2 * PowerMac G5 SMU driver
4 * Copyright 2004 J. Mayer <l_indien@magic.fr>
5 * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
7 * Released under the term of the GNU GPL v2.
12 * - maybe add timeout to commands ?
13 * - blocking version of time functions
14 * - polling version of i2c commands (including timer that works with
16 * - maybe avoid some data copies with i2c by directly using the smu cmd
17 * buffer and a lower level internal interface
18 * - understand SMU -> CPU events and implement reception of them via
19 * the userland interface
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/device.h>
25 #include <linux/dmapool.h>
26 #include <linux/bootmem.h>
27 #include <linux/vmalloc.h>
28 #include <linux/highmem.h>
29 #include <linux/jiffies.h>
30 #include <linux/interrupt.h>
31 #include <linux/rtc.h>
32 #include <linux/completion.h>
33 #include <linux/miscdevice.h>
34 #include <linux/delay.h>
35 #include <linux/sysdev.h>
36 #include <linux/poll.h>
37 #include <linux/mutex.h>
39 #include <asm/byteorder.h>
42 #include <asm/machdep.h>
43 #include <asm/pmac_feature.h>
45 #include <asm/sections.h>
46 #include <asm/abs_addr.h>
47 #include <asm/uaccess.h>
48 #include <asm/of_device.h>
49 #include <asm/of_platform.h>
52 #define AUTHOR "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
57 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
59 #define DPRINTK(fmt, args...) do { } while (0)
63 * This is the command buffer passed to the SMU hardware
65 #define SMU_MAX_DATA 254
70 u8 data[SMU_MAX_DATA];
75 struct device_node *of_node;
76 struct of_device *of_dev;
77 int doorbell; /* doorbell gpio */
78 u32 __iomem *db_buf; /* doorbell buffer */
79 struct device_node *db_node;
82 struct device_node *msg_node;
84 struct smu_cmd_buf *cmd_buf; /* command buffer virtual */
85 u32 cmd_buf_abs; /* command buffer absolute */
86 struct list_head cmd_list;
87 struct smu_cmd *cmd_cur; /* pending command */
88 struct list_head cmd_i2c_list;
89 struct smu_i2c_cmd *cmd_i2c_cur; /* pending i2c command */
90 struct timer_list i2c_timer;
94 * I don't think there will ever be more than one SMU, so
95 * for now, just hard code that
97 static struct smu_device *smu;
98 static DEFINE_MUTEX(smu_part_access);
99 static int smu_irq_inited;
101 static void smu_i2c_retry(unsigned long data);
104 * SMU driver low level stuff
107 static void smu_start_cmd(void)
109 unsigned long faddr, fend;
112 if (list_empty(&smu->cmd_list))
115 /* Fetch first command in queue */
116 cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
118 list_del(&cmd->link);
120 DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
122 DPRINTK("SMU: data buffer: %02x %02x %02x %02x %02x %02x %02x %02x\n",
123 ((u8 *)cmd->data_buf)[0], ((u8 *)cmd->data_buf)[1],
124 ((u8 *)cmd->data_buf)[2], ((u8 *)cmd->data_buf)[3],
125 ((u8 *)cmd->data_buf)[4], ((u8 *)cmd->data_buf)[5],
126 ((u8 *)cmd->data_buf)[6], ((u8 *)cmd->data_buf)[7]);
128 /* Fill the SMU command buffer */
129 smu->cmd_buf->cmd = cmd->cmd;
130 smu->cmd_buf->length = cmd->data_len;
131 memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
133 /* Flush command and data to RAM */
134 faddr = (unsigned long)smu->cmd_buf;
135 fend = faddr + smu->cmd_buf->length + 2;
136 flush_inval_dcache_range(faddr, fend);
138 /* This isn't exactly a DMA mapping here, I suspect
139 * the SMU is actually communicating with us via i2c to the
140 * northbridge or the CPU to access RAM.
142 writel(smu->cmd_buf_abs, smu->db_buf);
144 /* Ring the SMU doorbell */
145 pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
149 static irqreturn_t smu_db_intr(int irq, void *arg)
153 void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
158 /* SMU completed the command, well, we hope, let's make sure
161 spin_lock_irqsave(&smu->lock, flags);
163 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
164 if ((gpio & 7) != 7) {
165 spin_unlock_irqrestore(&smu->lock, flags);
179 /* CPU might have brought back the cache line, so we need
180 * to flush again before peeking at the SMU response. We
181 * flush the entire buffer for now as we haven't read the
182 * reply lenght (it's only 2 cache lines anyway)
184 faddr = (unsigned long)smu->cmd_buf;
185 flush_inval_dcache_range(faddr, faddr + 256);
188 ack = (~cmd->cmd) & 0xff;
189 if (ack != smu->cmd_buf->cmd) {
190 DPRINTK("SMU: incorrect ack, want %x got %x\n",
191 ack, smu->cmd_buf->cmd);
194 reply_len = rc == 0 ? smu->cmd_buf->length : 0;
195 DPRINTK("SMU: reply len: %d\n", reply_len);
196 if (reply_len > cmd->reply_len) {
197 printk(KERN_WARNING "SMU: reply buffer too small,"
198 "got %d bytes for a %d bytes buffer\n",
199 reply_len, cmd->reply_len);
200 reply_len = cmd->reply_len;
202 cmd->reply_len = reply_len;
203 if (cmd->reply_buf && reply_len)
204 memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
207 /* Now complete the command. Write status last in order as we lost
208 * ownership of the command structure as soon as it's no longer -1
215 /* Start next command if any */
217 spin_unlock_irqrestore(&smu->lock, flags);
219 /* Call command completion handler if any */
223 /* It's an edge interrupt, nothing to do */
228 static irqreturn_t smu_msg_intr(int irq, void *arg)
230 /* I don't quite know what to do with this one, we seem to never
231 * receive it, so I suspect we have to arm it someway in the SMU
232 * to start getting events that way.
235 printk(KERN_INFO "SMU: message interrupt !\n");
237 /* It's an edge interrupt, nothing to do */
243 * Queued command management.
247 int smu_queue_cmd(struct smu_cmd *cmd)
253 if (cmd->data_len > SMU_MAX_DATA ||
254 cmd->reply_len > SMU_MAX_DATA)
258 spin_lock_irqsave(&smu->lock, flags);
259 list_add_tail(&cmd->link, &smu->cmd_list);
260 if (smu->cmd_cur == NULL)
262 spin_unlock_irqrestore(&smu->lock, flags);
264 /* Workaround for early calls when irq isn't available */
265 if (!smu_irq_inited || smu->db_irq == NO_IRQ)
266 smu_spinwait_cmd(cmd);
270 EXPORT_SYMBOL(smu_queue_cmd);
273 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
274 unsigned int data_len,
275 void (*done)(struct smu_cmd *cmd, void *misc),
278 struct smu_cmd *cmd = &scmd->cmd;
282 if (data_len > sizeof(scmd->buffer))
285 memset(scmd, 0, sizeof(*scmd));
287 cmd->data_len = data_len;
288 cmd->data_buf = scmd->buffer;
289 cmd->reply_len = sizeof(scmd->buffer);
290 cmd->reply_buf = scmd->buffer;
294 va_start(list, misc);
295 for (i = 0; i < data_len; ++i)
296 scmd->buffer[i] = (u8)va_arg(list, int);
299 return smu_queue_cmd(cmd);
301 EXPORT_SYMBOL(smu_queue_simple);
311 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
313 smu_db_intr(smu->db_irq, smu);
315 EXPORT_SYMBOL(smu_poll);
318 void smu_done_complete(struct smu_cmd *cmd, void *misc)
320 struct completion *comp = misc;
324 EXPORT_SYMBOL(smu_done_complete);
327 void smu_spinwait_cmd(struct smu_cmd *cmd)
329 while(cmd->status == 1)
332 EXPORT_SYMBOL(smu_spinwait_cmd);
335 /* RTC low level commands */
336 static inline int bcd2hex (int n)
338 return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
342 static inline int hex2bcd (int n)
344 return ((n / 10) << 4) + (n % 10);
348 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
349 struct rtc_time *time)
353 cmd_buf->data[0] = 0x80;
354 cmd_buf->data[1] = hex2bcd(time->tm_sec);
355 cmd_buf->data[2] = hex2bcd(time->tm_min);
356 cmd_buf->data[3] = hex2bcd(time->tm_hour);
357 cmd_buf->data[4] = time->tm_wday;
358 cmd_buf->data[5] = hex2bcd(time->tm_mday);
359 cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
360 cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
364 int smu_get_rtc_time(struct rtc_time *time, int spinwait)
366 struct smu_simple_cmd cmd;
372 memset(time, 0, sizeof(struct rtc_time));
373 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
374 SMU_CMD_RTC_GET_DATETIME);
377 smu_spinwait_simple(&cmd);
379 time->tm_sec = bcd2hex(cmd.buffer[0]);
380 time->tm_min = bcd2hex(cmd.buffer[1]);
381 time->tm_hour = bcd2hex(cmd.buffer[2]);
382 time->tm_wday = bcd2hex(cmd.buffer[3]);
383 time->tm_mday = bcd2hex(cmd.buffer[4]);
384 time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
385 time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
391 int smu_set_rtc_time(struct rtc_time *time, int spinwait)
393 struct smu_simple_cmd cmd;
399 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
400 SMU_CMD_RTC_SET_DATETIME,
401 hex2bcd(time->tm_sec),
402 hex2bcd(time->tm_min),
403 hex2bcd(time->tm_hour),
405 hex2bcd(time->tm_mday),
406 hex2bcd(time->tm_mon) + 1,
407 hex2bcd(time->tm_year - 100));
410 smu_spinwait_simple(&cmd);
416 void smu_shutdown(void)
418 struct smu_simple_cmd cmd;
423 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
424 'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
426 smu_spinwait_simple(&cmd);
432 void smu_restart(void)
434 struct smu_simple_cmd cmd;
439 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
440 'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
442 smu_spinwait_simple(&cmd);
448 int smu_present(void)
452 EXPORT_SYMBOL(smu_present);
455 int __init smu_init (void)
457 struct device_node *np;
460 np = of_find_node_by_type(NULL, "smu");
464 printk(KERN_INFO "SMU driver %s %s\n", VERSION, AUTHOR);
466 if (smu_cmdbuf_abs == 0) {
467 printk(KERN_ERR "SMU: Command buffer not allocated !\n");
471 smu = alloc_bootmem(sizeof(struct smu_device));
474 memset(smu, 0, sizeof(*smu));
476 spin_lock_init(&smu->lock);
477 INIT_LIST_HEAD(&smu->cmd_list);
478 INIT_LIST_HEAD(&smu->cmd_i2c_list);
480 smu->db_irq = NO_IRQ;
481 smu->msg_irq = NO_IRQ;
483 /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
484 * 32 bits value safely
486 smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
487 smu->cmd_buf = (struct smu_cmd_buf *)abs_to_virt(smu_cmdbuf_abs);
489 smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
490 if (smu->db_node == NULL) {
491 printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
494 data = get_property(smu->db_node, "reg", NULL);
496 of_node_put(smu->db_node);
498 printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
502 /* Current setup has one doorbell GPIO that does both doorbell
503 * and ack. GPIOs are at 0x50, best would be to find that out
504 * in the device-tree though.
506 smu->doorbell = *data;
507 if (smu->doorbell < 0x50)
508 smu->doorbell += 0x50;
510 /* Now look for the smu-interrupt GPIO */
512 smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
513 if (smu->msg_node == NULL)
515 data = get_property(smu->msg_node, "reg", NULL);
517 of_node_put(smu->msg_node);
518 smu->msg_node = NULL;
526 /* Doorbell buffer is currently hard-coded, I didn't find a proper
527 * device-tree entry giving the address. Best would probably to use
528 * an offset for K2 base though, but let's do it that way for now.
530 smu->db_buf = ioremap(0x8000860c, 0x1000);
531 if (smu->db_buf == NULL) {
532 printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
536 sys_ctrler = SYS_CTRLER_SMU;
546 static int smu_late_init(void)
551 init_timer(&smu->i2c_timer);
552 smu->i2c_timer.function = smu_i2c_retry;
553 smu->i2c_timer.data = (unsigned long)smu;
556 smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
557 if (smu->db_irq == NO_IRQ)
558 printk(KERN_ERR "smu: failed to map irq for node %s\n",
559 smu->db_node->full_name);
562 smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
563 if (smu->msg_irq == NO_IRQ)
564 printk(KERN_ERR "smu: failed to map irq for node %s\n",
565 smu->msg_node->full_name);
569 * Try to request the interrupts
572 if (smu->db_irq != NO_IRQ) {
573 if (request_irq(smu->db_irq, smu_db_intr,
574 IRQF_SHARED, "SMU doorbell", smu) < 0) {
575 printk(KERN_WARNING "SMU: can't "
576 "request interrupt %d\n",
578 smu->db_irq = NO_IRQ;
582 if (smu->msg_irq != NO_IRQ) {
583 if (request_irq(smu->msg_irq, smu_msg_intr,
584 IRQF_SHARED, "SMU message", smu) < 0) {
585 printk(KERN_WARNING "SMU: can't "
586 "request interrupt %d\n",
588 smu->msg_irq = NO_IRQ;
595 /* This has to be before arch_initcall as the low i2c stuff relies on the
596 * above having been done before we reach arch_initcalls
598 core_initcall(smu_late_init);
604 static void smu_expose_childs(struct work_struct *unused)
606 struct device_node *np;
608 for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
609 if (device_is_compatible(np, "smu-sensors"))
610 of_platform_device_create(np, "smu-sensors",
614 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
616 static int smu_platform_probe(struct of_device* dev,
617 const struct of_device_id *match)
624 * Ok, we are matched, now expose all i2c busses. We have to defer
625 * that unfortunately or it would deadlock inside the device model
627 schedule_work(&smu_expose_childs_work);
632 static struct of_device_id smu_platform_match[] =
640 static struct of_platform_driver smu_of_platform_driver =
643 .match_table = smu_platform_match,
644 .probe = smu_platform_probe,
647 static int __init smu_init_sysfs(void)
650 * Due to sysfs bogosity, a sysdev is not a real device, so
651 * we should in fact create both if we want sysdev semantics
652 * for power management.
653 * For now, we don't power manage machines with an SMU chip,
654 * I'm a bit too far from figuring out how that works with those
655 * new chipsets, but that will come back and bite us
657 of_register_platform_driver(&smu_of_platform_driver);
661 device_initcall(smu_init_sysfs);
663 struct of_device *smu_get_ofdev(void)
670 EXPORT_SYMBOL_GPL(smu_get_ofdev);
676 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
678 void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
679 void *misc = cmd->misc;
682 /* Check for read case */
683 if (!fail && cmd->read) {
684 if (cmd->pdata[0] < 1)
687 memcpy(cmd->info.data, &cmd->pdata[1],
691 DPRINTK("SMU: completing, success: %d\n", !fail);
693 /* Update status and mark no pending i2c command with lock
694 * held so nobody comes in while we dequeue an eventual
695 * pending next i2c command
697 spin_lock_irqsave(&smu->lock, flags);
698 smu->cmd_i2c_cur = NULL;
700 cmd->status = fail ? -EIO : 0;
702 /* Is there another i2c command waiting ? */
703 if (!list_empty(&smu->cmd_i2c_list)) {
704 struct smu_i2c_cmd *newcmd;
706 /* Fetch it, new current, remove from list */
707 newcmd = list_entry(smu->cmd_i2c_list.next,
708 struct smu_i2c_cmd, link);
709 smu->cmd_i2c_cur = newcmd;
710 list_del(&cmd->link);
712 /* Queue with low level smu */
713 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
714 if (smu->cmd_cur == NULL)
717 spin_unlock_irqrestore(&smu->lock, flags);
719 /* Call command completion handler if any */
726 static void smu_i2c_retry(unsigned long data)
728 struct smu_i2c_cmd *cmd = smu->cmd_i2c_cur;
730 DPRINTK("SMU: i2c failure, requeuing...\n");
732 /* requeue command simply by resetting reply_len */
733 cmd->pdata[0] = 0xff;
734 cmd->scmd.reply_len = sizeof(cmd->pdata);
735 smu_queue_cmd(&cmd->scmd);
739 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
741 struct smu_i2c_cmd *cmd = misc;
744 DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
745 cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
747 /* Check for possible status */
748 if (scmd->status < 0)
750 else if (cmd->read) {
752 fail = cmd->pdata[0] != 0;
754 fail = cmd->pdata[0] >= 0x80;
756 fail = cmd->pdata[0] != 0;
759 /* Handle failures by requeuing command, after 5ms interval
761 if (fail && --cmd->retries > 0) {
762 DPRINTK("SMU: i2c failure, starting timer...\n");
763 BUG_ON(cmd != smu->cmd_i2c_cur);
764 if (!smu_irq_inited) {
769 mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
773 /* If failure or stage 1, command is complete */
774 if (fail || cmd->stage != 0) {
775 smu_i2c_complete_command(cmd, fail);
779 DPRINTK("SMU: going to stage 1\n");
781 /* Ok, initial command complete, now poll status */
782 scmd->reply_buf = cmd->pdata;
783 scmd->reply_len = sizeof(cmd->pdata);
784 scmd->data_buf = cmd->pdata;
793 int smu_queue_i2c(struct smu_i2c_cmd *cmd)
800 /* Fill most fields of scmd */
801 cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
802 cmd->scmd.done = smu_i2c_low_completion;
803 cmd->scmd.misc = cmd;
804 cmd->scmd.reply_buf = cmd->pdata;
805 cmd->scmd.reply_len = sizeof(cmd->pdata);
806 cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
807 cmd->scmd.status = 1;
809 cmd->pdata[0] = 0xff;
813 /* Check transfer type, sanitize some "info" fields
814 * based on transfer type and do more checking
816 cmd->info.caddr = cmd->info.devaddr;
817 cmd->read = cmd->info.devaddr & 0x01;
818 switch(cmd->info.type) {
819 case SMU_I2C_TRANSFER_SIMPLE:
820 memset(&cmd->info.sublen, 0, 4);
822 case SMU_I2C_TRANSFER_COMBINED:
823 cmd->info.devaddr &= 0xfe;
824 case SMU_I2C_TRANSFER_STDSUB:
825 if (cmd->info.sublen > 3)
832 /* Finish setting up command based on transfer direction
835 if (cmd->info.datalen > SMU_I2C_READ_MAX)
837 memset(cmd->info.data, 0xff, cmd->info.datalen);
838 cmd->scmd.data_len = 9;
840 if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
842 cmd->scmd.data_len = 9 + cmd->info.datalen;
845 DPRINTK("SMU: i2c enqueuing command\n");
846 DPRINTK("SMU: %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
847 cmd->read ? "read" : "write", cmd->info.datalen,
848 cmd->info.bus, cmd->info.caddr,
849 cmd->info.subaddr[0], cmd->info.type);
852 /* Enqueue command in i2c list, and if empty, enqueue also in
855 spin_lock_irqsave(&smu->lock, flags);
856 if (smu->cmd_i2c_cur == NULL) {
857 smu->cmd_i2c_cur = cmd;
858 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
859 if (smu->cmd_cur == NULL)
862 list_add_tail(&cmd->link, &smu->cmd_i2c_list);
863 spin_unlock_irqrestore(&smu->lock, flags);
869 * Handling of "partitions"
872 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
874 DECLARE_COMPLETION_ONSTACK(comp);
880 /* We currently use a chunk size of 0xe. We could check the
881 * SMU firmware version and use bigger sizes though
886 unsigned int clen = min(len, chunk);
888 cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
890 cmd.data_buf = params;
891 cmd.reply_len = chunk;
892 cmd.reply_buf = dest;
893 cmd.done = smu_done_complete;
895 params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
897 *((u32 *)¶ms[2]) = addr;
900 rc = smu_queue_cmd(&cmd);
903 wait_for_completion(&comp);
906 if (cmd.reply_len != clen) {
907 printk(KERN_DEBUG "SMU: short read in "
908 "smu_read_datablock, got: %d, want: %d\n",
909 cmd.reply_len, clen);
919 static struct smu_sdbp_header *smu_create_sdb_partition(int id)
921 DECLARE_COMPLETION_ONSTACK(comp);
922 struct smu_simple_cmd cmd;
923 unsigned int addr, len, tlen;
924 struct smu_sdbp_header *hdr;
925 struct property *prop;
927 /* First query the partition info */
928 DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
929 smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
930 smu_done_complete, &comp,
931 SMU_CMD_PARTITION_LATEST, id);
932 wait_for_completion(&comp);
933 DPRINTK("SMU: done, status: %d, reply_len: %d\n",
934 cmd.cmd.status, cmd.cmd.reply_len);
936 /* Partition doesn't exist (or other error) */
937 if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
940 /* Fetch address and length from reply */
941 addr = *((u16 *)cmd.buffer);
942 len = cmd.buffer[3] << 2;
943 /* Calucluate total length to allocate, including the 17 bytes
944 * for "sdb-partition-XX" that we append at the end of the buffer
946 tlen = sizeof(struct property) + len + 18;
948 prop = kzalloc(tlen, GFP_KERNEL);
951 hdr = (struct smu_sdbp_header *)(prop + 1);
952 prop->name = ((char *)prop) + tlen - 18;
953 sprintf(prop->name, "sdb-partition-%02x", id);
955 prop->value = (unsigned char *)hdr;
958 /* Read the datablock */
959 if (smu_read_datablock((u8 *)hdr, addr, len)) {
960 printk(KERN_DEBUG "SMU: datablock read failed while reading "
961 "partition %02x !\n", id);
965 /* Got it, check a few things and create the property */
967 printk(KERN_DEBUG "SMU: Reading partition %02x and got "
968 "%02x !\n", id, hdr->id);
971 if (prom_add_property(smu->of_node, prop)) {
972 printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
983 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
984 * when interruptible is 1
986 const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
987 unsigned int *size, int interruptible)
990 const struct smu_sdbp_header *part;
995 sprintf(pname, "sdb-partition-%02x", id);
997 DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1001 rc = mutex_lock_interruptible(&smu_part_access);
1005 mutex_lock(&smu_part_access);
1007 part = get_property(smu->of_node, pname, size);
1009 DPRINTK("trying to extract from SMU ...\n");
1010 part = smu_create_sdb_partition(id);
1011 if (part != NULL && size)
1012 *size = part->len << 2;
1014 mutex_unlock(&smu_part_access);
1018 const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1020 return __smu_get_sdb_partition(id, size, 0);
1022 EXPORT_SYMBOL(smu_get_sdb_partition);
1026 * Userland driver interface
1030 static LIST_HEAD(smu_clist);
1031 static DEFINE_SPINLOCK(smu_clist_lock);
1033 enum smu_file_mode {
1041 struct list_head list;
1042 enum smu_file_mode mode;
1046 wait_queue_head_t wait;
1047 u8 buffer[SMU_MAX_DATA];
1051 static int smu_open(struct inode *inode, struct file *file)
1053 struct smu_private *pp;
1054 unsigned long flags;
1056 pp = kmalloc(sizeof(struct smu_private), GFP_KERNEL);
1059 memset(pp, 0, sizeof(struct smu_private));
1060 spin_lock_init(&pp->lock);
1061 pp->mode = smu_file_commands;
1062 init_waitqueue_head(&pp->wait);
1064 spin_lock_irqsave(&smu_clist_lock, flags);
1065 list_add(&pp->list, &smu_clist);
1066 spin_unlock_irqrestore(&smu_clist_lock, flags);
1067 file->private_data = pp;
1073 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1075 struct smu_private *pp = misc;
1077 wake_up_all(&pp->wait);
1081 static ssize_t smu_write(struct file *file, const char __user *buf,
1082 size_t count, loff_t *ppos)
1084 struct smu_private *pp = file->private_data;
1085 unsigned long flags;
1086 struct smu_user_cmd_hdr hdr;
1091 else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1093 else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1094 pp->mode = smu_file_events;
1096 } else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1097 const struct smu_sdbp_header *part;
1098 part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1101 else if (IS_ERR(part))
1102 return PTR_ERR(part);
1104 } else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1106 else if (pp->mode != smu_file_commands)
1108 else if (hdr.data_len > SMU_MAX_DATA)
1111 spin_lock_irqsave(&pp->lock, flags);
1113 spin_unlock_irqrestore(&pp->lock, flags);
1118 spin_unlock_irqrestore(&pp->lock, flags);
1120 if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1125 pp->cmd.cmd = hdr.cmd;
1126 pp->cmd.data_len = hdr.data_len;
1127 pp->cmd.reply_len = SMU_MAX_DATA;
1128 pp->cmd.data_buf = pp->buffer;
1129 pp->cmd.reply_buf = pp->buffer;
1130 pp->cmd.done = smu_user_cmd_done;
1132 rc = smu_queue_cmd(&pp->cmd);
1139 static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1140 char __user *buf, size_t count)
1142 DECLARE_WAITQUEUE(wait, current);
1143 struct smu_user_reply_hdr hdr;
1144 unsigned long flags;
1149 if (count < sizeof(struct smu_user_reply_hdr))
1151 spin_lock_irqsave(&pp->lock, flags);
1152 if (pp->cmd.status == 1) {
1153 if (file->f_flags & O_NONBLOCK)
1155 add_wait_queue(&pp->wait, &wait);
1157 set_current_state(TASK_INTERRUPTIBLE);
1159 if (pp->cmd.status != 1)
1162 if (signal_pending(current))
1164 spin_unlock_irqrestore(&pp->lock, flags);
1166 spin_lock_irqsave(&pp->lock, flags);
1168 set_current_state(TASK_RUNNING);
1169 remove_wait_queue(&pp->wait, &wait);
1171 spin_unlock_irqrestore(&pp->lock, flags);
1174 if (pp->cmd.status != 0)
1175 pp->cmd.reply_len = 0;
1176 size = sizeof(hdr) + pp->cmd.reply_len;
1180 hdr.status = pp->cmd.status;
1181 hdr.reply_len = pp->cmd.reply_len;
1182 if (copy_to_user(buf, &hdr, sizeof(hdr)))
1184 size -= sizeof(hdr);
1185 if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1193 static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1194 char __user *buf, size_t count)
1196 /* Not implemented */
1197 msleep_interruptible(1000);
1202 static ssize_t smu_read(struct file *file, char __user *buf,
1203 size_t count, loff_t *ppos)
1205 struct smu_private *pp = file->private_data;
1207 if (pp->mode == smu_file_commands)
1208 return smu_read_command(file, pp, buf, count);
1209 if (pp->mode == smu_file_events)
1210 return smu_read_events(file, pp, buf, count);
1215 static unsigned int smu_fpoll(struct file *file, poll_table *wait)
1217 struct smu_private *pp = file->private_data;
1218 unsigned int mask = 0;
1219 unsigned long flags;
1224 if (pp->mode == smu_file_commands) {
1225 poll_wait(file, &pp->wait, wait);
1227 spin_lock_irqsave(&pp->lock, flags);
1228 if (pp->busy && pp->cmd.status != 1)
1230 spin_unlock_irqrestore(&pp->lock, flags);
1231 } if (pp->mode == smu_file_events) {
1232 /* Not yet implemented */
1237 static int smu_release(struct inode *inode, struct file *file)
1239 struct smu_private *pp = file->private_data;
1240 unsigned long flags;
1246 file->private_data = NULL;
1248 /* Mark file as closing to avoid races with new request */
1249 spin_lock_irqsave(&pp->lock, flags);
1250 pp->mode = smu_file_closing;
1253 /* Wait for any pending request to complete */
1254 if (busy && pp->cmd.status == 1) {
1255 DECLARE_WAITQUEUE(wait, current);
1257 add_wait_queue(&pp->wait, &wait);
1259 set_current_state(TASK_UNINTERRUPTIBLE);
1260 if (pp->cmd.status != 1)
1262 spin_lock_irqsave(&pp->lock, flags);
1264 spin_unlock_irqrestore(&pp->lock, flags);
1266 set_current_state(TASK_RUNNING);
1267 remove_wait_queue(&pp->wait, &wait);
1269 spin_unlock_irqrestore(&pp->lock, flags);
1271 spin_lock_irqsave(&smu_clist_lock, flags);
1272 list_del(&pp->list);
1273 spin_unlock_irqrestore(&smu_clist_lock, flags);
1280 static const struct file_operations smu_device_fops = {
1281 .llseek = no_llseek,
1286 .release = smu_release,
1289 static struct miscdevice pmu_device = {
1290 MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1293 static int smu_device_init(void)
1297 if (misc_register(&pmu_device) < 0)
1298 printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1301 device_initcall(smu_device_init);