Merge branch 'hwmon-for-linus' of git://jdelvare.pck.nerim.net/jdelvare-2.6
[linux-2.6] / kernel / relay.c
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.txt for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  *      (mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29
30 /*
31  * close() vm_op implementation for relay file mapping.
32  */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35         struct rchan_buf *buf = vma->vm_private_data;
36         buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38
39 /*
40  * fault() vm_op implementation for relay file mapping.
41  */
42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43 {
44         struct page *page;
45         struct rchan_buf *buf = vma->vm_private_data;
46         pgoff_t pgoff = vmf->pgoff;
47
48         if (!buf)
49                 return VM_FAULT_OOM;
50
51         page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52         if (!page)
53                 return VM_FAULT_SIGBUS;
54         get_page(page);
55         vmf->page = page;
56
57         return 0;
58 }
59
60 /*
61  * vm_ops for relay file mappings.
62  */
63 static struct vm_operations_struct relay_file_mmap_ops = {
64         .fault = relay_buf_fault,
65         .close = relay_file_mmap_close,
66 };
67
68 /*
69  * allocate an array of pointers of struct page
70  */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73         struct page **array;
74         size_t pa_size = n_pages * sizeof(struct page *);
75
76         if (pa_size > PAGE_SIZE) {
77                 array = vmalloc(pa_size);
78                 if (array)
79                         memset(array, 0, pa_size);
80         } else {
81                 array = kzalloc(pa_size, GFP_KERNEL);
82         }
83         return array;
84 }
85
86 /*
87  * free an array of pointers of struct page
88  */
89 static void relay_free_page_array(struct page **array)
90 {
91         if (is_vmalloc_addr(array))
92                 vfree(array);
93         else
94                 kfree(array);
95 }
96
97 /**
98  *      relay_mmap_buf: - mmap channel buffer to process address space
99  *      @buf: relay channel buffer
100  *      @vma: vm_area_struct describing memory to be mapped
101  *
102  *      Returns 0 if ok, negative on error
103  *
104  *      Caller should already have grabbed mmap_sem.
105  */
106 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
107 {
108         unsigned long length = vma->vm_end - vma->vm_start;
109         struct file *filp = vma->vm_file;
110
111         if (!buf)
112                 return -EBADF;
113
114         if (length != (unsigned long)buf->chan->alloc_size)
115                 return -EINVAL;
116
117         vma->vm_ops = &relay_file_mmap_ops;
118         vma->vm_flags |= VM_DONTEXPAND;
119         vma->vm_private_data = buf;
120         buf->chan->cb->buf_mapped(buf, filp);
121
122         return 0;
123 }
124
125 /**
126  *      relay_alloc_buf - allocate a channel buffer
127  *      @buf: the buffer struct
128  *      @size: total size of the buffer
129  *
130  *      Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
131  *      passed in size will get page aligned, if it isn't already.
132  */
133 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
134 {
135         void *mem;
136         unsigned int i, j, n_pages;
137
138         *size = PAGE_ALIGN(*size);
139         n_pages = *size >> PAGE_SHIFT;
140
141         buf->page_array = relay_alloc_page_array(n_pages);
142         if (!buf->page_array)
143                 return NULL;
144
145         for (i = 0; i < n_pages; i++) {
146                 buf->page_array[i] = alloc_page(GFP_KERNEL);
147                 if (unlikely(!buf->page_array[i]))
148                         goto depopulate;
149                 set_page_private(buf->page_array[i], (unsigned long)buf);
150         }
151         mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
152         if (!mem)
153                 goto depopulate;
154
155         memset(mem, 0, *size);
156         buf->page_count = n_pages;
157         return mem;
158
159 depopulate:
160         for (j = 0; j < i; j++)
161                 __free_page(buf->page_array[j]);
162         relay_free_page_array(buf->page_array);
163         return NULL;
164 }
165
166 /**
167  *      relay_create_buf - allocate and initialize a channel buffer
168  *      @chan: the relay channel
169  *
170  *      Returns channel buffer if successful, %NULL otherwise.
171  */
172 static struct rchan_buf *relay_create_buf(struct rchan *chan)
173 {
174         struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
175         if (!buf)
176                 return NULL;
177
178         buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
179         if (!buf->padding)
180                 goto free_buf;
181
182         buf->start = relay_alloc_buf(buf, &chan->alloc_size);
183         if (!buf->start)
184                 goto free_buf;
185
186         buf->chan = chan;
187         kref_get(&buf->chan->kref);
188         return buf;
189
190 free_buf:
191         kfree(buf->padding);
192         kfree(buf);
193         return NULL;
194 }
195
196 /**
197  *      relay_destroy_channel - free the channel struct
198  *      @kref: target kernel reference that contains the relay channel
199  *
200  *      Should only be called from kref_put().
201  */
202 static void relay_destroy_channel(struct kref *kref)
203 {
204         struct rchan *chan = container_of(kref, struct rchan, kref);
205         kfree(chan);
206 }
207
208 /**
209  *      relay_destroy_buf - destroy an rchan_buf struct and associated buffer
210  *      @buf: the buffer struct
211  */
212 static void relay_destroy_buf(struct rchan_buf *buf)
213 {
214         struct rchan *chan = buf->chan;
215         unsigned int i;
216
217         if (likely(buf->start)) {
218                 vunmap(buf->start);
219                 for (i = 0; i < buf->page_count; i++)
220                         __free_page(buf->page_array[i]);
221                 relay_free_page_array(buf->page_array);
222         }
223         chan->buf[buf->cpu] = NULL;
224         kfree(buf->padding);
225         kfree(buf);
226         kref_put(&chan->kref, relay_destroy_channel);
227 }
228
229 /**
230  *      relay_remove_buf - remove a channel buffer
231  *      @kref: target kernel reference that contains the relay buffer
232  *
233  *      Removes the file from the fileystem, which also frees the
234  *      rchan_buf_struct and the channel buffer.  Should only be called from
235  *      kref_put().
236  */
237 static void relay_remove_buf(struct kref *kref)
238 {
239         struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
240         buf->chan->cb->remove_buf_file(buf->dentry);
241         relay_destroy_buf(buf);
242 }
243
244 /**
245  *      relay_buf_empty - boolean, is the channel buffer empty?
246  *      @buf: channel buffer
247  *
248  *      Returns 1 if the buffer is empty, 0 otherwise.
249  */
250 static int relay_buf_empty(struct rchan_buf *buf)
251 {
252         return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
253 }
254
255 /**
256  *      relay_buf_full - boolean, is the channel buffer full?
257  *      @buf: channel buffer
258  *
259  *      Returns 1 if the buffer is full, 0 otherwise.
260  */
261 int relay_buf_full(struct rchan_buf *buf)
262 {
263         size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
264         return (ready >= buf->chan->n_subbufs) ? 1 : 0;
265 }
266 EXPORT_SYMBOL_GPL(relay_buf_full);
267
268 /*
269  * High-level relay kernel API and associated functions.
270  */
271
272 /*
273  * rchan_callback implementations defining default channel behavior.  Used
274  * in place of corresponding NULL values in client callback struct.
275  */
276
277 /*
278  * subbuf_start() default callback.  Does nothing.
279  */
280 static int subbuf_start_default_callback (struct rchan_buf *buf,
281                                           void *subbuf,
282                                           void *prev_subbuf,
283                                           size_t prev_padding)
284 {
285         if (relay_buf_full(buf))
286                 return 0;
287
288         return 1;
289 }
290
291 /*
292  * buf_mapped() default callback.  Does nothing.
293  */
294 static void buf_mapped_default_callback(struct rchan_buf *buf,
295                                         struct file *filp)
296 {
297 }
298
299 /*
300  * buf_unmapped() default callback.  Does nothing.
301  */
302 static void buf_unmapped_default_callback(struct rchan_buf *buf,
303                                           struct file *filp)
304 {
305 }
306
307 /*
308  * create_buf_file_create() default callback.  Does nothing.
309  */
310 static struct dentry *create_buf_file_default_callback(const char *filename,
311                                                        struct dentry *parent,
312                                                        int mode,
313                                                        struct rchan_buf *buf,
314                                                        int *is_global)
315 {
316         return NULL;
317 }
318
319 /*
320  * remove_buf_file() default callback.  Does nothing.
321  */
322 static int remove_buf_file_default_callback(struct dentry *dentry)
323 {
324         return -EINVAL;
325 }
326
327 /* relay channel default callbacks */
328 static struct rchan_callbacks default_channel_callbacks = {
329         .subbuf_start = subbuf_start_default_callback,
330         .buf_mapped = buf_mapped_default_callback,
331         .buf_unmapped = buf_unmapped_default_callback,
332         .create_buf_file = create_buf_file_default_callback,
333         .remove_buf_file = remove_buf_file_default_callback,
334 };
335
336 /**
337  *      wakeup_readers - wake up readers waiting on a channel
338  *      @data: contains the channel buffer
339  *
340  *      This is the timer function used to defer reader waking.
341  */
342 static void wakeup_readers(unsigned long data)
343 {
344         struct rchan_buf *buf = (struct rchan_buf *)data;
345         wake_up_interruptible(&buf->read_wait);
346 }
347
348 /**
349  *      __relay_reset - reset a channel buffer
350  *      @buf: the channel buffer
351  *      @init: 1 if this is a first-time initialization
352  *
353  *      See relay_reset() for description of effect.
354  */
355 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
356 {
357         size_t i;
358
359         if (init) {
360                 init_waitqueue_head(&buf->read_wait);
361                 kref_init(&buf->kref);
362                 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
363         } else
364                 del_timer_sync(&buf->timer);
365
366         buf->subbufs_produced = 0;
367         buf->subbufs_consumed = 0;
368         buf->bytes_consumed = 0;
369         buf->finalized = 0;
370         buf->data = buf->start;
371         buf->offset = 0;
372
373         for (i = 0; i < buf->chan->n_subbufs; i++)
374                 buf->padding[i] = 0;
375
376         buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
377 }
378
379 /**
380  *      relay_reset - reset the channel
381  *      @chan: the channel
382  *
383  *      This has the effect of erasing all data from all channel buffers
384  *      and restarting the channel in its initial state.  The buffers
385  *      are not freed, so any mappings are still in effect.
386  *
387  *      NOTE. Care should be taken that the channel isn't actually
388  *      being used by anything when this call is made.
389  */
390 void relay_reset(struct rchan *chan)
391 {
392         unsigned int i;
393
394         if (!chan)
395                 return;
396
397         if (chan->is_global && chan->buf[0]) {
398                 __relay_reset(chan->buf[0], 0);
399                 return;
400         }
401
402         mutex_lock(&relay_channels_mutex);
403         for_each_possible_cpu(i)
404                 if (chan->buf[i])
405                         __relay_reset(chan->buf[i], 0);
406         mutex_unlock(&relay_channels_mutex);
407 }
408 EXPORT_SYMBOL_GPL(relay_reset);
409
410 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
411                                         struct dentry *dentry)
412 {
413         buf->dentry = dentry;
414         buf->dentry->d_inode->i_size = buf->early_bytes;
415 }
416
417 static struct dentry *relay_create_buf_file(struct rchan *chan,
418                                             struct rchan_buf *buf,
419                                             unsigned int cpu)
420 {
421         struct dentry *dentry;
422         char *tmpname;
423
424         tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
425         if (!tmpname)
426                 return NULL;
427         snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
428
429         /* Create file in fs */
430         dentry = chan->cb->create_buf_file(tmpname, chan->parent,
431                                            S_IRUSR, buf,
432                                            &chan->is_global);
433
434         kfree(tmpname);
435
436         return dentry;
437 }
438
439 /*
440  *      relay_open_buf - create a new relay channel buffer
441  *
442  *      used by relay_open() and CPU hotplug.
443  */
444 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
445 {
446         struct rchan_buf *buf = NULL;
447         struct dentry *dentry;
448
449         if (chan->is_global)
450                 return chan->buf[0];
451
452         buf = relay_create_buf(chan);
453         if (!buf)
454                 return NULL;
455
456         if (chan->has_base_filename) {
457                 dentry = relay_create_buf_file(chan, buf, cpu);
458                 if (!dentry)
459                         goto free_buf;
460                 relay_set_buf_dentry(buf, dentry);
461         }
462
463         buf->cpu = cpu;
464         __relay_reset(buf, 1);
465
466         if(chan->is_global) {
467                 chan->buf[0] = buf;
468                 buf->cpu = 0;
469         }
470
471         return buf;
472
473 free_buf:
474         relay_destroy_buf(buf);
475         return NULL;
476 }
477
478 /**
479  *      relay_close_buf - close a channel buffer
480  *      @buf: channel buffer
481  *
482  *      Marks the buffer finalized and restores the default callbacks.
483  *      The channel buffer and channel buffer data structure are then freed
484  *      automatically when the last reference is given up.
485  */
486 static void relay_close_buf(struct rchan_buf *buf)
487 {
488         buf->finalized = 1;
489         del_timer_sync(&buf->timer);
490         kref_put(&buf->kref, relay_remove_buf);
491 }
492
493 static void setup_callbacks(struct rchan *chan,
494                                    struct rchan_callbacks *cb)
495 {
496         if (!cb) {
497                 chan->cb = &default_channel_callbacks;
498                 return;
499         }
500
501         if (!cb->subbuf_start)
502                 cb->subbuf_start = subbuf_start_default_callback;
503         if (!cb->buf_mapped)
504                 cb->buf_mapped = buf_mapped_default_callback;
505         if (!cb->buf_unmapped)
506                 cb->buf_unmapped = buf_unmapped_default_callback;
507         if (!cb->create_buf_file)
508                 cb->create_buf_file = create_buf_file_default_callback;
509         if (!cb->remove_buf_file)
510                 cb->remove_buf_file = remove_buf_file_default_callback;
511         chan->cb = cb;
512 }
513
514 /**
515  *      relay_hotcpu_callback - CPU hotplug callback
516  *      @nb: notifier block
517  *      @action: hotplug action to take
518  *      @hcpu: CPU number
519  *
520  *      Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
521  */
522 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
523                                 unsigned long action,
524                                 void *hcpu)
525 {
526         unsigned int hotcpu = (unsigned long)hcpu;
527         struct rchan *chan;
528
529         switch(action) {
530         case CPU_UP_PREPARE:
531         case CPU_UP_PREPARE_FROZEN:
532                 mutex_lock(&relay_channels_mutex);
533                 list_for_each_entry(chan, &relay_channels, list) {
534                         if (chan->buf[hotcpu])
535                                 continue;
536                         chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
537                         if(!chan->buf[hotcpu]) {
538                                 printk(KERN_ERR
539                                         "relay_hotcpu_callback: cpu %d buffer "
540                                         "creation failed\n", hotcpu);
541                                 mutex_unlock(&relay_channels_mutex);
542                                 return NOTIFY_BAD;
543                         }
544                 }
545                 mutex_unlock(&relay_channels_mutex);
546                 break;
547         case CPU_DEAD:
548         case CPU_DEAD_FROZEN:
549                 /* No need to flush the cpu : will be flushed upon
550                  * final relay_flush() call. */
551                 break;
552         }
553         return NOTIFY_OK;
554 }
555
556 /**
557  *      relay_open - create a new relay channel
558  *      @base_filename: base name of files to create, %NULL for buffering only
559  *      @parent: dentry of parent directory, %NULL for root directory or buffer
560  *      @subbuf_size: size of sub-buffers
561  *      @n_subbufs: number of sub-buffers
562  *      @cb: client callback functions
563  *      @private_data: user-defined data
564  *
565  *      Returns channel pointer if successful, %NULL otherwise.
566  *
567  *      Creates a channel buffer for each cpu using the sizes and
568  *      attributes specified.  The created channel buffer files
569  *      will be named base_filename0...base_filenameN-1.  File
570  *      permissions will be %S_IRUSR.
571  */
572 struct rchan *relay_open(const char *base_filename,
573                          struct dentry *parent,
574                          size_t subbuf_size,
575                          size_t n_subbufs,
576                          struct rchan_callbacks *cb,
577                          void *private_data)
578 {
579         unsigned int i;
580         struct rchan *chan;
581
582         if (!(subbuf_size && n_subbufs))
583                 return NULL;
584
585         chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
586         if (!chan)
587                 return NULL;
588
589         chan->version = RELAYFS_CHANNEL_VERSION;
590         chan->n_subbufs = n_subbufs;
591         chan->subbuf_size = subbuf_size;
592         chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
593         chan->parent = parent;
594         chan->private_data = private_data;
595         if (base_filename) {
596                 chan->has_base_filename = 1;
597                 strlcpy(chan->base_filename, base_filename, NAME_MAX);
598         }
599         setup_callbacks(chan, cb);
600         kref_init(&chan->kref);
601
602         mutex_lock(&relay_channels_mutex);
603         for_each_online_cpu(i) {
604                 chan->buf[i] = relay_open_buf(chan, i);
605                 if (!chan->buf[i])
606                         goto free_bufs;
607         }
608         list_add(&chan->list, &relay_channels);
609         mutex_unlock(&relay_channels_mutex);
610
611         return chan;
612
613 free_bufs:
614         for_each_possible_cpu(i) {
615                 if (chan->buf[i])
616                         relay_close_buf(chan->buf[i]);
617         }
618
619         kref_put(&chan->kref, relay_destroy_channel);
620         mutex_unlock(&relay_channels_mutex);
621         return NULL;
622 }
623 EXPORT_SYMBOL_GPL(relay_open);
624
625 struct rchan_percpu_buf_dispatcher {
626         struct rchan_buf *buf;
627         struct dentry *dentry;
628 };
629
630 /* Called in atomic context. */
631 static void __relay_set_buf_dentry(void *info)
632 {
633         struct rchan_percpu_buf_dispatcher *p = info;
634
635         relay_set_buf_dentry(p->buf, p->dentry);
636 }
637
638 /**
639  *      relay_late_setup_files - triggers file creation
640  *      @chan: channel to operate on
641  *      @base_filename: base name of files to create
642  *      @parent: dentry of parent directory, %NULL for root directory
643  *
644  *      Returns 0 if successful, non-zero otherwise.
645  *
646  *      Use to setup files for a previously buffer-only channel.
647  *      Useful to do early tracing in kernel, before VFS is up, for example.
648  */
649 int relay_late_setup_files(struct rchan *chan,
650                            const char *base_filename,
651                            struct dentry *parent)
652 {
653         int err = 0;
654         unsigned int i, curr_cpu;
655         unsigned long flags;
656         struct dentry *dentry;
657         struct rchan_percpu_buf_dispatcher disp;
658
659         if (!chan || !base_filename)
660                 return -EINVAL;
661
662         strlcpy(chan->base_filename, base_filename, NAME_MAX);
663
664         mutex_lock(&relay_channels_mutex);
665         /* Is chan already set up? */
666         if (unlikely(chan->has_base_filename)) {
667                 mutex_unlock(&relay_channels_mutex);
668                 return -EEXIST;
669         }
670         chan->has_base_filename = 1;
671         chan->parent = parent;
672         curr_cpu = get_cpu();
673         /*
674          * The CPU hotplug notifier ran before us and created buffers with
675          * no files associated. So it's safe to call relay_setup_buf_file()
676          * on all currently online CPUs.
677          */
678         for_each_online_cpu(i) {
679                 if (unlikely(!chan->buf[i])) {
680                         printk(KERN_ERR "relay_late_setup_files: CPU %u "
681                                         "has no buffer, it must have!\n", i);
682                         BUG();
683                         err = -EINVAL;
684                         break;
685                 }
686
687                 dentry = relay_create_buf_file(chan, chan->buf[i], i);
688                 if (unlikely(!dentry)) {
689                         err = -EINVAL;
690                         break;
691                 }
692
693                 if (curr_cpu == i) {
694                         local_irq_save(flags);
695                         relay_set_buf_dentry(chan->buf[i], dentry);
696                         local_irq_restore(flags);
697                 } else {
698                         disp.buf = chan->buf[i];
699                         disp.dentry = dentry;
700                         smp_mb();
701                         /* relay_channels_mutex must be held, so wait. */
702                         err = smp_call_function_single(i,
703                                                        __relay_set_buf_dentry,
704                                                        &disp, 1);
705                 }
706                 if (unlikely(err))
707                         break;
708         }
709         put_cpu();
710         mutex_unlock(&relay_channels_mutex);
711
712         return err;
713 }
714
715 /**
716  *      relay_switch_subbuf - switch to a new sub-buffer
717  *      @buf: channel buffer
718  *      @length: size of current event
719  *
720  *      Returns either the length passed in or 0 if full.
721  *
722  *      Performs sub-buffer-switch tasks such as invoking callbacks,
723  *      updating padding counts, waking up readers, etc.
724  */
725 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
726 {
727         void *old, *new;
728         size_t old_subbuf, new_subbuf;
729
730         if (unlikely(length > buf->chan->subbuf_size))
731                 goto toobig;
732
733         if (buf->offset != buf->chan->subbuf_size + 1) {
734                 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
735                 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
736                 buf->padding[old_subbuf] = buf->prev_padding;
737                 buf->subbufs_produced++;
738                 if (buf->dentry)
739                         buf->dentry->d_inode->i_size +=
740                                 buf->chan->subbuf_size -
741                                 buf->padding[old_subbuf];
742                 else
743                         buf->early_bytes += buf->chan->subbuf_size -
744                                             buf->padding[old_subbuf];
745                 smp_mb();
746                 if (waitqueue_active(&buf->read_wait))
747                         /*
748                          * Calling wake_up_interruptible() from here
749                          * will deadlock if we happen to be logging
750                          * from the scheduler (trying to re-grab
751                          * rq->lock), so defer it.
752                          */
753                         __mod_timer(&buf->timer, jiffies + 1);
754         }
755
756         old = buf->data;
757         new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
758         new = buf->start + new_subbuf * buf->chan->subbuf_size;
759         buf->offset = 0;
760         if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
761                 buf->offset = buf->chan->subbuf_size + 1;
762                 return 0;
763         }
764         buf->data = new;
765         buf->padding[new_subbuf] = 0;
766
767         if (unlikely(length + buf->offset > buf->chan->subbuf_size))
768                 goto toobig;
769
770         return length;
771
772 toobig:
773         buf->chan->last_toobig = length;
774         return 0;
775 }
776 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
777
778 /**
779  *      relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
780  *      @chan: the channel
781  *      @cpu: the cpu associated with the channel buffer to update
782  *      @subbufs_consumed: number of sub-buffers to add to current buf's count
783  *
784  *      Adds to the channel buffer's consumed sub-buffer count.
785  *      subbufs_consumed should be the number of sub-buffers newly consumed,
786  *      not the total consumed.
787  *
788  *      NOTE. Kernel clients don't need to call this function if the channel
789  *      mode is 'overwrite'.
790  */
791 void relay_subbufs_consumed(struct rchan *chan,
792                             unsigned int cpu,
793                             size_t subbufs_consumed)
794 {
795         struct rchan_buf *buf;
796
797         if (!chan)
798                 return;
799
800         if (cpu >= NR_CPUS || !chan->buf[cpu])
801                 return;
802
803         buf = chan->buf[cpu];
804         buf->subbufs_consumed += subbufs_consumed;
805         if (buf->subbufs_consumed > buf->subbufs_produced)
806                 buf->subbufs_consumed = buf->subbufs_produced;
807 }
808 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
809
810 /**
811  *      relay_close - close the channel
812  *      @chan: the channel
813  *
814  *      Closes all channel buffers and frees the channel.
815  */
816 void relay_close(struct rchan *chan)
817 {
818         unsigned int i;
819
820         if (!chan)
821                 return;
822
823         mutex_lock(&relay_channels_mutex);
824         if (chan->is_global && chan->buf[0])
825                 relay_close_buf(chan->buf[0]);
826         else
827                 for_each_possible_cpu(i)
828                         if (chan->buf[i])
829                                 relay_close_buf(chan->buf[i]);
830
831         if (chan->last_toobig)
832                 printk(KERN_WARNING "relay: one or more items not logged "
833                        "[item size (%Zd) > sub-buffer size (%Zd)]\n",
834                        chan->last_toobig, chan->subbuf_size);
835
836         list_del(&chan->list);
837         kref_put(&chan->kref, relay_destroy_channel);
838         mutex_unlock(&relay_channels_mutex);
839 }
840 EXPORT_SYMBOL_GPL(relay_close);
841
842 /**
843  *      relay_flush - close the channel
844  *      @chan: the channel
845  *
846  *      Flushes all channel buffers, i.e. forces buffer switch.
847  */
848 void relay_flush(struct rchan *chan)
849 {
850         unsigned int i;
851
852         if (!chan)
853                 return;
854
855         if (chan->is_global && chan->buf[0]) {
856                 relay_switch_subbuf(chan->buf[0], 0);
857                 return;
858         }
859
860         mutex_lock(&relay_channels_mutex);
861         for_each_possible_cpu(i)
862                 if (chan->buf[i])
863                         relay_switch_subbuf(chan->buf[i], 0);
864         mutex_unlock(&relay_channels_mutex);
865 }
866 EXPORT_SYMBOL_GPL(relay_flush);
867
868 /**
869  *      relay_file_open - open file op for relay files
870  *      @inode: the inode
871  *      @filp: the file
872  *
873  *      Increments the channel buffer refcount.
874  */
875 static int relay_file_open(struct inode *inode, struct file *filp)
876 {
877         struct rchan_buf *buf = inode->i_private;
878         kref_get(&buf->kref);
879         filp->private_data = buf;
880
881         return nonseekable_open(inode, filp);
882 }
883
884 /**
885  *      relay_file_mmap - mmap file op for relay files
886  *      @filp: the file
887  *      @vma: the vma describing what to map
888  *
889  *      Calls upon relay_mmap_buf() to map the file into user space.
890  */
891 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
892 {
893         struct rchan_buf *buf = filp->private_data;
894         return relay_mmap_buf(buf, vma);
895 }
896
897 /**
898  *      relay_file_poll - poll file op for relay files
899  *      @filp: the file
900  *      @wait: poll table
901  *
902  *      Poll implemention.
903  */
904 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
905 {
906         unsigned int mask = 0;
907         struct rchan_buf *buf = filp->private_data;
908
909         if (buf->finalized)
910                 return POLLERR;
911
912         if (filp->f_mode & FMODE_READ) {
913                 poll_wait(filp, &buf->read_wait, wait);
914                 if (!relay_buf_empty(buf))
915                         mask |= POLLIN | POLLRDNORM;
916         }
917
918         return mask;
919 }
920
921 /**
922  *      relay_file_release - release file op for relay files
923  *      @inode: the inode
924  *      @filp: the file
925  *
926  *      Decrements the channel refcount, as the filesystem is
927  *      no longer using it.
928  */
929 static int relay_file_release(struct inode *inode, struct file *filp)
930 {
931         struct rchan_buf *buf = filp->private_data;
932         kref_put(&buf->kref, relay_remove_buf);
933
934         return 0;
935 }
936
937 /*
938  *      relay_file_read_consume - update the consumed count for the buffer
939  */
940 static void relay_file_read_consume(struct rchan_buf *buf,
941                                     size_t read_pos,
942                                     size_t bytes_consumed)
943 {
944         size_t subbuf_size = buf->chan->subbuf_size;
945         size_t n_subbufs = buf->chan->n_subbufs;
946         size_t read_subbuf;
947
948         if (buf->subbufs_produced == buf->subbufs_consumed &&
949             buf->offset == buf->bytes_consumed)
950                 return;
951
952         if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
953                 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
954                 buf->bytes_consumed = 0;
955         }
956
957         buf->bytes_consumed += bytes_consumed;
958         if (!read_pos)
959                 read_subbuf = buf->subbufs_consumed % n_subbufs;
960         else
961                 read_subbuf = read_pos / buf->chan->subbuf_size;
962         if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
963                 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
964                     (buf->offset == subbuf_size))
965                         return;
966                 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
967                 buf->bytes_consumed = 0;
968         }
969 }
970
971 /*
972  *      relay_file_read_avail - boolean, are there unconsumed bytes available?
973  */
974 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
975 {
976         size_t subbuf_size = buf->chan->subbuf_size;
977         size_t n_subbufs = buf->chan->n_subbufs;
978         size_t produced = buf->subbufs_produced;
979         size_t consumed = buf->subbufs_consumed;
980
981         relay_file_read_consume(buf, read_pos, 0);
982
983         consumed = buf->subbufs_consumed;
984
985         if (unlikely(buf->offset > subbuf_size)) {
986                 if (produced == consumed)
987                         return 0;
988                 return 1;
989         }
990
991         if (unlikely(produced - consumed >= n_subbufs)) {
992                 consumed = produced - n_subbufs + 1;
993                 buf->subbufs_consumed = consumed;
994                 buf->bytes_consumed = 0;
995         }
996
997         produced = (produced % n_subbufs) * subbuf_size + buf->offset;
998         consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
999
1000         if (consumed > produced)
1001                 produced += n_subbufs * subbuf_size;
1002
1003         if (consumed == produced) {
1004                 if (buf->offset == subbuf_size &&
1005                     buf->subbufs_produced > buf->subbufs_consumed)
1006                         return 1;
1007                 return 0;
1008         }
1009
1010         return 1;
1011 }
1012
1013 /**
1014  *      relay_file_read_subbuf_avail - return bytes available in sub-buffer
1015  *      @read_pos: file read position
1016  *      @buf: relay channel buffer
1017  */
1018 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1019                                            struct rchan_buf *buf)
1020 {
1021         size_t padding, avail = 0;
1022         size_t read_subbuf, read_offset, write_subbuf, write_offset;
1023         size_t subbuf_size = buf->chan->subbuf_size;
1024
1025         write_subbuf = (buf->data - buf->start) / subbuf_size;
1026         write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1027         read_subbuf = read_pos / subbuf_size;
1028         read_offset = read_pos % subbuf_size;
1029         padding = buf->padding[read_subbuf];
1030
1031         if (read_subbuf == write_subbuf) {
1032                 if (read_offset + padding < write_offset)
1033                         avail = write_offset - (read_offset + padding);
1034         } else
1035                 avail = (subbuf_size - padding) - read_offset;
1036
1037         return avail;
1038 }
1039
1040 /**
1041  *      relay_file_read_start_pos - find the first available byte to read
1042  *      @read_pos: file read position
1043  *      @buf: relay channel buffer
1044  *
1045  *      If the @read_pos is in the middle of padding, return the
1046  *      position of the first actually available byte, otherwise
1047  *      return the original value.
1048  */
1049 static size_t relay_file_read_start_pos(size_t read_pos,
1050                                         struct rchan_buf *buf)
1051 {
1052         size_t read_subbuf, padding, padding_start, padding_end;
1053         size_t subbuf_size = buf->chan->subbuf_size;
1054         size_t n_subbufs = buf->chan->n_subbufs;
1055         size_t consumed = buf->subbufs_consumed % n_subbufs;
1056
1057         if (!read_pos)
1058                 read_pos = consumed * subbuf_size + buf->bytes_consumed;
1059         read_subbuf = read_pos / subbuf_size;
1060         padding = buf->padding[read_subbuf];
1061         padding_start = (read_subbuf + 1) * subbuf_size - padding;
1062         padding_end = (read_subbuf + 1) * subbuf_size;
1063         if (read_pos >= padding_start && read_pos < padding_end) {
1064                 read_subbuf = (read_subbuf + 1) % n_subbufs;
1065                 read_pos = read_subbuf * subbuf_size;
1066         }
1067
1068         return read_pos;
1069 }
1070
1071 /**
1072  *      relay_file_read_end_pos - return the new read position
1073  *      @read_pos: file read position
1074  *      @buf: relay channel buffer
1075  *      @count: number of bytes to be read
1076  */
1077 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1078                                       size_t read_pos,
1079                                       size_t count)
1080 {
1081         size_t read_subbuf, padding, end_pos;
1082         size_t subbuf_size = buf->chan->subbuf_size;
1083         size_t n_subbufs = buf->chan->n_subbufs;
1084
1085         read_subbuf = read_pos / subbuf_size;
1086         padding = buf->padding[read_subbuf];
1087         if (read_pos % subbuf_size + count + padding == subbuf_size)
1088                 end_pos = (read_subbuf + 1) * subbuf_size;
1089         else
1090                 end_pos = read_pos + count;
1091         if (end_pos >= subbuf_size * n_subbufs)
1092                 end_pos = 0;
1093
1094         return end_pos;
1095 }
1096
1097 /*
1098  *      subbuf_read_actor - read up to one subbuf's worth of data
1099  */
1100 static int subbuf_read_actor(size_t read_start,
1101                              struct rchan_buf *buf,
1102                              size_t avail,
1103                              read_descriptor_t *desc,
1104                              read_actor_t actor)
1105 {
1106         void *from;
1107         int ret = 0;
1108
1109         from = buf->start + read_start;
1110         ret = avail;
1111         if (copy_to_user(desc->arg.buf, from, avail)) {
1112                 desc->error = -EFAULT;
1113                 ret = 0;
1114         }
1115         desc->arg.data += ret;
1116         desc->written += ret;
1117         desc->count -= ret;
1118
1119         return ret;
1120 }
1121
1122 typedef int (*subbuf_actor_t) (size_t read_start,
1123                                struct rchan_buf *buf,
1124                                size_t avail,
1125                                read_descriptor_t *desc,
1126                                read_actor_t actor);
1127
1128 /*
1129  *      relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1130  */
1131 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1132                                         subbuf_actor_t subbuf_actor,
1133                                         read_actor_t actor,
1134                                         read_descriptor_t *desc)
1135 {
1136         struct rchan_buf *buf = filp->private_data;
1137         size_t read_start, avail;
1138         int ret;
1139
1140         if (!desc->count)
1141                 return 0;
1142
1143         mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
1144         do {
1145                 if (!relay_file_read_avail(buf, *ppos))
1146                         break;
1147
1148                 read_start = relay_file_read_start_pos(*ppos, buf);
1149                 avail = relay_file_read_subbuf_avail(read_start, buf);
1150                 if (!avail)
1151                         break;
1152
1153                 avail = min(desc->count, avail);
1154                 ret = subbuf_actor(read_start, buf, avail, desc, actor);
1155                 if (desc->error < 0)
1156                         break;
1157
1158                 if (ret) {
1159                         relay_file_read_consume(buf, read_start, ret);
1160                         *ppos = relay_file_read_end_pos(buf, read_start, ret);
1161                 }
1162         } while (desc->count && ret);
1163         mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1164
1165         return desc->written;
1166 }
1167
1168 static ssize_t relay_file_read(struct file *filp,
1169                                char __user *buffer,
1170                                size_t count,
1171                                loff_t *ppos)
1172 {
1173         read_descriptor_t desc;
1174         desc.written = 0;
1175         desc.count = count;
1176         desc.arg.buf = buffer;
1177         desc.error = 0;
1178         return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1179                                        NULL, &desc);
1180 }
1181
1182 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1183 {
1184         rbuf->bytes_consumed += bytes_consumed;
1185
1186         if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1187                 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1188                 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1189         }
1190 }
1191
1192 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1193                                    struct pipe_buffer *buf)
1194 {
1195         struct rchan_buf *rbuf;
1196
1197         rbuf = (struct rchan_buf *)page_private(buf->page);
1198         relay_consume_bytes(rbuf, buf->private);
1199 }
1200
1201 static struct pipe_buf_operations relay_pipe_buf_ops = {
1202         .can_merge = 0,
1203         .map = generic_pipe_buf_map,
1204         .unmap = generic_pipe_buf_unmap,
1205         .confirm = generic_pipe_buf_confirm,
1206         .release = relay_pipe_buf_release,
1207         .steal = generic_pipe_buf_steal,
1208         .get = generic_pipe_buf_get,
1209 };
1210
1211 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1212 {
1213 }
1214
1215 /*
1216  *      subbuf_splice_actor - splice up to one subbuf's worth of data
1217  */
1218 static int subbuf_splice_actor(struct file *in,
1219                                loff_t *ppos,
1220                                struct pipe_inode_info *pipe,
1221                                size_t len,
1222                                unsigned int flags,
1223                                int *nonpad_ret)
1224 {
1225         unsigned int pidx, poff, total_len, subbuf_pages, nr_pages, ret;
1226         struct rchan_buf *rbuf = in->private_data;
1227         unsigned int subbuf_size = rbuf->chan->subbuf_size;
1228         uint64_t pos = (uint64_t) *ppos;
1229         uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1230         size_t read_start = (size_t) do_div(pos, alloc_size);
1231         size_t read_subbuf = read_start / subbuf_size;
1232         size_t padding = rbuf->padding[read_subbuf];
1233         size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1234         struct page *pages[PIPE_BUFFERS];
1235         struct partial_page partial[PIPE_BUFFERS];
1236         struct splice_pipe_desc spd = {
1237                 .pages = pages,
1238                 .nr_pages = 0,
1239                 .partial = partial,
1240                 .flags = flags,
1241                 .ops = &relay_pipe_buf_ops,
1242                 .spd_release = relay_page_release,
1243         };
1244
1245         if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1246                 return 0;
1247
1248         /*
1249          * Adjust read len, if longer than what is available
1250          */
1251         if (len > (subbuf_size - read_start % subbuf_size))
1252                 len = subbuf_size - read_start % subbuf_size;
1253
1254         subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1255         pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1256         poff = read_start & ~PAGE_MASK;
1257         nr_pages = min_t(unsigned int, subbuf_pages, PIPE_BUFFERS);
1258
1259         for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1260                 unsigned int this_len, this_end, private;
1261                 unsigned int cur_pos = read_start + total_len;
1262
1263                 if (!len)
1264                         break;
1265
1266                 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1267                 private = this_len;
1268
1269                 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1270                 spd.partial[spd.nr_pages].offset = poff;
1271
1272                 this_end = cur_pos + this_len;
1273                 if (this_end >= nonpad_end) {
1274                         this_len = nonpad_end - cur_pos;
1275                         private = this_len + padding;
1276                 }
1277                 spd.partial[spd.nr_pages].len = this_len;
1278                 spd.partial[spd.nr_pages].private = private;
1279
1280                 len -= this_len;
1281                 total_len += this_len;
1282                 poff = 0;
1283                 pidx = (pidx + 1) % subbuf_pages;
1284
1285                 if (this_end >= nonpad_end) {
1286                         spd.nr_pages++;
1287                         break;
1288                 }
1289         }
1290
1291         if (!spd.nr_pages)
1292                 return 0;
1293
1294         ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1295         if (ret < 0 || ret < total_len)
1296                 return ret;
1297
1298         if (read_start + ret == nonpad_end)
1299                 ret += padding;
1300
1301         return ret;
1302 }
1303
1304 static ssize_t relay_file_splice_read(struct file *in,
1305                                       loff_t *ppos,
1306                                       struct pipe_inode_info *pipe,
1307                                       size_t len,
1308                                       unsigned int flags)
1309 {
1310         ssize_t spliced;
1311         int ret;
1312         int nonpad_ret = 0;
1313
1314         ret = 0;
1315         spliced = 0;
1316
1317         while (len && !spliced) {
1318                 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1319                 if (ret < 0)
1320                         break;
1321                 else if (!ret) {
1322                         if (flags & SPLICE_F_NONBLOCK)
1323                                 ret = -EAGAIN;
1324                         break;
1325                 }
1326
1327                 *ppos += ret;
1328                 if (ret > len)
1329                         len = 0;
1330                 else
1331                         len -= ret;
1332                 spliced += nonpad_ret;
1333                 nonpad_ret = 0;
1334         }
1335
1336         if (spliced)
1337                 return spliced;
1338
1339         return ret;
1340 }
1341
1342 const struct file_operations relay_file_operations = {
1343         .open           = relay_file_open,
1344         .poll           = relay_file_poll,
1345         .mmap           = relay_file_mmap,
1346         .read           = relay_file_read,
1347         .llseek         = no_llseek,
1348         .release        = relay_file_release,
1349         .splice_read    = relay_file_splice_read,
1350 };
1351 EXPORT_SYMBOL_GPL(relay_file_operations);
1352
1353 static __init int relay_init(void)
1354 {
1355
1356         hotcpu_notifier(relay_hotcpu_callback, 0);
1357         return 0;
1358 }
1359
1360 early_initcall(relay_init);