ieee1394: eth1394: CONFIG_INET is always defined
[linux-2.6] / drivers / ieee1394 / eth1394.c
1 /*
2  * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24
25 /*
26  * This driver intends to support RFC 2734, which describes a method for
27  * transporting IPv4 datagrams over IEEE-1394 serial busses.
28  *
29  * TODO:
30  * RFC 2734 related:
31  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
32  *
33  * Non-RFC 2734 related:
34  * - Handle fragmented skb's coming from the networking layer.
35  * - Move generic GASP reception to core 1394 code
36  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37  * - Stability improvements
38  * - Performance enhancements
39  * - Consider garbage collecting old partial datagrams after X amount of time
40  */
41
42 #include <linux/module.h>
43
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
50
51 #include <linux/netdevice.h>
52 #include <linux/inetdevice.h>
53 #include <linux/etherdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
56 #include <linux/ip.h>
57 #include <linux/in.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <linux/ethtool.h>
62 #include <asm/uaccess.h>
63 #include <asm/delay.h>
64 #include <asm/unaligned.h>
65 #include <net/arp.h>
66
67 #include "config_roms.h"
68 #include "csr1212.h"
69 #include "eth1394.h"
70 #include "highlevel.h"
71 #include "ieee1394.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_hotplug.h"
74 #include "ieee1394_transactions.h"
75 #include "ieee1394_types.h"
76 #include "iso.h"
77 #include "nodemgr.h"
78
79 #define ETH1394_PRINT_G(level, fmt, args...) \
80         printk(level "%s: " fmt, driver_name, ## args)
81
82 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
83         printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
84
85 struct fragment_info {
86         struct list_head list;
87         int offset;
88         int len;
89 };
90
91 struct partial_datagram {
92         struct list_head list;
93         u16 dgl;
94         u16 dg_size;
95         u16 ether_type;
96         struct sk_buff *skb;
97         char *pbuf;
98         struct list_head frag_info;
99 };
100
101 struct pdg_list {
102         struct list_head list;  /* partial datagram list per node       */
103         unsigned int sz;        /* partial datagram list size per node  */
104         spinlock_t lock;        /* partial datagram lock                */
105 };
106
107 struct eth1394_host_info {
108         struct hpsb_host *host;
109         struct net_device *dev;
110 };
111
112 struct eth1394_node_ref {
113         struct unit_directory *ud;
114         struct list_head list;
115 };
116
117 struct eth1394_node_info {
118         u16 maxpayload;         /* max payload                  */
119         u8 sspd;                /* max speed                    */
120         u64 fifo;               /* FIFO address                 */
121         struct pdg_list pdg;    /* partial RX datagram lists    */
122         int dgl;                /* outgoing datagram label      */
123 };
124
125 static const char driver_name[] = "eth1394";
126
127 static struct kmem_cache *packet_task_cache;
128
129 static struct hpsb_highlevel eth1394_highlevel;
130
131 /* Use common.lf to determine header len */
132 static const int hdr_type_len[] = {
133         sizeof(struct eth1394_uf_hdr),
134         sizeof(struct eth1394_ff_hdr),
135         sizeof(struct eth1394_sf_hdr),
136         sizeof(struct eth1394_sf_hdr)
137 };
138
139 static const u16 eth1394_speedto_maxpayload[] = {
140 /*     S100, S200, S400, S800, S1600, S3200 */
141         512, 1024, 2048, 4096,  4096,  4096
142 };
143
144 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
145 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
146 MODULE_LICENSE("GPL");
147
148 /*
149  * The max_partial_datagrams parameter is the maximum number of fragmented
150  * datagrams per node that eth1394 will keep in memory.  Providing an upper
151  * bound allows us to limit the amount of memory that partial datagrams
152  * consume in the event that some partial datagrams are never completed.
153  */
154 static int max_partial_datagrams = 25;
155 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
156 MODULE_PARM_DESC(max_partial_datagrams,
157                  "Maximum number of partially received fragmented datagrams "
158                  "(default = 25).");
159
160
161 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
162                             unsigned short type, void *daddr, void *saddr,
163                             unsigned len);
164 static int ether1394_rebuild_header(struct sk_buff *skb);
165 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
166 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
167 static void ether1394_header_cache_update(struct hh_cache *hh,
168                                           struct net_device *dev,
169                                           unsigned char *haddr);
170 static int ether1394_mac_addr(struct net_device *dev, void *p);
171
172 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
173 static void ether1394_iso(struct hpsb_iso *iso);
174
175 static struct ethtool_ops ethtool_ops;
176
177 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
178                            quadlet_t *data, u64 addr, size_t len, u16 flags);
179 static void ether1394_add_host(struct hpsb_host *host);
180 static void ether1394_remove_host(struct hpsb_host *host);
181 static void ether1394_host_reset(struct hpsb_host *host);
182
183 /* Function for incoming 1394 packets */
184 static struct hpsb_address_ops addr_ops = {
185         .write =        ether1394_write,
186 };
187
188 /* Ieee1394 highlevel driver functions */
189 static struct hpsb_highlevel eth1394_highlevel = {
190         .name =         driver_name,
191         .add_host =     ether1394_add_host,
192         .remove_host =  ether1394_remove_host,
193         .host_reset =   ether1394_host_reset,
194 };
195
196 static int ether1394_recv_init(struct eth1394_priv *priv)
197 {
198         unsigned int iso_buf_size;
199
200         /* FIXME: rawiso limits us to PAGE_SIZE */
201         iso_buf_size = min((unsigned int)PAGE_SIZE,
202                            2 * (1U << (priv->host->csr.max_rec + 1)));
203
204         priv->iso = hpsb_iso_recv_init(priv->host,
205                                        ETHER1394_GASP_BUFFERS * iso_buf_size,
206                                        ETHER1394_GASP_BUFFERS,
207                                        priv->broadcast_channel,
208                                        HPSB_ISO_DMA_PACKET_PER_BUFFER,
209                                        1, ether1394_iso);
210         if (priv->iso == NULL) {
211                 ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
212                 priv->bc_state = ETHER1394_BC_ERROR;
213                 return -EAGAIN;
214         }
215
216         if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
217                 priv->bc_state = ETHER1394_BC_STOPPED;
218         else
219                 priv->bc_state = ETHER1394_BC_RUNNING;
220         return 0;
221 }
222
223 /* This is called after an "ifup" */
224 static int ether1394_open(struct net_device *dev)
225 {
226         struct eth1394_priv *priv = netdev_priv(dev);
227         int ret;
228
229         if (priv->bc_state == ETHER1394_BC_ERROR) {
230                 ret = ether1394_recv_init(priv);
231                 if (ret)
232                         return ret;
233         }
234         netif_start_queue(dev);
235         return 0;
236 }
237
238 /* This is called after an "ifdown" */
239 static int ether1394_stop(struct net_device *dev)
240 {
241         netif_stop_queue(dev);
242         return 0;
243 }
244
245 /* Return statistics to the caller */
246 static struct net_device_stats *ether1394_stats(struct net_device *dev)
247 {
248         return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
249 }
250
251 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
252  * so that's what we do. Should we increment the stat counters too?  */
253 static void ether1394_tx_timeout(struct net_device *dev)
254 {
255         struct hpsb_host *host =
256                         ((struct eth1394_priv *)netdev_priv(dev))->host;
257
258         ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
259         ether1394_host_reset(host);
260 }
261
262 static inline int ether1394_max_mtu(struct hpsb_host* host)
263 {
264         return (1 << (host->csr.max_rec + 1))
265                         - sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
266 }
267
268 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
269 {
270         int max_mtu;
271
272         if (new_mtu < 68)
273                 return -EINVAL;
274
275         max_mtu = ether1394_max_mtu(
276                         ((struct eth1394_priv *)netdev_priv(dev))->host);
277         if (new_mtu > max_mtu) {
278                 ETH1394_PRINT(KERN_INFO, dev->name,
279                               "Local node constrains MTU to %d\n", max_mtu);
280                 return -ERANGE;
281         }
282
283         dev->mtu = new_mtu;
284         return 0;
285 }
286
287 static void purge_partial_datagram(struct list_head *old)
288 {
289         struct partial_datagram *pd;
290         struct list_head *lh, *n;
291         struct fragment_info *fi;
292
293         pd = list_entry(old, struct partial_datagram, list);
294
295         list_for_each_safe(lh, n, &pd->frag_info) {
296                 fi = list_entry(lh, struct fragment_info, list);
297                 list_del(lh);
298                 kfree(fi);
299         }
300         list_del(old);
301         kfree_skb(pd->skb);
302         kfree(pd);
303 }
304
305 /******************************************
306  * 1394 bus activity functions
307  ******************************************/
308
309 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
310                                                   struct unit_directory *ud)
311 {
312         struct eth1394_node_ref *node;
313
314         list_for_each_entry(node, inl, list)
315                 if (node->ud == ud)
316                         return node;
317
318         return NULL;
319 }
320
321 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
322                                                        u64 guid)
323 {
324         struct eth1394_node_ref *node;
325
326         list_for_each_entry(node, inl, list)
327                 if (node->ud->ne->guid == guid)
328                         return node;
329
330         return NULL;
331 }
332
333 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
334                                                          nodeid_t nodeid)
335 {
336         struct eth1394_node_ref *node;
337
338         list_for_each_entry(node, inl, list)
339                 if (node->ud->ne->nodeid == nodeid)
340                         return node;
341
342         return NULL;
343 }
344
345 static int eth1394_new_node(struct eth1394_host_info *hi,
346                             struct unit_directory *ud)
347 {
348         struct eth1394_priv *priv;
349         struct eth1394_node_ref *new_node;
350         struct eth1394_node_info *node_info;
351
352         new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
353         if (!new_node)
354                 return -ENOMEM;
355
356         node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
357         if (!node_info) {
358                 kfree(new_node);
359                 return -ENOMEM;
360         }
361
362         spin_lock_init(&node_info->pdg.lock);
363         INIT_LIST_HEAD(&node_info->pdg.list);
364         node_info->pdg.sz = 0;
365         node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
366
367         ud->device.driver_data = node_info;
368         new_node->ud = ud;
369
370         priv = netdev_priv(hi->dev);
371         list_add_tail(&new_node->list, &priv->ip_node_list);
372         return 0;
373 }
374
375 static int eth1394_probe(struct device *dev)
376 {
377         struct unit_directory *ud;
378         struct eth1394_host_info *hi;
379
380         ud = container_of(dev, struct unit_directory, device);
381         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
382         if (!hi)
383                 return -ENOENT;
384
385         return eth1394_new_node(hi, ud);
386 }
387
388 static int eth1394_remove(struct device *dev)
389 {
390         struct unit_directory *ud;
391         struct eth1394_host_info *hi;
392         struct eth1394_priv *priv;
393         struct eth1394_node_ref *old_node;
394         struct eth1394_node_info *node_info;
395         struct list_head *lh, *n;
396         unsigned long flags;
397
398         ud = container_of(dev, struct unit_directory, device);
399         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
400         if (!hi)
401                 return -ENOENT;
402
403         priv = netdev_priv(hi->dev);
404
405         old_node = eth1394_find_node(&priv->ip_node_list, ud);
406         if (!old_node)
407                 return 0;
408
409         list_del(&old_node->list);
410         kfree(old_node);
411
412         node_info = (struct eth1394_node_info*)ud->device.driver_data;
413
414         spin_lock_irqsave(&node_info->pdg.lock, flags);
415         /* The partial datagram list should be empty, but we'll just
416          * make sure anyway... */
417         list_for_each_safe(lh, n, &node_info->pdg.list)
418                 purge_partial_datagram(lh);
419         spin_unlock_irqrestore(&node_info->pdg.lock, flags);
420
421         kfree(node_info);
422         ud->device.driver_data = NULL;
423         return 0;
424 }
425
426 static int eth1394_update(struct unit_directory *ud)
427 {
428         struct eth1394_host_info *hi;
429         struct eth1394_priv *priv;
430         struct eth1394_node_ref *node;
431
432         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
433         if (!hi)
434                 return -ENOENT;
435
436         priv = netdev_priv(hi->dev);
437         node = eth1394_find_node(&priv->ip_node_list, ud);
438         if (node)
439                 return 0;
440
441         return eth1394_new_node(hi, ud);
442 }
443
444 static struct ieee1394_device_id eth1394_id_table[] = {
445         {
446                 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
447                                 IEEE1394_MATCH_VERSION),
448                 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
449                 .version = ETHER1394_GASP_VERSION,
450         },
451         {}
452 };
453
454 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
455
456 static struct hpsb_protocol_driver eth1394_proto_driver = {
457         .name           = driver_name,
458         .id_table       = eth1394_id_table,
459         .update         = eth1394_update,
460         .driver         = {
461                 .probe          = eth1394_probe,
462                 .remove         = eth1394_remove,
463         },
464 };
465
466 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
467 {
468         unsigned long flags;
469         int i;
470         struct eth1394_priv *priv = netdev_priv(dev);
471         struct hpsb_host *host = priv->host;
472         u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
473         int max_speed = IEEE1394_SPEED_MAX;
474
475         spin_lock_irqsave(&priv->lock, flags);
476
477         memset(priv->ud_list, 0, sizeof(priv->ud_list));
478         priv->bc_maxpayload = 512;
479
480         /* Determine speed limit */
481         for (i = 0; i < host->node_count; i++)
482                 if (max_speed > host->speed[i])
483                         max_speed = host->speed[i];
484         priv->bc_sspd = max_speed;
485
486         if (set_mtu) {
487                 /* Use the RFC 2734 default 1500 octets or the maximum payload
488                  * as initial MTU */
489                 dev->mtu = min(1500, ether1394_max_mtu(host));
490
491                 /* Set our hardware address while we're at it */
492                 memcpy(dev->dev_addr, &guid, sizeof(u64));
493                 memset(dev->broadcast, 0xff, sizeof(u64));
494         }
495
496         spin_unlock_irqrestore(&priv->lock, flags);
497 }
498
499 /* This function is called right before register_netdev */
500 static void ether1394_init_dev(struct net_device *dev)
501 {
502         /* Our functions */
503         dev->open               = ether1394_open;
504         dev->stop               = ether1394_stop;
505         dev->hard_start_xmit    = ether1394_tx;
506         dev->get_stats          = ether1394_stats;
507         dev->tx_timeout         = ether1394_tx_timeout;
508         dev->change_mtu         = ether1394_change_mtu;
509
510         dev->hard_header        = ether1394_header;
511         dev->rebuild_header     = ether1394_rebuild_header;
512         dev->hard_header_cache  = ether1394_header_cache;
513         dev->header_cache_update= ether1394_header_cache_update;
514         dev->hard_header_parse  = ether1394_header_parse;
515         dev->set_mac_address    = ether1394_mac_addr;
516         SET_ETHTOOL_OPS(dev, &ethtool_ops);
517
518         /* Some constants */
519         dev->watchdog_timeo     = ETHER1394_TIMEOUT;
520         dev->flags              = IFF_BROADCAST | IFF_MULTICAST;
521         dev->features           = NETIF_F_HIGHDMA;
522         dev->addr_len           = ETH1394_ALEN;
523         dev->hard_header_len    = ETH1394_HLEN;
524         dev->type               = ARPHRD_IEEE1394;
525
526         ether1394_reset_priv(dev, 1);
527 }
528
529 /*
530  * This function is called every time a card is found. It is generally called
531  * when the module is installed. This is where we add all of our ethernet
532  * devices. One for each host.
533  */
534 static void ether1394_add_host(struct hpsb_host *host)
535 {
536         struct eth1394_host_info *hi = NULL;
537         struct net_device *dev = NULL;
538         struct eth1394_priv *priv;
539         u64 fifo_addr;
540
541         if (hpsb_config_rom_ip1394_add(host) != 0) {
542                 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
543                 return;
544         }
545
546         fifo_addr = hpsb_allocate_and_register_addrspace(
547                         &eth1394_highlevel, host, &addr_ops,
548                         ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
549                         CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
550         if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
551                 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
552                 hpsb_config_rom_ip1394_remove(host);
553                 return;
554         }
555
556         /* We should really have our own alloc_hpsbdev() function in
557          * net_init.c instead of calling the one for ethernet then hijacking
558          * it for ourselves.  That way we'd be a real networking device. */
559         dev = alloc_etherdev(sizeof (struct eth1394_priv));
560
561         if (dev == NULL) {
562                 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
563                 goto out;
564         }
565
566         SET_MODULE_OWNER(dev);
567 #if 0
568         /* FIXME - Is this the correct parent device anyway? */
569         SET_NETDEV_DEV(dev, &host->device);
570 #endif
571
572         priv = netdev_priv(dev);
573
574         INIT_LIST_HEAD(&priv->ip_node_list);
575
576         spin_lock_init(&priv->lock);
577         priv->host = host;
578         priv->local_fifo = fifo_addr;
579
580         hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
581
582         if (hi == NULL) {
583                 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
584                 goto out;
585         }
586
587         ether1394_init_dev(dev);
588
589         if (register_netdev(dev)) {
590                 ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
591                 goto out;
592         }
593
594         ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
595                       host->id);
596
597         hi->host = host;
598         hi->dev = dev;
599
600         /* Ignore validity in hopes that it will be set in the future.  It'll
601          * be checked when the eth device is opened. */
602         priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
603
604         ether1394_recv_init(priv);
605         return;
606 out:
607         if (dev)
608                 free_netdev(dev);
609         if (hi)
610                 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
611         hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
612         hpsb_config_rom_ip1394_remove(host);
613 }
614
615 /* Remove a card from our list */
616 static void ether1394_remove_host(struct hpsb_host *host)
617 {
618         struct eth1394_host_info *hi;
619         struct eth1394_priv *priv;
620
621         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
622         if (!hi)
623                 return;
624         priv = netdev_priv(hi->dev);
625         hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
626         hpsb_config_rom_ip1394_remove(host);
627         if (priv->iso)
628                 hpsb_iso_shutdown(priv->iso);
629         unregister_netdev(hi->dev);
630         free_netdev(hi->dev);
631 }
632
633 /* A bus reset happened */
634 static void ether1394_host_reset(struct hpsb_host *host)
635 {
636         struct eth1394_host_info *hi;
637         struct eth1394_priv *priv;
638         struct net_device *dev;
639         struct list_head *lh, *n;
640         struct eth1394_node_ref *node;
641         struct eth1394_node_info *node_info;
642         unsigned long flags;
643
644         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
645
646         /* This can happen for hosts that we don't use */
647         if (!hi)
648                 return;
649
650         dev = hi->dev;
651         priv = netdev_priv(dev);
652
653         /* Reset our private host data, but not our MTU */
654         netif_stop_queue(dev);
655         ether1394_reset_priv(dev, 0);
656
657         list_for_each_entry(node, &priv->ip_node_list, list) {
658                 node_info = node->ud->device.driver_data;
659
660                 spin_lock_irqsave(&node_info->pdg.lock, flags);
661
662                 list_for_each_safe(lh, n, &node_info->pdg.list)
663                         purge_partial_datagram(lh);
664
665                 INIT_LIST_HEAD(&(node_info->pdg.list));
666                 node_info->pdg.sz = 0;
667
668                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
669         }
670
671         netif_wake_queue(dev);
672 }
673
674 /******************************************
675  * HW Header net device functions
676  ******************************************/
677 /* These functions have been adapted from net/ethernet/eth.c */
678
679 /* Create a fake MAC header for an arbitrary protocol layer.
680  * saddr=NULL means use device source address
681  * daddr=NULL means leave destination address (eg unresolved arp). */
682 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
683                             unsigned short type, void *daddr, void *saddr,
684                             unsigned len)
685 {
686         struct eth1394hdr *eth =
687                         (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
688
689         eth->h_proto = htons(type);
690
691         if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
692                 memset(eth->h_dest, 0, dev->addr_len);
693                 return dev->hard_header_len;
694         }
695
696         if (daddr) {
697                 memcpy(eth->h_dest, daddr, dev->addr_len);
698                 return dev->hard_header_len;
699         }
700
701         return -dev->hard_header_len;
702 }
703
704 /* Rebuild the faked MAC header. This is called after an ARP
705  * (or in future other address resolution) has completed on this
706  * sk_buff. We now let ARP fill in the other fields.
707  *
708  * This routine CANNOT use cached dst->neigh!
709  * Really, it is used only when dst->neigh is wrong.
710  */
711 static int ether1394_rebuild_header(struct sk_buff *skb)
712 {
713         struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
714
715         if (eth->h_proto == htons(ETH_P_IP))
716                 return arp_find((unsigned char *)&eth->h_dest, skb);
717
718         ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
719                       "unable to resolve type %04x addresses\n",
720                       ntohs(eth->h_proto));
721         return 0;
722 }
723
724 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
725 {
726         struct net_device *dev = skb->dev;
727
728         memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
729         return ETH1394_ALEN;
730 }
731
732 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
733 {
734         unsigned short type = hh->hh_type;
735         struct net_device *dev = neigh->dev;
736         struct eth1394hdr *eth =
737                 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
738
739         if (type == htons(ETH_P_802_3))
740                 return -1;
741
742         eth->h_proto = type;
743         memcpy(eth->h_dest, neigh->ha, dev->addr_len);
744
745         hh->hh_len = ETH1394_HLEN;
746         return 0;
747 }
748
749 /* Called by Address Resolution module to notify changes in address. */
750 static void ether1394_header_cache_update(struct hh_cache *hh,
751                                           struct net_device *dev,
752                                           unsigned char * haddr)
753 {
754         memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
755 }
756
757 static int ether1394_mac_addr(struct net_device *dev, void *p)
758 {
759         if (netif_running(dev))
760                 return -EBUSY;
761
762         /* Not going to allow setting the MAC address, we really need to use
763          * the real one supplied by the hardware */
764          return -EINVAL;
765 }
766
767 /******************************************
768  * Datagram reception code
769  ******************************************/
770
771 /* Copied from net/ethernet/eth.c */
772 static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
773 {
774         struct eth1394hdr *eth;
775         unsigned char *rawp;
776
777         skb_reset_mac_header(skb);
778         skb_pull(skb, ETH1394_HLEN);
779         eth = eth1394_hdr(skb);
780
781         if (*eth->h_dest & 1) {
782                 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
783                         skb->pkt_type = PACKET_BROADCAST;
784 #if 0
785                 else
786                         skb->pkt_type = PACKET_MULTICAST;
787 #endif
788         } else {
789                 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
790                         skb->pkt_type = PACKET_OTHERHOST;
791         }
792
793         if (ntohs(eth->h_proto) >= 1536)
794                 return eth->h_proto;
795
796         rawp = skb->data;
797
798         if (*(unsigned short *)rawp == 0xFFFF)
799                 return htons(ETH_P_802_3);
800
801         return htons(ETH_P_802_2);
802 }
803
804 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
805  * We also perform ARP translation here, if need be.  */
806 static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
807                                  nodeid_t srcid, nodeid_t destid,
808                                  u16 ether_type)
809 {
810         struct eth1394_priv *priv = netdev_priv(dev);
811         u64 dest_hw;
812         unsigned short ret = 0;
813
814         /* Setup our hw addresses. We use these to build the ethernet header. */
815         if (destid == (LOCAL_BUS | ALL_NODES))
816                 dest_hw = ~0ULL;  /* broadcast */
817         else
818                 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
819                                       priv->host->csr.guid_lo);
820
821         /* If this is an ARP packet, convert it. First, we want to make
822          * use of some of the fields, since they tell us a little bit
823          * about the sending machine.  */
824         if (ether_type == htons(ETH_P_ARP)) {
825                 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
826                 struct arphdr *arp = (struct arphdr *)skb->data;
827                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
828                 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
829                                            ntohl(arp1394->fifo_lo);
830                 u8 max_rec = min(priv->host->csr.max_rec,
831                                  (u8)(arp1394->max_rec));
832                 int sspd = arp1394->sspd;
833                 u16 maxpayload;
834                 struct eth1394_node_ref *node;
835                 struct eth1394_node_info *node_info;
836                 __be64 guid;
837
838                 /* Sanity check. MacOSX seems to be sending us 131 in this
839                  * field (atleast on my Panther G5). Not sure why. */
840                 if (sspd > 5 || sspd < 0)
841                         sspd = 0;
842
843                 maxpayload = min(eth1394_speedto_maxpayload[sspd],
844                                  (u16)(1 << (max_rec + 1)));
845
846                 guid = get_unaligned(&arp1394->s_uniq_id);
847                 node = eth1394_find_node_guid(&priv->ip_node_list,
848                                               be64_to_cpu(guid));
849                 if (!node)
850                         return 0;
851
852                 node_info =
853                     (struct eth1394_node_info *)node->ud->device.driver_data;
854
855                 /* Update our speed/payload/fifo_offset table */
856                 node_info->maxpayload = maxpayload;
857                 node_info->sspd =       sspd;
858                 node_info->fifo =       fifo_addr;
859
860                 /* Now that we're done with the 1394 specific stuff, we'll
861                  * need to alter some of the data.  Believe it or not, all
862                  * that needs to be done is sender_IP_address needs to be
863                  * moved, the destination hardware address get stuffed
864                  * in and the hardware address length set to 8.
865                  *
866                  * IMPORTANT: The code below overwrites 1394 specific data
867                  * needed above so keep the munging of the data for the
868                  * higher level IP stack last. */
869
870                 arp->ar_hln = 8;
871                 arp_ptr += arp->ar_hln;         /* skip over sender unique id */
872                 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
873                 arp_ptr += arp->ar_pln;         /* skip over sender IP addr */
874
875                 if (arp->ar_op == htons(ARPOP_REQUEST))
876                         memset(arp_ptr, 0, sizeof(u64));
877                 else
878                         memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
879         }
880
881         /* Now add the ethernet header. */
882         if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
883                              skb->len) >= 0)
884                 ret = ether1394_type_trans(skb, dev);
885
886         return ret;
887 }
888
889 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
890 {
891         struct fragment_info *fi;
892
893         list_for_each_entry(fi, frag_list, list) {
894                 if ( ! ((offset > (fi->offset + fi->len - 1)) ||
895                        ((offset + len - 1) < fi->offset)))
896                         return 1;
897         }
898         return 0;
899 }
900
901 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
902 {
903         struct partial_datagram *pd;
904
905         list_for_each_entry(pd, pdgl, list)
906                 if (pd->dgl == dgl)
907                         return &pd->list;
908
909         return NULL;
910 }
911
912 /* Assumes that new fragment does not overlap any existing fragments */
913 static int new_fragment(struct list_head *frag_info, int offset, int len)
914 {
915         struct list_head *lh;
916         struct fragment_info *fi, *fi2, *new;
917
918         list_for_each(lh, frag_info) {
919                 fi = list_entry(lh, struct fragment_info, list);
920                 if (fi->offset + fi->len == offset) {
921                         /* The new fragment can be tacked on to the end */
922                         fi->len += len;
923                         /* Did the new fragment plug a hole? */
924                         fi2 = list_entry(lh->next, struct fragment_info, list);
925                         if (fi->offset + fi->len == fi2->offset) {
926                                 /* glue fragments together */
927                                 fi->len += fi2->len;
928                                 list_del(lh->next);
929                                 kfree(fi2);
930                         }
931                         return 0;
932                 } else if (offset + len == fi->offset) {
933                         /* The new fragment can be tacked on to the beginning */
934                         fi->offset = offset;
935                         fi->len += len;
936                         /* Did the new fragment plug a hole? */
937                         fi2 = list_entry(lh->prev, struct fragment_info, list);
938                         if (fi2->offset + fi2->len == fi->offset) {
939                                 /* glue fragments together */
940                                 fi2->len += fi->len;
941                                 list_del(lh);
942                                 kfree(fi);
943                         }
944                         return 0;
945                 } else if (offset > fi->offset + fi->len) {
946                         break;
947                 } else if (offset + len < fi->offset) {
948                         lh = lh->prev;
949                         break;
950                 }
951         }
952
953         new = kmalloc(sizeof(*new), GFP_ATOMIC);
954         if (!new)
955                 return -ENOMEM;
956
957         new->offset = offset;
958         new->len = len;
959
960         list_add(&new->list, lh);
961         return 0;
962 }
963
964 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
965                                 int dgl, int dg_size, char *frag_buf,
966                                 int frag_off, int frag_len)
967 {
968         struct partial_datagram *new;
969
970         new = kmalloc(sizeof(*new), GFP_ATOMIC);
971         if (!new)
972                 return -ENOMEM;
973
974         INIT_LIST_HEAD(&new->frag_info);
975
976         if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
977                 kfree(new);
978                 return -ENOMEM;
979         }
980
981         new->dgl = dgl;
982         new->dg_size = dg_size;
983
984         new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
985         if (!new->skb) {
986                 struct fragment_info *fi = list_entry(new->frag_info.next,
987                                                       struct fragment_info,
988                                                       list);
989                 kfree(fi);
990                 kfree(new);
991                 return -ENOMEM;
992         }
993
994         skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
995         new->pbuf = skb_put(new->skb, dg_size);
996         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
997
998         list_add(&new->list, pdgl);
999         return 0;
1000 }
1001
1002 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1003                                    char *frag_buf, int frag_off, int frag_len)
1004 {
1005         struct partial_datagram *pd =
1006                         list_entry(lh, struct partial_datagram, list);
1007
1008         if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1009                 return -ENOMEM;
1010
1011         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1012
1013         /* Move list entry to beginnig of list so that oldest partial
1014          * datagrams percolate to the end of the list */
1015         list_move(lh, pdgl);
1016         return 0;
1017 }
1018
1019 static int is_datagram_complete(struct list_head *lh, int dg_size)
1020 {
1021         struct partial_datagram *pd;
1022         struct fragment_info *fi;
1023
1024         pd = list_entry(lh, struct partial_datagram, list);
1025         fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1026
1027         return (fi->len == dg_size);
1028 }
1029
1030 /* Packet reception. We convert the IP1394 encapsulation header to an
1031  * ethernet header, and fill it with some of our other fields. This is
1032  * an incoming packet from the 1394 bus.  */
1033 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1034                                   char *buf, int len)
1035 {
1036         struct sk_buff *skb;
1037         unsigned long flags;
1038         struct eth1394_priv *priv = netdev_priv(dev);
1039         union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1040         u16 ether_type = 0;  /* initialized to clear warning */
1041         int hdr_len;
1042         struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1043         struct eth1394_node_info *node_info;
1044
1045         if (!ud) {
1046                 struct eth1394_node_ref *node;
1047                 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1048                 if (!node) {
1049                         HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1050                                    "lookup failure: " NODE_BUS_FMT,
1051                                    NODE_BUS_ARGS(priv->host, srcid));
1052                         priv->stats.rx_dropped++;
1053                         return -1;
1054                 }
1055                 ud = node->ud;
1056
1057                 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1058         }
1059
1060         node_info = (struct eth1394_node_info *)ud->device.driver_data;
1061
1062         /* First, did we receive a fragmented or unfragmented datagram? */
1063         hdr->words.word1 = ntohs(hdr->words.word1);
1064
1065         hdr_len = hdr_type_len[hdr->common.lf];
1066
1067         if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1068                 /* An unfragmented datagram has been received by the ieee1394
1069                  * bus. Build an skbuff around it so we can pass it to the
1070                  * high level network layer. */
1071
1072                 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1073                 if (!skb) {
1074                         ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
1075                         priv->stats.rx_dropped++;
1076                         return -1;
1077                 }
1078                 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1079                 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1080                        len - hdr_len);
1081                 ether_type = hdr->uf.ether_type;
1082         } else {
1083                 /* A datagram fragment has been received, now the fun begins. */
1084
1085                 struct list_head *pdgl, *lh;
1086                 struct partial_datagram *pd;
1087                 int fg_off;
1088                 int fg_len = len - hdr_len;
1089                 int dg_size;
1090                 int dgl;
1091                 int retval;
1092                 struct pdg_list *pdg = &(node_info->pdg);
1093
1094                 hdr->words.word3 = ntohs(hdr->words.word3);
1095                 /* The 4th header word is reserved so no need to do ntohs() */
1096
1097                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1098                         ether_type = hdr->ff.ether_type;
1099                         dgl = hdr->ff.dgl;
1100                         dg_size = hdr->ff.dg_size + 1;
1101                         fg_off = 0;
1102                 } else {
1103                         hdr->words.word2 = ntohs(hdr->words.word2);
1104                         dgl = hdr->sf.dgl;
1105                         dg_size = hdr->sf.dg_size + 1;
1106                         fg_off = hdr->sf.fg_off;
1107                 }
1108                 spin_lock_irqsave(&pdg->lock, flags);
1109
1110                 pdgl = &(pdg->list);
1111                 lh = find_partial_datagram(pdgl, dgl);
1112
1113                 if (lh == NULL) {
1114                         while (pdg->sz >= max_partial_datagrams) {
1115                                 /* remove the oldest */
1116                                 purge_partial_datagram(pdgl->prev);
1117                                 pdg->sz--;
1118                         }
1119
1120                         retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1121                                                       buf + hdr_len, fg_off,
1122                                                       fg_len);
1123                         if (retval < 0) {
1124                                 spin_unlock_irqrestore(&pdg->lock, flags);
1125                                 goto bad_proto;
1126                         }
1127                         pdg->sz++;
1128                         lh = find_partial_datagram(pdgl, dgl);
1129                 } else {
1130                         struct partial_datagram *pd;
1131
1132                         pd = list_entry(lh, struct partial_datagram, list);
1133
1134                         if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1135                                 /* Overlapping fragments, obliterate old
1136                                  * datagram and start new one. */
1137                                 purge_partial_datagram(lh);
1138                                 retval = new_partial_datagram(dev, pdgl, dgl,
1139                                                               dg_size,
1140                                                               buf + hdr_len,
1141                                                               fg_off, fg_len);
1142                                 if (retval < 0) {
1143                                         pdg->sz--;
1144                                         spin_unlock_irqrestore(&pdg->lock, flags);
1145                                         goto bad_proto;
1146                                 }
1147                         } else {
1148                                 retval = update_partial_datagram(pdgl, lh,
1149                                                                  buf + hdr_len,
1150                                                                  fg_off, fg_len);
1151                                 if (retval < 0) {
1152                                         /* Couldn't save off fragment anyway
1153                                          * so might as well obliterate the
1154                                          * datagram now. */
1155                                         purge_partial_datagram(lh);
1156                                         pdg->sz--;
1157                                         spin_unlock_irqrestore(&pdg->lock, flags);
1158                                         goto bad_proto;
1159                                 }
1160                         } /* fragment overlap */
1161                 } /* new datagram or add to existing one */
1162
1163                 pd = list_entry(lh, struct partial_datagram, list);
1164
1165                 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1166                         pd->ether_type = ether_type;
1167
1168                 if (is_datagram_complete(lh, dg_size)) {
1169                         ether_type = pd->ether_type;
1170                         pdg->sz--;
1171                         skb = skb_get(pd->skb);
1172                         purge_partial_datagram(lh);
1173                         spin_unlock_irqrestore(&pdg->lock, flags);
1174                 } else {
1175                         /* Datagram is not complete, we're done for the
1176                          * moment. */
1177                         spin_unlock_irqrestore(&pdg->lock, flags);
1178                         return 0;
1179                 }
1180         } /* unframgented datagram or fragmented one */
1181
1182         /* Write metadata, and then pass to the receive level */
1183         skb->dev = dev;
1184         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
1185
1186         /* Parse the encapsulation header. This actually does the job of
1187          * converting to an ethernet frame header, aswell as arp
1188          * conversion if needed. ARP conversion is easier in this
1189          * direction, since we are using ethernet as our backend.  */
1190         skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1191                                               ether_type);
1192
1193         spin_lock_irqsave(&priv->lock, flags);
1194
1195         if (!skb->protocol) {
1196                 priv->stats.rx_errors++;
1197                 priv->stats.rx_dropped++;
1198                 dev_kfree_skb_any(skb);
1199                 goto bad_proto;
1200         }
1201
1202         if (netif_rx(skb) == NET_RX_DROP) {
1203                 priv->stats.rx_errors++;
1204                 priv->stats.rx_dropped++;
1205                 goto bad_proto;
1206         }
1207
1208         /* Statistics */
1209         priv->stats.rx_packets++;
1210         priv->stats.rx_bytes += skb->len;
1211
1212 bad_proto:
1213         if (netif_queue_stopped(dev))
1214                 netif_wake_queue(dev);
1215         spin_unlock_irqrestore(&priv->lock, flags);
1216
1217         dev->last_rx = jiffies;
1218
1219         return 0;
1220 }
1221
1222 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1223                            quadlet_t *data, u64 addr, size_t len, u16 flags)
1224 {
1225         struct eth1394_host_info *hi;
1226
1227         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1228         if (hi == NULL) {
1229                 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1230                                 host->id);
1231                 return RCODE_ADDRESS_ERROR;
1232         }
1233
1234         if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1235                 return RCODE_ADDRESS_ERROR;
1236         else
1237                 return RCODE_COMPLETE;
1238 }
1239
1240 static void ether1394_iso(struct hpsb_iso *iso)
1241 {
1242         quadlet_t *data;
1243         char *buf;
1244         struct eth1394_host_info *hi;
1245         struct net_device *dev;
1246         struct eth1394_priv *priv;
1247         unsigned int len;
1248         u32 specifier_id;
1249         u16 source_id;
1250         int i;
1251         int nready;
1252
1253         hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1254         if (hi == NULL) {
1255                 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1256                                 iso->host->id);
1257                 return;
1258         }
1259
1260         dev = hi->dev;
1261
1262         nready = hpsb_iso_n_ready(iso);
1263         for (i = 0; i < nready; i++) {
1264                 struct hpsb_iso_packet_info *info =
1265                         &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1266                 data = (quadlet_t *)(iso->data_buf.kvirt + info->offset);
1267
1268                 /* skip over GASP header */
1269                 buf = (char *)data + 8;
1270                 len = info->len - 8;
1271
1272                 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1273                                (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1274                 source_id = be32_to_cpu(data[0]) >> 16;
1275
1276                 priv = netdev_priv(dev);
1277
1278                 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1279                     || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1280                         /* This packet is not for us */
1281                         continue;
1282                 }
1283                 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1284                                        buf, len);
1285         }
1286
1287         hpsb_iso_recv_release_packets(iso, i);
1288
1289         dev->last_rx = jiffies;
1290 }
1291
1292 /******************************************
1293  * Datagram transmission code
1294  ******************************************/
1295
1296 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1297  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1298  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1299  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1300  * judge.
1301  *
1302  * Now that the EUI is used for the hardware address all we need to do to make
1303  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1304  * speed, and unicast FIFO address information between the sender_unique_id
1305  * and the IP addresses.
1306  */
1307 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1308                                      struct net_device *dev)
1309 {
1310         struct eth1394_priv *priv = netdev_priv(dev);
1311         struct arphdr *arp = (struct arphdr *)skb->data;
1312         unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1313         struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1314
1315         arp1394->hw_addr_len    = 16;
1316         arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
1317         arp1394->max_rec        = priv->host->csr.max_rec;
1318         arp1394->sspd           = priv->host->csr.lnk_spd;
1319         arp1394->fifo_hi        = htons(priv->local_fifo >> 32);
1320         arp1394->fifo_lo        = htonl(priv->local_fifo & ~0x0);
1321 }
1322
1323 /* We need to encapsulate the standard header with our own. We use the
1324  * ethernet header's proto for our own. */
1325 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1326                                                __be16 proto,
1327                                                union eth1394_hdr *hdr,
1328                                                u16 dg_size, u16 dgl)
1329 {
1330         unsigned int adj_max_payload =
1331                                 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1332
1333         /* Does it all fit in one packet? */
1334         if (dg_size <= adj_max_payload) {
1335                 hdr->uf.lf = ETH1394_HDR_LF_UF;
1336                 hdr->uf.ether_type = proto;
1337         } else {
1338                 hdr->ff.lf = ETH1394_HDR_LF_FF;
1339                 hdr->ff.ether_type = proto;
1340                 hdr->ff.dg_size = dg_size - 1;
1341                 hdr->ff.dgl = dgl;
1342                 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1343         }
1344         return (dg_size + adj_max_payload - 1) / adj_max_payload;
1345 }
1346
1347 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1348                                           unsigned int max_payload,
1349                                           union eth1394_hdr *hdr)
1350 {
1351         union eth1394_hdr *bufhdr;
1352         int ftype = hdr->common.lf;
1353         int hdrsz = hdr_type_len[ftype];
1354         unsigned int adj_max_payload = max_payload - hdrsz;
1355
1356         switch (ftype) {
1357         case ETH1394_HDR_LF_UF:
1358                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1359                 bufhdr->words.word1 = htons(hdr->words.word1);
1360                 bufhdr->words.word2 = hdr->words.word2;
1361                 break;
1362
1363         case ETH1394_HDR_LF_FF:
1364                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1365                 bufhdr->words.word1 = htons(hdr->words.word1);
1366                 bufhdr->words.word2 = hdr->words.word2;
1367                 bufhdr->words.word3 = htons(hdr->words.word3);
1368                 bufhdr->words.word4 = 0;
1369
1370                 /* Set frag type here for future interior fragments */
1371                 hdr->common.lf = ETH1394_HDR_LF_IF;
1372                 hdr->sf.fg_off = 0;
1373                 break;
1374
1375         default:
1376                 hdr->sf.fg_off += adj_max_payload;
1377                 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1378                 if (max_payload >= skb->len)
1379                         hdr->common.lf = ETH1394_HDR_LF_LF;
1380                 bufhdr->words.word1 = htons(hdr->words.word1);
1381                 bufhdr->words.word2 = htons(hdr->words.word2);
1382                 bufhdr->words.word3 = htons(hdr->words.word3);
1383                 bufhdr->words.word4 = 0;
1384         }
1385         return min(max_payload, skb->len);
1386 }
1387
1388 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1389 {
1390         struct hpsb_packet *p;
1391
1392         p = hpsb_alloc_packet(0);
1393         if (p) {
1394                 p->host = host;
1395                 p->generation = get_hpsb_generation(host);
1396                 p->type = hpsb_async;
1397         }
1398         return p;
1399 }
1400
1401 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1402                                        struct hpsb_host *host, nodeid_t node,
1403                                        u64 addr, void *data, int tx_len)
1404 {
1405         p->node_id = node;
1406         p->data = NULL;
1407
1408         p->tcode = TCODE_WRITEB;
1409         p->header[1] = host->node_id << 16 | addr >> 32;
1410         p->header[2] = addr & 0xffffffff;
1411
1412         p->header_size = 16;
1413         p->expect_response = 1;
1414
1415         if (hpsb_get_tlabel(p)) {
1416                 ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
1417                 return -1;
1418         }
1419         p->header[0] =
1420                 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1421
1422         p->header[3] = tx_len << 16;
1423         p->data_size = (tx_len + 3) & ~3;
1424         p->data = data;
1425
1426         return 0;
1427 }
1428
1429 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1430                                        struct eth1394_priv *priv,
1431                                        struct sk_buff *skb, int length)
1432 {
1433         p->header_size = 4;
1434         p->tcode = TCODE_STREAM_DATA;
1435
1436         p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1437                        TCODE_STREAM_DATA << 4;
1438         p->data_size = length;
1439         p->data = (quadlet_t *)skb->data - 2;
1440         p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1441                                  ETHER1394_GASP_SPECIFIER_ID_HI);
1442         p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1443                                  ETHER1394_GASP_VERSION);
1444
1445         /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
1446          * prevents hpsb_send_packet() from setting the speed to an arbitrary
1447          * value based on packet->node_id if packet->node_id is not set. */
1448         p->node_id = ALL_NODES;
1449         p->speed_code = priv->bc_sspd;
1450 }
1451
1452 static void ether1394_free_packet(struct hpsb_packet *packet)
1453 {
1454         if (packet->tcode != TCODE_STREAM_DATA)
1455                 hpsb_free_tlabel(packet);
1456         hpsb_free_packet(packet);
1457 }
1458
1459 static void ether1394_complete_cb(void *__ptask);
1460
1461 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1462 {
1463         struct eth1394_priv *priv = ptask->priv;
1464         struct hpsb_packet *packet = NULL;
1465
1466         packet = ether1394_alloc_common_packet(priv->host);
1467         if (!packet)
1468                 return -1;
1469
1470         if (ptask->tx_type == ETH1394_GASP) {
1471                 int length = tx_len + 2 * sizeof(quadlet_t);
1472
1473                 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1474         } else if (ether1394_prep_write_packet(packet, priv->host,
1475                                                ptask->dest_node,
1476                                                ptask->addr, ptask->skb->data,
1477                                                tx_len)) {
1478                 hpsb_free_packet(packet);
1479                 return -1;
1480         }
1481
1482         ptask->packet = packet;
1483         hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1484                                       ptask);
1485
1486         if (hpsb_send_packet(packet) < 0) {
1487                 ether1394_free_packet(packet);
1488                 return -1;
1489         }
1490
1491         return 0;
1492 }
1493
1494 /* Task function to be run when a datagram transmission is completed */
1495 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1496 {
1497         struct sk_buff *skb = ptask->skb;
1498         struct eth1394_priv *priv = netdev_priv(skb->dev);
1499         unsigned long flags;
1500
1501         /* Statistics */
1502         spin_lock_irqsave(&priv->lock, flags);
1503         if (fail) {
1504                 priv->stats.tx_dropped++;
1505                 priv->stats.tx_errors++;
1506         } else {
1507                 priv->stats.tx_bytes += skb->len;
1508                 priv->stats.tx_packets++;
1509         }
1510         spin_unlock_irqrestore(&priv->lock, flags);
1511
1512         dev_kfree_skb_any(skb);
1513         kmem_cache_free(packet_task_cache, ptask);
1514 }
1515
1516 /* Callback for when a packet has been sent and the status of that packet is
1517  * known */
1518 static void ether1394_complete_cb(void *__ptask)
1519 {
1520         struct packet_task *ptask = (struct packet_task *)__ptask;
1521         struct hpsb_packet *packet = ptask->packet;
1522         int fail = 0;
1523
1524         if (packet->tcode != TCODE_STREAM_DATA)
1525                 fail = hpsb_packet_success(packet);
1526
1527         ether1394_free_packet(packet);
1528
1529         ptask->outstanding_pkts--;
1530         if (ptask->outstanding_pkts > 0 && !fail) {
1531                 int tx_len;
1532
1533                 /* Add the encapsulation header to the fragment */
1534                 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1535                                                &ptask->hdr);
1536                 if (ether1394_send_packet(ptask, tx_len))
1537                         ether1394_dg_complete(ptask, 1);
1538         } else {
1539                 ether1394_dg_complete(ptask, fail);
1540         }
1541 }
1542
1543 /* Transmit a packet (called by kernel) */
1544 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
1545 {
1546         gfp_t kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
1547         struct eth1394hdr *eth;
1548         struct eth1394_priv *priv = netdev_priv(dev);
1549         __be16 proto;
1550         unsigned long flags;
1551         nodeid_t dest_node;
1552         eth1394_tx_type tx_type;
1553         int ret = 0;
1554         unsigned int tx_len;
1555         unsigned int max_payload;
1556         u16 dg_size;
1557         u16 dgl;
1558         struct packet_task *ptask;
1559         struct eth1394_node_ref *node;
1560         struct eth1394_node_info *node_info = NULL;
1561
1562         ptask = kmem_cache_alloc(packet_task_cache, kmflags);
1563         if (ptask == NULL) {
1564                 ret = -ENOMEM;
1565                 goto fail;
1566         }
1567
1568         /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1569          * it does not set our validity bit. We need to compensate for
1570          * that somewhere else, but not in eth1394. */
1571 #if 0
1572         if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
1573                 ret = -EAGAIN;
1574                 goto fail;
1575         }
1576 #endif
1577
1578         skb = skb_share_check(skb, kmflags);
1579         if (!skb) {
1580                 ret = -ENOMEM;
1581                 goto fail;
1582         }
1583
1584         /* Get rid of the fake eth1394 header, but save a pointer */
1585         eth = (struct eth1394hdr *)skb->data;
1586         skb_pull(skb, ETH1394_HLEN);
1587
1588         proto = eth->h_proto;
1589         dg_size = skb->len;
1590
1591         /* Set the transmission type for the packet.  ARP packets and IP
1592          * broadcast packets are sent via GASP. */
1593         if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1594             proto == htons(ETH_P_ARP) ||
1595             (proto == htons(ETH_P_IP) &&
1596              IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1597                 tx_type = ETH1394_GASP;
1598                 dest_node = LOCAL_BUS | ALL_NODES;
1599                 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1600                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1601                 dgl = priv->bc_dgl;
1602                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1603                         priv->bc_dgl++;
1604         } else {
1605                 __be64 guid = get_unaligned((u64 *)eth->h_dest);
1606
1607                 node = eth1394_find_node_guid(&priv->ip_node_list,
1608                                               be64_to_cpu(guid));
1609                 if (!node) {
1610                         ret = -EAGAIN;
1611                         goto fail;
1612                 }
1613                 node_info =
1614                     (struct eth1394_node_info *)node->ud->device.driver_data;
1615                 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE) {
1616                         ret = -EAGAIN;
1617                         goto fail;
1618                 }
1619
1620                 dest_node = node->ud->ne->nodeid;
1621                 max_payload = node_info->maxpayload;
1622                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1623
1624                 dgl = node_info->dgl;
1625                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1626                         node_info->dgl++;
1627                 tx_type = ETH1394_WRREQ;
1628         }
1629
1630         /* If this is an ARP packet, convert it */
1631         if (proto == htons(ETH_P_ARP))
1632                 ether1394_arp_to_1394arp(skb, dev);
1633
1634         ptask->hdr.words.word1 = 0;
1635         ptask->hdr.words.word2 = 0;
1636         ptask->hdr.words.word3 = 0;
1637         ptask->hdr.words.word4 = 0;
1638         ptask->skb = skb;
1639         ptask->priv = priv;
1640         ptask->tx_type = tx_type;
1641
1642         if (tx_type != ETH1394_GASP) {
1643                 u64 addr;
1644
1645                 spin_lock_irqsave(&priv->lock, flags);
1646                 addr = node_info->fifo;
1647                 spin_unlock_irqrestore(&priv->lock, flags);
1648
1649                 ptask->addr = addr;
1650                 ptask->dest_node = dest_node;
1651         }
1652
1653         ptask->tx_type = tx_type;
1654         ptask->max_payload = max_payload;
1655         ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1656                                         proto, &ptask->hdr, dg_size, dgl);
1657
1658         /* Add the encapsulation header to the fragment */
1659         tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1660         dev->trans_start = jiffies;
1661         if (ether1394_send_packet(ptask, tx_len))
1662                 goto fail;
1663
1664         netif_wake_queue(dev);
1665         return 0;
1666 fail:
1667         if (ptask)
1668                 kmem_cache_free(packet_task_cache, ptask);
1669
1670         if (skb != NULL)
1671                 dev_kfree_skb(skb);
1672
1673         spin_lock_irqsave(&priv->lock, flags);
1674         priv->stats.tx_dropped++;
1675         priv->stats.tx_errors++;
1676         spin_unlock_irqrestore(&priv->lock, flags);
1677
1678         if (netif_queue_stopped(dev))
1679                 netif_wake_queue(dev);
1680
1681         return 0;  /* returning non-zero causes serious problems */
1682 }
1683
1684 static void ether1394_get_drvinfo(struct net_device *dev,
1685                                   struct ethtool_drvinfo *info)
1686 {
1687         strcpy(info->driver, driver_name);
1688         strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1689 }
1690
1691 static struct ethtool_ops ethtool_ops = {
1692         .get_drvinfo = ether1394_get_drvinfo
1693 };
1694
1695 static int __init ether1394_init_module (void)
1696 {
1697         packet_task_cache = kmem_cache_create("packet_task",
1698                                               sizeof(struct packet_task),
1699                                               0, 0, NULL, NULL);
1700
1701         hpsb_register_highlevel(&eth1394_highlevel);
1702         return hpsb_register_protocol(&eth1394_proto_driver);
1703 }
1704
1705 static void __exit ether1394_exit_module (void)
1706 {
1707         hpsb_unregister_protocol(&eth1394_proto_driver);
1708         hpsb_unregister_highlevel(&eth1394_highlevel);
1709         kmem_cache_destroy(packet_task_cache);
1710 }
1711
1712 module_init(ether1394_init_module);
1713 module_exit(ether1394_exit_module);