, parent->span))
4851 /* Does parent contain flags not in child? */
4852 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4853 if (cflags & SD_WAKE_AFFINE)
4854 pflags &= ~SD_WAKE_BALANCE;
4855 /* Flags needing groups don't count if only 1 group in parent */
4856 if (parent->groups == parent->groups->next) {
4857 pflags &= ~(SD_LOAD_BALANCE |
4858 SD_BALANCE_NEWIDLE |
4862 if (~cflags & pflags)
4869 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4870 * hold the hotplug lock.
4872 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4874 runqueue_t *rq = cpu_rq(cpu);
4875 struct sched_domain *tmp;
4877 /* Remove the sched domains which do not contribute to scheduling. */
4878 for (tmp = sd; tmp; tmp = tmp->parent) {
4879 struct sched_domain *parent = tmp->parent;
4882 if (sd_parent_degenerate(tmp, parent))
4883 tmp->parent = parent->parent;
4886 if (sd && sd_degenerate(sd))
4889 sched_domain_debug(sd, cpu);
4891 rcu_assign_pointer(rq->sd, sd);
4894 /* cpus with isolated domains */
4895 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4897 /* Setup the mask of cpus configured for isolated domains */
4898 static int __init isolated_cpu_setup(char *str)
4900 int ints[NR_CPUS], i;
4902 str = get_options(str, ARRAY_SIZE(ints), ints);
4903 cpus_clear(cpu_isolated_map);
4904 for (i = 1; i <= ints[0]; i++)
4905 if (ints[i] < NR_CPUS)
4906 cpu_set(ints[i], cpu_isolated_map);
4910 __setup ("isolcpus=", isolated_cpu_setup);
4913 * init_sched_build_groups takes an array of groups, the cpumask we wish
4914 * to span, and a pointer to a function which identifies what group a CPU
4915 * belongs to. The return value of group_fn must be a valid index into the
4916 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4917 * keep track of groups covered with a cpumask_t).
4919 * init_sched_build_groups will build a circular linked list of the groups
4920 * covered by the given span, and will set each group's ->cpumask correctly,
4921 * and ->cpu_power to 0.
4923 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4924 int (*group_fn)(int cpu))
4926 struct sched_group *first = NULL, *last = NULL;
4927 cpumask_t covered = CPU_MASK_NONE;
4930 for_each_cpu_mask(i, span) {
4931 int group = group_fn(i);
4932 struct sched_group *sg = &groups[group];
4935 if (cpu_isset(i, covered))
4938 sg->cpumask = CPU_MASK_NONE;
4941 for_each_cpu_mask(j, span) {
4942 if (group_fn(j) != group)
4945 cpu_set(j, covered);
4946 cpu_set(j, sg->cpumask);
4957 #define SD_NODES_PER_DOMAIN 16
4961 * find_next_best_node - find the next node to include in a sched_domain
4962 * @node: node whose sched_domain we're building
4963 * @used_nodes: nodes already in the sched_domain
4965 * Find the next node to include in a given scheduling domain. Simply
4966 * finds the closest node not already in the @used_nodes map.
4968 * Should use nodemask_t.
4970 static int find_next_best_node(int node, unsigned long *used_nodes)
4972 int i, n, val, min_val, best_node = 0;
4976 for (i = 0; i < MAX_NUMNODES; i++) {
4977 /* Start at @node */
4978 n = (node + i) % MAX_NUMNODES;
4980 if (!nr_cpus_node(n))
4983 /* Skip already used nodes */
4984 if (test_bit(n, used_nodes))
4987 /* Simple min distance search */
4988 val = node_distance(node, n);
4990 if (val < min_val) {
4996 set_bit(best_node, used_nodes);
5001 * sched_domain_node_span - get a cpumask for a node's sched_domain
5002 * @node: node whose cpumask we're constructing
5003 * @size: number of nodes to include in this span
5005 * Given a node, construct a good cpumask for its sched_domain to span. It
5006 * should be one that prevents unnecessary balancing, but also spreads tasks
5009 static cpumask_t sched_domain_node_span(int node)
5012 cpumask_t span, nodemask;
5013 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5016 bitmap_zero(used_nodes, MAX_NUMNODES);
5018 nodemask = node_to_cpumask(node);
5019 cpus_or(span, span, nodemask);
5020 set_bit(node, used_nodes);
5022 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5023 int next_node = find_next_best_node(node, used_nodes);
5024 nodemask = node_to_cpumask(next_node);
5025 cpus_or(span, span, nodemask);
5033 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5034 * can switch it on easily if needed.
5036 #ifdef CONFIG_SCHED_SMT
5037 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5038 static struct sched_group sched_group_cpus[NR_CPUS];
5039 static int cpu_to_cpu_group(int cpu)
5045 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5046 static struct sched_group sched_group_phys[NR_CPUS];
5047 static int cpu_to_phys_group(int cpu)
5049 #ifdef CONFIG_SCHED_SMT
5050 return first_cpu(cpu_sibling_map[cpu]);
5058 * The init_sched_build_groups can't handle what we want to do with node
5059 * groups, so roll our own. Now each node has its own list of groups which
5060 * gets dynamically allocated.
5062 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5063 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5065 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5066 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5068 static int cpu_to_allnodes_group(int cpu)
5070 return cpu_to_node(cpu);
5075 * Build sched domains for a given set of cpus and attach the sched domains
5076 * to the individual cpus
5078 void build_sched_domains(const cpumask_t *cpu_map)
5082 struct sched_group **sched_group_nodes = NULL;
5083 struct sched_group *sched_group_allnodes = NULL;
5086 * Allocate the per-node list of sched groups
5088 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5090 if (!sched_group_nodes) {
5091 printk(KERN_WARNING "Can not alloc sched group node list\n");
5094 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5098 * Set up domains for cpus specified by the cpu_map.
5100 for_each_cpu_mask(i, *cpu_map) {
5102 struct sched_domain *sd = NULL, *p;
5103 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5105 cpus_and(nodemask, nodemask, *cpu_map);
5108 if (cpus_weight(*cpu_map)
5109 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5110 if (!sched_group_allnodes) {
5111 sched_group_allnodes
5112 = kmalloc(sizeof(struct sched_group)
5115 if (!sched_group_allnodes) {
5117 "Can not alloc allnodes sched group\n");
5120 sched_group_allnodes_bycpu[i]
5121 = sched_group_allnodes;
5123 sd = &per_cpu(allnodes_domains, i);
5124 *sd = SD_ALLNODES_INIT;
5125 sd->span = *cpu_map;
5126 group = cpu_to_allnodes_group(i);
5127 sd->groups = &sched_group_allnodes[group];
5132 sd = &per_cpu(node_domains, i);
5134 sd->span = sched_domain_node_span(cpu_to_node(i));
5136 cpus_and(sd->span, sd->span, *cpu_map);
5140 sd = &per_cpu(phys_domains, i);
5141 group = cpu_to_phys_group(i);
5143 sd->span = nodemask;
5145 sd->groups = &sched_group_phys[group];
5147 #ifdef CONFIG_SCHED_SMT
5149 sd = &per_cpu(cpu_domains, i);
5150 group = cpu_to_cpu_group(i);
5151 *sd = SD_SIBLING_INIT;
5152 sd->span = cpu_sibling_map[i];
5153 cpus_and(sd->span, sd->span, *cpu_map);
5155 sd->groups = &sched_group_cpus[group];
5159 #ifdef CONFIG_SCHED_SMT
5160 /* Set up CPU (sibling) groups */
5161 for_each_cpu_mask(i, *cpu_map) {
5162 cpumask_t this_sibling_map = cpu_sibling_map[i];
5163 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5164 if (i != first_cpu(this_sibling_map))
5167 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5172 /* Set up physical groups */
5173 for (i = 0; i < MAX_NUMNODES; i++) {
5174 cpumask_t nodemask = node_to_cpumask(i);
5176 cpus_and(nodemask, nodemask, *cpu_map);
5177 if (cpus_empty(nodemask))
5180 init_sched_build_groups(sched_group_phys, nodemask,
5181 &cpu_to_phys_group);
5185 /* Set up node groups */
5186 if (sched_group_allnodes)
5187 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5188 &cpu_to_allnodes_group);
5190 for (i = 0; i < MAX_NUMNODES; i++) {
5191 /* Set up node groups */
5192 struct sched_group *sg, *prev;
5193 cpumask_t nodemask = node_to_cpumask(i);
5194 cpumask_t domainspan;
5195 cpumask_t covered = CPU_MASK_NONE;
5198 cpus_and(nodemask, nodemask, *cpu_map);
5199 if (cpus_empty(nodemask)) {
5200 sched_group_nodes[i] = NULL;
5204 domainspan = sched_domain_node_span(i);
5205 cpus_and(domainspan, domainspan, *cpu_map);
5207 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5208 sched_group_nodes[i] = sg;
5209 for_each_cpu_mask(j, nodemask) {
5210 struct sched_domain *sd;
5211 sd = &per_cpu(node_domains, j);
5213 if (sd->groups == NULL) {
5214 /* Turn off balancing if we have no groups */
5220 "Can not alloc domain group for node %d\n", i);
5224 sg->cpumask = nodemask;
5225 cpus_or(covered, covered, nodemask);
5228 for (j = 0; j < MAX_NUMNODES; j++) {
5229 cpumask_t tmp, notcovered;
5230 int n = (i + j) % MAX_NUMNODES;
5232 cpus_complement(notcovered, covered);
5233 cpus_and(tmp, notcovered, *cpu_map);
5234 cpus_and(tmp, tmp, domainspan);
5235 if (cpus_empty(tmp))
5238 nodemask = node_to_cpumask(n);
5239 cpus_and(tmp, tmp, nodemask);
5240 if (cpus_empty(tmp))
5243 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5246 "Can not alloc domain group for node %d\n", j);
5251 cpus_or(covered, covered, tmp);
5255 prev->next = sched_group_nodes[i];
5259 /* Calculate CPU power for physical packages and nodes */
5260 for_each_cpu_mask(i, *cpu_map) {
5262 struct sched_domain *sd;
5263 #ifdef CONFIG_SCHED_SMT
5264 sd = &per_cpu(cpu_domains, i);
5265 power = SCHED_LOAD_SCALE;
5266 sd->groups->cpu_power = power;
5269 sd = &per_cpu(phys_domains, i);
5270 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5271 (cpus_weight(sd->groups->cpumask)-1) / 10;
5272 sd->groups->cpu_power = power;
5275 sd = &per_cpu(allnodes_domains, i);
5277 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5278 (cpus_weight(sd->groups->cpumask)-1) / 10;
5279 sd->groups->cpu_power = power;
5285 for (i = 0; i < MAX_NUMNODES; i++) {
5286 struct sched_group *sg = sched_group_nodes[i];
5292 for_each_cpu_mask(j, sg->cpumask) {
5293 struct sched_domain *sd;
5296 sd = &per_cpu(phys_domains, j);
5297 if (j != first_cpu(sd->groups->cpumask)) {
5299 * Only add "power" once for each
5304 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5305 (cpus_weight(sd->groups->cpumask)-1) / 10;
5307 sg->cpu_power += power;
5310 if (sg != sched_group_nodes[i])
5315 /* Attach the domains */
5316 for_each_cpu_mask(i, *cpu_map) {
5317 struct sched_domain *sd;
5318 #ifdef CONFIG_SCHED_SMT
5319 sd = &per_cpu(cpu_domains, i);
5321 sd = &per_cpu(phys_domains, i);
5323 cpu_attach_domain(sd, i);
5327 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5329 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5331 cpumask_t cpu_default_map;
5334 * Setup mask for cpus without special case scheduling requirements.
5335 * For now this just excludes isolated cpus, but could be used to
5336 * exclude other special cases in the future.
5338 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5340 build_sched_domains(&cpu_default_map);
5343 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5349 for_each_cpu_mask(cpu, *cpu_map) {
5350 struct sched_group *sched_group_allnodes
5351 = sched_group_allnodes_bycpu[cpu];
5352 struct sched_group **sched_group_nodes
5353 = sched_group_nodes_bycpu[cpu];
5355 if (sched_group_allnodes) {
5356 kfree(sched_group_allnodes);
5357 sched_group_allnodes_bycpu[cpu] = NULL;
5360 if (!sched_group_nodes)
5363 for (i = 0; i < MAX_NUMNODES; i++) {
5364 cpumask_t nodemask = node_to_cpumask(i);
5365 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5367 cpus_and(nodemask, nodemask, *cpu_map);
5368 if (cpus_empty(nodemask))
5378 if (oldsg != sched_group_nodes[i])
5381 kfree(sched_group_nodes);
5382 sched_group_nodes_bycpu[cpu] = NULL;
5388 * Detach sched domains from a group of cpus specified in cpu_map
5389 * These cpus will now be attached to the NULL domain
5391 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5395 for_each_cpu_mask(i, *cpu_map)
5396 cpu_attach_domain(NULL, i);
5397 synchronize_sched();
5398 arch_destroy_sched_domains(cpu_map);
5402 * Partition sched domains as specified by the cpumasks below.
5403 * This attaches all cpus from the cpumasks to the NULL domain,
5404 * waits for a RCU quiescent period, recalculates sched
5405 * domain information and then attaches them back to the
5406 * correct sched domains
5407 * Call with hotplug lock held
5409 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5411 cpumask_t change_map;
5413 cpus_and(*partition1, *partition1, cpu_online_map);
5414 cpus_and(*partition2, *partition2, cpu_online_map);
5415 cpus_or(change_map, *partition1, *partition2);
5417 /* Detach sched domains from all of the affected cpus */
5418 detach_destroy_domains(&change_map);
5419 if (!cpus_empty(*partition1))
5420 build_sched_domains(partition1);
5421 if (!cpus_empty(*partition2))
5422 build_sched_domains(partition2);
5425 #ifdef CONFIG_HOTPLUG_CPU
5427 * Force a reinitialization of the sched domains hierarchy. The domains
5428 * and groups cannot be updated in place without racing with the balancing
5429 * code, so we temporarily attach all running cpus to the NULL domain
5430 * which will prevent rebalancing while the sched domains are recalculated.
5432 static int update_sched_domains(struct notifier_block *nfb,
5433 unsigned long action, void *hcpu)
5436 case CPU_UP_PREPARE:
5437 case CPU_DOWN_PREPARE:
5438 detach_destroy_domains(&cpu_online_map);
5441 case CPU_UP_CANCELED:
5442 case CPU_DOWN_FAILED:
5446 * Fall through and re-initialise the domains.
5453 /* The hotplug lock is already held by cpu_up/cpu_down */
5454 arch_init_sched_domains(&cpu_online_map);
5460 void __init sched_init_smp(void)
5463 arch_init_sched_domains(&cpu_online_map);
5464 unlock_cpu_hotplug();
5465 /* XXX: Theoretical race here - CPU may be hotplugged now */
5466 hotcpu_notifier(update_sched_domains, 0);
5469 void __init sched_init_smp(void)
5472 #endif /* CONFIG_SMP */
5474 int in_sched_functions(unsigned long addr)
5476 /* Linker adds these: start and end of __sched functions */
5477 extern char __sched_text_start[], __sched_text_end[];
5478 return in_lock_functions(addr) ||
5479 (addr >= (unsigned long)__sched_text_start
5480 && addr < (unsigned long)__sched_text_end);
5483 void __init sched_init(void)
5488 for (i = 0; i < NR_CPUS; i++) {
5489 prio_array_t *array;
5492 spin_lock_init(&rq->lock);
5494 rq->active = rq->arrays;
5495 rq->expired = rq->arrays + 1;
5496 rq->best_expired_prio = MAX_PRIO;
5500 for (j = 1; j < 3; j++)
5501 rq->cpu_load[j] = 0;
5502 rq->active_balance = 0;
5504 rq->migration_thread = NULL;
5505 INIT_LIST_HEAD(&rq->migration_queue);
5507 atomic_set(&rq->nr_iowait, 0);
5509 for (j = 0; j < 2; j++) {
5510 array = rq->arrays + j;
5511 for (k = 0; k < MAX_PRIO; k++) {
5512 INIT_LIST_HEAD(array->queue + k);
5513 __clear_bit(k, array->bitmap);
5515 // delimiter for bitsearch
5516 __set_bit(MAX_PRIO, array->bitmap);
5521 * The boot idle thread does lazy MMU switching as well:
5523 atomic_inc(&init_mm.mm_count);
5524 enter_lazy_tlb(&init_mm, current);
5527 * Make us the idle thread. Technically, schedule() should not be
5528 * called from this thread, however somewhere below it might be,
5529 * but because we are the idle thread, we just pick up running again
5530 * when this runqueue becomes "idle".
5532 init_idle(current, smp_processor_id());
5535 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5536 void __might_sleep(char *file, int line)
5538 #if defined(in_atomic)
5539 static unsigned long prev_jiffy; /* ratelimiting */
5541 if ((in_atomic() || irqs_disabled()) &&
5542 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5543 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5545 prev_jiffy = jiffies;
5546 printk(KERN_ERR "Debug: sleeping function called from invalid"
5547 " context at %s:%d\n", file, line);
5548 printk("in_atomic():%d, irqs_disabled():%d\n",
5549 in_atomic(), irqs_disabled());
5554 EXPORT_SYMBOL(__might_sleep);
5557 #ifdef CONFIG_MAGIC_SYSRQ
5558 void normalize_rt_tasks(void)
5560 struct task_struct *p;
5561 prio_array_t *array;
5562 unsigned long flags;
5565 read_lock_irq(&tasklist_lock);
5566 for_each_process (p) {
5570 rq = task_rq_lock(p, &flags);
5574 deactivate_task(p, task_rq(p));
5575 __setscheduler(p, SCHED_NORMAL, 0);
5577 __activate_task(p, task_rq(p));
5578 resched_task(rq->curr);
5581 task_rq_unlock(rq, &flags);
5583 read_unlock_irq(&tasklist_lock);
5586 #endif /* CONFIG_MAGIC_SYSRQ */