Merge branch 'master'
[linux-2.6] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <sound/driver.h>
24 #include <linux/slab.h>
25 #include <linux/time.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(snd_pcm_substream_t *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44         snd_pcm_runtime_t *runtime = substream->runtime;
45         snd_pcm_uframes_t frames, ofs, transfer;
46
47         if (runtime->silence_size < runtime->boundary) {
48                 snd_pcm_sframes_t noise_dist, n;
49                 if (runtime->silence_start != runtime->control->appl_ptr) {
50                         n = runtime->control->appl_ptr - runtime->silence_start;
51                         if (n < 0)
52                                 n += runtime->boundary;
53                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54                                 runtime->silence_filled -= n;
55                         else
56                                 runtime->silence_filled = 0;
57                         runtime->silence_start = runtime->control->appl_ptr;
58                 }
59                 if (runtime->silence_filled == runtime->buffer_size)
60                         return;
61                 snd_assert(runtime->silence_filled <= runtime->buffer_size, return);
62                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
63                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
64                         return;
65                 frames = runtime->silence_threshold - noise_dist;
66                 if (frames > runtime->silence_size)
67                         frames = runtime->silence_size;
68         } else {
69                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
70                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
71                         runtime->silence_filled = avail > 0 ? avail : 0;
72                         runtime->silence_start = (runtime->status->hw_ptr +
73                                                   runtime->silence_filled) %
74                                                  runtime->boundary;
75                 } else {
76                         ofs = runtime->status->hw_ptr;
77                         frames = new_hw_ptr - ofs;
78                         if ((snd_pcm_sframes_t)frames < 0)
79                                 frames += runtime->boundary;
80                         runtime->silence_filled -= frames;
81                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
82                                 runtime->silence_filled = 0;
83                                 runtime->silence_start = (ofs + frames) - runtime->buffer_size;
84                         } else {
85                                 runtime->silence_start = ofs - runtime->silence_filled;
86                         }
87                         if ((snd_pcm_sframes_t)runtime->silence_start < 0)
88                                 runtime->silence_start += runtime->boundary;
89                 }
90                 frames = runtime->buffer_size - runtime->silence_filled;
91         }
92         snd_assert(frames <= runtime->buffer_size, return);
93         if (frames == 0)
94                 return;
95         ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
96         while (frames > 0) {
97                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
98                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
99                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
100                         if (substream->ops->silence) {
101                                 int err;
102                                 err = substream->ops->silence(substream, -1, ofs, transfer);
103                                 snd_assert(err >= 0, );
104                         } else {
105                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
106                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
107                         }
108                 } else {
109                         unsigned int c;
110                         unsigned int channels = runtime->channels;
111                         if (substream->ops->silence) {
112                                 for (c = 0; c < channels; ++c) {
113                                         int err;
114                                         err = substream->ops->silence(substream, c, ofs, transfer);
115                                         snd_assert(err >= 0, );
116                                 }
117                         } else {
118                                 size_t dma_csize = runtime->dma_bytes / channels;
119                                 for (c = 0; c < channels; ++c) {
120                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
121                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
122                                 }
123                         }
124                 }
125                 runtime->silence_filled += transfer;
126                 frames -= transfer;
127                 ofs = 0;
128         }
129 }
130
131 static void xrun(snd_pcm_substream_t *substream)
132 {
133         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
134 #ifdef CONFIG_SND_DEBUG
135         if (substream->pstr->xrun_debug) {
136                 snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
137                            substream->pcm->card->number,
138                            substream->pcm->device,
139                            substream->stream ? 'c' : 'p');
140                 if (substream->pstr->xrun_debug > 1)
141                         dump_stack();
142         }
143 #endif
144 }
145
146 static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(snd_pcm_substream_t *substream,
147                                                           snd_pcm_runtime_t *runtime)
148 {
149         snd_pcm_uframes_t pos;
150
151         pos = substream->ops->pointer(substream);
152         if (pos == SNDRV_PCM_POS_XRUN)
153                 return pos; /* XRUN */
154         if (runtime->tstamp_mode & SNDRV_PCM_TSTAMP_MMAP)
155                 snd_timestamp_now((snd_timestamp_t*)&runtime->status->tstamp, runtime->tstamp_timespec);
156 #ifdef CONFIG_SND_DEBUG
157         if (pos >= runtime->buffer_size) {
158                 snd_printk(KERN_ERR  "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size);
159         } else
160 #endif
161         snd_runtime_check(pos < runtime->buffer_size, return 0);
162         pos -= pos % runtime->min_align;
163         return pos;
164 }
165
166 static inline int snd_pcm_update_hw_ptr_post(snd_pcm_substream_t *substream,
167                                              snd_pcm_runtime_t *runtime)
168 {
169         snd_pcm_uframes_t avail;
170
171         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
172                 avail = snd_pcm_playback_avail(runtime);
173         else
174                 avail = snd_pcm_capture_avail(runtime);
175         if (avail > runtime->avail_max)
176                 runtime->avail_max = avail;
177         if (avail >= runtime->stop_threshold) {
178                 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
179                         snd_pcm_drain_done(substream);
180                 else
181                         xrun(substream);
182                 return -EPIPE;
183         }
184         if (avail >= runtime->control->avail_min)
185                 wake_up(&runtime->sleep);
186         return 0;
187 }
188
189 static inline int snd_pcm_update_hw_ptr_interrupt(snd_pcm_substream_t *substream)
190 {
191         snd_pcm_runtime_t *runtime = substream->runtime;
192         snd_pcm_uframes_t pos;
193         snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt;
194         snd_pcm_sframes_t delta;
195
196         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
197         if (pos == SNDRV_PCM_POS_XRUN) {
198                 xrun(substream);
199                 return -EPIPE;
200         }
201         if (runtime->period_size == runtime->buffer_size)
202                 goto __next_buf;
203         new_hw_ptr = runtime->hw_ptr_base + pos;
204         hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
205
206         delta = hw_ptr_interrupt - new_hw_ptr;
207         if (delta > 0) {
208                 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
209 #ifdef CONFIG_SND_DEBUG
210                         if (runtime->periods > 1 && substream->pstr->xrun_debug) {
211                                 snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
212                                 if (substream->pstr->xrun_debug > 1)
213                                         dump_stack();
214                         }
215 #endif
216                         return 0;
217                 }
218               __next_buf:
219                 runtime->hw_ptr_base += runtime->buffer_size;
220                 if (runtime->hw_ptr_base == runtime->boundary)
221                         runtime->hw_ptr_base = 0;
222                 new_hw_ptr = runtime->hw_ptr_base + pos;
223         }
224
225         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
226             runtime->silence_size > 0)
227                 snd_pcm_playback_silence(substream, new_hw_ptr);
228
229         runtime->status->hw_ptr = new_hw_ptr;
230         runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size;
231
232         return snd_pcm_update_hw_ptr_post(substream, runtime);
233 }
234
235 /* CAUTION: call it with irq disabled */
236 int snd_pcm_update_hw_ptr(snd_pcm_substream_t *substream)
237 {
238         snd_pcm_runtime_t *runtime = substream->runtime;
239         snd_pcm_uframes_t pos;
240         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr;
241         snd_pcm_sframes_t delta;
242
243         old_hw_ptr = runtime->status->hw_ptr;
244         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
245         if (pos == SNDRV_PCM_POS_XRUN) {
246                 xrun(substream);
247                 return -EPIPE;
248         }
249         new_hw_ptr = runtime->hw_ptr_base + pos;
250
251         delta = old_hw_ptr - new_hw_ptr;
252         if (delta > 0) {
253                 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
254 #ifdef CONFIG_SND_DEBUG
255                         if (runtime->periods > 2 && substream->pstr->xrun_debug) {
256                                 snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
257                                 if (substream->pstr->xrun_debug > 1)
258                                         dump_stack();
259                         }
260 #endif
261                         return 0;
262                 }
263                 runtime->hw_ptr_base += runtime->buffer_size;
264                 if (runtime->hw_ptr_base == runtime->boundary)
265                         runtime->hw_ptr_base = 0;
266                 new_hw_ptr = runtime->hw_ptr_base + pos;
267         }
268         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
269             runtime->silence_size > 0)
270                 snd_pcm_playback_silence(substream, new_hw_ptr);
271
272         runtime->status->hw_ptr = new_hw_ptr;
273
274         return snd_pcm_update_hw_ptr_post(substream, runtime);
275 }
276
277 /**
278  * snd_pcm_set_ops - set the PCM operators
279  * @pcm: the pcm instance
280  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
281  * @ops: the operator table
282  *
283  * Sets the given PCM operators to the pcm instance.
284  */
285 void snd_pcm_set_ops(snd_pcm_t *pcm, int direction, snd_pcm_ops_t *ops)
286 {
287         snd_pcm_str_t *stream = &pcm->streams[direction];
288         snd_pcm_substream_t *substream;
289         
290         for (substream = stream->substream; substream != NULL; substream = substream->next)
291                 substream->ops = ops;
292 }
293
294
295 /**
296  * snd_pcm_sync - set the PCM sync id
297  * @substream: the pcm substream
298  *
299  * Sets the PCM sync identifier for the card.
300  */
301 void snd_pcm_set_sync(snd_pcm_substream_t * substream)
302 {
303         snd_pcm_runtime_t *runtime = substream->runtime;
304         
305         runtime->sync.id32[0] = substream->pcm->card->number;
306         runtime->sync.id32[1] = -1;
307         runtime->sync.id32[2] = -1;
308         runtime->sync.id32[3] = -1;
309 }
310
311 /*
312  *  Standard ioctl routine
313  */
314
315 /* Code taken from alsa-lib */
316 #define assert(a) snd_assert((a), return -EINVAL)
317
318 static inline unsigned int div32(unsigned int a, unsigned int b, 
319                                  unsigned int *r)
320 {
321         if (b == 0) {
322                 *r = 0;
323                 return UINT_MAX;
324         }
325         *r = a % b;
326         return a / b;
327 }
328
329 static inline unsigned int div_down(unsigned int a, unsigned int b)
330 {
331         if (b == 0)
332                 return UINT_MAX;
333         return a / b;
334 }
335
336 static inline unsigned int div_up(unsigned int a, unsigned int b)
337 {
338         unsigned int r;
339         unsigned int q;
340         if (b == 0)
341                 return UINT_MAX;
342         q = div32(a, b, &r);
343         if (r)
344                 ++q;
345         return q;
346 }
347
348 static inline unsigned int mul(unsigned int a, unsigned int b)
349 {
350         if (a == 0)
351                 return 0;
352         if (div_down(UINT_MAX, a) < b)
353                 return UINT_MAX;
354         return a * b;
355 }
356
357 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
358                                     unsigned int c, unsigned int *r)
359 {
360         u_int64_t n = (u_int64_t) a * b;
361         if (c == 0) {
362                 snd_assert(n > 0, );
363                 *r = 0;
364                 return UINT_MAX;
365         }
366         div64_32(&n, c, r);
367         if (n >= UINT_MAX) {
368                 *r = 0;
369                 return UINT_MAX;
370         }
371         return n;
372 }
373
374 static int snd_interval_refine_min(snd_interval_t *i, unsigned int min, int openmin)
375 {
376         int changed = 0;
377         assert(!snd_interval_empty(i));
378         if (i->min < min) {
379                 i->min = min;
380                 i->openmin = openmin;
381                 changed = 1;
382         } else if (i->min == min && !i->openmin && openmin) {
383                 i->openmin = 1;
384                 changed = 1;
385         }
386         if (i->integer) {
387                 if (i->openmin) {
388                         i->min++;
389                         i->openmin = 0;
390                 }
391         }
392         if (snd_interval_checkempty(i)) {
393                 snd_interval_none(i);
394                 return -EINVAL;
395         }
396         return changed;
397 }
398
399 static int snd_interval_refine_max(snd_interval_t *i, unsigned int max, int openmax)
400 {
401         int changed = 0;
402         assert(!snd_interval_empty(i));
403         if (i->max > max) {
404                 i->max = max;
405                 i->openmax = openmax;
406                 changed = 1;
407         } else if (i->max == max && !i->openmax && openmax) {
408                 i->openmax = 1;
409                 changed = 1;
410         }
411         if (i->integer) {
412                 if (i->openmax) {
413                         i->max--;
414                         i->openmax = 0;
415                 }
416         }
417         if (snd_interval_checkempty(i)) {
418                 snd_interval_none(i);
419                 return -EINVAL;
420         }
421         return changed;
422 }
423
424 /**
425  * snd_interval_refine - refine the interval value of configurator
426  * @i: the interval value to refine
427  * @v: the interval value to refer to
428  *
429  * Refines the interval value with the reference value.
430  * The interval is changed to the range satisfying both intervals.
431  * The interval status (min, max, integer, etc.) are evaluated.
432  *
433  * Returns non-zero if the value is changed, zero if not changed.
434  */
435 int snd_interval_refine(snd_interval_t *i, const snd_interval_t *v)
436 {
437         int changed = 0;
438         assert(!snd_interval_empty(i));
439         if (i->min < v->min) {
440                 i->min = v->min;
441                 i->openmin = v->openmin;
442                 changed = 1;
443         } else if (i->min == v->min && !i->openmin && v->openmin) {
444                 i->openmin = 1;
445                 changed = 1;
446         }
447         if (i->max > v->max) {
448                 i->max = v->max;
449                 i->openmax = v->openmax;
450                 changed = 1;
451         } else if (i->max == v->max && !i->openmax && v->openmax) {
452                 i->openmax = 1;
453                 changed = 1;
454         }
455         if (!i->integer && v->integer) {
456                 i->integer = 1;
457                 changed = 1;
458         }
459         if (i->integer) {
460                 if (i->openmin) {
461                         i->min++;
462                         i->openmin = 0;
463                 }
464                 if (i->openmax) {
465                         i->max--;
466                         i->openmax = 0;
467                 }
468         } else if (!i->openmin && !i->openmax && i->min == i->max)
469                 i->integer = 1;
470         if (snd_interval_checkempty(i)) {
471                 snd_interval_none(i);
472                 return -EINVAL;
473         }
474         return changed;
475 }
476
477 static int snd_interval_refine_first(snd_interval_t *i)
478 {
479         assert(!snd_interval_empty(i));
480         if (snd_interval_single(i))
481                 return 0;
482         i->max = i->min;
483         i->openmax = i->openmin;
484         if (i->openmax)
485                 i->max++;
486         return 1;
487 }
488
489 static int snd_interval_refine_last(snd_interval_t *i)
490 {
491         assert(!snd_interval_empty(i));
492         if (snd_interval_single(i))
493                 return 0;
494         i->min = i->max;
495         i->openmin = i->openmax;
496         if (i->openmin)
497                 i->min--;
498         return 1;
499 }
500
501 static int snd_interval_refine_set(snd_interval_t *i, unsigned int val)
502 {
503         snd_interval_t t;
504         t.empty = 0;
505         t.min = t.max = val;
506         t.openmin = t.openmax = 0;
507         t.integer = 1;
508         return snd_interval_refine(i, &t);
509 }
510
511 void snd_interval_mul(const snd_interval_t *a, const snd_interval_t *b, snd_interval_t *c)
512 {
513         if (a->empty || b->empty) {
514                 snd_interval_none(c);
515                 return;
516         }
517         c->empty = 0;
518         c->min = mul(a->min, b->min);
519         c->openmin = (a->openmin || b->openmin);
520         c->max = mul(a->max,  b->max);
521         c->openmax = (a->openmax || b->openmax);
522         c->integer = (a->integer && b->integer);
523 }
524
525 /**
526  * snd_interval_div - refine the interval value with division
527  * @a: dividend
528  * @b: divisor
529  * @c: quotient
530  *
531  * c = a / b
532  *
533  * Returns non-zero if the value is changed, zero if not changed.
534  */
535 void snd_interval_div(const snd_interval_t *a, const snd_interval_t *b, snd_interval_t *c)
536 {
537         unsigned int r;
538         if (a->empty || b->empty) {
539                 snd_interval_none(c);
540                 return;
541         }
542         c->empty = 0;
543         c->min = div32(a->min, b->max, &r);
544         c->openmin = (r || a->openmin || b->openmax);
545         if (b->min > 0) {
546                 c->max = div32(a->max, b->min, &r);
547                 if (r) {
548                         c->max++;
549                         c->openmax = 1;
550                 } else
551                         c->openmax = (a->openmax || b->openmin);
552         } else {
553                 c->max = UINT_MAX;
554                 c->openmax = 0;
555         }
556         c->integer = 0;
557 }
558
559 /**
560  * snd_interval_muldivk - refine the interval value
561  * @a: dividend 1
562  * @b: dividend 2
563  * @k: divisor (as integer)
564  * @c: result
565   *
566  * c = a * b / k
567  *
568  * Returns non-zero if the value is changed, zero if not changed.
569  */
570 void snd_interval_muldivk(const snd_interval_t *a, const snd_interval_t *b,
571                       unsigned int k, snd_interval_t *c)
572 {
573         unsigned int r;
574         if (a->empty || b->empty) {
575                 snd_interval_none(c);
576                 return;
577         }
578         c->empty = 0;
579         c->min = muldiv32(a->min, b->min, k, &r);
580         c->openmin = (r || a->openmin || b->openmin);
581         c->max = muldiv32(a->max, b->max, k, &r);
582         if (r) {
583                 c->max++;
584                 c->openmax = 1;
585         } else
586                 c->openmax = (a->openmax || b->openmax);
587         c->integer = 0;
588 }
589
590 /**
591  * snd_interval_mulkdiv - refine the interval value
592  * @a: dividend 1
593  * @k: dividend 2 (as integer)
594  * @b: divisor
595  * @c: result
596  *
597  * c = a * k / b
598  *
599  * Returns non-zero if the value is changed, zero if not changed.
600  */
601 void snd_interval_mulkdiv(const snd_interval_t *a, unsigned int k,
602                       const snd_interval_t *b, snd_interval_t *c)
603 {
604         unsigned int r;
605         if (a->empty || b->empty) {
606                 snd_interval_none(c);
607                 return;
608         }
609         c->empty = 0;
610         c->min = muldiv32(a->min, k, b->max, &r);
611         c->openmin = (r || a->openmin || b->openmax);
612         if (b->min > 0) {
613                 c->max = muldiv32(a->max, k, b->min, &r);
614                 if (r) {
615                         c->max++;
616                         c->openmax = 1;
617                 } else
618                         c->openmax = (a->openmax || b->openmin);
619         } else {
620                 c->max = UINT_MAX;
621                 c->openmax = 0;
622         }
623         c->integer = 0;
624 }
625
626 #undef assert
627 /* ---- */
628
629
630 /**
631  * snd_interval_ratnum - refine the interval value
632  * @i: interval to refine
633  * @rats_count: number of ratnum_t 
634  * @rats: ratnum_t array
635  * @nump: pointer to store the resultant numerator
636  * @denp: pointer to store the resultant denominator
637  *
638  * Returns non-zero if the value is changed, zero if not changed.
639  */
640 int snd_interval_ratnum(snd_interval_t *i,
641                     unsigned int rats_count, ratnum_t *rats,
642                     unsigned int *nump, unsigned int *denp)
643 {
644         unsigned int best_num, best_diff, best_den;
645         unsigned int k;
646         snd_interval_t t;
647         int err;
648
649         best_num = best_den = best_diff = 0;
650         for (k = 0; k < rats_count; ++k) {
651                 unsigned int num = rats[k].num;
652                 unsigned int den;
653                 unsigned int q = i->min;
654                 int diff;
655                 if (q == 0)
656                         q = 1;
657                 den = div_down(num, q);
658                 if (den < rats[k].den_min)
659                         continue;
660                 if (den > rats[k].den_max)
661                         den = rats[k].den_max;
662                 else {
663                         unsigned int r;
664                         r = (den - rats[k].den_min) % rats[k].den_step;
665                         if (r != 0)
666                                 den -= r;
667                 }
668                 diff = num - q * den;
669                 if (best_num == 0 ||
670                     diff * best_den < best_diff * den) {
671                         best_diff = diff;
672                         best_den = den;
673                         best_num = num;
674                 }
675         }
676         if (best_den == 0) {
677                 i->empty = 1;
678                 return -EINVAL;
679         }
680         t.min = div_down(best_num, best_den);
681         t.openmin = !!(best_num % best_den);
682         
683         best_num = best_den = best_diff = 0;
684         for (k = 0; k < rats_count; ++k) {
685                 unsigned int num = rats[k].num;
686                 unsigned int den;
687                 unsigned int q = i->max;
688                 int diff;
689                 if (q == 0) {
690                         i->empty = 1;
691                         return -EINVAL;
692                 }
693                 den = div_up(num, q);
694                 if (den > rats[k].den_max)
695                         continue;
696                 if (den < rats[k].den_min)
697                         den = rats[k].den_min;
698                 else {
699                         unsigned int r;
700                         r = (den - rats[k].den_min) % rats[k].den_step;
701                         if (r != 0)
702                                 den += rats[k].den_step - r;
703                 }
704                 diff = q * den - num;
705                 if (best_num == 0 ||
706                     diff * best_den < best_diff * den) {
707                         best_diff = diff;
708                         best_den = den;
709                         best_num = num;
710                 }
711         }
712         if (best_den == 0) {
713                 i->empty = 1;
714                 return -EINVAL;
715         }
716         t.max = div_up(best_num, best_den);
717         t.openmax = !!(best_num % best_den);
718         t.integer = 0;
719         err = snd_interval_refine(i, &t);
720         if (err < 0)
721                 return err;
722
723         if (snd_interval_single(i)) {
724                 if (nump)
725                         *nump = best_num;
726                 if (denp)
727                         *denp = best_den;
728         }
729         return err;
730 }
731
732 /**
733  * snd_interval_ratden - refine the interval value
734  * @i: interval to refine
735  * @rats_count: number of ratden_t
736  * @rats: ratden_t array
737  * @nump: pointer to store the resultant numerator
738  * @denp: pointer to store the resultant denominator
739  *
740  * Returns non-zero if the value is changed, zero if not changed.
741  */
742 static int snd_interval_ratden(snd_interval_t *i,
743                                unsigned int rats_count, ratden_t *rats,
744                                unsigned int *nump, unsigned int *denp)
745 {
746         unsigned int best_num, best_diff, best_den;
747         unsigned int k;
748         snd_interval_t t;
749         int err;
750
751         best_num = best_den = best_diff = 0;
752         for (k = 0; k < rats_count; ++k) {
753                 unsigned int num;
754                 unsigned int den = rats[k].den;
755                 unsigned int q = i->min;
756                 int diff;
757                 num = mul(q, den);
758                 if (num > rats[k].num_max)
759                         continue;
760                 if (num < rats[k].num_min)
761                         num = rats[k].num_max;
762                 else {
763                         unsigned int r;
764                         r = (num - rats[k].num_min) % rats[k].num_step;
765                         if (r != 0)
766                                 num += rats[k].num_step - r;
767                 }
768                 diff = num - q * den;
769                 if (best_num == 0 ||
770                     diff * best_den < best_diff * den) {
771                         best_diff = diff;
772                         best_den = den;
773                         best_num = num;
774                 }
775         }
776         if (best_den == 0) {
777                 i->empty = 1;
778                 return -EINVAL;
779         }
780         t.min = div_down(best_num, best_den);
781         t.openmin = !!(best_num % best_den);
782         
783         best_num = best_den = best_diff = 0;
784         for (k = 0; k < rats_count; ++k) {
785                 unsigned int num;
786                 unsigned int den = rats[k].den;
787                 unsigned int q = i->max;
788                 int diff;
789                 num = mul(q, den);
790                 if (num < rats[k].num_min)
791                         continue;
792                 if (num > rats[k].num_max)
793                         num = rats[k].num_max;
794                 else {
795                         unsigned int r;
796                         r = (num - rats[k].num_min) % rats[k].num_step;
797                         if (r != 0)
798                                 num -= r;
799                 }
800                 diff = q * den - num;
801                 if (best_num == 0 ||
802                     diff * best_den < best_diff * den) {
803                         best_diff = diff;
804                         best_den = den;
805                         best_num = num;
806                 }
807         }
808         if (best_den == 0) {
809                 i->empty = 1;
810                 return -EINVAL;
811         }
812         t.max = div_up(best_num, best_den);
813         t.openmax = !!(best_num % best_den);
814         t.integer = 0;
815         err = snd_interval_refine(i, &t);
816         if (err < 0)
817                 return err;
818
819         if (snd_interval_single(i)) {
820                 if (nump)
821                         *nump = best_num;
822                 if (denp)
823                         *denp = best_den;
824         }
825         return err;
826 }
827
828 /**
829  * snd_interval_list - refine the interval value from the list
830  * @i: the interval value to refine
831  * @count: the number of elements in the list
832  * @list: the value list
833  * @mask: the bit-mask to evaluate
834  *
835  * Refines the interval value from the list.
836  * When mask is non-zero, only the elements corresponding to bit 1 are
837  * evaluated.
838  *
839  * Returns non-zero if the value is changed, zero if not changed.
840  */
841 int snd_interval_list(snd_interval_t *i, unsigned int count, unsigned int *list, unsigned int mask)
842 {
843         unsigned int k;
844         int changed = 0;
845         for (k = 0; k < count; k++) {
846                 if (mask && !(mask & (1 << k)))
847                         continue;
848                 if (i->min == list[k] && !i->openmin)
849                         goto _l1;
850                 if (i->min < list[k]) {
851                         i->min = list[k];
852                         i->openmin = 0;
853                         changed = 1;
854                         goto _l1;
855                 }
856         }
857         i->empty = 1;
858         return -EINVAL;
859  _l1:
860         for (k = count; k-- > 0;) {
861                 if (mask && !(mask & (1 << k)))
862                         continue;
863                 if (i->max == list[k] && !i->openmax)
864                         goto _l2;
865                 if (i->max > list[k]) {
866                         i->max = list[k];
867                         i->openmax = 0;
868                         changed = 1;
869                         goto _l2;
870                 }
871         }
872         i->empty = 1;
873         return -EINVAL;
874  _l2:
875         if (snd_interval_checkempty(i)) {
876                 i->empty = 1;
877                 return -EINVAL;
878         }
879         return changed;
880 }
881
882 static int snd_interval_step(snd_interval_t *i, unsigned int min, unsigned int step)
883 {
884         unsigned int n;
885         int changed = 0;
886         n = (i->min - min) % step;
887         if (n != 0 || i->openmin) {
888                 i->min += step - n;
889                 changed = 1;
890         }
891         n = (i->max - min) % step;
892         if (n != 0 || i->openmax) {
893                 i->max -= n;
894                 changed = 1;
895         }
896         if (snd_interval_checkempty(i)) {
897                 i->empty = 1;
898                 return -EINVAL;
899         }
900         return changed;
901 }
902
903 /* Info constraints helpers */
904
905 /**
906  * snd_pcm_hw_rule_add - add the hw-constraint rule
907  * @runtime: the pcm runtime instance
908  * @cond: condition bits
909  * @var: the variable to evaluate
910  * @func: the evaluation function
911  * @private: the private data pointer passed to function
912  * @dep: the dependent variables
913  *
914  * Returns zero if successful, or a negative error code on failure.
915  */
916 int snd_pcm_hw_rule_add(snd_pcm_runtime_t *runtime, unsigned int cond,
917                         int var,
918                         snd_pcm_hw_rule_func_t func, void *private,
919                         int dep, ...)
920 {
921         snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
922         snd_pcm_hw_rule_t *c;
923         unsigned int k;
924         va_list args;
925         va_start(args, dep);
926         if (constrs->rules_num >= constrs->rules_all) {
927                 snd_pcm_hw_rule_t *new;
928                 unsigned int new_rules = constrs->rules_all + 16;
929                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
930                 if (!new)
931                         return -ENOMEM;
932                 if (constrs->rules) {
933                         memcpy(new, constrs->rules,
934                                constrs->rules_num * sizeof(*c));
935                         kfree(constrs->rules);
936                 }
937                 constrs->rules = new;
938                 constrs->rules_all = new_rules;
939         }
940         c = &constrs->rules[constrs->rules_num];
941         c->cond = cond;
942         c->func = func;
943         c->var = var;
944         c->private = private;
945         k = 0;
946         while (1) {
947                 snd_assert(k < ARRAY_SIZE(c->deps), return -EINVAL);
948                 c->deps[k++] = dep;
949                 if (dep < 0)
950                         break;
951                 dep = va_arg(args, int);
952         }
953         constrs->rules_num++;
954         va_end(args);
955         return 0;
956 }                                   
957
958 /**
959  * snd_pcm_hw_constraint_mask
960  * @runtime: PCM runtime instance
961  * @var: hw_params variable to apply the mask
962  * @mask: the bitmap mask
963  *
964  * Apply the constraint of the given bitmap mask to a mask parameter.
965  */
966 int snd_pcm_hw_constraint_mask(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var,
967                                u_int32_t mask)
968 {
969         snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
970         snd_mask_t *maskp = constrs_mask(constrs, var);
971         *maskp->bits &= mask;
972         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
973         if (*maskp->bits == 0)
974                 return -EINVAL;
975         return 0;
976 }
977
978 /**
979  * snd_pcm_hw_constraint_mask64
980  * @runtime: PCM runtime instance
981  * @var: hw_params variable to apply the mask
982  * @mask: the 64bit bitmap mask
983  *
984  * Apply the constraint of the given bitmap mask to a mask parameter.
985  */
986 int snd_pcm_hw_constraint_mask64(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var,
987                                  u_int64_t mask)
988 {
989         snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
990         snd_mask_t *maskp = constrs_mask(constrs, var);
991         maskp->bits[0] &= (u_int32_t)mask;
992         maskp->bits[1] &= (u_int32_t)(mask >> 32);
993         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
994         if (! maskp->bits[0] && ! maskp->bits[1])
995                 return -EINVAL;
996         return 0;
997 }
998
999 /**
1000  * snd_pcm_hw_constraint_integer
1001  * @runtime: PCM runtime instance
1002  * @var: hw_params variable to apply the integer constraint
1003  *
1004  * Apply the constraint of integer to an interval parameter.
1005  */
1006 int snd_pcm_hw_constraint_integer(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var)
1007 {
1008         snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
1009         return snd_interval_setinteger(constrs_interval(constrs, var));
1010 }
1011
1012 /**
1013  * snd_pcm_hw_constraint_minmax
1014  * @runtime: PCM runtime instance
1015  * @var: hw_params variable to apply the range
1016  * @min: the minimal value
1017  * @max: the maximal value
1018  * 
1019  * Apply the min/max range constraint to an interval parameter.
1020  */
1021 int snd_pcm_hw_constraint_minmax(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var,
1022                                  unsigned int min, unsigned int max)
1023 {
1024         snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
1025         snd_interval_t t;
1026         t.min = min;
1027         t.max = max;
1028         t.openmin = t.openmax = 0;
1029         t.integer = 0;
1030         return snd_interval_refine(constrs_interval(constrs, var), &t);
1031 }
1032
1033 static int snd_pcm_hw_rule_list(snd_pcm_hw_params_t *params,
1034                                 snd_pcm_hw_rule_t *rule)
1035 {
1036         snd_pcm_hw_constraint_list_t *list = rule->private;
1037         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1038 }               
1039
1040
1041 /**
1042  * snd_pcm_hw_constraint_list
1043  * @runtime: PCM runtime instance
1044  * @cond: condition bits
1045  * @var: hw_params variable to apply the list constraint
1046  * @l: list
1047  * 
1048  * Apply the list of constraints to an interval parameter.
1049  */
1050 int snd_pcm_hw_constraint_list(snd_pcm_runtime_t *runtime,
1051                                unsigned int cond,
1052                                snd_pcm_hw_param_t var,
1053                                snd_pcm_hw_constraint_list_t *l)
1054 {
1055         return snd_pcm_hw_rule_add(runtime, cond, var,
1056                                    snd_pcm_hw_rule_list, l,
1057                                    var, -1);
1058 }
1059
1060 static int snd_pcm_hw_rule_ratnums(snd_pcm_hw_params_t *params,
1061                                    snd_pcm_hw_rule_t *rule)
1062 {
1063         snd_pcm_hw_constraint_ratnums_t *r = rule->private;
1064         unsigned int num = 0, den = 0;
1065         int err;
1066         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1067                                   r->nrats, r->rats, &num, &den);
1068         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1069                 params->rate_num = num;
1070                 params->rate_den = den;
1071         }
1072         return err;
1073 }
1074
1075 /**
1076  * snd_pcm_hw_constraint_ratnums
1077  * @runtime: PCM runtime instance
1078  * @cond: condition bits
1079  * @var: hw_params variable to apply the ratnums constraint
1080  * @r: ratnums_t constriants
1081  */
1082 int snd_pcm_hw_constraint_ratnums(snd_pcm_runtime_t *runtime, 
1083                                   unsigned int cond,
1084                                   snd_pcm_hw_param_t var,
1085                                   snd_pcm_hw_constraint_ratnums_t *r)
1086 {
1087         return snd_pcm_hw_rule_add(runtime, cond, var,
1088                                    snd_pcm_hw_rule_ratnums, r,
1089                                    var, -1);
1090 }
1091
1092 static int snd_pcm_hw_rule_ratdens(snd_pcm_hw_params_t *params,
1093                                    snd_pcm_hw_rule_t *rule)
1094 {
1095         snd_pcm_hw_constraint_ratdens_t *r = rule->private;
1096         unsigned int num = 0, den = 0;
1097         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1098                                   r->nrats, r->rats, &num, &den);
1099         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1100                 params->rate_num = num;
1101                 params->rate_den = den;
1102         }
1103         return err;
1104 }
1105
1106 /**
1107  * snd_pcm_hw_constraint_ratdens
1108  * @runtime: PCM runtime instance
1109  * @cond: condition bits
1110  * @var: hw_params variable to apply the ratdens constraint
1111  * @r: ratdens_t constriants
1112  */
1113 int snd_pcm_hw_constraint_ratdens(snd_pcm_runtime_t *runtime, 
1114                                   unsigned int cond,
1115                                   snd_pcm_hw_param_t var,
1116                                   snd_pcm_hw_constraint_ratdens_t *r)
1117 {
1118         return snd_pcm_hw_rule_add(runtime, cond, var,
1119                                    snd_pcm_hw_rule_ratdens, r,
1120                                    var, -1);
1121 }
1122
1123 static int snd_pcm_hw_rule_msbits(snd_pcm_hw_params_t *params,
1124                                   snd_pcm_hw_rule_t *rule)
1125 {
1126         unsigned int l = (unsigned long) rule->private;
1127         int width = l & 0xffff;
1128         unsigned int msbits = l >> 16;
1129         snd_interval_t *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1130         if (snd_interval_single(i) && snd_interval_value(i) == width)
1131                 params->msbits = msbits;
1132         return 0;
1133 }
1134
1135 /**
1136  * snd_pcm_hw_constraint_msbits
1137  * @runtime: PCM runtime instance
1138  * @cond: condition bits
1139  * @width: sample bits width
1140  * @msbits: msbits width
1141  */
1142 int snd_pcm_hw_constraint_msbits(snd_pcm_runtime_t *runtime, 
1143                                  unsigned int cond,
1144                                  unsigned int width,
1145                                  unsigned int msbits)
1146 {
1147         unsigned long l = (msbits << 16) | width;
1148         return snd_pcm_hw_rule_add(runtime, cond, -1,
1149                                     snd_pcm_hw_rule_msbits,
1150                                     (void*) l,
1151                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1152 }
1153
1154 static int snd_pcm_hw_rule_step(snd_pcm_hw_params_t *params,
1155                                 snd_pcm_hw_rule_t *rule)
1156 {
1157         unsigned long step = (unsigned long) rule->private;
1158         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1159 }
1160
1161 /**
1162  * snd_pcm_hw_constraint_step
1163  * @runtime: PCM runtime instance
1164  * @cond: condition bits
1165  * @var: hw_params variable to apply the step constraint
1166  * @step: step size
1167  */
1168 int snd_pcm_hw_constraint_step(snd_pcm_runtime_t *runtime,
1169                                unsigned int cond,
1170                                snd_pcm_hw_param_t var,
1171                                unsigned long step)
1172 {
1173         return snd_pcm_hw_rule_add(runtime, cond, var, 
1174                                    snd_pcm_hw_rule_step, (void *) step,
1175                                    var, -1);
1176 }
1177
1178 static int snd_pcm_hw_rule_pow2(snd_pcm_hw_params_t *params, snd_pcm_hw_rule_t *rule)
1179 {
1180         static int pow2_sizes[] = {
1181                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1182                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1183                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1184                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1185         };
1186         return snd_interval_list(hw_param_interval(params, rule->var),
1187                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1188 }               
1189
1190 /**
1191  * snd_pcm_hw_constraint_pow2
1192  * @runtime: PCM runtime instance
1193  * @cond: condition bits
1194  * @var: hw_params variable to apply the power-of-2 constraint
1195  */
1196 int snd_pcm_hw_constraint_pow2(snd_pcm_runtime_t *runtime,
1197                                unsigned int cond,
1198                                snd_pcm_hw_param_t var)
1199 {
1200         return snd_pcm_hw_rule_add(runtime, cond, var, 
1201                                    snd_pcm_hw_rule_pow2, NULL,
1202                                    var, -1);
1203 }
1204
1205 /* To use the same code we have in alsa-lib */
1206 #define snd_pcm_t snd_pcm_substream_t
1207 #define assert(i) snd_assert((i), return -EINVAL)
1208 #ifndef INT_MIN
1209 #define INT_MIN ((int)((unsigned int)INT_MAX+1))
1210 #endif
1211
1212 static void _snd_pcm_hw_param_any(snd_pcm_hw_params_t *params,
1213                                   snd_pcm_hw_param_t var)
1214 {
1215         if (hw_is_mask(var)) {
1216                 snd_mask_any(hw_param_mask(params, var));
1217                 params->cmask |= 1 << var;
1218                 params->rmask |= 1 << var;
1219                 return;
1220         }
1221         if (hw_is_interval(var)) {
1222                 snd_interval_any(hw_param_interval(params, var));
1223                 params->cmask |= 1 << var;
1224                 params->rmask |= 1 << var;
1225                 return;
1226         }
1227         snd_BUG();
1228 }
1229
1230 #if 0
1231 /*
1232  * snd_pcm_hw_param_any
1233  */
1234 int snd_pcm_hw_param_any(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1235                          snd_pcm_hw_param_t var)
1236 {
1237         _snd_pcm_hw_param_any(params, var);
1238         return snd_pcm_hw_refine(pcm, params);
1239 }
1240 #endif  /*  0  */
1241
1242 void _snd_pcm_hw_params_any(snd_pcm_hw_params_t *params)
1243 {
1244         unsigned int k;
1245         memset(params, 0, sizeof(*params));
1246         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1247                 _snd_pcm_hw_param_any(params, k);
1248         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1249                 _snd_pcm_hw_param_any(params, k);
1250         params->info = ~0U;
1251 }
1252
1253 #if 0
1254 /*
1255  * snd_pcm_hw_params_any
1256  *
1257  * Fill PARAMS with full configuration space boundaries
1258  */
1259 int snd_pcm_hw_params_any(snd_pcm_t *pcm, snd_pcm_hw_params_t *params)
1260 {
1261         _snd_pcm_hw_params_any(params);
1262         return snd_pcm_hw_refine(pcm, params);
1263 }
1264 #endif  /*  0  */
1265
1266 /**
1267  * snd_pcm_hw_param_value
1268  * @params: the hw_params instance
1269  * @var: parameter to retrieve
1270  * @dir: pointer to the direction (-1,0,1) or NULL
1271  *
1272  * Return the value for field PAR if it's fixed in configuration space 
1273  *  defined by PARAMS. Return -EINVAL otherwise
1274  */
1275 static int snd_pcm_hw_param_value(const snd_pcm_hw_params_t *params,
1276                                   snd_pcm_hw_param_t var, int *dir)
1277 {
1278         if (hw_is_mask(var)) {
1279                 const snd_mask_t *mask = hw_param_mask_c(params, var);
1280                 if (!snd_mask_single(mask))
1281                         return -EINVAL;
1282                 if (dir)
1283                         *dir = 0;
1284                 return snd_mask_value(mask);
1285         }
1286         if (hw_is_interval(var)) {
1287                 const snd_interval_t *i = hw_param_interval_c(params, var);
1288                 if (!snd_interval_single(i))
1289                         return -EINVAL;
1290                 if (dir)
1291                         *dir = i->openmin;
1292                 return snd_interval_value(i);
1293         }
1294         assert(0);
1295         return -EINVAL;
1296 }
1297
1298 /**
1299  * snd_pcm_hw_param_value_min
1300  * @params: the hw_params instance
1301  * @var: parameter to retrieve
1302  * @dir: pointer to the direction (-1,0,1) or NULL
1303  *
1304  * Return the minimum value for field PAR.
1305  */
1306 unsigned int snd_pcm_hw_param_value_min(const snd_pcm_hw_params_t *params,
1307                                         snd_pcm_hw_param_t var, int *dir)
1308 {
1309         if (hw_is_mask(var)) {
1310                 if (dir)
1311                         *dir = 0;
1312                 return snd_mask_min(hw_param_mask_c(params, var));
1313         }
1314         if (hw_is_interval(var)) {
1315                 const snd_interval_t *i = hw_param_interval_c(params, var);
1316                 if (dir)
1317                         *dir = i->openmin;
1318                 return snd_interval_min(i);
1319         }
1320         assert(0);
1321         return -EINVAL;
1322 }
1323
1324 /**
1325  * snd_pcm_hw_param_value_max
1326  * @params: the hw_params instance
1327  * @var: parameter to retrieve
1328  * @dir: pointer to the direction (-1,0,1) or NULL
1329  *
1330  * Return the maximum value for field PAR.
1331  */
1332 unsigned int snd_pcm_hw_param_value_max(const snd_pcm_hw_params_t *params,
1333                                         snd_pcm_hw_param_t var, int *dir)
1334 {
1335         if (hw_is_mask(var)) {
1336                 if (dir)
1337                         *dir = 0;
1338                 return snd_mask_max(hw_param_mask_c(params, var));
1339         }
1340         if (hw_is_interval(var)) {
1341                 const snd_interval_t *i = hw_param_interval_c(params, var);
1342                 if (dir)
1343                         *dir = - (int) i->openmax;
1344                 return snd_interval_max(i);
1345         }
1346         assert(0);
1347         return -EINVAL;
1348 }
1349
1350 void _snd_pcm_hw_param_setempty(snd_pcm_hw_params_t *params,
1351                                 snd_pcm_hw_param_t var)
1352 {
1353         if (hw_is_mask(var)) {
1354                 snd_mask_none(hw_param_mask(params, var));
1355                 params->cmask |= 1 << var;
1356                 params->rmask |= 1 << var;
1357         } else if (hw_is_interval(var)) {
1358                 snd_interval_none(hw_param_interval(params, var));
1359                 params->cmask |= 1 << var;
1360                 params->rmask |= 1 << var;
1361         } else {
1362                 snd_BUG();
1363         }
1364 }
1365
1366 int _snd_pcm_hw_param_setinteger(snd_pcm_hw_params_t *params,
1367                                  snd_pcm_hw_param_t var)
1368 {
1369         int changed;
1370         assert(hw_is_interval(var));
1371         changed = snd_interval_setinteger(hw_param_interval(params, var));
1372         if (changed) {
1373                 params->cmask |= 1 << var;
1374                 params->rmask |= 1 << var;
1375         }
1376         return changed;
1377 }
1378         
1379 #if 0
1380 /*
1381  * snd_pcm_hw_param_setinteger
1382  *
1383  * Inside configuration space defined by PARAMS remove from PAR all 
1384  * non integer values. Reduce configuration space accordingly.
1385  * Return -EINVAL if the configuration space is empty
1386  */
1387 int snd_pcm_hw_param_setinteger(snd_pcm_t *pcm, 
1388                                 snd_pcm_hw_params_t *params,
1389                                 snd_pcm_hw_param_t var)
1390 {
1391         int changed = _snd_pcm_hw_param_setinteger(params, var);
1392         if (changed < 0)
1393                 return changed;
1394         if (params->rmask) {
1395                 int err = snd_pcm_hw_refine(pcm, params);
1396                 if (err < 0)
1397                         return err;
1398         }
1399         return 0;
1400 }
1401 #endif  /*  0  */
1402
1403 static int _snd_pcm_hw_param_first(snd_pcm_hw_params_t *params,
1404                                    snd_pcm_hw_param_t var)
1405 {
1406         int changed;
1407         if (hw_is_mask(var))
1408                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1409         else if (hw_is_interval(var))
1410                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1411         else {
1412                 assert(0);
1413                 return -EINVAL;
1414         }
1415         if (changed) {
1416                 params->cmask |= 1 << var;
1417                 params->rmask |= 1 << var;
1418         }
1419         return changed;
1420 }
1421
1422
1423 /**
1424  * snd_pcm_hw_param_first
1425  * @pcm: PCM instance
1426  * @params: the hw_params instance
1427  * @var: parameter to retrieve
1428  * @dir: pointer to the direction (-1,0,1) or NULL
1429  *
1430  * Inside configuration space defined by PARAMS remove from PAR all 
1431  * values > minimum. Reduce configuration space accordingly.
1432  * Return the minimum.
1433  */
1434 static int snd_pcm_hw_param_first(snd_pcm_t *pcm, 
1435                                   snd_pcm_hw_params_t *params, 
1436                                   snd_pcm_hw_param_t var, int *dir)
1437 {
1438         int changed = _snd_pcm_hw_param_first(params, var);
1439         if (changed < 0)
1440                 return changed;
1441         if (params->rmask) {
1442                 int err = snd_pcm_hw_refine(pcm, params);
1443                 assert(err >= 0);
1444         }
1445         return snd_pcm_hw_param_value(params, var, dir);
1446 }
1447
1448 static int _snd_pcm_hw_param_last(snd_pcm_hw_params_t *params,
1449                                   snd_pcm_hw_param_t var)
1450 {
1451         int changed;
1452         if (hw_is_mask(var))
1453                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1454         else if (hw_is_interval(var))
1455                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1456         else {
1457                 assert(0);
1458                 return -EINVAL;
1459         }
1460         if (changed) {
1461                 params->cmask |= 1 << var;
1462                 params->rmask |= 1 << var;
1463         }
1464         return changed;
1465 }
1466
1467
1468 /**
1469  * snd_pcm_hw_param_last
1470  * @pcm: PCM instance
1471  * @params: the hw_params instance
1472  * @var: parameter to retrieve
1473  * @dir: pointer to the direction (-1,0,1) or NULL
1474  *
1475  * Inside configuration space defined by PARAMS remove from PAR all 
1476  * values < maximum. Reduce configuration space accordingly.
1477  * Return the maximum.
1478  */
1479 static int snd_pcm_hw_param_last(snd_pcm_t *pcm, 
1480                                  snd_pcm_hw_params_t *params,
1481                                  snd_pcm_hw_param_t var, int *dir)
1482 {
1483         int changed = _snd_pcm_hw_param_last(params, var);
1484         if (changed < 0)
1485                 return changed;
1486         if (params->rmask) {
1487                 int err = snd_pcm_hw_refine(pcm, params);
1488                 assert(err >= 0);
1489         }
1490         return snd_pcm_hw_param_value(params, var, dir);
1491 }
1492
1493 int _snd_pcm_hw_param_min(snd_pcm_hw_params_t *params,
1494                           snd_pcm_hw_param_t var, unsigned int val, int dir)
1495 {
1496         int changed;
1497         int open = 0;
1498         if (dir) {
1499                 if (dir > 0) {
1500                         open = 1;
1501                 } else if (dir < 0) {
1502                         if (val > 0) {
1503                                 open = 1;
1504                                 val--;
1505                         }
1506                 }
1507         }
1508         if (hw_is_mask(var))
1509                 changed = snd_mask_refine_min(hw_param_mask(params, var), val + !!open);
1510         else if (hw_is_interval(var))
1511                 changed = snd_interval_refine_min(hw_param_interval(params, var), val, open);
1512         else {
1513                 assert(0);
1514                 return -EINVAL;
1515         }
1516         if (changed) {
1517                 params->cmask |= 1 << var;
1518                 params->rmask |= 1 << var;
1519         }
1520         return changed;
1521 }
1522
1523 /**
1524  * snd_pcm_hw_param_min
1525  * @pcm: PCM instance
1526  * @params: the hw_params instance
1527  * @var: parameter to retrieve
1528  * @val: minimal value
1529  * @dir: pointer to the direction (-1,0,1) or NULL
1530  *
1531  * Inside configuration space defined by PARAMS remove from PAR all 
1532  * values < VAL. Reduce configuration space accordingly.
1533  * Return new minimum or -EINVAL if the configuration space is empty
1534  */
1535 static int snd_pcm_hw_param_min(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1536                                 snd_pcm_hw_param_t var, unsigned int val,
1537                                 int *dir)
1538 {
1539         int changed = _snd_pcm_hw_param_min(params, var, val, dir ? *dir : 0);
1540         if (changed < 0)
1541                 return changed;
1542         if (params->rmask) {
1543                 int err = snd_pcm_hw_refine(pcm, params);
1544                 if (err < 0)
1545                         return err;
1546         }
1547         return snd_pcm_hw_param_value_min(params, var, dir);
1548 }
1549
1550 static int _snd_pcm_hw_param_max(snd_pcm_hw_params_t *params,
1551                                  snd_pcm_hw_param_t var, unsigned int val,
1552                                  int dir)
1553 {
1554         int changed;
1555         int open = 0;
1556         if (dir) {
1557                 if (dir < 0) {
1558                         open = 1;
1559                 } else if (dir > 0) {
1560                         open = 1;
1561                         val++;
1562                 }
1563         }
1564         if (hw_is_mask(var)) {
1565                 if (val == 0 && open) {
1566                         snd_mask_none(hw_param_mask(params, var));
1567                         changed = -EINVAL;
1568                 } else
1569                         changed = snd_mask_refine_max(hw_param_mask(params, var), val - !!open);
1570         } else if (hw_is_interval(var))
1571                 changed = snd_interval_refine_max(hw_param_interval(params, var), val, open);
1572         else {
1573                 assert(0);
1574                 return -EINVAL;
1575         }
1576         if (changed) {
1577                 params->cmask |= 1 << var;
1578                 params->rmask |= 1 << var;
1579         }
1580         return changed;
1581 }
1582
1583 /**
1584  * snd_pcm_hw_param_max
1585  * @pcm: PCM instance
1586  * @params: the hw_params instance
1587  * @var: parameter to retrieve
1588  * @val: maximal value
1589  * @dir: pointer to the direction (-1,0,1) or NULL
1590  *
1591  * Inside configuration space defined by PARAMS remove from PAR all 
1592  *  values >= VAL + 1. Reduce configuration space accordingly.
1593  *  Return new maximum or -EINVAL if the configuration space is empty
1594  */
1595 static int snd_pcm_hw_param_max(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1596                                 snd_pcm_hw_param_t var, unsigned int val,
1597                                 int *dir)
1598 {
1599         int changed = _snd_pcm_hw_param_max(params, var, val, dir ? *dir : 0);
1600         if (changed < 0)
1601                 return changed;
1602         if (params->rmask) {
1603                 int err = snd_pcm_hw_refine(pcm, params);
1604                 if (err < 0)
1605                         return err;
1606         }
1607         return snd_pcm_hw_param_value_max(params, var, dir);
1608 }
1609
1610 int _snd_pcm_hw_param_set(snd_pcm_hw_params_t *params,
1611                           snd_pcm_hw_param_t var, unsigned int val, int dir)
1612 {
1613         int changed;
1614         if (hw_is_mask(var)) {
1615                 snd_mask_t *m = hw_param_mask(params, var);
1616                 if (val == 0 && dir < 0) {
1617                         changed = -EINVAL;
1618                         snd_mask_none(m);
1619                 } else {
1620                         if (dir > 0)
1621                                 val++;
1622                         else if (dir < 0)
1623                                 val--;
1624                         changed = snd_mask_refine_set(hw_param_mask(params, var), val);
1625                 }
1626         } else if (hw_is_interval(var)) {
1627                 snd_interval_t *i = hw_param_interval(params, var);
1628                 if (val == 0 && dir < 0) {
1629                         changed = -EINVAL;
1630                         snd_interval_none(i);
1631                 } else if (dir == 0)
1632                         changed = snd_interval_refine_set(i, val);
1633                 else {
1634                         snd_interval_t t;
1635                         t.openmin = 1;
1636                         t.openmax = 1;
1637                         t.empty = 0;
1638                         t.integer = 0;
1639                         if (dir < 0) {
1640                                 t.min = val - 1;
1641                                 t.max = val;
1642                         } else {
1643                                 t.min = val;
1644                                 t.max = val+1;
1645                         }
1646                         changed = snd_interval_refine(i, &t);
1647                 }
1648         } else {
1649                 assert(0);
1650                 return -EINVAL;
1651         }
1652         if (changed) {
1653                 params->cmask |= 1 << var;
1654                 params->rmask |= 1 << var;
1655         }
1656         return changed;
1657 }
1658
1659 /**
1660  * snd_pcm_hw_param_set
1661  * @pcm: PCM instance
1662  * @params: the hw_params instance
1663  * @var: parameter to retrieve
1664  * @val: value to set
1665  * @dir: pointer to the direction (-1,0,1) or NULL
1666  *
1667  * Inside configuration space defined by PARAMS remove from PAR all 
1668  * values != VAL. Reduce configuration space accordingly.
1669  *  Return VAL or -EINVAL if the configuration space is empty
1670  */
1671 int snd_pcm_hw_param_set(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1672                          snd_pcm_hw_param_t var, unsigned int val, int dir)
1673 {
1674         int changed = _snd_pcm_hw_param_set(params, var, val, dir);
1675         if (changed < 0)
1676                 return changed;
1677         if (params->rmask) {
1678                 int err = snd_pcm_hw_refine(pcm, params);
1679                 if (err < 0)
1680                         return err;
1681         }
1682         return snd_pcm_hw_param_value(params, var, NULL);
1683 }
1684
1685 static int _snd_pcm_hw_param_mask(snd_pcm_hw_params_t *params,
1686                                   snd_pcm_hw_param_t var, const snd_mask_t *val)
1687 {
1688         int changed;
1689         assert(hw_is_mask(var));
1690         changed = snd_mask_refine(hw_param_mask(params, var), val);
1691         if (changed) {
1692                 params->cmask |= 1 << var;
1693                 params->rmask |= 1 << var;
1694         }
1695         return changed;
1696 }
1697
1698 /**
1699  * snd_pcm_hw_param_mask
1700  * @pcm: PCM instance
1701  * @params: the hw_params instance
1702  * @var: parameter to retrieve
1703  * @val: mask to apply
1704  *
1705  * Inside configuration space defined by PARAMS remove from PAR all values
1706  * not contained in MASK. Reduce configuration space accordingly.
1707  * This function can be called only for SNDRV_PCM_HW_PARAM_ACCESS,
1708  * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT.
1709  * Return 0 on success or -EINVAL
1710  * if the configuration space is empty
1711  */
1712 int snd_pcm_hw_param_mask(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1713                           snd_pcm_hw_param_t var, const snd_mask_t *val)
1714 {
1715         int changed = _snd_pcm_hw_param_mask(params, var, val);
1716         if (changed < 0)
1717                 return changed;
1718         if (params->rmask) {
1719                 int err = snd_pcm_hw_refine(pcm, params);
1720                 if (err < 0)
1721                         return err;
1722         }
1723         return 0;
1724 }
1725
1726 static int boundary_sub(int a, int adir,
1727                         int b, int bdir,
1728                         int *c, int *cdir)
1729 {
1730         adir = adir < 0 ? -1 : (adir > 0 ? 1 : 0);
1731         bdir = bdir < 0 ? -1 : (bdir > 0 ? 1 : 0);
1732         *c = a - b;
1733         *cdir = adir - bdir;
1734         if (*cdir == -2) {
1735                 assert(*c > INT_MIN);
1736                 (*c)--;
1737         } else if (*cdir == 2) {
1738                 assert(*c < INT_MAX);
1739                 (*c)++;
1740         }
1741         return 0;
1742 }
1743
1744 static int boundary_lt(unsigned int a, int adir,
1745                        unsigned int b, int bdir)
1746 {
1747         assert(a > 0 || adir >= 0);
1748         assert(b > 0 || bdir >= 0);
1749         if (adir < 0) {
1750                 a--;
1751                 adir = 1;
1752         } else if (adir > 0)
1753                 adir = 1;
1754         if (bdir < 0) {
1755                 b--;
1756                 bdir = 1;
1757         } else if (bdir > 0)
1758                 bdir = 1;
1759         return a < b || (a == b && adir < bdir);
1760 }
1761
1762 /* Return 1 if min is nearer to best than max */
1763 static int boundary_nearer(int min, int mindir,
1764                            int best, int bestdir,
1765                            int max, int maxdir)
1766 {
1767         int dmin, dmindir;
1768         int dmax, dmaxdir;
1769         boundary_sub(best, bestdir, min, mindir, &dmin, &dmindir);
1770         boundary_sub(max, maxdir, best, bestdir, &dmax, &dmaxdir);
1771         return boundary_lt(dmin, dmindir, dmax, dmaxdir);
1772 }
1773
1774 /**
1775  * snd_pcm_hw_param_near
1776  * @pcm: PCM instance
1777  * @params: the hw_params instance
1778  * @var: parameter to retrieve
1779  * @best: value to set
1780  * @dir: pointer to the direction (-1,0,1) or NULL
1781  *
1782  * Inside configuration space defined by PARAMS set PAR to the available value
1783  * nearest to VAL. Reduce configuration space accordingly.
1784  * This function cannot be called for SNDRV_PCM_HW_PARAM_ACCESS,
1785  * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT.
1786  * Return the value found.
1787   */
1788 int snd_pcm_hw_param_near(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1789                           snd_pcm_hw_param_t var, unsigned int best, int *dir)
1790 {
1791         snd_pcm_hw_params_t *save = NULL;
1792         int v;
1793         unsigned int saved_min;
1794         int last = 0;
1795         int min, max;
1796         int mindir, maxdir;
1797         int valdir = dir ? *dir : 0;
1798         /* FIXME */
1799         if (best > INT_MAX)
1800                 best = INT_MAX;
1801         min = max = best;
1802         mindir = maxdir = valdir;
1803         if (maxdir > 0)
1804                 maxdir = 0;
1805         else if (maxdir == 0)
1806                 maxdir = -1;
1807         else {
1808                 maxdir = 1;
1809                 max--;
1810         }
1811         save = kmalloc(sizeof(*save), GFP_KERNEL);
1812         if (save == NULL)
1813                 return -ENOMEM;
1814         *save = *params;
1815         saved_min = min;
1816         min = snd_pcm_hw_param_min(pcm, params, var, min, &mindir);
1817         if (min >= 0) {
1818                 snd_pcm_hw_params_t *params1;
1819                 if (max < 0)
1820                         goto _end;
1821                 if ((unsigned int)min == saved_min && mindir == valdir)
1822                         goto _end;
1823                 params1 = kmalloc(sizeof(*params1), GFP_KERNEL);
1824                 if (params1 == NULL) {
1825                         kfree(save);
1826                         return -ENOMEM;
1827                 }
1828                 *params1 = *save;
1829                 max = snd_pcm_hw_param_max(pcm, params1, var, max, &maxdir);
1830                 if (max < 0) {
1831                         kfree(params1);
1832                         goto _end;
1833                 }
1834                 if (boundary_nearer(max, maxdir, best, valdir, min, mindir)) {
1835                         *params = *params1;
1836                         last = 1;
1837                 }
1838                 kfree(params1);
1839         } else {
1840                 *params = *save;
1841                 max = snd_pcm_hw_param_max(pcm, params, var, max, &maxdir);
1842                 assert(max >= 0);
1843                 last = 1;
1844         }
1845  _end:
1846         kfree(save);
1847         if (last)
1848                 v = snd_pcm_hw_param_last(pcm, params, var, dir);
1849         else
1850                 v = snd_pcm_hw_param_first(pcm, params, var, dir);
1851         assert(v >= 0);
1852         return v;
1853 }
1854
1855 /**
1856  * snd_pcm_hw_param_choose
1857  * @pcm: PCM instance
1858  * @params: the hw_params instance
1859  *
1860  * Choose one configuration from configuration space defined by PARAMS
1861  * The configuration chosen is that obtained fixing in this order:
1862  * first access, first format, first subformat, min channels,
1863  * min rate, min period time, max buffer size, min tick time
1864  */
1865 int snd_pcm_hw_params_choose(snd_pcm_t *pcm, snd_pcm_hw_params_t *params)
1866 {
1867         int err;
1868
1869         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_ACCESS, NULL);
1870         assert(err >= 0);
1871
1872         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_FORMAT, NULL);
1873         assert(err >= 0);
1874
1875         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_SUBFORMAT, NULL);
1876         assert(err >= 0);
1877
1878         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_CHANNELS, NULL);
1879         assert(err >= 0);
1880
1881         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_RATE, NULL);
1882         assert(err >= 0);
1883
1884         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_PERIOD_TIME, NULL);
1885         assert(err >= 0);
1886
1887         err = snd_pcm_hw_param_last(pcm, params, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, NULL);
1888         assert(err >= 0);
1889
1890         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_TICK_TIME, NULL);
1891         assert(err >= 0);
1892
1893         return 0;
1894 }
1895
1896 #undef snd_pcm_t
1897 #undef assert
1898
1899 static int snd_pcm_lib_ioctl_reset(snd_pcm_substream_t *substream,
1900                                    void *arg)
1901 {
1902         snd_pcm_runtime_t *runtime = substream->runtime;
1903         unsigned long flags;
1904         snd_pcm_stream_lock_irqsave(substream, flags);
1905         if (snd_pcm_running(substream) &&
1906             snd_pcm_update_hw_ptr(substream) >= 0)
1907                 runtime->status->hw_ptr %= runtime->buffer_size;
1908         else
1909                 runtime->status->hw_ptr = 0;
1910         snd_pcm_stream_unlock_irqrestore(substream, flags);
1911         return 0;
1912 }
1913
1914 static int snd_pcm_lib_ioctl_channel_info(snd_pcm_substream_t *substream,
1915                                           void *arg)
1916 {
1917         snd_pcm_channel_info_t *info = arg;
1918         snd_pcm_runtime_t *runtime = substream->runtime;
1919         int width;
1920         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1921                 info->offset = -1;
1922                 return 0;
1923         }
1924         width = snd_pcm_format_physical_width(runtime->format);
1925         if (width < 0)
1926                 return width;
1927         info->offset = 0;
1928         switch (runtime->access) {
1929         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1930         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1931                 info->first = info->channel * width;
1932                 info->step = runtime->channels * width;
1933                 break;
1934         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1935         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1936         {
1937                 size_t size = runtime->dma_bytes / runtime->channels;
1938                 info->first = info->channel * size * 8;
1939                 info->step = width;
1940                 break;
1941         }
1942         default:
1943                 snd_BUG();
1944                 break;
1945         }
1946         return 0;
1947 }
1948
1949 /**
1950  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1951  * @substream: the pcm substream instance
1952  * @cmd: ioctl command
1953  * @arg: ioctl argument
1954  *
1955  * Processes the generic ioctl commands for PCM.
1956  * Can be passed as the ioctl callback for PCM ops.
1957  *
1958  * Returns zero if successful, or a negative error code on failure.
1959  */
1960 int snd_pcm_lib_ioctl(snd_pcm_substream_t *substream,
1961                       unsigned int cmd, void *arg)
1962 {
1963         switch (cmd) {
1964         case SNDRV_PCM_IOCTL1_INFO:
1965                 return 0;
1966         case SNDRV_PCM_IOCTL1_RESET:
1967                 return snd_pcm_lib_ioctl_reset(substream, arg);
1968         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1969                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1970         }
1971         return -ENXIO;
1972 }
1973
1974 /*
1975  *  Conditions
1976  */
1977
1978 static void snd_pcm_system_tick_set(snd_pcm_substream_t *substream, 
1979                                     unsigned long ticks)
1980 {
1981         snd_pcm_runtime_t *runtime = substream->runtime;
1982         if (ticks == 0)
1983                 del_timer(&runtime->tick_timer);
1984         else {
1985                 ticks += (1000000 / HZ) - 1;
1986                 ticks /= (1000000 / HZ);
1987                 mod_timer(&runtime->tick_timer, jiffies + ticks);
1988         }
1989 }
1990
1991 /* Temporary alias */
1992 void snd_pcm_tick_set(snd_pcm_substream_t *substream, unsigned long ticks)
1993 {
1994         snd_pcm_system_tick_set(substream, ticks);
1995 }
1996
1997 void snd_pcm_tick_prepare(snd_pcm_substream_t *substream)
1998 {
1999         snd_pcm_runtime_t *runtime = substream->runtime;
2000         snd_pcm_uframes_t frames = ULONG_MAX;
2001         snd_pcm_uframes_t avail, dist;
2002         unsigned int ticks;
2003         u_int64_t n;
2004         u_int32_t r;
2005         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
2006                 if (runtime->silence_size >= runtime->boundary) {
2007                         frames = 1;
2008                 } else if (runtime->silence_size > 0 &&
2009                            runtime->silence_filled < runtime->buffer_size) {
2010                         snd_pcm_sframes_t noise_dist;
2011                         noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
2012                         snd_assert(noise_dist <= (snd_pcm_sframes_t)runtime->silence_threshold, );
2013                         frames = noise_dist - runtime->silence_threshold;
2014                 }
2015                 avail = snd_pcm_playback_avail(runtime);
2016         } else {
2017                 avail = snd_pcm_capture_avail(runtime);
2018         }
2019         if (avail < runtime->control->avail_min) {
2020                 snd_pcm_sframes_t n = runtime->control->avail_min - avail;
2021                 if (n > 0 && frames > (snd_pcm_uframes_t)n)
2022                         frames = n;
2023         }
2024         if (avail < runtime->buffer_size) {
2025                 snd_pcm_sframes_t n = runtime->buffer_size - avail;
2026                 if (n > 0 && frames > (snd_pcm_uframes_t)n)
2027                         frames = n;
2028         }
2029         if (frames == ULONG_MAX) {
2030                 snd_pcm_tick_set(substream, 0);
2031                 return;
2032         }
2033         dist = runtime->status->hw_ptr - runtime->hw_ptr_base;
2034         /* Distance to next interrupt */
2035         dist = runtime->period_size - dist % runtime->period_size;
2036         if (dist <= frames) {
2037                 snd_pcm_tick_set(substream, 0);
2038                 return;
2039         }
2040         /* the base time is us */
2041         n = frames;
2042         n *= 1000000;
2043         div64_32(&n, runtime->tick_time * runtime->rate, &r);
2044         ticks = n + (r > 0 ? 1 : 0);
2045         if (ticks < runtime->sleep_min)
2046                 ticks = runtime->sleep_min;
2047         snd_pcm_tick_set(substream, (unsigned long) ticks);
2048 }
2049
2050 void snd_pcm_tick_elapsed(snd_pcm_substream_t *substream)
2051 {
2052         snd_pcm_runtime_t *runtime;
2053         unsigned long flags;
2054         
2055         snd_assert(substream != NULL, return);
2056         runtime = substream->runtime;
2057         snd_assert(runtime != NULL, return);
2058
2059         snd_pcm_stream_lock_irqsave(substream, flags);
2060         if (!snd_pcm_running(substream) ||
2061             snd_pcm_update_hw_ptr(substream) < 0)
2062                 goto _end;
2063         if (runtime->sleep_min)
2064                 snd_pcm_tick_prepare(substream);
2065  _end:
2066         snd_pcm_stream_unlock_irqrestore(substream, flags);
2067 }
2068
2069 /**
2070  * snd_pcm_period_elapsed - update the pcm status for the next period
2071  * @substream: the pcm substream instance
2072  *
2073  * This function is called from the interrupt handler when the
2074  * PCM has processed the period size.  It will update the current
2075  * pointer, set up the tick, wake up sleepers, etc.
2076  *
2077  * Even if more than one periods have elapsed since the last call, you
2078  * have to call this only once.
2079  */
2080 void snd_pcm_period_elapsed(snd_pcm_substream_t *substream)
2081 {
2082         snd_pcm_runtime_t *runtime;
2083         unsigned long flags;
2084
2085         snd_assert(substream != NULL, return);
2086         runtime = substream->runtime;
2087         snd_assert(runtime != NULL, return);
2088
2089         if (runtime->transfer_ack_begin)
2090                 runtime->transfer_ack_begin(substream);
2091
2092         snd_pcm_stream_lock_irqsave(substream, flags);
2093         if (!snd_pcm_running(substream) ||
2094             snd_pcm_update_hw_ptr_interrupt(substream) < 0)
2095                 goto _end;
2096
2097         if (substream->timer_running)
2098                 snd_timer_interrupt(substream->timer, 1);
2099         if (runtime->sleep_min)
2100                 snd_pcm_tick_prepare(substream);
2101  _end:
2102         snd_pcm_stream_unlock_irqrestore(substream, flags);
2103         if (runtime->transfer_ack_end)
2104                 runtime->transfer_ack_end(substream);
2105         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
2106 }
2107
2108 static int snd_pcm_lib_write_transfer(snd_pcm_substream_t *substream,
2109                                       unsigned int hwoff,
2110                                       unsigned long data, unsigned int off,
2111                                       snd_pcm_uframes_t frames)
2112 {
2113         snd_pcm_runtime_t *runtime = substream->runtime;
2114         int err;
2115         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2116         if (substream->ops->copy) {
2117                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2118                         return err;
2119         } else {
2120                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2121                 snd_assert(runtime->dma_area, return -EFAULT);
2122                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2123                         return -EFAULT;
2124         }
2125         return 0;
2126 }
2127  
2128 typedef int (*transfer_f)(snd_pcm_substream_t *substream, unsigned int hwoff,
2129                           unsigned long data, unsigned int off,
2130                           snd_pcm_uframes_t size);
2131
2132 static snd_pcm_sframes_t snd_pcm_lib_write1(snd_pcm_substream_t *substream, 
2133                                             unsigned long data,
2134                                             snd_pcm_uframes_t size,
2135                                             int nonblock,
2136                                             transfer_f transfer)
2137 {
2138         snd_pcm_runtime_t *runtime = substream->runtime;
2139         snd_pcm_uframes_t xfer = 0;
2140         snd_pcm_uframes_t offset = 0;
2141         int err = 0;
2142
2143         if (size == 0)
2144                 return 0;
2145         if (size > runtime->xfer_align)
2146                 size -= size % runtime->xfer_align;
2147
2148         snd_pcm_stream_lock_irq(substream);
2149         switch (runtime->status->state) {
2150         case SNDRV_PCM_STATE_PREPARED:
2151         case SNDRV_PCM_STATE_RUNNING:
2152         case SNDRV_PCM_STATE_PAUSED:
2153                 break;
2154         case SNDRV_PCM_STATE_XRUN:
2155                 err = -EPIPE;
2156                 goto _end_unlock;
2157         case SNDRV_PCM_STATE_SUSPENDED:
2158                 err = -ESTRPIPE;
2159                 goto _end_unlock;
2160         default:
2161                 err = -EBADFD;
2162                 goto _end_unlock;
2163         }
2164
2165         while (size > 0) {
2166                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2167                 snd_pcm_uframes_t avail;
2168                 snd_pcm_uframes_t cont;
2169                 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2170                         snd_pcm_update_hw_ptr(substream);
2171                 avail = snd_pcm_playback_avail(runtime);
2172                 if (((avail < runtime->control->avail_min && size > avail) ||
2173                    (size >= runtime->xfer_align && avail < runtime->xfer_align))) {
2174                         wait_queue_t wait;
2175                         enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
2176                         long tout;
2177
2178                         if (nonblock) {
2179                                 err = -EAGAIN;
2180                                 goto _end_unlock;
2181                         }
2182
2183                         init_waitqueue_entry(&wait, current);
2184                         add_wait_queue(&runtime->sleep, &wait);
2185                         while (1) {
2186                                 if (signal_pending(current)) {
2187                                         state = SIGNALED;
2188                                         break;
2189                                 }
2190                                 set_current_state(TASK_INTERRUPTIBLE);
2191                                 snd_pcm_stream_unlock_irq(substream);
2192                                 tout = schedule_timeout(10 * HZ);
2193                                 snd_pcm_stream_lock_irq(substream);
2194                                 if (tout == 0) {
2195                                         if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
2196                                             runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
2197                                                 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
2198                                                 break;
2199                                         }
2200                                 }
2201                                 switch (runtime->status->state) {
2202                                 case SNDRV_PCM_STATE_XRUN:
2203                                 case SNDRV_PCM_STATE_DRAINING:
2204                                         state = ERROR;
2205                                         goto _end_loop;
2206                                 case SNDRV_PCM_STATE_SUSPENDED:
2207                                         state = SUSPENDED;
2208                                         goto _end_loop;
2209                                 case SNDRV_PCM_STATE_SETUP:
2210                                         state = DROPPED;
2211                                         goto _end_loop;
2212                                 default:
2213                                         break;
2214                                 }
2215                                 avail = snd_pcm_playback_avail(runtime);
2216                                 if (avail >= runtime->control->avail_min) {
2217                                         state = READY;
2218                                         break;
2219                                 }
2220                         }
2221                        _end_loop:
2222                         remove_wait_queue(&runtime->sleep, &wait);
2223
2224                         switch (state) {
2225                         case ERROR:
2226                                 err = -EPIPE;
2227                                 goto _end_unlock;
2228                         case SUSPENDED:
2229                                 err = -ESTRPIPE;
2230                                 goto _end_unlock;
2231                         case SIGNALED:
2232                                 err = -ERESTARTSYS;
2233                                 goto _end_unlock;
2234                         case EXPIRED:
2235                                 snd_printd("playback write error (DMA or IRQ trouble?)\n");
2236                                 err = -EIO;
2237                                 goto _end_unlock;
2238                         case DROPPED:
2239                                 err = -EBADFD;
2240                                 goto _end_unlock;
2241                         default:
2242                                 break;
2243                         }
2244                 }
2245                 if (avail > runtime->xfer_align)
2246                         avail -= avail % runtime->xfer_align;
2247                 frames = size > avail ? avail : size;
2248                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2249                 if (frames > cont)
2250                         frames = cont;
2251                 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2252                 appl_ptr = runtime->control->appl_ptr;
2253                 appl_ofs = appl_ptr % runtime->buffer_size;
2254                 snd_pcm_stream_unlock_irq(substream);
2255                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2256                         goto _end;
2257                 snd_pcm_stream_lock_irq(substream);
2258                 switch (runtime->status->state) {
2259                 case SNDRV_PCM_STATE_XRUN:
2260                         err = -EPIPE;
2261                         goto _end_unlock;
2262                 case SNDRV_PCM_STATE_SUSPENDED:
2263                         err = -ESTRPIPE;
2264                         goto _end_unlock;
2265                 default:
2266                         break;
2267                 }
2268                 appl_ptr += frames;
2269                 if (appl_ptr >= runtime->boundary)
2270                         appl_ptr -= runtime->boundary;
2271                 runtime->control->appl_ptr = appl_ptr;
2272                 if (substream->ops->ack)
2273                         substream->ops->ack(substream);
2274
2275                 offset += frames;
2276                 size -= frames;
2277                 xfer += frames;
2278                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2279                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2280                         err = snd_pcm_start(substream);
2281                         if (err < 0)
2282                                 goto _end_unlock;
2283                 }
2284                 if (runtime->sleep_min &&
2285                     runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2286                         snd_pcm_tick_prepare(substream);
2287         }
2288  _end_unlock:
2289         snd_pcm_stream_unlock_irq(substream);
2290  _end:
2291         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2292 }
2293
2294 snd_pcm_sframes_t snd_pcm_lib_write(snd_pcm_substream_t *substream, const void __user *buf, snd_pcm_uframes_t size)
2295 {
2296         snd_pcm_runtime_t *runtime;
2297         int nonblock;
2298
2299         snd_assert(substream != NULL, return -ENXIO);
2300         runtime = substream->runtime;
2301         snd_assert(runtime != NULL, return -ENXIO);
2302         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2303         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2304                 return -EBADFD;
2305
2306         snd_assert(substream->ffile != NULL, return -ENXIO);
2307         nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2308 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2309         if (substream->oss.oss) {
2310                 snd_pcm_oss_setup_t *setup = substream->oss.setup;
2311                 if (setup != NULL) {
2312                         if (setup->nonblock)
2313                                 nonblock = 1;
2314                         else if (setup->block)
2315                                 nonblock = 0;
2316                 }
2317         }
2318 #endif
2319
2320         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2321             runtime->channels > 1)
2322                 return -EINVAL;
2323         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2324                                   snd_pcm_lib_write_transfer);
2325 }
2326
2327 static int snd_pcm_lib_writev_transfer(snd_pcm_substream_t *substream,
2328                                        unsigned int hwoff,
2329                                        unsigned long data, unsigned int off,
2330                                        snd_pcm_uframes_t frames)
2331 {
2332         snd_pcm_runtime_t *runtime = substream->runtime;
2333         int err;
2334         void __user **bufs = (void __user **)data;
2335         int channels = runtime->channels;
2336         int c;
2337         if (substream->ops->copy) {
2338                 snd_assert(substream->ops->silence != NULL, return -EINVAL);
2339                 for (c = 0; c < channels; ++c, ++bufs) {
2340                         if (*bufs == NULL) {
2341                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2342                                         return err;
2343                         } else {
2344                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2345                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2346                                         return err;
2347                         }
2348                 }
2349         } else {
2350                 /* default transfer behaviour */
2351                 size_t dma_csize = runtime->dma_bytes / channels;
2352                 snd_assert(runtime->dma_area, return -EFAULT);
2353                 for (c = 0; c < channels; ++c, ++bufs) {
2354                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2355                         if (*bufs == NULL) {
2356                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2357                         } else {
2358                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2359                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2360                                         return -EFAULT;
2361                         }
2362                 }
2363         }
2364         return 0;
2365 }
2366  
2367 snd_pcm_sframes_t snd_pcm_lib_writev(snd_pcm_substream_t *substream,
2368                                      void __user **bufs,
2369                                      snd_pcm_uframes_t frames)
2370 {
2371         snd_pcm_runtime_t *runtime;
2372         int nonblock;
2373
2374         snd_assert(substream != NULL, return -ENXIO);
2375         runtime = substream->runtime;
2376         snd_assert(runtime != NULL, return -ENXIO);
2377         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2378         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2379                 return -EBADFD;
2380
2381         snd_assert(substream->ffile != NULL, return -ENXIO);
2382         nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2383 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2384         if (substream->oss.oss) {
2385                 snd_pcm_oss_setup_t *setup = substream->oss.setup;
2386                 if (setup != NULL) {
2387                         if (setup->nonblock)
2388                                 nonblock = 1;
2389                         else if (setup->block)
2390                                 nonblock = 0;
2391                 }
2392         }
2393 #endif
2394
2395         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2396                 return -EINVAL;
2397         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2398                                   nonblock, snd_pcm_lib_writev_transfer);
2399 }
2400
2401 static int snd_pcm_lib_read_transfer(snd_pcm_substream_t *substream, 
2402                                      unsigned int hwoff,
2403                                      unsigned long data, unsigned int off,
2404                                      snd_pcm_uframes_t frames)
2405 {
2406         snd_pcm_runtime_t *runtime = substream->runtime;
2407         int err;
2408         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2409         if (substream->ops->copy) {
2410                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2411                         return err;
2412         } else {
2413                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2414                 snd_assert(runtime->dma_area, return -EFAULT);
2415                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2416                         return -EFAULT;
2417         }
2418         return 0;
2419 }
2420
2421 static snd_pcm_sframes_t snd_pcm_lib_read1(snd_pcm_substream_t *substream,
2422                                            unsigned long data,
2423                                            snd_pcm_uframes_t size,
2424                                            int nonblock,
2425                                            transfer_f transfer)
2426 {
2427         snd_pcm_runtime_t *runtime = substream->runtime;
2428         snd_pcm_uframes_t xfer = 0;
2429         snd_pcm_uframes_t offset = 0;
2430         int err = 0;
2431
2432         if (size == 0)
2433                 return 0;
2434         if (size > runtime->xfer_align)
2435                 size -= size % runtime->xfer_align;
2436
2437         snd_pcm_stream_lock_irq(substream);
2438         switch (runtime->status->state) {
2439         case SNDRV_PCM_STATE_PREPARED:
2440                 if (size >= runtime->start_threshold) {
2441                         err = snd_pcm_start(substream);
2442                         if (err < 0)
2443                                 goto _end_unlock;
2444                 }
2445                 break;
2446         case SNDRV_PCM_STATE_DRAINING:
2447         case SNDRV_PCM_STATE_RUNNING:
2448         case SNDRV_PCM_STATE_PAUSED:
2449                 break;
2450         case SNDRV_PCM_STATE_XRUN:
2451                 err = -EPIPE;
2452                 goto _end_unlock;
2453         case SNDRV_PCM_STATE_SUSPENDED:
2454                 err = -ESTRPIPE;
2455                 goto _end_unlock;
2456         default:
2457                 err = -EBADFD;
2458                 goto _end_unlock;
2459         }
2460
2461         while (size > 0) {
2462                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2463                 snd_pcm_uframes_t avail;
2464                 snd_pcm_uframes_t cont;
2465                 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2466                         snd_pcm_update_hw_ptr(substream);
2467               __draining:
2468                 avail = snd_pcm_capture_avail(runtime);
2469                 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2470                         if (avail < runtime->xfer_align) {
2471                                 err = -EPIPE;
2472                                 goto _end_unlock;
2473                         }
2474                 } else if ((avail < runtime->control->avail_min && size > avail) ||
2475                            (size >= runtime->xfer_align && avail < runtime->xfer_align)) {
2476                         wait_queue_t wait;
2477                         enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
2478                         long tout;
2479
2480                         if (nonblock) {
2481                                 err = -EAGAIN;
2482                                 goto _end_unlock;
2483                         }
2484
2485                         init_waitqueue_entry(&wait, current);
2486                         add_wait_queue(&runtime->sleep, &wait);
2487                         while (1) {
2488                                 if (signal_pending(current)) {
2489                                         state = SIGNALED;
2490                                         break;
2491                                 }
2492                                 set_current_state(TASK_INTERRUPTIBLE);
2493                                 snd_pcm_stream_unlock_irq(substream);
2494                                 tout = schedule_timeout(10 * HZ);
2495                                 snd_pcm_stream_lock_irq(substream);
2496                                 if (tout == 0) {
2497                                         if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
2498                                             runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
2499                                                 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
2500                                                 break;
2501                                         }
2502                                 }
2503                                 switch (runtime->status->state) {
2504                                 case SNDRV_PCM_STATE_XRUN:
2505                                         state = ERROR;
2506                                         goto _end_loop;
2507                                 case SNDRV_PCM_STATE_SUSPENDED:
2508                                         state = SUSPENDED;
2509                                         goto _end_loop;
2510                                 case SNDRV_PCM_STATE_DRAINING:
2511                                         goto __draining;
2512                                 case SNDRV_PCM_STATE_SETUP:
2513                                         state = DROPPED;
2514                                         goto _end_loop;
2515                                 default:
2516                                         break;
2517                                 }
2518                                 avail = snd_pcm_capture_avail(runtime);
2519                                 if (avail >= runtime->control->avail_min) {
2520                                         state = READY;
2521                                         break;
2522                                 }
2523                         }
2524                        _end_loop:
2525                         remove_wait_queue(&runtime->sleep, &wait);
2526
2527                         switch (state) {
2528                         case ERROR:
2529                                 err = -EPIPE;
2530                                 goto _end_unlock;
2531                         case SUSPENDED:
2532                                 err = -ESTRPIPE;
2533                                 goto _end_unlock;
2534                         case SIGNALED:
2535                                 err = -ERESTARTSYS;
2536                                 goto _end_unlock;
2537                         case EXPIRED:
2538                                 snd_printd("capture read error (DMA or IRQ trouble?)\n");
2539                                 err = -EIO;
2540                                 goto _end_unlock;
2541                         case DROPPED:
2542                                 err = -EBADFD;
2543                                 goto _end_unlock;
2544                         default:
2545                                 break;
2546                         }
2547                 }
2548                 if (avail > runtime->xfer_align)
2549                         avail -= avail % runtime->xfer_align;
2550                 frames = size > avail ? avail : size;
2551                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2552                 if (frames > cont)
2553                         frames = cont;
2554                 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2555                 appl_ptr = runtime->control->appl_ptr;
2556                 appl_ofs = appl_ptr % runtime->buffer_size;
2557                 snd_pcm_stream_unlock_irq(substream);
2558                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2559                         goto _end;
2560                 snd_pcm_stream_lock_irq(substream);
2561                 switch (runtime->status->state) {
2562                 case SNDRV_PCM_STATE_XRUN:
2563                         err = -EPIPE;
2564                         goto _end_unlock;
2565                 case SNDRV_PCM_STATE_SUSPENDED:
2566                         err = -ESTRPIPE;
2567                         goto _end_unlock;
2568                 default:
2569                         break;
2570                 }
2571                 appl_ptr += frames;
2572                 if (appl_ptr >= runtime->boundary)
2573                         appl_ptr -= runtime->boundary;
2574                 runtime->control->appl_ptr = appl_ptr;
2575                 if (substream->ops->ack)
2576                         substream->ops->ack(substream);
2577
2578                 offset += frames;
2579                 size -= frames;
2580                 xfer += frames;
2581                 if (runtime->sleep_min &&
2582                     runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2583                         snd_pcm_tick_prepare(substream);
2584         }
2585  _end_unlock:
2586         snd_pcm_stream_unlock_irq(substream);
2587  _end:
2588         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2589 }
2590
2591 snd_pcm_sframes_t snd_pcm_lib_read(snd_pcm_substream_t *substream, void __user *buf, snd_pcm_uframes_t size)
2592 {
2593         snd_pcm_runtime_t *runtime;
2594         int nonblock;
2595         
2596         snd_assert(substream != NULL, return -ENXIO);
2597         runtime = substream->runtime;
2598         snd_assert(runtime != NULL, return -ENXIO);
2599         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2600         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2601                 return -EBADFD;
2602
2603         snd_assert(substream->ffile != NULL, return -ENXIO);
2604         nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2605 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2606         if (substream->oss.oss) {
2607                 snd_pcm_oss_setup_t *setup = substream->oss.setup;
2608                 if (setup != NULL) {
2609                         if (setup->nonblock)
2610                                 nonblock = 1;
2611                         else if (setup->block)
2612                                 nonblock = 0;
2613                 }
2614         }
2615 #endif
2616         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2617                 return -EINVAL;
2618         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2619 }
2620
2621 static int snd_pcm_lib_readv_transfer(snd_pcm_substream_t *substream,
2622                                       unsigned int hwoff,
2623                                       unsigned long data, unsigned int off,
2624                                       snd_pcm_uframes_t frames)
2625 {
2626         snd_pcm_runtime_t *runtime = substream->runtime;
2627         int err;
2628         void __user **bufs = (void __user **)data;
2629         int channels = runtime->channels;
2630         int c;
2631         if (substream->ops->copy) {
2632                 for (c = 0; c < channels; ++c, ++bufs) {
2633                         char __user *buf;
2634                         if (*bufs == NULL)
2635                                 continue;
2636                         buf = *bufs + samples_to_bytes(runtime, off);
2637                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2638                                 return err;
2639                 }
2640         } else {
2641                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2642                 snd_assert(runtime->dma_area, return -EFAULT);
2643                 for (c = 0; c < channels; ++c, ++bufs) {
2644                         char *hwbuf;
2645                         char __user *buf;
2646                         if (*bufs == NULL)
2647                                 continue;
2648
2649                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2650                         buf = *bufs + samples_to_bytes(runtime, off);
2651                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2652                                 return -EFAULT;
2653                 }
2654         }
2655         return 0;
2656 }
2657  
2658 snd_pcm_sframes_t snd_pcm_lib_readv(snd_pcm_substream_t *substream,
2659                                     void __user **bufs,
2660                                     snd_pcm_uframes_t frames)
2661 {
2662         snd_pcm_runtime_t *runtime;
2663         int nonblock;
2664
2665         snd_assert(substream != NULL, return -ENXIO);
2666         runtime = substream->runtime;
2667         snd_assert(runtime != NULL, return -ENXIO);
2668         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2669         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2670                 return -EBADFD;
2671
2672         snd_assert(substream->ffile != NULL, return -ENXIO);
2673         nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2674 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2675         if (substream->oss.oss) {
2676                 snd_pcm_oss_setup_t *setup = substream->oss.setup;
2677                 if (setup != NULL) {
2678                         if (setup->nonblock)
2679                                 nonblock = 1;
2680                         else if (setup->block)
2681                                 nonblock = 0;
2682                 }
2683         }
2684 #endif
2685
2686         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2687                 return -EINVAL;
2688         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2689 }
2690
2691 /*
2692  *  Exported symbols
2693  */
2694
2695 EXPORT_SYMBOL(snd_interval_refine);
2696 EXPORT_SYMBOL(snd_interval_list);
2697 EXPORT_SYMBOL(snd_interval_ratnum);
2698 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
2699 EXPORT_SYMBOL(_snd_pcm_hw_param_min);
2700 EXPORT_SYMBOL(_snd_pcm_hw_param_set);
2701 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
2702 EXPORT_SYMBOL(_snd_pcm_hw_param_setinteger);
2703 EXPORT_SYMBOL(snd_pcm_hw_param_value_min);
2704 EXPORT_SYMBOL(snd_pcm_hw_param_value_max);
2705 EXPORT_SYMBOL(snd_pcm_hw_param_mask);
2706 EXPORT_SYMBOL(snd_pcm_hw_param_first);
2707 EXPORT_SYMBOL(snd_pcm_hw_param_last);
2708 EXPORT_SYMBOL(snd_pcm_hw_param_near);
2709 EXPORT_SYMBOL(snd_pcm_hw_param_set);
2710 EXPORT_SYMBOL(snd_pcm_hw_refine);
2711 EXPORT_SYMBOL(snd_pcm_hw_constraints_init);
2712 EXPORT_SYMBOL(snd_pcm_hw_constraints_complete);
2713 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
2714 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
2715 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
2716 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
2717 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
2718 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
2719 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
2720 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
2721 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
2722 EXPORT_SYMBOL(snd_pcm_set_ops);
2723 EXPORT_SYMBOL(snd_pcm_set_sync);
2724 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
2725 EXPORT_SYMBOL(snd_pcm_stop);
2726 EXPORT_SYMBOL(snd_pcm_period_elapsed);
2727 EXPORT_SYMBOL(snd_pcm_lib_write);
2728 EXPORT_SYMBOL(snd_pcm_lib_read);
2729 EXPORT_SYMBOL(snd_pcm_lib_writev);
2730 EXPORT_SYMBOL(snd_pcm_lib_readv);
2731 EXPORT_SYMBOL(snd_pcm_lib_buffer_bytes);
2732 EXPORT_SYMBOL(snd_pcm_lib_period_bytes);
2733 /* pcm_memory.c */
2734 EXPORT_SYMBOL(snd_pcm_lib_preallocate_free_for_all);
2735 EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages);
2736 EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages_for_all);
2737 EXPORT_SYMBOL(snd_pcm_sgbuf_ops_page);
2738 EXPORT_SYMBOL(snd_pcm_lib_malloc_pages);
2739 EXPORT_SYMBOL(snd_pcm_lib_free_pages);