2 * linux/arch/x86_64/nmi.c
4 * NMI watchdog support on APIC systems
6 * Started by Ingo Molnar <mingo@redhat.com>
9 * Mikael Pettersson : AMD K7 support for local APIC NMI watchdog.
10 * Mikael Pettersson : Power Management for local APIC NMI watchdog.
12 * Mikael Pettersson : PM converted to driver model. Disable/enable API.
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
19 #include <linux/sysdev.h>
20 #include <linux/nmi.h>
21 #include <linux/sysctl.h>
22 #include <linux/kprobes.h>
26 #include <asm/proto.h>
27 #include <asm/kdebug.h>
29 #include <asm/intel_arch_perfmon.h>
31 int unknown_nmi_panic;
32 int nmi_watchdog_enabled;
33 int panic_on_unrecovered_nmi;
35 /* perfctr_nmi_owner tracks the ownership of the perfctr registers:
36 * evtsel_nmi_owner tracks the ownership of the event selection
37 * - different performance counters/ event selection may be reserved for
38 * different subsystems this reservation system just tries to coordinate
41 static DEFINE_PER_CPU(unsigned, perfctr_nmi_owner);
42 static DEFINE_PER_CPU(unsigned, evntsel_nmi_owner[2]);
44 /* this number is calculated from Intel's MSR_P4_CRU_ESCR5 register and it's
45 * offset from MSR_P4_BSU_ESCR0. It will be the max for all platforms (for now)
47 #define NMI_MAX_COUNTER_BITS 66
50 * >0: the lapic NMI watchdog is active, but can be disabled
51 * <0: the lapic NMI watchdog has not been set up, and cannot
53 * 0: the lapic NMI watchdog is disabled, but can be enabled
55 atomic_t nmi_active = ATOMIC_INIT(0); /* oprofile uses this */
58 unsigned int nmi_watchdog = NMI_DEFAULT;
59 static unsigned int nmi_hz = HZ;
61 struct nmi_watchdog_ctlblk {
64 unsigned int cccr_msr;
65 unsigned int perfctr_msr; /* the MSR to reset in NMI handler */
66 unsigned int evntsel_msr; /* the MSR to select the events to handle */
68 static DEFINE_PER_CPU(struct nmi_watchdog_ctlblk, nmi_watchdog_ctlblk);
70 /* local prototypes */
71 static int unknown_nmi_panic_callback(struct pt_regs *regs, int cpu);
73 /* converts an msr to an appropriate reservation bit */
74 static inline unsigned int nmi_perfctr_msr_to_bit(unsigned int msr)
76 /* returns the bit offset of the performance counter register */
77 switch (boot_cpu_data.x86_vendor) {
79 return (msr - MSR_K7_PERFCTR0);
80 case X86_VENDOR_INTEL:
81 if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
82 return (msr - MSR_ARCH_PERFMON_PERFCTR0);
84 return (msr - MSR_P4_BPU_PERFCTR0);
89 /* converts an msr to an appropriate reservation bit */
90 static inline unsigned int nmi_evntsel_msr_to_bit(unsigned int msr)
92 /* returns the bit offset of the event selection register */
93 switch (boot_cpu_data.x86_vendor) {
95 return (msr - MSR_K7_EVNTSEL0);
96 case X86_VENDOR_INTEL:
97 if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
98 return (msr - MSR_ARCH_PERFMON_EVENTSEL0);
100 return (msr - MSR_P4_BSU_ESCR0);
105 /* checks for a bit availability (hack for oprofile) */
106 int avail_to_resrv_perfctr_nmi_bit(unsigned int counter)
108 BUG_ON(counter > NMI_MAX_COUNTER_BITS);
110 return (!test_bit(counter, &__get_cpu_var(perfctr_nmi_owner)));
113 /* checks the an msr for availability */
114 int avail_to_resrv_perfctr_nmi(unsigned int msr)
116 unsigned int counter;
118 counter = nmi_perfctr_msr_to_bit(msr);
119 BUG_ON(counter > NMI_MAX_COUNTER_BITS);
121 return (!test_bit(counter, &__get_cpu_var(perfctr_nmi_owner)));
124 int reserve_perfctr_nmi(unsigned int msr)
126 unsigned int counter;
128 counter = nmi_perfctr_msr_to_bit(msr);
129 BUG_ON(counter > NMI_MAX_COUNTER_BITS);
131 if (!test_and_set_bit(counter, &__get_cpu_var(perfctr_nmi_owner)))
136 void release_perfctr_nmi(unsigned int msr)
138 unsigned int counter;
140 counter = nmi_perfctr_msr_to_bit(msr);
141 BUG_ON(counter > NMI_MAX_COUNTER_BITS);
143 clear_bit(counter, &__get_cpu_var(perfctr_nmi_owner));
146 int reserve_evntsel_nmi(unsigned int msr)
148 unsigned int counter;
150 counter = nmi_evntsel_msr_to_bit(msr);
151 BUG_ON(counter > NMI_MAX_COUNTER_BITS);
153 if (!test_and_set_bit(counter, &__get_cpu_var(evntsel_nmi_owner)))
158 void release_evntsel_nmi(unsigned int msr)
160 unsigned int counter;
162 counter = nmi_evntsel_msr_to_bit(msr);
163 BUG_ON(counter > NMI_MAX_COUNTER_BITS);
165 clear_bit(counter, &__get_cpu_var(evntsel_nmi_owner));
168 static __cpuinit inline int nmi_known_cpu(void)
170 switch (boot_cpu_data.x86_vendor) {
172 return boot_cpu_data.x86 == 15;
173 case X86_VENDOR_INTEL:
174 if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
177 return (boot_cpu_data.x86 == 15);
182 /* Run after command line and cpu_init init, but before all other checks */
183 void nmi_watchdog_default(void)
185 if (nmi_watchdog != NMI_DEFAULT)
188 nmi_watchdog = NMI_LOCAL_APIC;
190 nmi_watchdog = NMI_IO_APIC;
194 /* The performance counters used by NMI_LOCAL_APIC don't trigger when
195 * the CPU is idle. To make sure the NMI watchdog really ticks on all
196 * CPUs during the test make them busy.
198 static __init void nmi_cpu_busy(void *data)
200 volatile int *endflag = data;
201 local_irq_enable_in_hardirq();
202 /* Intentionally don't use cpu_relax here. This is
203 to make sure that the performance counter really ticks,
204 even if there is a simulator or similar that catches the
205 pause instruction. On a real HT machine this is fine because
206 all other CPUs are busy with "useless" delay loops and don't
207 care if they get somewhat less cycles. */
208 while (*endflag == 0)
213 int __init check_nmi_watchdog (void)
215 volatile int endflag = 0;
219 if ((nmi_watchdog == NMI_NONE) || (nmi_watchdog == NMI_DEFAULT))
222 if (!atomic_read(&nmi_active))
225 counts = kmalloc(NR_CPUS * sizeof(int), GFP_KERNEL);
229 printk(KERN_INFO "testing NMI watchdog ... ");
232 if (nmi_watchdog == NMI_LOCAL_APIC)
233 smp_call_function(nmi_cpu_busy, (void *)&endflag, 0, 0);
236 for (cpu = 0; cpu < NR_CPUS; cpu++)
237 counts[cpu] = cpu_pda(cpu)->__nmi_count;
239 mdelay((10*1000)/nmi_hz); // wait 10 ticks
241 for_each_online_cpu(cpu) {
242 if (!per_cpu(nmi_watchdog_ctlblk, cpu).enabled)
244 if (cpu_pda(cpu)->__nmi_count - counts[cpu] <= 5) {
245 printk("CPU#%d: NMI appears to be stuck (%d->%d)!\n",
248 cpu_pda(cpu)->__nmi_count);
249 per_cpu(nmi_watchdog_ctlblk, cpu).enabled = 0;
250 atomic_dec(&nmi_active);
253 if (!atomic_read(&nmi_active)) {
255 atomic_set(&nmi_active, -1);
261 /* now that we know it works we can reduce NMI frequency to
262 something more reasonable; makes a difference in some configs */
263 if (nmi_watchdog == NMI_LOCAL_APIC) {
264 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
268 * On Intel CPUs with ARCH_PERFMON only 32 bits in the counter
269 * are writable, with higher bits sign extending from bit 31.
270 * So, we can only program the counter with 31 bit values and
271 * 32nd bit should be 1, for 33.. to be 1.
272 * Find the appropriate nmi_hz
274 if (wd->perfctr_msr == MSR_ARCH_PERFMON_PERFCTR0 &&
275 ((u64)cpu_khz * 1000) > 0x7fffffffULL) {
276 nmi_hz = ((u64)cpu_khz * 1000) / 0x7fffffffUL + 1;
284 int __init setup_nmi_watchdog(char *str)
288 if (!strncmp(str,"panic",5)) {
289 panic_on_timeout = 1;
290 str = strchr(str, ',');
296 get_option(&str, &nmi);
298 if ((nmi >= NMI_INVALID) || (nmi < NMI_NONE))
301 if ((nmi == NMI_LOCAL_APIC) && (nmi_known_cpu() == 0))
302 return 0; /* no lapic support */
307 __setup("nmi_watchdog=", setup_nmi_watchdog);
309 static void disable_lapic_nmi_watchdog(void)
311 BUG_ON(nmi_watchdog != NMI_LOCAL_APIC);
313 if (atomic_read(&nmi_active) <= 0)
316 on_each_cpu(stop_apic_nmi_watchdog, NULL, 0, 1);
318 BUG_ON(atomic_read(&nmi_active) != 0);
321 static void enable_lapic_nmi_watchdog(void)
323 BUG_ON(nmi_watchdog != NMI_LOCAL_APIC);
325 /* are we already enabled */
326 if (atomic_read(&nmi_active) != 0)
329 /* are we lapic aware */
330 if (nmi_known_cpu() <= 0)
333 on_each_cpu(setup_apic_nmi_watchdog, NULL, 0, 1);
334 touch_nmi_watchdog();
337 void disable_timer_nmi_watchdog(void)
339 BUG_ON(nmi_watchdog != NMI_IO_APIC);
341 if (atomic_read(&nmi_active) <= 0)
345 on_each_cpu(stop_apic_nmi_watchdog, NULL, 0, 1);
347 BUG_ON(atomic_read(&nmi_active) != 0);
350 void enable_timer_nmi_watchdog(void)
352 BUG_ON(nmi_watchdog != NMI_IO_APIC);
354 if (atomic_read(&nmi_active) == 0) {
355 touch_nmi_watchdog();
356 on_each_cpu(setup_apic_nmi_watchdog, NULL, 0, 1);
363 static int nmi_pm_active; /* nmi_active before suspend */
365 static int lapic_nmi_suspend(struct sys_device *dev, pm_message_t state)
367 /* only CPU0 goes here, other CPUs should be offline */
368 nmi_pm_active = atomic_read(&nmi_active);
369 stop_apic_nmi_watchdog(NULL);
370 BUG_ON(atomic_read(&nmi_active) != 0);
374 static int lapic_nmi_resume(struct sys_device *dev)
376 /* only CPU0 goes here, other CPUs should be offline */
377 if (nmi_pm_active > 0) {
378 setup_apic_nmi_watchdog(NULL);
379 touch_nmi_watchdog();
384 static struct sysdev_class nmi_sysclass = {
385 set_kset_name("lapic_nmi"),
386 .resume = lapic_nmi_resume,
387 .suspend = lapic_nmi_suspend,
390 static struct sys_device device_lapic_nmi = {
392 .cls = &nmi_sysclass,
395 static int __init init_lapic_nmi_sysfs(void)
399 /* should really be a BUG_ON but b/c this is an
400 * init call, it just doesn't work. -dcz
402 if (nmi_watchdog != NMI_LOCAL_APIC)
405 if ( atomic_read(&nmi_active) < 0 )
408 error = sysdev_class_register(&nmi_sysclass);
410 error = sysdev_register(&device_lapic_nmi);
413 /* must come after the local APIC's device_initcall() */
414 late_initcall(init_lapic_nmi_sysfs);
416 #endif /* CONFIG_PM */
419 * Activate the NMI watchdog via the local APIC.
420 * Original code written by Keith Owens.
423 /* Note that these events don't tick when the CPU idles. This means
424 the frequency varies with CPU load. */
426 #define K7_EVNTSEL_ENABLE (1 << 22)
427 #define K7_EVNTSEL_INT (1 << 20)
428 #define K7_EVNTSEL_OS (1 << 17)
429 #define K7_EVNTSEL_USR (1 << 16)
430 #define K7_EVENT_CYCLES_PROCESSOR_IS_RUNNING 0x76
431 #define K7_NMI_EVENT K7_EVENT_CYCLES_PROCESSOR_IS_RUNNING
433 static int setup_k7_watchdog(void)
435 unsigned int perfctr_msr, evntsel_msr;
436 unsigned int evntsel;
437 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
439 perfctr_msr = MSR_K7_PERFCTR0;
440 evntsel_msr = MSR_K7_EVNTSEL0;
441 if (!reserve_perfctr_nmi(perfctr_msr))
444 if (!reserve_evntsel_nmi(evntsel_msr))
447 /* Simulator may not support it */
448 if (checking_wrmsrl(evntsel_msr, 0UL))
450 wrmsrl(perfctr_msr, 0UL);
452 evntsel = K7_EVNTSEL_INT
457 /* setup the timer */
458 wrmsr(evntsel_msr, evntsel, 0);
459 wrmsrl(perfctr_msr, -((u64)cpu_khz * 1000 / nmi_hz));
460 apic_write(APIC_LVTPC, APIC_DM_NMI);
461 evntsel |= K7_EVNTSEL_ENABLE;
462 wrmsr(evntsel_msr, evntsel, 0);
464 wd->perfctr_msr = perfctr_msr;
465 wd->evntsel_msr = evntsel_msr;
466 wd->cccr_msr = 0; //unused
467 wd->check_bit = 1ULL<<63;
470 release_evntsel_nmi(evntsel_msr);
472 release_perfctr_nmi(perfctr_msr);
477 static void stop_k7_watchdog(void)
479 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
481 wrmsr(wd->evntsel_msr, 0, 0);
483 release_evntsel_nmi(wd->evntsel_msr);
484 release_perfctr_nmi(wd->perfctr_msr);
487 /* Note that these events don't tick when the CPU idles. This means
488 the frequency varies with CPU load. */
490 #define MSR_P4_MISC_ENABLE_PERF_AVAIL (1<<7)
491 #define P4_ESCR_EVENT_SELECT(N) ((N)<<25)
492 #define P4_ESCR_OS (1<<3)
493 #define P4_ESCR_USR (1<<2)
494 #define P4_CCCR_OVF_PMI0 (1<<26)
495 #define P4_CCCR_OVF_PMI1 (1<<27)
496 #define P4_CCCR_THRESHOLD(N) ((N)<<20)
497 #define P4_CCCR_COMPLEMENT (1<<19)
498 #define P4_CCCR_COMPARE (1<<18)
499 #define P4_CCCR_REQUIRED (3<<16)
500 #define P4_CCCR_ESCR_SELECT(N) ((N)<<13)
501 #define P4_CCCR_ENABLE (1<<12)
502 #define P4_CCCR_OVF (1<<31)
503 /* Set up IQ_COUNTER0 to behave like a clock, by having IQ_CCCR0 filter
504 CRU_ESCR0 (with any non-null event selector) through a complemented
505 max threshold. [IA32-Vol3, Section 14.9.9] */
507 static int setup_p4_watchdog(void)
509 unsigned int perfctr_msr, evntsel_msr, cccr_msr;
510 unsigned int evntsel, cccr_val;
511 unsigned int misc_enable, dummy;
513 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
515 rdmsr(MSR_IA32_MISC_ENABLE, misc_enable, dummy);
516 if (!(misc_enable & MSR_P4_MISC_ENABLE_PERF_AVAIL))
520 /* detect which hyperthread we are on */
521 if (smp_num_siblings == 2) {
522 unsigned int ebx, apicid;
525 apicid = (ebx >> 24) & 0xff;
531 /* performance counters are shared resources
532 * assign each hyperthread its own set
533 * (re-use the ESCR0 register, seems safe
534 * and keeps the cccr_val the same)
538 perfctr_msr = MSR_P4_IQ_PERFCTR0;
539 evntsel_msr = MSR_P4_CRU_ESCR0;
540 cccr_msr = MSR_P4_IQ_CCCR0;
541 cccr_val = P4_CCCR_OVF_PMI0 | P4_CCCR_ESCR_SELECT(4);
544 perfctr_msr = MSR_P4_IQ_PERFCTR1;
545 evntsel_msr = MSR_P4_CRU_ESCR0;
546 cccr_msr = MSR_P4_IQ_CCCR1;
547 cccr_val = P4_CCCR_OVF_PMI1 | P4_CCCR_ESCR_SELECT(4);
550 if (!reserve_perfctr_nmi(perfctr_msr))
553 if (!reserve_evntsel_nmi(evntsel_msr))
556 evntsel = P4_ESCR_EVENT_SELECT(0x3F)
560 cccr_val |= P4_CCCR_THRESHOLD(15)
565 wrmsr(evntsel_msr, evntsel, 0);
566 wrmsr(cccr_msr, cccr_val, 0);
567 wrmsrl(perfctr_msr, -((u64)cpu_khz * 1000 / nmi_hz));
568 apic_write(APIC_LVTPC, APIC_DM_NMI);
569 cccr_val |= P4_CCCR_ENABLE;
570 wrmsr(cccr_msr, cccr_val, 0);
572 wd->perfctr_msr = perfctr_msr;
573 wd->evntsel_msr = evntsel_msr;
574 wd->cccr_msr = cccr_msr;
575 wd->check_bit = 1ULL<<39;
578 release_perfctr_nmi(perfctr_msr);
583 static void stop_p4_watchdog(void)
585 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
587 wrmsr(wd->cccr_msr, 0, 0);
588 wrmsr(wd->evntsel_msr, 0, 0);
590 release_evntsel_nmi(wd->evntsel_msr);
591 release_perfctr_nmi(wd->perfctr_msr);
594 #define ARCH_PERFMON_NMI_EVENT_SEL ARCH_PERFMON_UNHALTED_CORE_CYCLES_SEL
595 #define ARCH_PERFMON_NMI_EVENT_UMASK ARCH_PERFMON_UNHALTED_CORE_CYCLES_UMASK
597 static int setup_intel_arch_watchdog(void)
600 union cpuid10_eax eax;
602 unsigned int perfctr_msr, evntsel_msr;
603 unsigned int evntsel;
604 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
607 * Check whether the Architectural PerfMon supports
608 * Unhalted Core Cycles Event or not.
609 * NOTE: Corresponding bit = 0 in ebx indicates event present.
611 cpuid(10, &(eax.full), &ebx, &unused, &unused);
612 if ((eax.split.mask_length < (ARCH_PERFMON_UNHALTED_CORE_CYCLES_INDEX+1)) ||
613 (ebx & ARCH_PERFMON_UNHALTED_CORE_CYCLES_PRESENT))
616 perfctr_msr = MSR_ARCH_PERFMON_PERFCTR0;
617 evntsel_msr = MSR_ARCH_PERFMON_EVENTSEL0;
619 if (!reserve_perfctr_nmi(perfctr_msr))
622 if (!reserve_evntsel_nmi(evntsel_msr))
625 wrmsrl(perfctr_msr, 0UL);
627 evntsel = ARCH_PERFMON_EVENTSEL_INT
628 | ARCH_PERFMON_EVENTSEL_OS
629 | ARCH_PERFMON_EVENTSEL_USR
630 | ARCH_PERFMON_NMI_EVENT_SEL
631 | ARCH_PERFMON_NMI_EVENT_UMASK;
633 /* setup the timer */
634 wrmsr(evntsel_msr, evntsel, 0);
635 wrmsrl(perfctr_msr, -((u64)cpu_khz * 1000 / nmi_hz));
637 apic_write(APIC_LVTPC, APIC_DM_NMI);
638 evntsel |= ARCH_PERFMON_EVENTSEL0_ENABLE;
639 wrmsr(evntsel_msr, evntsel, 0);
641 wd->perfctr_msr = perfctr_msr;
642 wd->evntsel_msr = evntsel_msr;
643 wd->cccr_msr = 0; //unused
644 wd->check_bit = 1ULL << (eax.split.bit_width - 1);
647 release_perfctr_nmi(perfctr_msr);
652 static void stop_intel_arch_watchdog(void)
655 union cpuid10_eax eax;
657 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
660 * Check whether the Architectural PerfMon supports
661 * Unhalted Core Cycles Event or not.
662 * NOTE: Corresponding bit = 0 in ebx indicates event present.
664 cpuid(10, &(eax.full), &ebx, &unused, &unused);
665 if ((eax.split.mask_length < (ARCH_PERFMON_UNHALTED_CORE_CYCLES_INDEX+1)) ||
666 (ebx & ARCH_PERFMON_UNHALTED_CORE_CYCLES_PRESENT))
669 wrmsr(wd->evntsel_msr, 0, 0);
671 release_evntsel_nmi(wd->evntsel_msr);
672 release_perfctr_nmi(wd->perfctr_msr);
675 void setup_apic_nmi_watchdog(void *unused)
677 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
679 /* only support LOCAL and IO APICs for now */
680 if ((nmi_watchdog != NMI_LOCAL_APIC) &&
681 (nmi_watchdog != NMI_IO_APIC))
684 if (wd->enabled == 1)
687 /* cheap hack to support suspend/resume */
688 /* if cpu0 is not active neither should the other cpus */
689 if ((smp_processor_id() != 0) && (atomic_read(&nmi_active) <= 0))
692 if (nmi_watchdog == NMI_LOCAL_APIC) {
693 switch (boot_cpu_data.x86_vendor) {
695 if (strstr(boot_cpu_data.x86_model_id, "Screwdriver"))
697 if (!setup_k7_watchdog())
700 case X86_VENDOR_INTEL:
701 if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
702 if (!setup_intel_arch_watchdog())
706 if (!setup_p4_watchdog())
714 atomic_inc(&nmi_active);
717 void stop_apic_nmi_watchdog(void *unused)
719 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
721 /* only support LOCAL and IO APICs for now */
722 if ((nmi_watchdog != NMI_LOCAL_APIC) &&
723 (nmi_watchdog != NMI_IO_APIC))
726 if (wd->enabled == 0)
729 if (nmi_watchdog == NMI_LOCAL_APIC) {
730 switch (boot_cpu_data.x86_vendor) {
732 if (strstr(boot_cpu_data.x86_model_id, "Screwdriver"))
736 case X86_VENDOR_INTEL:
737 if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
738 stop_intel_arch_watchdog();
748 atomic_dec(&nmi_active);
752 * the best way to detect whether a CPU has a 'hard lockup' problem
753 * is to check it's local APIC timer IRQ counts. If they are not
754 * changing then that CPU has some problem.
756 * as these watchdog NMI IRQs are generated on every CPU, we only
757 * have to check the current processor.
760 static DEFINE_PER_CPU(unsigned, last_irq_sum);
761 static DEFINE_PER_CPU(local_t, alert_counter);
762 static DEFINE_PER_CPU(int, nmi_touch);
764 void touch_nmi_watchdog (void)
766 if (nmi_watchdog > 0) {
770 * Tell other CPUs to reset their alert counters. We cannot
771 * do it ourselves because the alert count increase is not
774 for_each_present_cpu (cpu)
775 per_cpu(nmi_touch, cpu) = 1;
778 touch_softlockup_watchdog();
781 int __kprobes nmi_watchdog_tick(struct pt_regs * regs, unsigned reason)
785 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
789 /* check for other users first */
790 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT)
796 sum = read_pda(apic_timer_irqs);
797 if (__get_cpu_var(nmi_touch)) {
798 __get_cpu_var(nmi_touch) = 0;
802 #ifdef CONFIG_X86_MCE
803 /* Could check oops_in_progress here too, but it's safer
805 if (atomic_read(&mce_entry) > 0)
808 /* if the apic timer isn't firing, this cpu isn't doing much */
809 if (!touched && __get_cpu_var(last_irq_sum) == sum) {
811 * Ayiee, looks like this CPU is stuck ...
812 * wait a few IRQs (5 seconds) before doing the oops ...
814 local_inc(&__get_cpu_var(alert_counter));
815 if (local_read(&__get_cpu_var(alert_counter)) == 5*nmi_hz)
816 die_nmi("NMI Watchdog detected LOCKUP on CPU %d\n", regs,
819 __get_cpu_var(last_irq_sum) = sum;
820 local_set(&__get_cpu_var(alert_counter), 0);
823 /* see if the nmi watchdog went off */
825 if (nmi_watchdog == NMI_LOCAL_APIC) {
826 rdmsrl(wd->perfctr_msr, dummy);
827 if (dummy & wd->check_bit){
828 /* this wasn't a watchdog timer interrupt */
832 /* only Intel uses the cccr msr */
833 if (wd->cccr_msr != 0) {
836 * - An overflown perfctr will assert its interrupt
837 * until the OVF flag in its CCCR is cleared.
838 * - LVTPC is masked on interrupt and must be
839 * unmasked by the LVTPC handler.
841 rdmsrl(wd->cccr_msr, dummy);
842 dummy &= ~P4_CCCR_OVF;
843 wrmsrl(wd->cccr_msr, dummy);
844 apic_write(APIC_LVTPC, APIC_DM_NMI);
845 } else if (wd->perfctr_msr == MSR_ARCH_PERFMON_PERFCTR0) {
847 * ArchPerfom/Core Duo needs to re-unmask
850 apic_write(APIC_LVTPC, APIC_DM_NMI);
852 /* start the cycle over again */
853 wrmsrl(wd->perfctr_msr, -((u64)cpu_khz * 1000 / nmi_hz));
855 } else if (nmi_watchdog == NMI_IO_APIC) {
856 /* don't know how to accurately check for this.
857 * just assume it was a watchdog timer interrupt
858 * This matches the old behaviour.
862 printk(KERN_WARNING "Unknown enabled NMI hardware?!\n");
868 asmlinkage __kprobes void do_nmi(struct pt_regs * regs, long error_code)
871 add_pda(__nmi_count,1);
872 default_do_nmi(regs);
876 int do_nmi_callback(struct pt_regs * regs, int cpu)
879 if (unknown_nmi_panic)
880 return unknown_nmi_panic_callback(regs, cpu);
887 static int unknown_nmi_panic_callback(struct pt_regs *regs, int cpu)
889 unsigned char reason = get_nmi_reason();
892 sprintf(buf, "NMI received for unknown reason %02x\n", reason);
893 die_nmi(buf, regs, 1); /* Always panic here */
898 * proc handler for /proc/sys/kernel/nmi
900 int proc_nmi_enabled(struct ctl_table *table, int write, struct file *file,
901 void __user *buffer, size_t *length, loff_t *ppos)
905 nmi_watchdog_enabled = (atomic_read(&nmi_active) > 0) ? 1 : 0;
906 old_state = nmi_watchdog_enabled;
907 proc_dointvec(table, write, file, buffer, length, ppos);
908 if (!!old_state == !!nmi_watchdog_enabled)
911 if (atomic_read(&nmi_active) < 0) {
912 printk( KERN_WARNING "NMI watchdog is permanently disabled\n");
916 /* if nmi_watchdog is not set yet, then set it */
917 nmi_watchdog_default();
919 if (nmi_watchdog == NMI_LOCAL_APIC) {
920 if (nmi_watchdog_enabled)
921 enable_lapic_nmi_watchdog();
923 disable_lapic_nmi_watchdog();
926 "NMI watchdog doesn't know what hardware to touch\n");
934 EXPORT_SYMBOL(nmi_active);
935 EXPORT_SYMBOL(nmi_watchdog);
936 EXPORT_SYMBOL(avail_to_resrv_perfctr_nmi);
937 EXPORT_SYMBOL(avail_to_resrv_perfctr_nmi_bit);
938 EXPORT_SYMBOL(reserve_perfctr_nmi);
939 EXPORT_SYMBOL(release_perfctr_nmi);
940 EXPORT_SYMBOL(reserve_evntsel_nmi);
941 EXPORT_SYMBOL(release_evntsel_nmi);
942 EXPORT_SYMBOL(disable_timer_nmi_watchdog);
943 EXPORT_SYMBOL(enable_timer_nmi_watchdog);
944 EXPORT_SYMBOL(touch_nmi_watchdog);