2 * Philips UCB1400 touchscreen driver
4 * Author: Nicolas Pitre
5 * Created: September 25, 2006
6 * Copyright: MontaVista Software, Inc.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 * This code is heavily based on ucb1x00-*.c copyrighted by Russell King
13 * covering the UCB1100, UCB1200 and UCB1300.. Support for the UCB1400 has
14 * been made separate from ucb1x00-core/ucb1x00-ts on Russell's request.
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/input.h>
23 #include <linux/device.h>
24 #include <linux/interrupt.h>
25 #include <linux/suspend.h>
26 #include <linux/slab.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
30 #include <sound/driver.h>
31 #include <sound/core.h>
32 #include <sound/ac97_codec.h>
36 * Interesting UCB1400 AC-link registers
39 #define UCB_IE_RIS 0x5e
40 #define UCB_IE_FAL 0x60
41 #define UCB_IE_STATUS 0x62
42 #define UCB_IE_CLEAR 0x62
43 #define UCB_IE_ADC (1 << 11)
44 #define UCB_IE_TSPX (1 << 12)
46 #define UCB_TS_CR 0x64
47 #define UCB_TS_CR_TSMX_POW (1 << 0)
48 #define UCB_TS_CR_TSPX_POW (1 << 1)
49 #define UCB_TS_CR_TSMY_POW (1 << 2)
50 #define UCB_TS_CR_TSPY_POW (1 << 3)
51 #define UCB_TS_CR_TSMX_GND (1 << 4)
52 #define UCB_TS_CR_TSPX_GND (1 << 5)
53 #define UCB_TS_CR_TSMY_GND (1 << 6)
54 #define UCB_TS_CR_TSPY_GND (1 << 7)
55 #define UCB_TS_CR_MODE_INT (0 << 8)
56 #define UCB_TS_CR_MODE_PRES (1 << 8)
57 #define UCB_TS_CR_MODE_POS (2 << 8)
58 #define UCB_TS_CR_BIAS_ENA (1 << 11)
59 #define UCB_TS_CR_TSPX_LOW (1 << 12)
60 #define UCB_TS_CR_TSMX_LOW (1 << 13)
62 #define UCB_ADC_CR 0x66
63 #define UCB_ADC_SYNC_ENA (1 << 0)
64 #define UCB_ADC_VREFBYP_CON (1 << 1)
65 #define UCB_ADC_INP_TSPX (0 << 2)
66 #define UCB_ADC_INP_TSMX (1 << 2)
67 #define UCB_ADC_INP_TSPY (2 << 2)
68 #define UCB_ADC_INP_TSMY (3 << 2)
69 #define UCB_ADC_INP_AD0 (4 << 2)
70 #define UCB_ADC_INP_AD1 (5 << 2)
71 #define UCB_ADC_INP_AD2 (6 << 2)
72 #define UCB_ADC_INP_AD3 (7 << 2)
73 #define UCB_ADC_EXT_REF (1 << 5)
74 #define UCB_ADC_START (1 << 7)
75 #define UCB_ADC_ENA (1 << 15)
77 #define UCB_ADC_DATA 0x68
78 #define UCB_ADC_DAT_VALID (1 << 15)
79 #define UCB_ADC_DAT_VALUE(x) ((x) & 0x3ff)
82 #define UCB_ID_1400 0x4304
86 struct snd_ac97 *ac97;
87 struct input_dev *ts_idev;
91 wait_queue_head_t ts_wait;
92 struct task_struct *ts_task;
94 unsigned int irq_pending; /* not bit field shared */
95 unsigned int ts_restart:1;
96 unsigned int adcsync:1;
100 static int ts_delay = 55; /* us */
101 static int ts_delay_pressure; /* us */
103 static inline u16 ucb1400_reg_read(struct ucb1400 *ucb, u16 reg)
105 return ucb->ac97->bus->ops->read(ucb->ac97, reg);
108 static inline void ucb1400_reg_write(struct ucb1400 *ucb, u16 reg, u16 val)
110 ucb->ac97->bus->ops->write(ucb->ac97, reg, val);
113 static inline void ucb1400_adc_enable(struct ucb1400 *ucb)
115 ucb1400_reg_write(ucb, UCB_ADC_CR, UCB_ADC_ENA);
118 static unsigned int ucb1400_adc_read(struct ucb1400 *ucb, u16 adc_channel)
123 adc_channel |= UCB_ADC_SYNC_ENA;
125 ucb1400_reg_write(ucb, UCB_ADC_CR, UCB_ADC_ENA | adc_channel);
126 ucb1400_reg_write(ucb, UCB_ADC_CR, UCB_ADC_ENA | adc_channel | UCB_ADC_START);
129 val = ucb1400_reg_read(ucb, UCB_ADC_DATA);
130 if (val & UCB_ADC_DAT_VALID)
132 /* yield to other processes */
133 set_current_state(TASK_INTERRUPTIBLE);
137 return UCB_ADC_DAT_VALUE(val);
140 static inline void ucb1400_adc_disable(struct ucb1400 *ucb)
142 ucb1400_reg_write(ucb, UCB_ADC_CR, 0);
145 /* Switch to interrupt mode. */
146 static inline void ucb1400_ts_mode_int(struct ucb1400 *ucb)
148 ucb1400_reg_write(ucb, UCB_TS_CR,
149 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
150 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
155 * Switch to pressure mode, and read pressure. We don't need to wait
156 * here, since both plates are being driven.
158 static inline unsigned int ucb1400_ts_read_pressure(struct ucb1400 *ucb)
160 ucb1400_reg_write(ucb, UCB_TS_CR,
161 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
162 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
163 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
164 udelay(ts_delay_pressure);
165 return ucb1400_adc_read(ucb, UCB_ADC_INP_TSPY);
169 * Switch to X position mode and measure Y plate. We switch the plate
170 * configuration in pressure mode, then switch to position mode. This
171 * gives a faster response time. Even so, we need to wait about 55us
172 * for things to stabilise.
174 static inline unsigned int ucb1400_ts_read_xpos(struct ucb1400 *ucb)
176 ucb1400_reg_write(ucb, UCB_TS_CR,
177 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
178 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
179 ucb1400_reg_write(ucb, UCB_TS_CR,
180 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
181 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
182 ucb1400_reg_write(ucb, UCB_TS_CR,
183 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
184 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
188 return ucb1400_adc_read(ucb, UCB_ADC_INP_TSPY);
192 * Switch to Y position mode and measure X plate. We switch the plate
193 * configuration in pressure mode, then switch to position mode. This
194 * gives a faster response time. Even so, we need to wait about 55us
195 * for things to stabilise.
197 static inline unsigned int ucb1400_ts_read_ypos(struct ucb1400 *ucb)
199 ucb1400_reg_write(ucb, UCB_TS_CR,
200 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
201 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
202 ucb1400_reg_write(ucb, UCB_TS_CR,
203 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
204 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
205 ucb1400_reg_write(ucb, UCB_TS_CR,
206 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
207 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
211 return ucb1400_adc_read(ucb, UCB_ADC_INP_TSPX);
215 * Switch to X plate resistance mode. Set MX to ground, PX to
216 * supply. Measure current.
218 static inline unsigned int ucb1400_ts_read_xres(struct ucb1400 *ucb)
220 ucb1400_reg_write(ucb, UCB_TS_CR,
221 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
222 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
223 return ucb1400_adc_read(ucb, 0);
227 * Switch to Y plate resistance mode. Set MY to ground, PY to
228 * supply. Measure current.
230 static inline unsigned int ucb1400_ts_read_yres(struct ucb1400 *ucb)
232 ucb1400_reg_write(ucb, UCB_TS_CR,
233 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
234 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
235 return ucb1400_adc_read(ucb, 0);
238 static inline int ucb1400_ts_pen_down(struct ucb1400 *ucb)
240 unsigned short val = ucb1400_reg_read(ucb, UCB_TS_CR);
241 return (val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW));
244 static inline void ucb1400_ts_irq_enable(struct ucb1400 *ucb)
246 ucb1400_reg_write(ucb, UCB_IE_CLEAR, UCB_IE_TSPX);
247 ucb1400_reg_write(ucb, UCB_IE_CLEAR, 0);
248 ucb1400_reg_write(ucb, UCB_IE_FAL, UCB_IE_TSPX);
251 static inline void ucb1400_ts_irq_disable(struct ucb1400 *ucb)
253 ucb1400_reg_write(ucb, UCB_IE_FAL, 0);
256 static void ucb1400_ts_evt_add(struct input_dev *idev, u16 pressure, u16 x, u16 y)
258 input_report_abs(idev, ABS_X, x);
259 input_report_abs(idev, ABS_Y, y);
260 input_report_abs(idev, ABS_PRESSURE, pressure);
264 static void ucb1400_ts_event_release(struct input_dev *idev)
266 input_report_abs(idev, ABS_PRESSURE, 0);
270 static void ucb1400_handle_pending_irq(struct ucb1400 *ucb)
274 isr = ucb1400_reg_read(ucb, UCB_IE_STATUS);
275 ucb1400_reg_write(ucb, UCB_IE_CLEAR, isr);
276 ucb1400_reg_write(ucb, UCB_IE_CLEAR, 0);
278 if (isr & UCB_IE_TSPX)
279 ucb1400_ts_irq_disable(ucb);
281 printk(KERN_ERR "ucb1400: unexpected IE_STATUS = %#x\n", isr);
283 enable_irq(ucb->irq);
286 static int ucb1400_ts_thread(void *_ucb)
288 struct ucb1400 *ucb = _ucb;
289 struct task_struct *tsk = current;
291 struct sched_param param = { .sched_priority = 1 };
293 sched_setscheduler(tsk, SCHED_FIFO, ¶m);
295 while (!kthread_should_stop()) {
296 unsigned int x, y, p;
301 if (ucb->irq_pending) {
302 ucb->irq_pending = 0;
303 ucb1400_handle_pending_irq(ucb);
306 ucb1400_adc_enable(ucb);
307 x = ucb1400_ts_read_xpos(ucb);
308 y = ucb1400_ts_read_ypos(ucb);
309 p = ucb1400_ts_read_pressure(ucb);
310 ucb1400_adc_disable(ucb);
312 /* Switch back to interrupt mode. */
313 ucb1400_ts_mode_int(ucb);
317 if (ucb1400_ts_pen_down(ucb)) {
318 ucb1400_ts_irq_enable(ucb);
321 * If we spat out a valid sample set last time,
322 * spit out a "pen off" sample here.
325 ucb1400_ts_event_release(ucb->ts_idev);
329 timeout = MAX_SCHEDULE_TIMEOUT;
332 ucb1400_ts_evt_add(ucb->ts_idev, p, x, y);
333 timeout = msecs_to_jiffies(10);
336 wait_event_interruptible_timeout(ucb->ts_wait,
337 ucb->irq_pending || ucb->ts_restart || kthread_should_stop(),
342 /* Send the "pen off" if we are stopping with the pen still active */
344 ucb1400_ts_event_release(ucb->ts_idev);
351 * A restriction with interrupts exists when using the ucb1400, as
352 * the codec read/write routines may sleep while waiting for codec
353 * access completion and uses semaphores for access control to the
354 * AC97 bus. A complete codec read cycle could take anywhere from
355 * 60 to 100uSec so we *definitely* don't want to spin inside the
356 * interrupt handler waiting for codec access. So, we handle the
357 * interrupt by scheduling a RT kernel thread to run in process
358 * context instead of interrupt context.
360 static irqreturn_t ucb1400_hard_irq(int irqnr, void *devid)
362 struct ucb1400 *ucb = devid;
364 if (irqnr == ucb->irq) {
365 disable_irq(ucb->irq);
366 ucb->irq_pending = 1;
367 wake_up(&ucb->ts_wait);
373 static int ucb1400_ts_open(struct input_dev *idev)
375 struct ucb1400 *ucb = input_get_drvdata(idev);
378 BUG_ON(ucb->ts_task);
380 ucb->ts_task = kthread_run(ucb1400_ts_thread, ucb, "UCB1400_ts");
381 if (IS_ERR(ucb->ts_task)) {
382 ret = PTR_ERR(ucb->ts_task);
389 static void ucb1400_ts_close(struct input_dev *idev)
391 struct ucb1400 *ucb = input_get_drvdata(idev);
394 kthread_stop(ucb->ts_task);
396 ucb1400_ts_irq_disable(ucb);
397 ucb1400_reg_write(ucb, UCB_TS_CR, 0);
401 static int ucb1400_ts_resume(struct device *dev)
403 struct ucb1400 *ucb = dev_get_drvdata(dev);
407 * Restart the TS thread to ensure the
408 * TS interrupt mode is set up again
412 wake_up(&ucb->ts_wait);
417 #define ucb1400_ts_resume NULL
425 * Try to probe our interrupt, rather than relying on lots of
426 * hard-coded machine dependencies.
428 static int ucb1400_detect_irq(struct ucb1400 *ucb)
430 unsigned long mask, timeout;
432 mask = probe_irq_on();
438 /* Enable the ADC interrupt. */
439 ucb1400_reg_write(ucb, UCB_IE_RIS, UCB_IE_ADC);
440 ucb1400_reg_write(ucb, UCB_IE_FAL, UCB_IE_ADC);
441 ucb1400_reg_write(ucb, UCB_IE_CLEAR, 0xffff);
442 ucb1400_reg_write(ucb, UCB_IE_CLEAR, 0);
444 /* Cause an ADC interrupt. */
445 ucb1400_reg_write(ucb, UCB_ADC_CR, UCB_ADC_ENA);
446 ucb1400_reg_write(ucb, UCB_ADC_CR, UCB_ADC_ENA | UCB_ADC_START);
448 /* Wait for the conversion to complete. */
449 timeout = jiffies + HZ/2;
450 while (!(ucb1400_reg_read(ucb, UCB_ADC_DATA) & UCB_ADC_DAT_VALID)) {
452 if (time_after(jiffies, timeout)) {
453 printk(KERN_ERR "ucb1400: timed out in IRQ probe\n");
458 ucb1400_reg_write(ucb, UCB_ADC_CR, 0);
460 /* Disable and clear interrupt. */
461 ucb1400_reg_write(ucb, UCB_IE_RIS, 0);
462 ucb1400_reg_write(ucb, UCB_IE_FAL, 0);
463 ucb1400_reg_write(ucb, UCB_IE_CLEAR, 0xffff);
464 ucb1400_reg_write(ucb, UCB_IE_CLEAR, 0);
466 /* Read triggered interrupt. */
467 ucb->irq = probe_irq_off(mask);
468 if (ucb->irq < 0 || ucb->irq == NO_IRQ)
474 static int ucb1400_ts_probe(struct device *dev)
477 struct input_dev *idev;
478 int error, id, x_res, y_res;
480 ucb = kzalloc(sizeof(struct ucb1400), GFP_KERNEL);
481 idev = input_allocate_device();
488 ucb->adcsync = adcsync;
489 ucb->ac97 = to_ac97_t(dev);
490 init_waitqueue_head(&ucb->ts_wait);
492 id = ucb1400_reg_read(ucb, UCB_ID);
493 if (id != UCB_ID_1400) {
498 error = ucb1400_detect_irq(ucb);
500 printk(KERN_ERR "UCB1400: IRQ probe failed\n");
504 error = request_irq(ucb->irq, ucb1400_hard_irq, IRQF_TRIGGER_RISING,
507 printk(KERN_ERR "ucb1400: unable to grab irq%d: %d\n",
511 printk(KERN_DEBUG "UCB1400: found IRQ %d\n", ucb->irq);
513 input_set_drvdata(idev, ucb);
515 idev->dev.parent = dev;
516 idev->name = "UCB1400 touchscreen interface";
517 idev->id.vendor = ucb1400_reg_read(ucb, AC97_VENDOR_ID1);
518 idev->id.product = id;
519 idev->open = ucb1400_ts_open;
520 idev->close = ucb1400_ts_close;
521 idev->evbit[0] = BIT(EV_ABS);
523 ucb1400_adc_enable(ucb);
524 x_res = ucb1400_ts_read_xres(ucb);
525 y_res = ucb1400_ts_read_yres(ucb);
526 ucb1400_adc_disable(ucb);
527 printk(KERN_DEBUG "UCB1400: x/y = %d/%d\n", x_res, y_res);
529 input_set_abs_params(idev, ABS_X, 0, x_res, 0, 0);
530 input_set_abs_params(idev, ABS_Y, 0, y_res, 0, 0);
531 input_set_abs_params(idev, ABS_PRESSURE, 0, 0, 0, 0);
533 error = input_register_device(idev);
537 dev_set_drvdata(dev, ucb);
541 free_irq(ucb->irq, ucb);
543 input_free_device(idev);
548 static int ucb1400_ts_remove(struct device *dev)
550 struct ucb1400 *ucb = dev_get_drvdata(dev);
552 free_irq(ucb->irq, ucb);
553 input_unregister_device(ucb->ts_idev);
554 dev_set_drvdata(dev, NULL);
559 static struct device_driver ucb1400_ts_driver = {
560 .name = "ucb1400_ts",
561 .owner = THIS_MODULE,
562 .bus = &ac97_bus_type,
563 .probe = ucb1400_ts_probe,
564 .remove = ucb1400_ts_remove,
565 .resume = ucb1400_ts_resume,
568 static int __init ucb1400_ts_init(void)
570 return driver_register(&ucb1400_ts_driver);
573 static void __exit ucb1400_ts_exit(void)
575 driver_unregister(&ucb1400_ts_driver);
578 module_param(adcsync, bool, 0444);
579 MODULE_PARM_DESC(adcsync, "Synchronize touch readings with ADCSYNC pin.");
581 module_param(ts_delay, int, 0444);
582 MODULE_PARM_DESC(ts_delay, "Delay between panel setup and position read. Default = 55us.");
584 module_param(ts_delay_pressure, int, 0444);
585 MODULE_PARM_DESC(ts_delay_pressure,
586 "delay between panel setup and pressure read. Default = 0us.");
588 module_init(ucb1400_ts_init);
589 module_exit(ucb1400_ts_exit);
591 MODULE_DESCRIPTION("Philips UCB1400 touchscreen driver");
592 MODULE_LICENSE("GPL");