Merge branch 'linus' into irq/genirq
[linux-2.6] / drivers / pci / dmar.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  *
22  * This file implements early detection/parsing of Remapping Devices
23  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24  * tables.
25  *
26  * These routines are used by both DMA-remapping and Interrupt-remapping
27  */
28
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34
35 #undef PREFIX
36 #define PREFIX "DMAR:"
37
38 /* No locks are needed as DMA remapping hardware unit
39  * list is constructed at boot time and hotplug of
40  * these units are not supported by the architecture.
41  */
42 LIST_HEAD(dmar_drhd_units);
43
44 static struct acpi_table_header * __initdata dmar_tbl;
45
46 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
47 {
48         /*
49          * add INCLUDE_ALL at the tail, so scan the list will find it at
50          * the very end.
51          */
52         if (drhd->include_all)
53                 list_add_tail(&drhd->list, &dmar_drhd_units);
54         else
55                 list_add(&drhd->list, &dmar_drhd_units);
56 }
57
58 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
59                                            struct pci_dev **dev, u16 segment)
60 {
61         struct pci_bus *bus;
62         struct pci_dev *pdev = NULL;
63         struct acpi_dmar_pci_path *path;
64         int count;
65
66         bus = pci_find_bus(segment, scope->bus);
67         path = (struct acpi_dmar_pci_path *)(scope + 1);
68         count = (scope->length - sizeof(struct acpi_dmar_device_scope))
69                 / sizeof(struct acpi_dmar_pci_path);
70
71         while (count) {
72                 if (pdev)
73                         pci_dev_put(pdev);
74                 /*
75                  * Some BIOSes list non-exist devices in DMAR table, just
76                  * ignore it
77                  */
78                 if (!bus) {
79                         printk(KERN_WARNING
80                         PREFIX "Device scope bus [%d] not found\n",
81                         scope->bus);
82                         break;
83                 }
84                 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
85                 if (!pdev) {
86                         printk(KERN_WARNING PREFIX
87                         "Device scope device [%04x:%02x:%02x.%02x] not found\n",
88                                 segment, bus->number, path->dev, path->fn);
89                         break;
90                 }
91                 path ++;
92                 count --;
93                 bus = pdev->subordinate;
94         }
95         if (!pdev) {
96                 printk(KERN_WARNING PREFIX
97                 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
98                 segment, scope->bus, path->dev, path->fn);
99                 *dev = NULL;
100                 return 0;
101         }
102         if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
103                         pdev->subordinate) || (scope->entry_type == \
104                         ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
105                 pci_dev_put(pdev);
106                 printk(KERN_WARNING PREFIX
107                         "Device scope type does not match for %s\n",
108                          pci_name(pdev));
109                 return -EINVAL;
110         }
111         *dev = pdev;
112         return 0;
113 }
114
115 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
116                                        struct pci_dev ***devices, u16 segment)
117 {
118         struct acpi_dmar_device_scope *scope;
119         void * tmp = start;
120         int index;
121         int ret;
122
123         *cnt = 0;
124         while (start < end) {
125                 scope = start;
126                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
127                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
128                         (*cnt)++;
129                 else
130                         printk(KERN_WARNING PREFIX
131                                 "Unsupported device scope\n");
132                 start += scope->length;
133         }
134         if (*cnt == 0)
135                 return 0;
136
137         *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
138         if (!*devices)
139                 return -ENOMEM;
140
141         start = tmp;
142         index = 0;
143         while (start < end) {
144                 scope = start;
145                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
146                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
147                         ret = dmar_parse_one_dev_scope(scope,
148                                 &(*devices)[index], segment);
149                         if (ret) {
150                                 kfree(*devices);
151                                 return ret;
152                         }
153                         index ++;
154                 }
155                 start += scope->length;
156         }
157
158         return 0;
159 }
160
161 /**
162  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
163  * structure which uniquely represent one DMA remapping hardware unit
164  * present in the platform
165  */
166 static int __init
167 dmar_parse_one_drhd(struct acpi_dmar_header *header)
168 {
169         struct acpi_dmar_hardware_unit *drhd;
170         struct dmar_drhd_unit *dmaru;
171         int ret = 0;
172
173         dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
174         if (!dmaru)
175                 return -ENOMEM;
176
177         dmaru->hdr = header;
178         drhd = (struct acpi_dmar_hardware_unit *)header;
179         dmaru->reg_base_addr = drhd->address;
180         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
181
182         ret = alloc_iommu(dmaru);
183         if (ret) {
184                 kfree(dmaru);
185                 return ret;
186         }
187         dmar_register_drhd_unit(dmaru);
188         return 0;
189 }
190
191 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
192 {
193         struct acpi_dmar_hardware_unit *drhd;
194         int ret = 0;
195
196         drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
197
198         if (dmaru->include_all)
199                 return 0;
200
201         ret = dmar_parse_dev_scope((void *)(drhd + 1),
202                                 ((void *)drhd) + drhd->header.length,
203                                 &dmaru->devices_cnt, &dmaru->devices,
204                                 drhd->segment);
205         if (ret) {
206                 list_del(&dmaru->list);
207                 kfree(dmaru);
208         }
209         return ret;
210 }
211
212 #ifdef CONFIG_DMAR
213 LIST_HEAD(dmar_rmrr_units);
214
215 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
216 {
217         list_add(&rmrr->list, &dmar_rmrr_units);
218 }
219
220
221 static int __init
222 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
223 {
224         struct acpi_dmar_reserved_memory *rmrr;
225         struct dmar_rmrr_unit *rmrru;
226
227         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
228         if (!rmrru)
229                 return -ENOMEM;
230
231         rmrru->hdr = header;
232         rmrr = (struct acpi_dmar_reserved_memory *)header;
233         rmrru->base_address = rmrr->base_address;
234         rmrru->end_address = rmrr->end_address;
235
236         dmar_register_rmrr_unit(rmrru);
237         return 0;
238 }
239
240 static int __init
241 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
242 {
243         struct acpi_dmar_reserved_memory *rmrr;
244         int ret;
245
246         rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
247         ret = dmar_parse_dev_scope((void *)(rmrr + 1),
248                 ((void *)rmrr) + rmrr->header.length,
249                 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
250
251         if (ret || (rmrru->devices_cnt == 0)) {
252                 list_del(&rmrru->list);
253                 kfree(rmrru);
254         }
255         return ret;
256 }
257 #endif
258
259 static void __init
260 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
261 {
262         struct acpi_dmar_hardware_unit *drhd;
263         struct acpi_dmar_reserved_memory *rmrr;
264
265         switch (header->type) {
266         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
267                 drhd = (struct acpi_dmar_hardware_unit *)header;
268                 printk (KERN_INFO PREFIX
269                         "DRHD (flags: 0x%08x)base: 0x%016Lx\n",
270                         drhd->flags, (unsigned long long)drhd->address);
271                 break;
272         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
273                 rmrr = (struct acpi_dmar_reserved_memory *)header;
274
275                 printk (KERN_INFO PREFIX
276                         "RMRR base: 0x%016Lx end: 0x%016Lx\n",
277                         (unsigned long long)rmrr->base_address,
278                         (unsigned long long)rmrr->end_address);
279                 break;
280         }
281 }
282
283 /**
284  * dmar_table_detect - checks to see if the platform supports DMAR devices
285  */
286 static int __init dmar_table_detect(void)
287 {
288         acpi_status status = AE_OK;
289
290         /* if we could find DMAR table, then there are DMAR devices */
291         status = acpi_get_table(ACPI_SIG_DMAR, 0,
292                                 (struct acpi_table_header **)&dmar_tbl);
293
294         if (ACPI_SUCCESS(status) && !dmar_tbl) {
295                 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
296                 status = AE_NOT_FOUND;
297         }
298
299         return (ACPI_SUCCESS(status) ? 1 : 0);
300 }
301
302 /**
303  * parse_dmar_table - parses the DMA reporting table
304  */
305 static int __init
306 parse_dmar_table(void)
307 {
308         struct acpi_table_dmar *dmar;
309         struct acpi_dmar_header *entry_header;
310         int ret = 0;
311
312         /*
313          * Do it again, earlier dmar_tbl mapping could be mapped with
314          * fixed map.
315          */
316         dmar_table_detect();
317
318         dmar = (struct acpi_table_dmar *)dmar_tbl;
319         if (!dmar)
320                 return -ENODEV;
321
322         if (dmar->width < PAGE_SHIFT - 1) {
323                 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
324                 return -EINVAL;
325         }
326
327         printk (KERN_INFO PREFIX "Host address width %d\n",
328                 dmar->width + 1);
329
330         entry_header = (struct acpi_dmar_header *)(dmar + 1);
331         while (((unsigned long)entry_header) <
332                         (((unsigned long)dmar) + dmar_tbl->length)) {
333                 dmar_table_print_dmar_entry(entry_header);
334
335                 switch (entry_header->type) {
336                 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
337                         ret = dmar_parse_one_drhd(entry_header);
338                         break;
339                 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
340 #ifdef CONFIG_DMAR
341                         ret = dmar_parse_one_rmrr(entry_header);
342 #endif
343                         break;
344                 default:
345                         printk(KERN_WARNING PREFIX
346                                 "Unknown DMAR structure type\n");
347                         ret = 0; /* for forward compatibility */
348                         break;
349                 }
350                 if (ret)
351                         break;
352
353                 entry_header = ((void *)entry_header + entry_header->length);
354         }
355         return ret;
356 }
357
358 int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
359                           struct pci_dev *dev)
360 {
361         int index;
362
363         while (dev) {
364                 for (index = 0; index < cnt; index++)
365                         if (dev == devices[index])
366                                 return 1;
367
368                 /* Check our parent */
369                 dev = dev->bus->self;
370         }
371
372         return 0;
373 }
374
375 struct dmar_drhd_unit *
376 dmar_find_matched_drhd_unit(struct pci_dev *dev)
377 {
378         struct dmar_drhd_unit *dmaru = NULL;
379         struct acpi_dmar_hardware_unit *drhd;
380
381         list_for_each_entry(dmaru, &dmar_drhd_units, list) {
382                 drhd = container_of(dmaru->hdr,
383                                     struct acpi_dmar_hardware_unit,
384                                     header);
385
386                 if (dmaru->include_all &&
387                     drhd->segment == pci_domain_nr(dev->bus))
388                         return dmaru;
389
390                 if (dmar_pci_device_match(dmaru->devices,
391                                           dmaru->devices_cnt, dev))
392                         return dmaru;
393         }
394
395         return NULL;
396 }
397
398 int __init dmar_dev_scope_init(void)
399 {
400         struct dmar_drhd_unit *drhd, *drhd_n;
401         int ret = -ENODEV;
402
403         list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
404                 ret = dmar_parse_dev(drhd);
405                 if (ret)
406                         return ret;
407         }
408
409 #ifdef CONFIG_DMAR
410         {
411                 struct dmar_rmrr_unit *rmrr, *rmrr_n;
412                 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
413                         ret = rmrr_parse_dev(rmrr);
414                         if (ret)
415                                 return ret;
416                 }
417         }
418 #endif
419
420         return ret;
421 }
422
423
424 int __init dmar_table_init(void)
425 {
426         static int dmar_table_initialized;
427         int ret;
428
429         if (dmar_table_initialized)
430                 return 0;
431
432         dmar_table_initialized = 1;
433
434         ret = parse_dmar_table();
435         if (ret) {
436                 if (ret != -ENODEV)
437                         printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
438                 return ret;
439         }
440
441         if (list_empty(&dmar_drhd_units)) {
442                 printk(KERN_INFO PREFIX "No DMAR devices found\n");
443                 return -ENODEV;
444         }
445
446 #ifdef CONFIG_DMAR
447         if (list_empty(&dmar_rmrr_units))
448                 printk(KERN_INFO PREFIX "No RMRR found\n");
449 #endif
450
451 #ifdef CONFIG_INTR_REMAP
452         parse_ioapics_under_ir();
453 #endif
454         return 0;
455 }
456
457 void __init detect_intel_iommu(void)
458 {
459         int ret;
460
461         ret = dmar_table_detect();
462
463         {
464 #ifdef CONFIG_INTR_REMAP
465                 struct acpi_table_dmar *dmar;
466                 /*
467                  * for now we will disable dma-remapping when interrupt
468                  * remapping is enabled.
469                  * When support for queued invalidation for IOTLB invalidation
470                  * is added, we will not need this any more.
471                  */
472                 dmar = (struct acpi_table_dmar *) dmar_tbl;
473                 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
474                         printk(KERN_INFO
475                                "Queued invalidation will be enabled to support "
476                                "x2apic and Intr-remapping.\n");
477 #endif
478 #ifdef CONFIG_DMAR
479                 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
480                     !dmar_disabled)
481                         iommu_detected = 1;
482 #endif
483         }
484         dmar_tbl = NULL;
485 }
486
487
488 int alloc_iommu(struct dmar_drhd_unit *drhd)
489 {
490         struct intel_iommu *iommu;
491         int map_size;
492         u32 ver;
493         static int iommu_allocated = 0;
494         int agaw;
495
496         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
497         if (!iommu)
498                 return -ENOMEM;
499
500         iommu->seq_id = iommu_allocated++;
501
502         iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
503         if (!iommu->reg) {
504                 printk(KERN_ERR "IOMMU: can't map the region\n");
505                 goto error;
506         }
507         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
508         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
509
510         agaw = iommu_calculate_agaw(iommu);
511         if (agaw < 0) {
512                 printk(KERN_ERR
513                         "Cannot get a valid agaw for iommu (seq_id = %d)\n",
514                         iommu->seq_id);
515                 goto error;
516         }
517         iommu->agaw = agaw;
518
519         /* the registers might be more than one page */
520         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
521                 cap_max_fault_reg_offset(iommu->cap));
522         map_size = VTD_PAGE_ALIGN(map_size);
523         if (map_size > VTD_PAGE_SIZE) {
524                 iounmap(iommu->reg);
525                 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
526                 if (!iommu->reg) {
527                         printk(KERN_ERR "IOMMU: can't map the region\n");
528                         goto error;
529                 }
530         }
531
532         ver = readl(iommu->reg + DMAR_VER_REG);
533         pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
534                 (unsigned long long)drhd->reg_base_addr,
535                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
536                 (unsigned long long)iommu->cap,
537                 (unsigned long long)iommu->ecap);
538
539         spin_lock_init(&iommu->register_lock);
540
541         drhd->iommu = iommu;
542         return 0;
543 error:
544         kfree(iommu);
545         return -1;
546 }
547
548 void free_iommu(struct intel_iommu *iommu)
549 {
550         if (!iommu)
551                 return;
552
553 #ifdef CONFIG_DMAR
554         free_dmar_iommu(iommu);
555 #endif
556
557         if (iommu->reg)
558                 iounmap(iommu->reg);
559         kfree(iommu);
560 }
561
562 /*
563  * Reclaim all the submitted descriptors which have completed its work.
564  */
565 static inline void reclaim_free_desc(struct q_inval *qi)
566 {
567         while (qi->desc_status[qi->free_tail] == QI_DONE) {
568                 qi->desc_status[qi->free_tail] = QI_FREE;
569                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
570                 qi->free_cnt++;
571         }
572 }
573
574 /*
575  * Submit the queued invalidation descriptor to the remapping
576  * hardware unit and wait for its completion.
577  */
578 void qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
579 {
580         struct q_inval *qi = iommu->qi;
581         struct qi_desc *hw, wait_desc;
582         int wait_index, index;
583         unsigned long flags;
584
585         if (!qi)
586                 return;
587
588         hw = qi->desc;
589
590         spin_lock_irqsave(&qi->q_lock, flags);
591         while (qi->free_cnt < 3) {
592                 spin_unlock_irqrestore(&qi->q_lock, flags);
593                 cpu_relax();
594                 spin_lock_irqsave(&qi->q_lock, flags);
595         }
596
597         index = qi->free_head;
598         wait_index = (index + 1) % QI_LENGTH;
599
600         qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
601
602         hw[index] = *desc;
603
604         wait_desc.low = QI_IWD_STATUS_DATA(2) | QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
605         wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
606
607         hw[wait_index] = wait_desc;
608
609         __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
610         __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
611
612         qi->free_head = (qi->free_head + 2) % QI_LENGTH;
613         qi->free_cnt -= 2;
614
615         spin_lock(&iommu->register_lock);
616         /*
617          * update the HW tail register indicating the presence of
618          * new descriptors.
619          */
620         writel(qi->free_head << 4, iommu->reg + DMAR_IQT_REG);
621         spin_unlock(&iommu->register_lock);
622
623         while (qi->desc_status[wait_index] != QI_DONE) {
624                 /*
625                  * We will leave the interrupts disabled, to prevent interrupt
626                  * context to queue another cmd while a cmd is already submitted
627                  * and waiting for completion on this cpu. This is to avoid
628                  * a deadlock where the interrupt context can wait indefinitely
629                  * for free slots in the queue.
630                  */
631                 spin_unlock(&qi->q_lock);
632                 cpu_relax();
633                 spin_lock(&qi->q_lock);
634         }
635
636         qi->desc_status[index] = QI_DONE;
637
638         reclaim_free_desc(qi);
639         spin_unlock_irqrestore(&qi->q_lock, flags);
640 }
641
642 /*
643  * Flush the global interrupt entry cache.
644  */
645 void qi_global_iec(struct intel_iommu *iommu)
646 {
647         struct qi_desc desc;
648
649         desc.low = QI_IEC_TYPE;
650         desc.high = 0;
651
652         qi_submit_sync(&desc, iommu);
653 }
654
655 int qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
656                      u64 type, int non_present_entry_flush)
657 {
658
659         struct qi_desc desc;
660
661         if (non_present_entry_flush) {
662                 if (!cap_caching_mode(iommu->cap))
663                         return 1;
664                 else
665                         did = 0;
666         }
667
668         desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
669                         | QI_CC_GRAN(type) | QI_CC_TYPE;
670         desc.high = 0;
671
672         qi_submit_sync(&desc, iommu);
673
674         return 0;
675
676 }
677
678 int qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
679                    unsigned int size_order, u64 type,
680                    int non_present_entry_flush)
681 {
682         u8 dw = 0, dr = 0;
683
684         struct qi_desc desc;
685         int ih = 0;
686
687         if (non_present_entry_flush) {
688                 if (!cap_caching_mode(iommu->cap))
689                         return 1;
690                 else
691                         did = 0;
692         }
693
694         if (cap_write_drain(iommu->cap))
695                 dw = 1;
696
697         if (cap_read_drain(iommu->cap))
698                 dr = 1;
699
700         desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
701                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
702         desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
703                 | QI_IOTLB_AM(size_order);
704
705         qi_submit_sync(&desc, iommu);
706
707         return 0;
708
709 }
710
711 /*
712  * Enable Queued Invalidation interface. This is a must to support
713  * interrupt-remapping. Also used by DMA-remapping, which replaces
714  * register based IOTLB invalidation.
715  */
716 int dmar_enable_qi(struct intel_iommu *iommu)
717 {
718         u32 cmd, sts;
719         unsigned long flags;
720         struct q_inval *qi;
721
722         if (!ecap_qis(iommu->ecap))
723                 return -ENOENT;
724
725         /*
726          * queued invalidation is already setup and enabled.
727          */
728         if (iommu->qi)
729                 return 0;
730
731         iommu->qi = kmalloc(sizeof(*qi), GFP_KERNEL);
732         if (!iommu->qi)
733                 return -ENOMEM;
734
735         qi = iommu->qi;
736
737         qi->desc = (void *)(get_zeroed_page(GFP_KERNEL));
738         if (!qi->desc) {
739                 kfree(qi);
740                 iommu->qi = 0;
741                 return -ENOMEM;
742         }
743
744         qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_KERNEL);
745         if (!qi->desc_status) {
746                 free_page((unsigned long) qi->desc);
747                 kfree(qi);
748                 iommu->qi = 0;
749                 return -ENOMEM;
750         }
751
752         qi->free_head = qi->free_tail = 0;
753         qi->free_cnt = QI_LENGTH;
754
755         spin_lock_init(&qi->q_lock);
756
757         spin_lock_irqsave(&iommu->register_lock, flags);
758         /* write zero to the tail reg */
759         writel(0, iommu->reg + DMAR_IQT_REG);
760
761         dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
762
763         cmd = iommu->gcmd | DMA_GCMD_QIE;
764         iommu->gcmd |= DMA_GCMD_QIE;
765         writel(cmd, iommu->reg + DMAR_GCMD_REG);
766
767         /* Make sure hardware complete it */
768         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
769         spin_unlock_irqrestore(&iommu->register_lock, flags);
770
771         return 0;
772 }