2 * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
4 * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5 * 2000 Bonin Franck <boninf@free.fr>
6 * 2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
8 * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 * This driver intends to support RFC 2734, which describes a method for
27 * transporting IPv4 datagrams over IEEE-1394 serial busses.
31 * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
33 * Non-RFC 2734 related:
34 * - Handle fragmented skb's coming from the networking layer.
35 * - Move generic GASP reception to core 1394 code
36 * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37 * - Stability improvements
38 * - Performance enhancements
39 * - Consider garbage collecting old partial datagrams after X amount of time
42 #include <linux/module.h>
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
51 #include <linux/netdevice.h>
52 #include <linux/inetdevice.h>
53 #include <linux/etherdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <linux/ethtool.h>
62 #include <asm/uaccess.h>
63 #include <asm/delay.h>
64 #include <asm/unaligned.h>
67 #include "config_roms.h"
70 #include "highlevel.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_hotplug.h"
74 #include "ieee1394_transactions.h"
75 #include "ieee1394_types.h"
79 #define ETH1394_PRINT_G(level, fmt, args...) \
80 printk(level "%s: " fmt, driver_name, ## args)
82 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
83 printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
85 struct fragment_info {
86 struct list_head list;
91 struct partial_datagram {
92 struct list_head list;
98 struct list_head frag_info;
102 struct list_head list; /* partial datagram list per node */
103 unsigned int sz; /* partial datagram list size per node */
104 spinlock_t lock; /* partial datagram lock */
107 struct eth1394_host_info {
108 struct hpsb_host *host;
109 struct net_device *dev;
112 struct eth1394_node_ref {
113 struct unit_directory *ud;
114 struct list_head list;
117 struct eth1394_node_info {
118 u16 maxpayload; /* max payload */
119 u8 sspd; /* max speed */
120 u64 fifo; /* FIFO address */
121 struct pdg_list pdg; /* partial RX datagram lists */
122 int dgl; /* outgoing datagram label */
125 static const char driver_name[] = "eth1394";
127 static struct kmem_cache *packet_task_cache;
129 static struct hpsb_highlevel eth1394_highlevel;
131 /* Use common.lf to determine header len */
132 static const int hdr_type_len[] = {
133 sizeof(struct eth1394_uf_hdr),
134 sizeof(struct eth1394_ff_hdr),
135 sizeof(struct eth1394_sf_hdr),
136 sizeof(struct eth1394_sf_hdr)
139 static const u16 eth1394_speedto_maxpayload[] = {
140 /* S100, S200, S400, S800, S1600, S3200 */
141 512, 1024, 2048, 4096, 4096, 4096
144 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
145 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
146 MODULE_LICENSE("GPL");
149 * The max_partial_datagrams parameter is the maximum number of fragmented
150 * datagrams per node that eth1394 will keep in memory. Providing an upper
151 * bound allows us to limit the amount of memory that partial datagrams
152 * consume in the event that some partial datagrams are never completed.
154 static int max_partial_datagrams = 25;
155 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
156 MODULE_PARM_DESC(max_partial_datagrams,
157 "Maximum number of partially received fragmented datagrams "
161 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
162 unsigned short type, void *daddr, void *saddr,
164 static int ether1394_rebuild_header(struct sk_buff *skb);
165 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
166 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
167 static void ether1394_header_cache_update(struct hh_cache *hh,
168 struct net_device *dev,
169 unsigned char *haddr);
170 static int ether1394_mac_addr(struct net_device *dev, void *p);
172 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
173 static void ether1394_iso(struct hpsb_iso *iso);
175 static struct ethtool_ops ethtool_ops;
177 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
178 quadlet_t *data, u64 addr, size_t len, u16 flags);
179 static void ether1394_add_host(struct hpsb_host *host);
180 static void ether1394_remove_host(struct hpsb_host *host);
181 static void ether1394_host_reset(struct hpsb_host *host);
183 /* Function for incoming 1394 packets */
184 static struct hpsb_address_ops addr_ops = {
185 .write = ether1394_write,
188 /* Ieee1394 highlevel driver functions */
189 static struct hpsb_highlevel eth1394_highlevel = {
191 .add_host = ether1394_add_host,
192 .remove_host = ether1394_remove_host,
193 .host_reset = ether1394_host_reset,
196 static int ether1394_recv_init(struct eth1394_priv *priv)
198 unsigned int iso_buf_size;
200 /* FIXME: rawiso limits us to PAGE_SIZE */
201 iso_buf_size = min((unsigned int)PAGE_SIZE,
202 2 * (1U << (priv->host->csr.max_rec + 1)));
204 priv->iso = hpsb_iso_recv_init(priv->host,
205 ETHER1394_GASP_BUFFERS * iso_buf_size,
206 ETHER1394_GASP_BUFFERS,
207 priv->broadcast_channel,
208 HPSB_ISO_DMA_PACKET_PER_BUFFER,
210 if (priv->iso == NULL) {
211 ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
212 priv->bc_state = ETHER1394_BC_ERROR;
216 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
217 priv->bc_state = ETHER1394_BC_STOPPED;
219 priv->bc_state = ETHER1394_BC_RUNNING;
223 /* This is called after an "ifup" */
224 static int ether1394_open(struct net_device *dev)
226 struct eth1394_priv *priv = netdev_priv(dev);
229 if (priv->bc_state == ETHER1394_BC_ERROR) {
230 ret = ether1394_recv_init(priv);
234 netif_start_queue(dev);
238 /* This is called after an "ifdown" */
239 static int ether1394_stop(struct net_device *dev)
241 netif_stop_queue(dev);
245 /* Return statistics to the caller */
246 static struct net_device_stats *ether1394_stats(struct net_device *dev)
248 return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
251 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
252 * so that's what we do. Should we increment the stat counters too? */
253 static void ether1394_tx_timeout(struct net_device *dev)
255 struct hpsb_host *host =
256 ((struct eth1394_priv *)netdev_priv(dev))->host;
258 ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
259 ether1394_host_reset(host);
262 static inline int ether1394_max_mtu(struct hpsb_host* host)
264 return (1 << (host->csr.max_rec + 1))
265 - sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
268 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
275 max_mtu = ether1394_max_mtu(
276 ((struct eth1394_priv *)netdev_priv(dev))->host);
277 if (new_mtu > max_mtu) {
278 ETH1394_PRINT(KERN_INFO, dev->name,
279 "Local node constrains MTU to %d\n", max_mtu);
287 static void purge_partial_datagram(struct list_head *old)
289 struct partial_datagram *pd;
290 struct list_head *lh, *n;
291 struct fragment_info *fi;
293 pd = list_entry(old, struct partial_datagram, list);
295 list_for_each_safe(lh, n, &pd->frag_info) {
296 fi = list_entry(lh, struct fragment_info, list);
305 /******************************************
306 * 1394 bus activity functions
307 ******************************************/
309 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
310 struct unit_directory *ud)
312 struct eth1394_node_ref *node;
314 list_for_each_entry(node, inl, list)
321 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
324 struct eth1394_node_ref *node;
326 list_for_each_entry(node, inl, list)
327 if (node->ud->ne->guid == guid)
333 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
336 struct eth1394_node_ref *node;
338 list_for_each_entry(node, inl, list)
339 if (node->ud->ne->nodeid == nodeid)
345 static int eth1394_new_node(struct eth1394_host_info *hi,
346 struct unit_directory *ud)
348 struct eth1394_priv *priv;
349 struct eth1394_node_ref *new_node;
350 struct eth1394_node_info *node_info;
352 new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
356 node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
362 spin_lock_init(&node_info->pdg.lock);
363 INIT_LIST_HEAD(&node_info->pdg.list);
364 node_info->pdg.sz = 0;
365 node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
367 ud->device.driver_data = node_info;
370 priv = netdev_priv(hi->dev);
371 list_add_tail(&new_node->list, &priv->ip_node_list);
375 static int eth1394_probe(struct device *dev)
377 struct unit_directory *ud;
378 struct eth1394_host_info *hi;
380 ud = container_of(dev, struct unit_directory, device);
381 hi = hpsb_get_hostinfo(ð1394_highlevel, ud->ne->host);
385 return eth1394_new_node(hi, ud);
388 static int eth1394_remove(struct device *dev)
390 struct unit_directory *ud;
391 struct eth1394_host_info *hi;
392 struct eth1394_priv *priv;
393 struct eth1394_node_ref *old_node;
394 struct eth1394_node_info *node_info;
395 struct list_head *lh, *n;
398 ud = container_of(dev, struct unit_directory, device);
399 hi = hpsb_get_hostinfo(ð1394_highlevel, ud->ne->host);
403 priv = netdev_priv(hi->dev);
405 old_node = eth1394_find_node(&priv->ip_node_list, ud);
409 list_del(&old_node->list);
412 node_info = (struct eth1394_node_info*)ud->device.driver_data;
414 spin_lock_irqsave(&node_info->pdg.lock, flags);
415 /* The partial datagram list should be empty, but we'll just
416 * make sure anyway... */
417 list_for_each_safe(lh, n, &node_info->pdg.list)
418 purge_partial_datagram(lh);
419 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
422 ud->device.driver_data = NULL;
426 static int eth1394_update(struct unit_directory *ud)
428 struct eth1394_host_info *hi;
429 struct eth1394_priv *priv;
430 struct eth1394_node_ref *node;
432 hi = hpsb_get_hostinfo(ð1394_highlevel, ud->ne->host);
436 priv = netdev_priv(hi->dev);
437 node = eth1394_find_node(&priv->ip_node_list, ud);
441 return eth1394_new_node(hi, ud);
444 static struct ieee1394_device_id eth1394_id_table[] = {
446 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
447 IEEE1394_MATCH_VERSION),
448 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
449 .version = ETHER1394_GASP_VERSION,
454 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
456 static struct hpsb_protocol_driver eth1394_proto_driver = {
458 .id_table = eth1394_id_table,
459 .update = eth1394_update,
461 .probe = eth1394_probe,
462 .remove = eth1394_remove,
466 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
470 struct eth1394_priv *priv = netdev_priv(dev);
471 struct hpsb_host *host = priv->host;
472 u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
473 int max_speed = IEEE1394_SPEED_MAX;
475 spin_lock_irqsave(&priv->lock, flags);
477 memset(priv->ud_list, 0, sizeof(priv->ud_list));
478 priv->bc_maxpayload = 512;
480 /* Determine speed limit */
481 for (i = 0; i < host->node_count; i++)
482 if (max_speed > host->speed[i])
483 max_speed = host->speed[i];
484 priv->bc_sspd = max_speed;
487 /* Use the RFC 2734 default 1500 octets or the maximum payload
489 dev->mtu = min(1500, ether1394_max_mtu(host));
491 /* Set our hardware address while we're at it */
492 memcpy(dev->dev_addr, &guid, sizeof(u64));
493 memset(dev->broadcast, 0xff, sizeof(u64));
496 spin_unlock_irqrestore(&priv->lock, flags);
499 /* This function is called right before register_netdev */
500 static void ether1394_init_dev(struct net_device *dev)
503 dev->open = ether1394_open;
504 dev->stop = ether1394_stop;
505 dev->hard_start_xmit = ether1394_tx;
506 dev->get_stats = ether1394_stats;
507 dev->tx_timeout = ether1394_tx_timeout;
508 dev->change_mtu = ether1394_change_mtu;
510 dev->hard_header = ether1394_header;
511 dev->rebuild_header = ether1394_rebuild_header;
512 dev->hard_header_cache = ether1394_header_cache;
513 dev->header_cache_update= ether1394_header_cache_update;
514 dev->hard_header_parse = ether1394_header_parse;
515 dev->set_mac_address = ether1394_mac_addr;
516 SET_ETHTOOL_OPS(dev, ðtool_ops);
519 dev->watchdog_timeo = ETHER1394_TIMEOUT;
520 dev->flags = IFF_BROADCAST | IFF_MULTICAST;
521 dev->features = NETIF_F_HIGHDMA;
522 dev->addr_len = ETH1394_ALEN;
523 dev->hard_header_len = ETH1394_HLEN;
524 dev->type = ARPHRD_IEEE1394;
526 ether1394_reset_priv(dev, 1);
530 * This function is called every time a card is found. It is generally called
531 * when the module is installed. This is where we add all of our ethernet
532 * devices. One for each host.
534 static void ether1394_add_host(struct hpsb_host *host)
536 struct eth1394_host_info *hi = NULL;
537 struct net_device *dev = NULL;
538 struct eth1394_priv *priv;
541 if (hpsb_config_rom_ip1394_add(host) != 0) {
542 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
546 fifo_addr = hpsb_allocate_and_register_addrspace(
547 ð1394_highlevel, host, &addr_ops,
548 ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
549 CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
550 if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
551 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
552 hpsb_config_rom_ip1394_remove(host);
556 /* We should really have our own alloc_hpsbdev() function in
557 * net_init.c instead of calling the one for ethernet then hijacking
558 * it for ourselves. That way we'd be a real networking device. */
559 dev = alloc_etherdev(sizeof (struct eth1394_priv));
562 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
566 SET_MODULE_OWNER(dev);
568 /* FIXME - Is this the correct parent device anyway? */
569 SET_NETDEV_DEV(dev, &host->device);
572 priv = netdev_priv(dev);
574 INIT_LIST_HEAD(&priv->ip_node_list);
576 spin_lock_init(&priv->lock);
578 priv->local_fifo = fifo_addr;
580 hi = hpsb_create_hostinfo(ð1394_highlevel, host, sizeof(*hi));
583 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
587 ether1394_init_dev(dev);
589 if (register_netdev(dev)) {
590 ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
594 ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
600 /* Ignore validity in hopes that it will be set in the future. It'll
601 * be checked when the eth device is opened. */
602 priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
604 ether1394_recv_init(priv);
610 hpsb_destroy_hostinfo(ð1394_highlevel, host);
611 hpsb_unregister_addrspace(ð1394_highlevel, host, fifo_addr);
612 hpsb_config_rom_ip1394_remove(host);
615 /* Remove a card from our list */
616 static void ether1394_remove_host(struct hpsb_host *host)
618 struct eth1394_host_info *hi;
619 struct eth1394_priv *priv;
621 hi = hpsb_get_hostinfo(ð1394_highlevel, host);
624 priv = netdev_priv(hi->dev);
625 hpsb_unregister_addrspace(ð1394_highlevel, host, priv->local_fifo);
626 hpsb_config_rom_ip1394_remove(host);
628 hpsb_iso_shutdown(priv->iso);
629 unregister_netdev(hi->dev);
630 free_netdev(hi->dev);
633 /* A bus reset happened */
634 static void ether1394_host_reset(struct hpsb_host *host)
636 struct eth1394_host_info *hi;
637 struct eth1394_priv *priv;
638 struct net_device *dev;
639 struct list_head *lh, *n;
640 struct eth1394_node_ref *node;
641 struct eth1394_node_info *node_info;
644 hi = hpsb_get_hostinfo(ð1394_highlevel, host);
646 /* This can happen for hosts that we don't use */
651 priv = netdev_priv(dev);
653 /* Reset our private host data, but not our MTU */
654 netif_stop_queue(dev);
655 ether1394_reset_priv(dev, 0);
657 list_for_each_entry(node, &priv->ip_node_list, list) {
658 node_info = node->ud->device.driver_data;
660 spin_lock_irqsave(&node_info->pdg.lock, flags);
662 list_for_each_safe(lh, n, &node_info->pdg.list)
663 purge_partial_datagram(lh);
665 INIT_LIST_HEAD(&(node_info->pdg.list));
666 node_info->pdg.sz = 0;
668 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
671 netif_wake_queue(dev);
674 /******************************************
675 * HW Header net device functions
676 ******************************************/
677 /* These functions have been adapted from net/ethernet/eth.c */
679 /* Create a fake MAC header for an arbitrary protocol layer.
680 * saddr=NULL means use device source address
681 * daddr=NULL means leave destination address (eg unresolved arp). */
682 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
683 unsigned short type, void *daddr, void *saddr,
686 struct eth1394hdr *eth =
687 (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
689 eth->h_proto = htons(type);
691 if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
692 memset(eth->h_dest, 0, dev->addr_len);
693 return dev->hard_header_len;
697 memcpy(eth->h_dest, daddr, dev->addr_len);
698 return dev->hard_header_len;
701 return -dev->hard_header_len;
704 /* Rebuild the faked MAC header. This is called after an ARP
705 * (or in future other address resolution) has completed on this
706 * sk_buff. We now let ARP fill in the other fields.
708 * This routine CANNOT use cached dst->neigh!
709 * Really, it is used only when dst->neigh is wrong.
711 static int ether1394_rebuild_header(struct sk_buff *skb)
713 struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
715 if (eth->h_proto == htons(ETH_P_IP))
716 return arp_find((unsigned char *)ð->h_dest, skb);
718 ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
719 "unable to resolve type %04x addresses\n",
720 ntohs(eth->h_proto));
724 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
726 struct net_device *dev = skb->dev;
728 memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
732 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
734 unsigned short type = hh->hh_type;
735 struct net_device *dev = neigh->dev;
736 struct eth1394hdr *eth =
737 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
739 if (type == htons(ETH_P_802_3))
743 memcpy(eth->h_dest, neigh->ha, dev->addr_len);
745 hh->hh_len = ETH1394_HLEN;
749 /* Called by Address Resolution module to notify changes in address. */
750 static void ether1394_header_cache_update(struct hh_cache *hh,
751 struct net_device *dev,
752 unsigned char * haddr)
754 memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
757 static int ether1394_mac_addr(struct net_device *dev, void *p)
759 if (netif_running(dev))
762 /* Not going to allow setting the MAC address, we really need to use
763 * the real one supplied by the hardware */
767 /******************************************
768 * Datagram reception code
769 ******************************************/
771 /* Copied from net/ethernet/eth.c */
772 static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
774 struct eth1394hdr *eth;
777 skb_reset_mac_header(skb);
778 skb_pull(skb, ETH1394_HLEN);
779 eth = eth1394_hdr(skb);
781 if (*eth->h_dest & 1) {
782 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
783 skb->pkt_type = PACKET_BROADCAST;
786 skb->pkt_type = PACKET_MULTICAST;
789 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
790 skb->pkt_type = PACKET_OTHERHOST;
793 if (ntohs(eth->h_proto) >= 1536)
798 if (*(unsigned short *)rawp == 0xFFFF)
799 return htons(ETH_P_802_3);
801 return htons(ETH_P_802_2);
804 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
805 * We also perform ARP translation here, if need be. */
806 static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
807 nodeid_t srcid, nodeid_t destid,
810 struct eth1394_priv *priv = netdev_priv(dev);
812 unsigned short ret = 0;
814 /* Setup our hw addresses. We use these to build the ethernet header. */
815 if (destid == (LOCAL_BUS | ALL_NODES))
816 dest_hw = ~0ULL; /* broadcast */
818 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
819 priv->host->csr.guid_lo);
821 /* If this is an ARP packet, convert it. First, we want to make
822 * use of some of the fields, since they tell us a little bit
823 * about the sending machine. */
824 if (ether_type == htons(ETH_P_ARP)) {
825 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
826 struct arphdr *arp = (struct arphdr *)skb->data;
827 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
828 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
829 ntohl(arp1394->fifo_lo);
830 u8 max_rec = min(priv->host->csr.max_rec,
831 (u8)(arp1394->max_rec));
832 int sspd = arp1394->sspd;
834 struct eth1394_node_ref *node;
835 struct eth1394_node_info *node_info;
838 /* Sanity check. MacOSX seems to be sending us 131 in this
839 * field (atleast on my Panther G5). Not sure why. */
840 if (sspd > 5 || sspd < 0)
843 maxpayload = min(eth1394_speedto_maxpayload[sspd],
844 (u16)(1 << (max_rec + 1)));
846 guid = get_unaligned(&arp1394->s_uniq_id);
847 node = eth1394_find_node_guid(&priv->ip_node_list,
853 (struct eth1394_node_info *)node->ud->device.driver_data;
855 /* Update our speed/payload/fifo_offset table */
856 node_info->maxpayload = maxpayload;
857 node_info->sspd = sspd;
858 node_info->fifo = fifo_addr;
860 /* Now that we're done with the 1394 specific stuff, we'll
861 * need to alter some of the data. Believe it or not, all
862 * that needs to be done is sender_IP_address needs to be
863 * moved, the destination hardware address get stuffed
864 * in and the hardware address length set to 8.
866 * IMPORTANT: The code below overwrites 1394 specific data
867 * needed above so keep the munging of the data for the
868 * higher level IP stack last. */
871 arp_ptr += arp->ar_hln; /* skip over sender unique id */
872 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
873 arp_ptr += arp->ar_pln; /* skip over sender IP addr */
875 if (arp->ar_op == htons(ARPOP_REQUEST))
876 memset(arp_ptr, 0, sizeof(u64));
878 memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
881 /* Now add the ethernet header. */
882 if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
884 ret = ether1394_type_trans(skb, dev);
889 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
891 struct fragment_info *fi;
893 list_for_each_entry(fi, frag_list, list) {
894 if ( ! ((offset > (fi->offset + fi->len - 1)) ||
895 ((offset + len - 1) < fi->offset)))
901 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
903 struct partial_datagram *pd;
905 list_for_each_entry(pd, pdgl, list)
912 /* Assumes that new fragment does not overlap any existing fragments */
913 static int new_fragment(struct list_head *frag_info, int offset, int len)
915 struct list_head *lh;
916 struct fragment_info *fi, *fi2, *new;
918 list_for_each(lh, frag_info) {
919 fi = list_entry(lh, struct fragment_info, list);
920 if (fi->offset + fi->len == offset) {
921 /* The new fragment can be tacked on to the end */
923 /* Did the new fragment plug a hole? */
924 fi2 = list_entry(lh->next, struct fragment_info, list);
925 if (fi->offset + fi->len == fi2->offset) {
926 /* glue fragments together */
932 } else if (offset + len == fi->offset) {
933 /* The new fragment can be tacked on to the beginning */
936 /* Did the new fragment plug a hole? */
937 fi2 = list_entry(lh->prev, struct fragment_info, list);
938 if (fi2->offset + fi2->len == fi->offset) {
939 /* glue fragments together */
945 } else if (offset > fi->offset + fi->len) {
947 } else if (offset + len < fi->offset) {
953 new = kmalloc(sizeof(*new), GFP_ATOMIC);
957 new->offset = offset;
960 list_add(&new->list, lh);
964 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
965 int dgl, int dg_size, char *frag_buf,
966 int frag_off, int frag_len)
968 struct partial_datagram *new;
970 new = kmalloc(sizeof(*new), GFP_ATOMIC);
974 INIT_LIST_HEAD(&new->frag_info);
976 if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
982 new->dg_size = dg_size;
984 new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
986 struct fragment_info *fi = list_entry(new->frag_info.next,
987 struct fragment_info,
994 skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
995 new->pbuf = skb_put(new->skb, dg_size);
996 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
998 list_add(&new->list, pdgl);
1002 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1003 char *frag_buf, int frag_off, int frag_len)
1005 struct partial_datagram *pd =
1006 list_entry(lh, struct partial_datagram, list);
1008 if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1011 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1013 /* Move list entry to beginnig of list so that oldest partial
1014 * datagrams percolate to the end of the list */
1015 list_move(lh, pdgl);
1019 static int is_datagram_complete(struct list_head *lh, int dg_size)
1021 struct partial_datagram *pd;
1022 struct fragment_info *fi;
1024 pd = list_entry(lh, struct partial_datagram, list);
1025 fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1027 return (fi->len == dg_size);
1030 /* Packet reception. We convert the IP1394 encapsulation header to an
1031 * ethernet header, and fill it with some of our other fields. This is
1032 * an incoming packet from the 1394 bus. */
1033 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1036 struct sk_buff *skb;
1037 unsigned long flags;
1038 struct eth1394_priv *priv = netdev_priv(dev);
1039 union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1040 u16 ether_type = 0; /* initialized to clear warning */
1042 struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1043 struct eth1394_node_info *node_info;
1046 struct eth1394_node_ref *node;
1047 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1049 HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1050 "lookup failure: " NODE_BUS_FMT,
1051 NODE_BUS_ARGS(priv->host, srcid));
1052 priv->stats.rx_dropped++;
1057 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1060 node_info = (struct eth1394_node_info *)ud->device.driver_data;
1062 /* First, did we receive a fragmented or unfragmented datagram? */
1063 hdr->words.word1 = ntohs(hdr->words.word1);
1065 hdr_len = hdr_type_len[hdr->common.lf];
1067 if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1068 /* An unfragmented datagram has been received by the ieee1394
1069 * bus. Build an skbuff around it so we can pass it to the
1070 * high level network layer. */
1072 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1074 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
1075 priv->stats.rx_dropped++;
1078 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1079 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1081 ether_type = hdr->uf.ether_type;
1083 /* A datagram fragment has been received, now the fun begins. */
1085 struct list_head *pdgl, *lh;
1086 struct partial_datagram *pd;
1088 int fg_len = len - hdr_len;
1092 struct pdg_list *pdg = &(node_info->pdg);
1094 hdr->words.word3 = ntohs(hdr->words.word3);
1095 /* The 4th header word is reserved so no need to do ntohs() */
1097 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1098 ether_type = hdr->ff.ether_type;
1100 dg_size = hdr->ff.dg_size + 1;
1103 hdr->words.word2 = ntohs(hdr->words.word2);
1105 dg_size = hdr->sf.dg_size + 1;
1106 fg_off = hdr->sf.fg_off;
1108 spin_lock_irqsave(&pdg->lock, flags);
1110 pdgl = &(pdg->list);
1111 lh = find_partial_datagram(pdgl, dgl);
1114 while (pdg->sz >= max_partial_datagrams) {
1115 /* remove the oldest */
1116 purge_partial_datagram(pdgl->prev);
1120 retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1121 buf + hdr_len, fg_off,
1124 spin_unlock_irqrestore(&pdg->lock, flags);
1128 lh = find_partial_datagram(pdgl, dgl);
1130 struct partial_datagram *pd;
1132 pd = list_entry(lh, struct partial_datagram, list);
1134 if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1135 /* Overlapping fragments, obliterate old
1136 * datagram and start new one. */
1137 purge_partial_datagram(lh);
1138 retval = new_partial_datagram(dev, pdgl, dgl,
1144 spin_unlock_irqrestore(&pdg->lock, flags);
1148 retval = update_partial_datagram(pdgl, lh,
1152 /* Couldn't save off fragment anyway
1153 * so might as well obliterate the
1155 purge_partial_datagram(lh);
1157 spin_unlock_irqrestore(&pdg->lock, flags);
1160 } /* fragment overlap */
1161 } /* new datagram or add to existing one */
1163 pd = list_entry(lh, struct partial_datagram, list);
1165 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1166 pd->ether_type = ether_type;
1168 if (is_datagram_complete(lh, dg_size)) {
1169 ether_type = pd->ether_type;
1171 skb = skb_get(pd->skb);
1172 purge_partial_datagram(lh);
1173 spin_unlock_irqrestore(&pdg->lock, flags);
1175 /* Datagram is not complete, we're done for the
1177 spin_unlock_irqrestore(&pdg->lock, flags);
1180 } /* unframgented datagram or fragmented one */
1182 /* Write metadata, and then pass to the receive level */
1184 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
1186 /* Parse the encapsulation header. This actually does the job of
1187 * converting to an ethernet frame header, aswell as arp
1188 * conversion if needed. ARP conversion is easier in this
1189 * direction, since we are using ethernet as our backend. */
1190 skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1193 spin_lock_irqsave(&priv->lock, flags);
1195 if (!skb->protocol) {
1196 priv->stats.rx_errors++;
1197 priv->stats.rx_dropped++;
1198 dev_kfree_skb_any(skb);
1202 if (netif_rx(skb) == NET_RX_DROP) {
1203 priv->stats.rx_errors++;
1204 priv->stats.rx_dropped++;
1209 priv->stats.rx_packets++;
1210 priv->stats.rx_bytes += skb->len;
1213 if (netif_queue_stopped(dev))
1214 netif_wake_queue(dev);
1215 spin_unlock_irqrestore(&priv->lock, flags);
1217 dev->last_rx = jiffies;
1222 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1223 quadlet_t *data, u64 addr, size_t len, u16 flags)
1225 struct eth1394_host_info *hi;
1227 hi = hpsb_get_hostinfo(ð1394_highlevel, host);
1229 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1231 return RCODE_ADDRESS_ERROR;
1234 if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1235 return RCODE_ADDRESS_ERROR;
1237 return RCODE_COMPLETE;
1240 static void ether1394_iso(struct hpsb_iso *iso)
1244 struct eth1394_host_info *hi;
1245 struct net_device *dev;
1246 struct eth1394_priv *priv;
1253 hi = hpsb_get_hostinfo(ð1394_highlevel, iso->host);
1255 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1262 nready = hpsb_iso_n_ready(iso);
1263 for (i = 0; i < nready; i++) {
1264 struct hpsb_iso_packet_info *info =
1265 &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1266 data = (quadlet_t *)(iso->data_buf.kvirt + info->offset);
1268 /* skip over GASP header */
1269 buf = (char *)data + 8;
1270 len = info->len - 8;
1272 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1273 (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1274 source_id = be32_to_cpu(data[0]) >> 16;
1276 priv = netdev_priv(dev);
1278 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1279 || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1280 /* This packet is not for us */
1283 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1287 hpsb_iso_recv_release_packets(iso, i);
1289 dev->last_rx = jiffies;
1292 /******************************************
1293 * Datagram transmission code
1294 ******************************************/
1296 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1297 * arphdr) is the same format as the ip1394 header, so they overlap. The rest
1298 * needs to be munged a bit. The remainder of the arphdr is formatted based
1299 * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
1302 * Now that the EUI is used for the hardware address all we need to do to make
1303 * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1304 * speed, and unicast FIFO address information between the sender_unique_id
1305 * and the IP addresses.
1307 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1308 struct net_device *dev)
1310 struct eth1394_priv *priv = netdev_priv(dev);
1311 struct arphdr *arp = (struct arphdr *)skb->data;
1312 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1313 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1315 arp1394->hw_addr_len = 16;
1316 arp1394->sip = *(u32*)(arp_ptr + ETH1394_ALEN);
1317 arp1394->max_rec = priv->host->csr.max_rec;
1318 arp1394->sspd = priv->host->csr.lnk_spd;
1319 arp1394->fifo_hi = htons(priv->local_fifo >> 32);
1320 arp1394->fifo_lo = htonl(priv->local_fifo & ~0x0);
1323 /* We need to encapsulate the standard header with our own. We use the
1324 * ethernet header's proto for our own. */
1325 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1327 union eth1394_hdr *hdr,
1328 u16 dg_size, u16 dgl)
1330 unsigned int adj_max_payload =
1331 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1333 /* Does it all fit in one packet? */
1334 if (dg_size <= adj_max_payload) {
1335 hdr->uf.lf = ETH1394_HDR_LF_UF;
1336 hdr->uf.ether_type = proto;
1338 hdr->ff.lf = ETH1394_HDR_LF_FF;
1339 hdr->ff.ether_type = proto;
1340 hdr->ff.dg_size = dg_size - 1;
1342 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1344 return (dg_size + adj_max_payload - 1) / adj_max_payload;
1347 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1348 unsigned int max_payload,
1349 union eth1394_hdr *hdr)
1351 union eth1394_hdr *bufhdr;
1352 int ftype = hdr->common.lf;
1353 int hdrsz = hdr_type_len[ftype];
1354 unsigned int adj_max_payload = max_payload - hdrsz;
1357 case ETH1394_HDR_LF_UF:
1358 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1359 bufhdr->words.word1 = htons(hdr->words.word1);
1360 bufhdr->words.word2 = hdr->words.word2;
1363 case ETH1394_HDR_LF_FF:
1364 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1365 bufhdr->words.word1 = htons(hdr->words.word1);
1366 bufhdr->words.word2 = hdr->words.word2;
1367 bufhdr->words.word3 = htons(hdr->words.word3);
1368 bufhdr->words.word4 = 0;
1370 /* Set frag type here for future interior fragments */
1371 hdr->common.lf = ETH1394_HDR_LF_IF;
1376 hdr->sf.fg_off += adj_max_payload;
1377 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1378 if (max_payload >= skb->len)
1379 hdr->common.lf = ETH1394_HDR_LF_LF;
1380 bufhdr->words.word1 = htons(hdr->words.word1);
1381 bufhdr->words.word2 = htons(hdr->words.word2);
1382 bufhdr->words.word3 = htons(hdr->words.word3);
1383 bufhdr->words.word4 = 0;
1385 return min(max_payload, skb->len);
1388 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1390 struct hpsb_packet *p;
1392 p = hpsb_alloc_packet(0);
1395 p->generation = get_hpsb_generation(host);
1396 p->type = hpsb_async;
1401 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1402 struct hpsb_host *host, nodeid_t node,
1403 u64 addr, void *data, int tx_len)
1408 p->tcode = TCODE_WRITEB;
1409 p->header[1] = host->node_id << 16 | addr >> 32;
1410 p->header[2] = addr & 0xffffffff;
1412 p->header_size = 16;
1413 p->expect_response = 1;
1415 if (hpsb_get_tlabel(p)) {
1416 ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
1420 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1422 p->header[3] = tx_len << 16;
1423 p->data_size = (tx_len + 3) & ~3;
1429 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1430 struct eth1394_priv *priv,
1431 struct sk_buff *skb, int length)
1434 p->tcode = TCODE_STREAM_DATA;
1436 p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1437 TCODE_STREAM_DATA << 4;
1438 p->data_size = length;
1439 p->data = (quadlet_t *)skb->data - 2;
1440 p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1441 ETHER1394_GASP_SPECIFIER_ID_HI);
1442 p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1443 ETHER1394_GASP_VERSION);
1445 /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
1446 * prevents hpsb_send_packet() from setting the speed to an arbitrary
1447 * value based on packet->node_id if packet->node_id is not set. */
1448 p->node_id = ALL_NODES;
1449 p->speed_code = priv->bc_sspd;
1452 static void ether1394_free_packet(struct hpsb_packet *packet)
1454 if (packet->tcode != TCODE_STREAM_DATA)
1455 hpsb_free_tlabel(packet);
1456 hpsb_free_packet(packet);
1459 static void ether1394_complete_cb(void *__ptask);
1461 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1463 struct eth1394_priv *priv = ptask->priv;
1464 struct hpsb_packet *packet = NULL;
1466 packet = ether1394_alloc_common_packet(priv->host);
1470 if (ptask->tx_type == ETH1394_GASP) {
1471 int length = tx_len + 2 * sizeof(quadlet_t);
1473 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1474 } else if (ether1394_prep_write_packet(packet, priv->host,
1476 ptask->addr, ptask->skb->data,
1478 hpsb_free_packet(packet);
1482 ptask->packet = packet;
1483 hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1486 if (hpsb_send_packet(packet) < 0) {
1487 ether1394_free_packet(packet);
1494 /* Task function to be run when a datagram transmission is completed */
1495 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1497 struct sk_buff *skb = ptask->skb;
1498 struct eth1394_priv *priv = netdev_priv(skb->dev);
1499 unsigned long flags;
1502 spin_lock_irqsave(&priv->lock, flags);
1504 priv->stats.tx_dropped++;
1505 priv->stats.tx_errors++;
1507 priv->stats.tx_bytes += skb->len;
1508 priv->stats.tx_packets++;
1510 spin_unlock_irqrestore(&priv->lock, flags);
1512 dev_kfree_skb_any(skb);
1513 kmem_cache_free(packet_task_cache, ptask);
1516 /* Callback for when a packet has been sent and the status of that packet is
1518 static void ether1394_complete_cb(void *__ptask)
1520 struct packet_task *ptask = (struct packet_task *)__ptask;
1521 struct hpsb_packet *packet = ptask->packet;
1524 if (packet->tcode != TCODE_STREAM_DATA)
1525 fail = hpsb_packet_success(packet);
1527 ether1394_free_packet(packet);
1529 ptask->outstanding_pkts--;
1530 if (ptask->outstanding_pkts > 0 && !fail) {
1533 /* Add the encapsulation header to the fragment */
1534 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1536 if (ether1394_send_packet(ptask, tx_len))
1537 ether1394_dg_complete(ptask, 1);
1539 ether1394_dg_complete(ptask, fail);
1543 /* Transmit a packet (called by kernel) */
1544 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
1546 gfp_t kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
1547 struct eth1394hdr *eth;
1548 struct eth1394_priv *priv = netdev_priv(dev);
1550 unsigned long flags;
1552 eth1394_tx_type tx_type;
1554 unsigned int tx_len;
1555 unsigned int max_payload;
1558 struct packet_task *ptask;
1559 struct eth1394_node_ref *node;
1560 struct eth1394_node_info *node_info = NULL;
1562 ptask = kmem_cache_alloc(packet_task_cache, kmflags);
1563 if (ptask == NULL) {
1568 /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1569 * it does not set our validity bit. We need to compensate for
1570 * that somewhere else, but not in eth1394. */
1572 if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
1578 skb = skb_share_check(skb, kmflags);
1584 /* Get rid of the fake eth1394 header, but save a pointer */
1585 eth = (struct eth1394hdr *)skb->data;
1586 skb_pull(skb, ETH1394_HLEN);
1588 proto = eth->h_proto;
1591 /* Set the transmission type for the packet. ARP packets and IP
1592 * broadcast packets are sent via GASP. */
1593 if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1594 proto == htons(ETH_P_ARP) ||
1595 (proto == htons(ETH_P_IP) &&
1596 IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1597 tx_type = ETH1394_GASP;
1598 dest_node = LOCAL_BUS | ALL_NODES;
1599 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1600 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1602 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1605 __be64 guid = get_unaligned((u64 *)eth->h_dest);
1607 node = eth1394_find_node_guid(&priv->ip_node_list,
1614 (struct eth1394_node_info *)node->ud->device.driver_data;
1615 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE) {
1620 dest_node = node->ud->ne->nodeid;
1621 max_payload = node_info->maxpayload;
1622 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1624 dgl = node_info->dgl;
1625 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1627 tx_type = ETH1394_WRREQ;
1630 /* If this is an ARP packet, convert it */
1631 if (proto == htons(ETH_P_ARP))
1632 ether1394_arp_to_1394arp(skb, dev);
1634 ptask->hdr.words.word1 = 0;
1635 ptask->hdr.words.word2 = 0;
1636 ptask->hdr.words.word3 = 0;
1637 ptask->hdr.words.word4 = 0;
1640 ptask->tx_type = tx_type;
1642 if (tx_type != ETH1394_GASP) {
1645 spin_lock_irqsave(&priv->lock, flags);
1646 addr = node_info->fifo;
1647 spin_unlock_irqrestore(&priv->lock, flags);
1650 ptask->dest_node = dest_node;
1653 ptask->tx_type = tx_type;
1654 ptask->max_payload = max_payload;
1655 ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1656 proto, &ptask->hdr, dg_size, dgl);
1658 /* Add the encapsulation header to the fragment */
1659 tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1660 dev->trans_start = jiffies;
1661 if (ether1394_send_packet(ptask, tx_len))
1664 netif_wake_queue(dev);
1668 kmem_cache_free(packet_task_cache, ptask);
1673 spin_lock_irqsave(&priv->lock, flags);
1674 priv->stats.tx_dropped++;
1675 priv->stats.tx_errors++;
1676 spin_unlock_irqrestore(&priv->lock, flags);
1678 if (netif_queue_stopped(dev))
1679 netif_wake_queue(dev);
1681 return 0; /* returning non-zero causes serious problems */
1684 static void ether1394_get_drvinfo(struct net_device *dev,
1685 struct ethtool_drvinfo *info)
1687 strcpy(info->driver, driver_name);
1688 strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1691 static struct ethtool_ops ethtool_ops = {
1692 .get_drvinfo = ether1394_get_drvinfo
1695 static int __init ether1394_init_module (void)
1697 packet_task_cache = kmem_cache_create("packet_task",
1698 sizeof(struct packet_task),
1701 hpsb_register_highlevel(ð1394_highlevel);
1702 return hpsb_register_protocol(ð1394_proto_driver);
1705 static void __exit ether1394_exit_module (void)
1707 hpsb_unregister_protocol(ð1394_proto_driver);
1708 hpsb_unregister_highlevel(ð1394_highlevel);
1709 kmem_cache_destroy(packet_task_cache);
1712 module_init(ether1394_init_module);
1713 module_exit(ether1394_exit_module);