Merge branch 'linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes...
[linux-2.6] / arch / x86 / kernel / efi.c
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *      David Mosberger-Tang <davidm@hpl.hp.com>
9  *      Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *      Fenghua Yu <fenghua.yu@intel.com>
12  *      Bibo Mao <bibo.mao@intel.com>
13  *      Chandramouli Narayanan <mouli@linux.intel.com>
14  *      Huang Ying <ying.huang@intel.com>
15  *
16  * Copied from efi_32.c to eliminate the duplicated code between EFI
17  * 32/64 support code. --ying 2007-10-26
18  *
19  * All EFI Runtime Services are not implemented yet as EFI only
20  * supports physical mode addressing on SoftSDV. This is to be fixed
21  * in a future version.  --drummond 1999-07-20
22  *
23  * Implemented EFI runtime services and virtual mode calls.  --davidm
24  *
25  * Goutham Rao: <goutham.rao@intel.com>
26  *      Skip non-WB memory and ignore empty memory ranges.
27  */
28
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/efi.h>
32 #include <linux/bootmem.h>
33 #include <linux/spinlock.h>
34 #include <linux/uaccess.h>
35 #include <linux/time.h>
36 #include <linux/io.h>
37 #include <linux/reboot.h>
38 #include <linux/bcd.h>
39
40 #include <asm/setup.h>
41 #include <asm/efi.h>
42 #include <asm/time.h>
43 #include <asm/cacheflush.h>
44 #include <asm/tlbflush.h>
45
46 #define EFI_DEBUG       1
47 #define PFX             "EFI: "
48
49 int efi_enabled;
50 EXPORT_SYMBOL(efi_enabled);
51
52 struct efi efi;
53 EXPORT_SYMBOL(efi);
54
55 struct efi_memory_map memmap;
56
57 static struct efi efi_phys __initdata;
58 static efi_system_table_t efi_systab __initdata;
59
60 static int __init setup_noefi(char *arg)
61 {
62         efi_enabled = 0;
63         return 0;
64 }
65 early_param("noefi", setup_noefi);
66
67 int add_efi_memmap;
68 EXPORT_SYMBOL(add_efi_memmap);
69
70 static int __init setup_add_efi_memmap(char *arg)
71 {
72         add_efi_memmap = 1;
73         return 0;
74 }
75 early_param("add_efi_memmap", setup_add_efi_memmap);
76
77
78 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
79 {
80         return efi_call_virt2(get_time, tm, tc);
81 }
82
83 static efi_status_t virt_efi_set_time(efi_time_t *tm)
84 {
85         return efi_call_virt1(set_time, tm);
86 }
87
88 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
89                                              efi_bool_t *pending,
90                                              efi_time_t *tm)
91 {
92         return efi_call_virt3(get_wakeup_time,
93                               enabled, pending, tm);
94 }
95
96 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
97 {
98         return efi_call_virt2(set_wakeup_time,
99                               enabled, tm);
100 }
101
102 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
103                                           efi_guid_t *vendor,
104                                           u32 *attr,
105                                           unsigned long *data_size,
106                                           void *data)
107 {
108         return efi_call_virt5(get_variable,
109                               name, vendor, attr,
110                               data_size, data);
111 }
112
113 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
114                                                efi_char16_t *name,
115                                                efi_guid_t *vendor)
116 {
117         return efi_call_virt3(get_next_variable,
118                               name_size, name, vendor);
119 }
120
121 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
122                                           efi_guid_t *vendor,
123                                           unsigned long attr,
124                                           unsigned long data_size,
125                                           void *data)
126 {
127         return efi_call_virt5(set_variable,
128                               name, vendor, attr,
129                               data_size, data);
130 }
131
132 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
133 {
134         return efi_call_virt1(get_next_high_mono_count, count);
135 }
136
137 static void virt_efi_reset_system(int reset_type,
138                                   efi_status_t status,
139                                   unsigned long data_size,
140                                   efi_char16_t *data)
141 {
142         efi_call_virt4(reset_system, reset_type, status,
143                        data_size, data);
144 }
145
146 static efi_status_t virt_efi_set_virtual_address_map(
147         unsigned long memory_map_size,
148         unsigned long descriptor_size,
149         u32 descriptor_version,
150         efi_memory_desc_t *virtual_map)
151 {
152         return efi_call_virt4(set_virtual_address_map,
153                               memory_map_size, descriptor_size,
154                               descriptor_version, virtual_map);
155 }
156
157 static efi_status_t __init phys_efi_set_virtual_address_map(
158         unsigned long memory_map_size,
159         unsigned long descriptor_size,
160         u32 descriptor_version,
161         efi_memory_desc_t *virtual_map)
162 {
163         efi_status_t status;
164
165         efi_call_phys_prelog();
166         status = efi_call_phys4(efi_phys.set_virtual_address_map,
167                                 memory_map_size, descriptor_size,
168                                 descriptor_version, virtual_map);
169         efi_call_phys_epilog();
170         return status;
171 }
172
173 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
174                                              efi_time_cap_t *tc)
175 {
176         efi_status_t status;
177
178         efi_call_phys_prelog();
179         status = efi_call_phys2(efi_phys.get_time, tm, tc);
180         efi_call_phys_epilog();
181         return status;
182 }
183
184 int efi_set_rtc_mmss(unsigned long nowtime)
185 {
186         int real_seconds, real_minutes;
187         efi_status_t    status;
188         efi_time_t      eft;
189         efi_time_cap_t  cap;
190
191         status = efi.get_time(&eft, &cap);
192         if (status != EFI_SUCCESS) {
193                 printk(KERN_ERR "Oops: efitime: can't read time!\n");
194                 return -1;
195         }
196
197         real_seconds = nowtime % 60;
198         real_minutes = nowtime / 60;
199         if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
200                 real_minutes += 30;
201         real_minutes %= 60;
202         eft.minute = real_minutes;
203         eft.second = real_seconds;
204
205         status = efi.set_time(&eft);
206         if (status != EFI_SUCCESS) {
207                 printk(KERN_ERR "Oops: efitime: can't write time!\n");
208                 return -1;
209         }
210         return 0;
211 }
212
213 unsigned long efi_get_time(void)
214 {
215         efi_status_t status;
216         efi_time_t eft;
217         efi_time_cap_t cap;
218
219         status = efi.get_time(&eft, &cap);
220         if (status != EFI_SUCCESS)
221                 printk(KERN_ERR "Oops: efitime: can't read time!\n");
222
223         return mktime(eft.year, eft.month, eft.day, eft.hour,
224                       eft.minute, eft.second);
225 }
226
227 /*
228  * Tell the kernel about the EFI memory map.  This might include
229  * more than the max 128 entries that can fit in the e820 legacy
230  * (zeropage) memory map.
231  */
232
233 static void __init do_add_efi_memmap(void)
234 {
235         void *p;
236
237         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
238                 efi_memory_desc_t *md = p;
239                 unsigned long long start = md->phys_addr;
240                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
241                 int e820_type;
242
243                 switch (md->type) {
244                 case EFI_LOADER_CODE:
245                 case EFI_LOADER_DATA:
246                 case EFI_BOOT_SERVICES_CODE:
247                 case EFI_BOOT_SERVICES_DATA:
248                 case EFI_CONVENTIONAL_MEMORY:
249                         if (md->attribute & EFI_MEMORY_WB)
250                                 e820_type = E820_RAM;
251                         else
252                                 e820_type = E820_RESERVED;
253                         break;
254                 case EFI_ACPI_RECLAIM_MEMORY:
255                         e820_type = E820_ACPI;
256                         break;
257                 case EFI_ACPI_MEMORY_NVS:
258                         e820_type = E820_NVS;
259                         break;
260                 case EFI_UNUSABLE_MEMORY:
261                         e820_type = E820_UNUSABLE;
262                         break;
263                 default:
264                         /*
265                          * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
266                          * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
267                          * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
268                          */
269                         e820_type = E820_RESERVED;
270                         break;
271                 }
272                 e820_add_region(start, size, e820_type);
273         }
274         sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
275 }
276
277 void __init efi_reserve_early(void)
278 {
279         unsigned long pmap;
280
281 #ifdef CONFIG_X86_32
282         pmap = boot_params.efi_info.efi_memmap;
283 #else
284         pmap = (boot_params.efi_info.efi_memmap |
285                 ((__u64)boot_params.efi_info.efi_memmap_hi<<32));
286 #endif
287         memmap.phys_map = (void *)pmap;
288         memmap.nr_map = boot_params.efi_info.efi_memmap_size /
289                 boot_params.efi_info.efi_memdesc_size;
290         memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
291         memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
292         reserve_early(pmap, pmap + memmap.nr_map * memmap.desc_size,
293                       "EFI memmap");
294 }
295
296 #if EFI_DEBUG
297 static void __init print_efi_memmap(void)
298 {
299         efi_memory_desc_t *md;
300         void *p;
301         int i;
302
303         for (p = memmap.map, i = 0;
304              p < memmap.map_end;
305              p += memmap.desc_size, i++) {
306                 md = p;
307                 printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
308                         "range=[0x%016llx-0x%016llx) (%lluMB)\n",
309                         i, md->type, md->attribute, md->phys_addr,
310                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
311                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
312         }
313 }
314 #endif  /*  EFI_DEBUG  */
315
316 void __init efi_init(void)
317 {
318         efi_config_table_t *config_tables;
319         efi_runtime_services_t *runtime;
320         efi_char16_t *c16;
321         char vendor[100] = "unknown";
322         int i = 0;
323         void *tmp;
324
325 #ifdef CONFIG_X86_32
326         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
327 #else
328         efi_phys.systab = (efi_system_table_t *)
329                 (boot_params.efi_info.efi_systab |
330                  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
331 #endif
332
333         efi.systab = early_ioremap((unsigned long)efi_phys.systab,
334                                    sizeof(efi_system_table_t));
335         if (efi.systab == NULL)
336                 printk(KERN_ERR "Couldn't map the EFI system table!\n");
337         memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
338         early_iounmap(efi.systab, sizeof(efi_system_table_t));
339         efi.systab = &efi_systab;
340
341         /*
342          * Verify the EFI Table
343          */
344         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
345                 printk(KERN_ERR "EFI system table signature incorrect!\n");
346         if ((efi.systab->hdr.revision >> 16) == 0)
347                 printk(KERN_ERR "Warning: EFI system table version "
348                        "%d.%02d, expected 1.00 or greater!\n",
349                        efi.systab->hdr.revision >> 16,
350                        efi.systab->hdr.revision & 0xffff);
351
352         /*
353          * Show what we know for posterity
354          */
355         c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
356         if (c16) {
357                 for (i = 0; i < sizeof(vendor) && *c16; ++i)
358                         vendor[i] = *c16++;
359                 vendor[i] = '\0';
360         } else
361                 printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
362         early_iounmap(tmp, 2);
363
364         printk(KERN_INFO "EFI v%u.%.02u by %s \n",
365                efi.systab->hdr.revision >> 16,
366                efi.systab->hdr.revision & 0xffff, vendor);
367
368         /*
369          * Let's see what config tables the firmware passed to us.
370          */
371         config_tables = early_ioremap(
372                 efi.systab->tables,
373                 efi.systab->nr_tables * sizeof(efi_config_table_t));
374         if (config_tables == NULL)
375                 printk(KERN_ERR "Could not map EFI Configuration Table!\n");
376
377         printk(KERN_INFO);
378         for (i = 0; i < efi.systab->nr_tables; i++) {
379                 if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
380                         efi.mps = config_tables[i].table;
381                         printk(" MPS=0x%lx ", config_tables[i].table);
382                 } else if (!efi_guidcmp(config_tables[i].guid,
383                                         ACPI_20_TABLE_GUID)) {
384                         efi.acpi20 = config_tables[i].table;
385                         printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
386                 } else if (!efi_guidcmp(config_tables[i].guid,
387                                         ACPI_TABLE_GUID)) {
388                         efi.acpi = config_tables[i].table;
389                         printk(" ACPI=0x%lx ", config_tables[i].table);
390                 } else if (!efi_guidcmp(config_tables[i].guid,
391                                         SMBIOS_TABLE_GUID)) {
392                         efi.smbios = config_tables[i].table;
393                         printk(" SMBIOS=0x%lx ", config_tables[i].table);
394 #ifdef CONFIG_X86_UV
395                 } else if (!efi_guidcmp(config_tables[i].guid,
396                                         UV_SYSTEM_TABLE_GUID)) {
397                         efi.uv_systab = config_tables[i].table;
398                         printk(" UVsystab=0x%lx ", config_tables[i].table);
399 #endif
400                 } else if (!efi_guidcmp(config_tables[i].guid,
401                                         HCDP_TABLE_GUID)) {
402                         efi.hcdp = config_tables[i].table;
403                         printk(" HCDP=0x%lx ", config_tables[i].table);
404                 } else if (!efi_guidcmp(config_tables[i].guid,
405                                         UGA_IO_PROTOCOL_GUID)) {
406                         efi.uga = config_tables[i].table;
407                         printk(" UGA=0x%lx ", config_tables[i].table);
408                 }
409         }
410         printk("\n");
411         early_iounmap(config_tables,
412                           efi.systab->nr_tables * sizeof(efi_config_table_t));
413
414         /*
415          * Check out the runtime services table. We need to map
416          * the runtime services table so that we can grab the physical
417          * address of several of the EFI runtime functions, needed to
418          * set the firmware into virtual mode.
419          */
420         runtime = early_ioremap((unsigned long)efi.systab->runtime,
421                                 sizeof(efi_runtime_services_t));
422         if (runtime != NULL) {
423                 /*
424                  * We will only need *early* access to the following
425                  * two EFI runtime services before set_virtual_address_map
426                  * is invoked.
427                  */
428                 efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
429                 efi_phys.set_virtual_address_map =
430                         (efi_set_virtual_address_map_t *)
431                         runtime->set_virtual_address_map;
432                 /*
433                  * Make efi_get_time can be called before entering
434                  * virtual mode.
435                  */
436                 efi.get_time = phys_efi_get_time;
437         } else
438                 printk(KERN_ERR "Could not map the EFI runtime service "
439                        "table!\n");
440         early_iounmap(runtime, sizeof(efi_runtime_services_t));
441
442         /* Map the EFI memory map */
443         memmap.map = early_ioremap((unsigned long)memmap.phys_map,
444                                    memmap.nr_map * memmap.desc_size);
445         if (memmap.map == NULL)
446                 printk(KERN_ERR "Could not map the EFI memory map!\n");
447         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
448
449         if (memmap.desc_size != sizeof(efi_memory_desc_t))
450                 printk(KERN_WARNING
451                   "Kernel-defined memdesc doesn't match the one from EFI!\n");
452
453         if (add_efi_memmap)
454                 do_add_efi_memmap();
455
456         /* Setup for EFI runtime service */
457         reboot_type = BOOT_EFI;
458
459 #if EFI_DEBUG
460         print_efi_memmap();
461 #endif
462 }
463
464 static void __init runtime_code_page_mkexec(void)
465 {
466         efi_memory_desc_t *md;
467         void *p;
468         u64 addr, npages;
469
470         /* Make EFI runtime service code area executable */
471         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
472                 md = p;
473
474                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
475                         continue;
476
477                 addr = md->virt_addr;
478                 npages = md->num_pages;
479                 memrange_efi_to_native(&addr, &npages);
480                 set_memory_x(addr, npages);
481         }
482 }
483
484 /*
485  * This function will switch the EFI runtime services to virtual mode.
486  * Essentially, look through the EFI memmap and map every region that
487  * has the runtime attribute bit set in its memory descriptor and update
488  * that memory descriptor with the virtual address obtained from ioremap().
489  * This enables the runtime services to be called without having to
490  * thunk back into physical mode for every invocation.
491  */
492 void __init efi_enter_virtual_mode(void)
493 {
494         efi_memory_desc_t *md;
495         efi_status_t status;
496         unsigned long size;
497         u64 end, systab, addr, npages, end_pfn;
498         void *p, *va;
499
500         efi.systab = NULL;
501         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
502                 md = p;
503                 if (!(md->attribute & EFI_MEMORY_RUNTIME))
504                         continue;
505
506                 size = md->num_pages << EFI_PAGE_SHIFT;
507                 end = md->phys_addr + size;
508
509                 end_pfn = PFN_UP(end);
510                 if (end_pfn <= max_low_pfn_mapped
511                     || (end_pfn > (1UL << (32 - PAGE_SHIFT))
512                         && end_pfn <= max_pfn_mapped))
513                         va = __va(md->phys_addr);
514                 else
515                         va = efi_ioremap(md->phys_addr, size);
516
517                 md->virt_addr = (u64) (unsigned long) va;
518
519                 if (!va) {
520                         printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
521                                (unsigned long long)md->phys_addr);
522                         continue;
523                 }
524
525                 if (!(md->attribute & EFI_MEMORY_WB)) {
526                         addr = md->virt_addr;
527                         npages = md->num_pages;
528                         memrange_efi_to_native(&addr, &npages);
529                         set_memory_uc(addr, npages);
530                 }
531
532                 systab = (u64) (unsigned long) efi_phys.systab;
533                 if (md->phys_addr <= systab && systab < end) {
534                         systab += md->virt_addr - md->phys_addr;
535                         efi.systab = (efi_system_table_t *) (unsigned long) systab;
536                 }
537         }
538
539         BUG_ON(!efi.systab);
540
541         status = phys_efi_set_virtual_address_map(
542                 memmap.desc_size * memmap.nr_map,
543                 memmap.desc_size,
544                 memmap.desc_version,
545                 memmap.phys_map);
546
547         if (status != EFI_SUCCESS) {
548                 printk(KERN_ALERT "Unable to switch EFI into virtual mode "
549                        "(status=%lx)!\n", status);
550                 panic("EFI call to SetVirtualAddressMap() failed!");
551         }
552
553         /*
554          * Now that EFI is in virtual mode, update the function
555          * pointers in the runtime service table to the new virtual addresses.
556          *
557          * Call EFI services through wrapper functions.
558          */
559         efi.get_time = virt_efi_get_time;
560         efi.set_time = virt_efi_set_time;
561         efi.get_wakeup_time = virt_efi_get_wakeup_time;
562         efi.set_wakeup_time = virt_efi_set_wakeup_time;
563         efi.get_variable = virt_efi_get_variable;
564         efi.get_next_variable = virt_efi_get_next_variable;
565         efi.set_variable = virt_efi_set_variable;
566         efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
567         efi.reset_system = virt_efi_reset_system;
568         efi.set_virtual_address_map = virt_efi_set_virtual_address_map;
569         if (__supported_pte_mask & _PAGE_NX)
570                 runtime_code_page_mkexec();
571         early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
572         memmap.map = NULL;
573 }
574
575 /*
576  * Convenience functions to obtain memory types and attributes
577  */
578 u32 efi_mem_type(unsigned long phys_addr)
579 {
580         efi_memory_desc_t *md;
581         void *p;
582
583         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
584                 md = p;
585                 if ((md->phys_addr <= phys_addr) &&
586                     (phys_addr < (md->phys_addr +
587                                   (md->num_pages << EFI_PAGE_SHIFT))))
588                         return md->type;
589         }
590         return 0;
591 }
592
593 u64 efi_mem_attributes(unsigned long phys_addr)
594 {
595         efi_memory_desc_t *md;
596         void *p;
597
598         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
599                 md = p;
600                 if ((md->phys_addr <= phys_addr) &&
601                     (phys_addr < (md->phys_addr +
602                                   (md->num_pages << EFI_PAGE_SHIFT))))
603                         return md->attribute;
604         }
605         return 0;
606 }